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Abstract: We numerically demonstrate a frequency-domain learned multiple-input
multiple-output Volterra nonlinear equaliser and reveal the impact of practical implementa-
tion parameters on the per-channel performance. © 2024 The Author(s)

1. Introduction
Digital compensation of nonlinear transmission impairments is a promising solution for the capacity enhance-
ment of optical communication systems [1]. However, the dominance of inter-channel impairments in wavelength
division multiplexing (WDM) systems makes multi-channel operation an indispensable feature of future non-
linear equalisers (NLEs). The development of multiple-input multiple-output (MIMO) digital back-propagation
(DBP) based models [2] has significantly brought down the algorithmic complexity compared to earlier full-field
approaches [3]. Furthermore, machine learning (ML) has recently enabled the development of versatile multi-
channel NLE algorithms with enhanced estimation capabilities and low complexity, capable of operating without
complete knowledge of the transmission link parameters [4]. In particular, it has already been shown that ML
can drastically simplify pure time-domain (TD) implementations of NLEs by enabling joint optimisation of their
parameters in the linear and nonlinear stages [5]. In this respect, we have recently introduced a simplified Volterra-
based MIMO equalisation scheme with fully trainable TD stages [6]. Despite the considerable reduction in finite
impulse response (FIR) filter size achieved for the linear stages (i.e., ∼ 40 taps for ∼ 50-km computational step
length at 32Gbaud), implementing such TD filters is still challenging. Alternatively, a frequency-domain (FD) ap-
proach using block-processing techniques, such as overlap-and-save [7], may offer a more feasible implementation
of the linear stages for long-haul transmission scenarios, whilst sacrificing the adaptive operation advantage.

Building upon our previous work [6], this paper introduces a learned Volterra-based MIMO NLE in which
static FD equalisers represent the linear stages, whereas the TD FIR filters of the nonlinear stages are the adaptive
parts of the algorithm. Contrary to [8], we use stochastic gradient descent-based optimisation, enabling fast model
convergence. Through extensive numerical simulations, we have established practical design rules for optimising
the equalization performance. A 5×5 MIMO equaliser with 4 computational steps achieves∼ 2-dB improvement
in effective signal-to-noise ratio (SNR) over a single-channel equaliser with the same number of computational
steps and requires 2048 overlapping samples to ensure uniform equalisation across a 160-GHz WDM bandwidth
for 1000-km transmission.

2. Methods, Results and Discussion
The architecture of our proposed MIMO simplified learned inverse Volterra series transfer function (L-simIVSTF)
NLE is shown in Fig. 1(a) for the example of a 2×2 interconnection with two computational steps. Further advanc-
ing our previous TD model [6], the linear steps addressing the per-span chromatic dispersion (CD) were solved
in the frequency domain (FD). Direct and inverse fast Fourier transforms were used to switch between the time
and frequency representations of the signal. The desired linear filtering was ensured by using adequate overlapped
framing. The same block size was used throughout the structure. The HCD transfer functions, otherwise identical
for each step and wavelength channel, included an appropriate delay term to account for the walk-off among chan-
nels. The parallel branches deriving from the filter cascade offset the impact of nonlinearity by reversing the Kerr-
induced nonlinear transformation in each fibre section. Following an enhanced transfer function approach success-
fully applied within DBP schemes [8], we considered the filtered impact of adjacent samples in both self-phase
modulation (SPM) and cross-phase modulation (XPM) transformations. Therefore, the SPM and XPM activation
functions of the nth channel at the tth sampling instant were realised as σ(t)n,SPM =−iγLyn ∑
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fibre nonlinear coefficient, L is the effective length of each fibre step, and the instantaneous signal powers are
convolved with SPM and XPM FIR filters having real-valued coefficients αc and βc and lengths 2l+1 and 2m+1,
respectively. Similarly to [6], αc and βc were jointly optimised using gradient-based back-propagation.

We considered the transmission of 5 single-polarisation wavelength channels along a 10× 100-km stan-
dard single-mode fibre link (dispersion parameter D = 17ps/(nm · km), γ = 1.3(W · km)−1, loss coefficient
α = 0.2dB/km). Erbium-doped fibre amplifiers of 4.5-dB noise figure compensated for the span losses. Each
channel carrier was modulated with 218 64-QAM symbols at a rate of 32Gbaud. The channel spacing was 40GHz.



Fig. 1: (a) Block diagram of the proposed FD L-simIVSTF NLE for 2×2 MIMO operation with 2 computational
steps. (b) Performance of different realisations of the model for 5× 5 MIMO operation versus channel launched
power. (c) Per-channel performance of the 5× 5 MIMO model with 4 computational steps for different overlap
and block lengths.

Ideal optical filters were assumed for channel multiplexing/demultiplexing. At the receiver, after demodulation and
down-sampling to 2 samples per symbol, the channels were processed by a 5×5 MIMO NLE. We used block-by-
block processing, efficiently implemented by an overlap-and-save method [7]. For the optimisation of the SPM and
XPM filters, we used a training data set of 220 symbols, while the validation and testing data sets had a 218-symbol
size. Model training was performed for a total of 1500 epochs, after which no further performance improvement
was observed. The filters were initialised with 0’s except the middle taps, which were set to 1. The filter lengths
were set to the minimum required values found for the TD model [6], i.e., 7 taps for the SPM filters and 31 taps
for the XPM filters. It is worth noting that increasing the number of steps per span in the model can further reduce
the length requirement for these filters. Nevertheless, our findings suggested that the model’s performance remains
unaffected, provided that sufficient training iterations are performed.

Figure 1(b) shows the performance of different implementations of a 5×5 MIMO L-simIVSTF NLE in terms
of the average effective SNR of the channels as a function of the channel launched power, where the SNR for each
channel was derived from the corresponding bit-error rate. The performance of the FD model is shown for 2, 3,
and 4 steps per span, and compared to those of the previously proposed TD MIMO L-simIVSTF model [6] and a
FD single-channel L-simIVSTF NLE operated at 4 steps per span. We can see that the model needs to be operated
at more than 3 steps per span to achieve similar performance to the TD model at 2 steps per span. Operating
the model at 4 steps per span brings about 0.3-dB SNR improvement over its 2-steps-per-span TD counterpart
and ∼ 2-dB improvement over the equivalent single-channel model. The requirement of a larger number of steps
per span by the FD implementation of the MIMO model stems from the absence of any training applied to its
linear steps. Furthermore, we studied the relationship between block length, overlap length and performance of
the FD MIMO model. We considered a 5× 5 configuration operated at 4 steps per span. A separate model was
trained for each combination of overlap and block lengths. The results are summarised in Fig. 1(c). They evidence
that tuning these parameters is essential to ensure the convergence of the MIMO equaliser so that it provides
nonlinearity equalisation to all channels. Whilst an overlap length of 1024 samples is sufficient to achieve inter-
channel compensation of 3 channels only, 2048 overlapping samples are required for equal compensation of all 5
channels. The necessary overlap length is dictated by the walk-off between the outermost channels. Conversely,
the block length is constrained by the overlap length and stands as an optimisable parameter, potentially allowing
for complexity reduction.

3. Conclusion
We have presented an FD learned Volterra MIMO NLE and studied the impact of practical implementation param-
eters on its performance. We have established the minimum required overlap and block lengths to attain effective
inter-channel nonlinearity compensation. Acknowledgments: This work was partly supported by the UK EPSRC grants
TRANSNET (EP/R035342/1) and CREATE (EP/X019241/1), and the RAEng RCSR fellowship.
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