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RESEARCH

Radial polarisation patterns identify macular damage: a machine learning 
approach
Gary P Misson , Stephen J Anderson and Mark C M Dunne

School of Optometry, Aston University, Birmingham, UK

ABSTRACT
Clinical relevance: Identifying polarisation-modulated patterns may be an effective method for both 
detecting and monitoring macular damage.
Background: The aim of this work is to determine the effectiveness of polarisation-modulated 
patterns in identifying macular damage and foveolar involvement using a methodology that involved 
feature selection, Naïve Bayes supervised machine learning, cross validation, and use of an inter-
pretable nomogram.
Methods: A cross-sectional study involving 520 eyes was undertaken, encompassing both normal 
and abnormal cases, including those with age-related macular disease, diabetic retinopathy or 
epiretinal membrane. Macular damage and foveolar integrity were assessed using optical coherence 
tomography. Various polarisation-modulated geometrical and optotype patterns were employed, 
along with traditional methods for visual function measurement, to complete perceptual detection 
and identification measures. Other variables assessed included age, sex, eye (right, left) and ocular 
media (normal, pseudophakic, cataract). Redundant variables were removed using a Fast Correlation- 
Based Filter. The area under the receiver operating characteristic curve and Matthews correlation 
coefficient were calculated, following 5-fold stratified cross validation, for Naïve Bayes models 
describing the relationship between the selected predictors of macular damage and foveolar 
involvement.
Results: Only radially structured polarisation-modulated patterns and age emerged as predictors of 
macular damage and foveolar involvement. All other variables, including traditional logMAR mea-
sures of visual acuity, were identified as redundant. Naïve Bayes, utilising the Fast Correlation-Based 
Filter selected features, provided a good prediction for macular damage and foveolar involvement, 
with an area under the receiver operating curve exceeding 0.7. Additionally, Matthews correlation 
coefficient showed a medium size effect for both conditions.
Conclusions: Radially structured polarisation-modulated geometric patterns outperform polarisa-
tion-modulated optotypes and standard logMAR acuity measures in predicting macular damage, 
regardless of foveolar involvement.
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Introduction

Polarised light perception is a well-documented phenom-
enon in various animal groups, including insects, crustaceans, 
fish and birds.1 This ability enhances their understanding of 
the environment and facilitates interactions within it, provid-
ing additional visual information to aid navigation, camou-
flage, predation and social communication.

Unlike many animals, humans lack dedicated retinal recep-
tors or higher-order neurons for processing polarised light.2 

Despite this, humans can still perceive polarised light, although 
this ability has long been considered rudimentary and limited 
to the entoptic phenomenon known as Haidinger’s brushes.3 

This phenomenon appears as a faint, hourglass-shaped pattern 
(‘brushes’) near the point of fixation when viewing a uniformly 
polarised field, where the angle of polarisation is constant 
across the entire area. This effect is particularly noticeable in 
fields rich in blue wavelengths.

The precise basis of human polarisation perception 
remains unclear, but it is generally agreed that this ability is 
due to selective absorption of polarised light within the inner 
layers of the fovea before light reaches the photoreceptors. 

The absorbing components are most likely oriented macular 
pigment molecules within radially symmetric photoreceptor 
cell axons.4 This arrangement effectively creates 
a diattenuating structure within the foveal retina, producing 
a luminance contrast signal that is perceived after subse-
quent neural processing.5

Efforts to understand human polarisation perception using 
uniform fields of polarised light have been hindered by the 
short-lived nature of Haidinger’s brushes, which fade within 
a few seconds due to retinal adaptation. However, recent 
evidence shows that this perceptual ability is not limited to 
the use of uniform fields.6 Greater success in understanding 
polarisation vision has been achieved with regionally variable 
(i.e., non-uniform) polarisation fields.

Humans are remarkably sensitive to such fields, capable of 
detecting differences in polarisation angles of less than 5 
degrees – similar to the sensitivity reported in 
invertebrates.7 This sensitivity is mainly due to the preserva-
tion of edge boundaries where there is an abrupt change in 
the direction of the polarised field. This edge-preserving 
property of non-uniform fields allows the generation of 

CONTACT Stephen J Anderson s.j.anderson@aston.ac.uk

CLINICAL AND EXPERIMENTAL OPTOMETRY       
https://doi.org/10.1080/08164622.2024.2410890

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted 
Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0001-8843-8389
http://orcid.org/0000-0002-5719-2846
http://orcid.org/0000-0001-9126-0702
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08164622.2024.2410890&domain=pdf&date_stamp=2024-10-07


sophisticated, temporally stable and quantifiable stimuli, 
including two-dimensional geometric patterns and 
optotypes.6

The dependence of polarisation perception on macular 
pigment and normal macular spatial ordering suggests that 
sensitivity measurements using polarisation targets may 
provide a unique means of quantifying any disruption in 
normal macular structure or function. The sensitivity of 
both Haidinger’s brushes8,9 and polarisation-modulated 
spatial patterns10,11 to macular damage is well described. 
However, it is not clear which stimuli, if any, are best suited 
for the detection of macular damage, or the benefit of 
polarisation perception over more traditional methods of 
vision measurement (e.g., logMAR visual acuity). 
Furthermore, it is not clear to what extent any polarisation 
perception deficit is localised to the macula in general or 
more specifically to the foveola.

To address the challenges inherent in analysing complex 
and extensive datasets, a machine learning approach was 
implemented. The dataset included a diverse group of indi-
viduals, both with and without macular disease, who had 
undergone various visual assessments with polarisation- 
modulated patterns and conventional measures of visual 
acuity. By leveraging machine learning, the aim was to 
explore the predictive potential of these visual patterns in 
identifying macular disease and its specific involvement of 
the fovea.

Unlike traditional statistical methods that rely on pre-
defined hypotheses, machine learning excels at uncover-
ing patterns and relationships within data. This approach 
is particularly adept at extracting valuable insights from 
complex datasets, often revealing patterns that elude tra-
ditional methods. By applying machine learning to the 
dataset, relevant features that might not have been 
apparent through conventional analyses were extracted 
and analysed.

The machine learning strategy consisted of several key 
steps. First, a feature selection technique was applied to 
eliminate redundancy and identify the most important vari-
ables in the dataset. Next, a Naive Bayes classification algo-
rithm was used to distinguish between individuals with and 
without macular disease based on the selected features. To 
ensure the robustness of the results, cross-validation was 
performed, assessing the generalisability of the model by 
testing it on different data subsets. Finally, nomograms 
were developed to facilitate interpretation of the model out-
put in terms of log-odds ratios.

Methods

A cross-sectional study was conducted to evaluate the 
clinical data of both staff and adult patients at the South 
Warwickshire NHS Foundation Trust in the UK. This 
research was reviewed by independent ethical review 
boards and conforms with the principles and applicable 
guidelines for the protection of human subjects in biome-
dical research.

The study adhered to the tenets of the Declaration of 
Helsinki and was approved by the UK NHS Health Research 
Authority (IRAS project ID 224,715) following Research Ethics 
Committee approval (reference 17/WA/0180). All participants 
gave informed consent following explanation of the nature of 
the study.

Participant characteristics

Participants recruited for the study comprised individuals 
with both eyes healthy, one or both eyes pseudophakic but 
with no other pathology, and normophakic or pseudophakic 
individuals with age-related macular disease, diabetic retino-
pathy or epiretinal membrane in one or both eyes. Exclusion 
criteria were withdrawal of consent, inability to record 
a logMAR visual acuity and corneal pathology.

The ocular data sets comprised data from one eye chosen 
at random from the healthy/healthy pseudophakic partici-
pant group, together with data from one or both eyes of 
the individuals with abnormal eyes (i.e., participants with 
age-related macular disease, diabetic retinopathy or epiret-
inal membrane). The use of data from both eyes of one 
individual with eye pathology is justified by interocular asym-
metry of pathology and/or different pathologies.10,11 Only 
participants that had a complete data set were included in 
the statistical analyses. In total, 520 eyes were included, of 
which 309 were normal, 115 had age-related macular disease 
(79% with foveolar involvement), 57 had diabetic retinopathy 
(29.8% with foveolar involvement) and 39 had epiretinal 
membrane (71.8% with foveolar involvement). See Table 1 
for further details.

Macular assessment

Diagnostic categorisation was based on history and clinical 
assessment, including slit-lamp biomicroscopy, dilated fun-
doscopy and optical coherence tomography (OCT).

A Topcon DRI OCT Triton Plus swept-source OCT system, 
equipped with proprietary automatic image algorithms, was 
used for macular assessment. The OCT images were standard 
machine-generated outputs with no additional pre-proces-
sing. All images were of sufficient quality to support a clinical 
diagnosis (machine image quality index > 40). Diagnosis and 
disease grading were based on the evaluation of 7.0 × 7.0 mm 
(512 × 256 pixel) macular raster scans, with foveolar integrity 
assessed using horizontal and vertical 9 mm (1024 pixel) line 
scans through the foveola. Retinal layers were identified 
according to the international OCT consensus.12

Age-related macular degeneration was classified using the 
Age-Related Eye Disease Study (AREDS) system for fundus 
photography,13 which includes four levels: small drusen 
(7.8% of cases); small and intermediate drusen with retinal 
pigment epithelial changes (15.7%); small to large drusen 
with foveal-sparing geographic atrophy (19.1%); and foveal- 
involving geographic atrophy and/or evidence of choroidal 
neovascularization (57.4%).

Diabetic retinopathy classification was based on the Royal 
College of Ophthalmologists, UK, Diabetic Retinopathy 
Guidelines,14 which includes six grades of retinopathy: eyes 
with background (29.8% of cases), pre-proliferative (5.3%) 
and proliferative (19.3%) retinopathy in the absence of 

Table 1. Participant summary data. The variables marked with an asterisk were 
discretised to three separate intervals using Orange data mining software 
(version 3.36.2). See text for details.

Variable Number of Eyes
Eye 255 (Left) 265 (Right) –
Age (years)* 124 (<63) 200 (63–77) 196 (>77)
Sex 289 (Female) 231 (Male) –
LogMAR VA* 209 (<0.11) 164 (0.11–0.32) 147 (>0.32)
Ocular Media 281 (Normal) 145 (Pseudophakic) 94 (Cataract)
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maculopathy; and eyes with background (33.3%), pre-prolif-
erative (10.5%) and proliferative (1.8%) retinopathy in the 
presence of maculopathy.

Epiretinal membrane was classified using the grading 
scheme of Govetto et al.15 which includes four stages: pre-
sence of foveal pit with well-defined retinal layers (30.8% of 
cases); absence of pit with well-defined layers (33.3%); 
absence of pit with well-defined layers and presence of ecto-
pic inner foveal layers (20.5%); and absence of pit with dis-
rupted retinal layers and presence of ectopic inner foveal 
layers (15.4%).

In addition to these published methods of disease classi-
fication, a further disease classification based on OCT- 
defined foveolar structural changes was employed because 
polarisation sensitivity is confined to this region of the 
retina.7 The outer boundary of the foveola was defined on 
OCT as the termination of the inner nuclear layer (Figure 1). 
Foveolar involvement in abnormal eyes was defined as any 
OCT-identifiable structural abnormality at any level of the 
retina confined by the boundary of the termination of the 
inner nuclear layer.

Clinical interpretation and grading were conducted by the 
first author (GPM), an experienced practising consultant 
ophthalmologist. Grading was completed without prior 
knowledge of the psychophysical results. Decisions were 
not reviewed by other ophthalmologists.

Data acquisition and polarization pattern perception

Conventional, corrected distance logMAR visual acuity (VA) 
was measured using a standard Bailey-Lovie chart.

The method of polarisation pattern perception measure-
ment is detailed elsewhere.10,11 Briefly, participants were 
asked to identify images presented using a polarisation sti-
mulus generator consisting of a modified liquid crystal dis-
play (Asus VS278H from ASUSTeK Computer Inc., Taiwan).6,7,16

Standard polarimetry and photometric methods7 con-
firmed that the polarisation output was dependent on shades 
of screen grey and predominantly linearly polarised (degree 
of linear polarisation ≥ 0.94). The angles of polarisation varied 
from 54° for the darkest grey (foreground of stimulus images) 
to 147° for the lightest grey (background of stimulus images). 
The display screen, viewed from 3 m, subtended a visual 
angle of 11° (width) x 6.5° (height) and emitted blue light 
with a peak wavelength of 460 nm at a consistent luminance 
of 8.0 cd/m2 for all grey-scale values.

The stimulus set comprised 14 geometric patterns, to 
include patterns that accord with the radial architecture of 
the macula, and both logMAR-graded and contrast-graded 
Sloan optotypes, as detailed below. Figure 2 shows exam-
ples of the polarisation-modulated patterns employed in 
this study, together with their simulated foveal fixation 
percepts.

Three pattern response criteria were used: (i) identifica-
tion, defined as the ability to identify accurately the stimulus 
pattern/optotype; (ii) detection, defined as the ability to 
detect but not identify the presence of a pattern, and (iii) 
not detected. Previous investigations by the present authors 
have established that individual responses for the criteria of 
‘identified’, ‘detected’ and ‘not detected’ give repeatable, 
clinically useful results.10,11

Stimulus patterns were displayed in a pseudorandom 
order, with the presentation managed by one of two 
trained ophthalmic technicians, neither of whom knew 
the diagnoses of participants. All testing was done mono-
cularly, with each eye of a participant assessed in turn. 
Participants were informed that a series of images would 
be shown one at a time, and they would have a maximum 
of 30 seconds to view each image. They were instructed 
to focus on the centre of the display screen for each 
image presentation.

Although the possibility of eccentric fixation was not 
monitored, the advantage of this protocol is that polarisa-
tion perception requires fixation at the fovea, as this 
phenomenon only occurs there. All participants were 
able to perceive at least some polarisation targets, con-
firming fixation.

For each image, participants were asked whether they 
saw a pattern or just a blank blue screen. A positive 
response was recorded as pattern detection. Those who 
detected a pattern were then asked to describe it. 
A positive response for pattern identification was recorded 
if the participant could describe the general appearance of 
the displayed image. Accepted description terms included 
vertical stripes or bars, concentric circles or rings, checks or 
chequerboard, star or starburst, and windmill or triangles. 
Letter identification was required for optotype images. The 
typical duration for viewing the full series of images was 
between 10 and 15 minutes per eye.

All measurements were taken with normal, undilated 
pupils. Ametropic participants were corrected for the dis-
play screen working distance using isotropic trial lenses 
(i.e., lenses that do not alter the state of polarisation of 

Figure 1. Horizontal OCT scan through the foveolar centre of a healthy macula (left eye). The boundary of the foveola is defined by the termination of the inner 
nuclear layer (INL), indicated by the blue line nasally at Fn and temporally at Ft.
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light transmitted through them). The lenses were sup-
ported in a trial frame.

Data quantification and statistical methods

Orange (version 3.36.2), an open-source data mining soft-
ware for machine learning applications, was used for all 
analyses. The organisation of graphical elements, called 
widgets, in the developed Orange data processing work-
flow is shown in Figure 3.

The machine learning approach involved feature selection 
followed by Naïve Bayes supervised machine learning. To 
complete the analyses, it was necessary to discretise the 
continuous data (age and acuity measures) into separate 
intervals. This was done using the ‘Discretise’ widget of the 
Orange data mining software.

The number of features (independent variables) selected is 
critical to subsequent machine learning performance. In this 
study, 21 features were investigated, including eye (right, 
left), age in years (<63, 63–77, >77), sex (male, female), ocular 
media (normal, pseudophakic, cataract), conventional 
logMAR visual acuity, 14 perceptual measures of 

polarisation-modulated geometric patterns (identified, seen, 
not seen), and two evaluations (scores) based on the identi-
fication of polarisation-modulated logMAR-graded Sloan 
optotypes (termed Polar logMAR) and contrast-graded Sloan 
optotypes (termed Polar Contrast).

Polar logMAR was calculated as the total number of high- 
contrast optotypes identified from a set of 50 (displayed in 
five-letter groups) that ranged in size from 1.2 logMAR to 0.2 
logMAR. Polar Contrast was calculated as the total number of 
1.0 logMAR sized optotypes identified from a set of 24 (dis-
played in three-letter groups) that varied in polarisation- 
equivalent contrast (defined in Misson and Anderson7) from 
0.75 to 0.05.

Two targets (dependent variables) were investigated: 
macular damage and foveolar involvement (both with binary 
classification of ‘no’ or ‘yes’). In preliminary analyses, an 
attempt was made to target the disease classifications of 
age-related macular disease, diabetic retinopathy and epiret-
inal membrane. However, the number of cases for specific 
disease classifications was too low, as shown by confusion 
matrices constructed from the results of Naïve Bayes machine 
learning, which failed to detect any epiretinal membrane 

Figure 2. Representation of the polarisation-modulated geometric and optotype patterns used, together with their simulated foveal fixation percepts. Static 
chequerboard patterns varied in check size, with their fundamental spatial frequency spanning the range of frequencies over which polarisation patterns are 
visible.7 A dynamic chequerboard with a fundamental frequency of 1 cpd alternating at 1 hz was included as it is routinely employed in clinical visual measures. 
A uniform field alternating at 1 hz was used to generate a dynamic Haidinger’s brush; a non-alternating field was used to generate a static Haidinger’s brush. The 
optotype examples shown here are high contrast logMAR graded as used in the calculation of polar logMAR. Reduced polarisation contrasts for logMAR 1.0 
optotypes (not shown) were used for polar contrast scores (see text for explanation).
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cases (Matthews correlation coefficient < 0.001) and detected 
only one diabetic retinopathy case (Matthews correlation 
coefficient = 0.021).

The Fast Correlation-Based Filter (FCBF) feature selection 
method17,18 was employed. This method efficiently 
removes redundant features (independent variables) so 
that those selected are highly correlated to the specified 
target (dependent variable) but not correlated to each 
other. It works by evaluating the relevance of each feature 
to the target using Symmetrical Uncertainty, an entropy- 
based measure that quantifies the shared information 
between two variables.

Features with symmetrical uncertainty values above 
a threshold, determined from the data distribution to avoid 
user bias, are considered relevant and ranked accordingly. 
The algorithm then iteratively removes redundant features 
by comparing their uncertainty values with those of already 
selected features, ensuring that only unique and informative 
features are retained. By focusing on both relevance and 
redundancy, the FCBF method ensures that the selected 
features are both informative and non-redundant. It has 
become one of the most common feature selection methods 
in use.18

The same 21 features (i.e., independent variables identified 
above) were presented to the FCBF selection method to 
determine which were important for detecting macular 
damage or foveolar involvement.

To provide more information about the influence of 
selected features on the specified targets, and to estimate 
the size effect, Naïve Bayes supervised machine learning was 
employed. Naïve Bayes is the simplest form of machine learn-
ing algorithm and there were three main reasons for choos-
ing this model. First, unlike other machine learning 
algorithms, Naïve Bayes does not require hyperparameter 
tuning (i.e., adjusting model settings to achieve the best 
possible performance). Second, Orange Data Mining software 
conveniently connects Naïve Bayes to its nomogram widget, 
which reveals the Log-odds ratios involved in making predic-
tions. Thirdly, although the FCBF method largely mitigates 
concerns about violating the conditional independence 

assumption of Naïve Bayes, the algorithm is known to per-
form well even when the independence assumption is not 
valid. ,19–21

The data split for training and testing was carried out 
automatically via the Orange ‘Test and Score’ widget using 
a 5-fold cross validation process, a well-known machine learn-
ing technique that provides a reliable estimation of model 
performance.22,23 With this technique, the sample is ran-
domly divided into five separate groups (or folds), each stra-
tified to maintain approximately equal proportions of the 
outcome variable. During the first run, the first fold is held 
out for testing while the other four folds are used to train the 
prediction model.

In the second run, the second fold is held out for testing 
and the remaining four folds are used for training. This pro-
cess continues until each of the five folds has been used for 
both training and testing, resulting in five separate testing 
groups. This approach prevents overfitting that would occur 
if the prediction model were tested on the same data used for 
training.

Collins et al.24 summarise the latest recommendations for 
evaluating prediction models, referring to the TRIPOD state-
ment (Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis). The approach 
used in this study aligns with their analysis type B: ‘Model 
developed using all available data and its performance eval-
uated using resampling, such as bootstrapping or k-fold 
cross-validation (internal validation)’.

Estimation of the size effect involved determining 
Matthews correlation coefficient (MCC) for the Naïve Bayes 
models that were trained to predict macular damage and 
foveolar involvement. Matthews correlation coefficient is par-
ticularly useful for the binary classifications carried out in this 
study.25 It approximates Pearson’s correlation coefficient for 
the classification of supervised machine learning methods,26 

thereby providing an estimate of effect size in which values of 
0.1, 0.3 and 0.5 represent, respectively, small, medium and 
large effects.27

The area under the receiver operating characteristic curve 
(AUC), commonly used in machine learning,22 was also 

Figure 3. Orange workflow for the Fast Correlation-Based Filter (FCBF) feature ranking and Naïve Bayes supervised machine learning. ‘File’ reads the data input 
(from an Excel spreadsheet). ‘Discretize’ converted numeric variables into three interval categories (age <63, 63–77, >77 years; logMAR VA < 0.11, 0.11-0.32, >0.32; 
polar logMAR < 0.5, 0.5–4.5, >4.5; polar contrast <0.5, 0.5–2.5, >2.5). ‘Select columns’ allowed manual assignment of features (21 independent variables: eye, age, 
sex, ocular media, logMAR VA, 14 perceptual measures of polarisation-modulated geometric patterns, polar logMAR and polar contrast) and targets (two 
dependent variables: macular damage and foveolar involvement, both with binary classification of ‘no’ or ‘yes’). The ‘impute’ widget removed participants with 
incomplete data sets. ‘Rank’ used the FCBF feature selection method17,18 to remove redundant features for each target. ‘Naïve Bayes’ provided the supervised 
machine learning classification model. The same model was placed in two positions to explore its performance (‘Naïve Bayes’) and log-odds ratios (‘Naïve Bayes 
(1)’). ‘Test and score’ provided performance measures of Naïve Bayes – both Matthews Correlation Coefficient (MCC) and the area under the receiver operating 
characteristic curve (AUC) were determined after stratified 5-fold cross validation. ‘Nomogram’ showed the log-odds ratios from the Naïve Bayes models (i.e., log 
likelihood ratios) for the targets macular damage and foveolar involvement.
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determined for each model. An area under the receiver oper-
ating characteristic curve below 0.7 is suboptimal, 0.7 to 0.8 is 
good and above 0.8 is excellent.28

Results

Table 2 shows the ranked influence of each independent 
variable in predicting macular damage and foveolar involve-
ment following the FCBF feature selection method.

The ‘Star’ polarisation-modulated stimulus and age were 
selected as predictors of macular damage. All other variables, 
including conventional logMAR measures of visual acuity, 
were identified as redundant or irrelevant features. 
Although not selected, it is noteworthy that the third highest 
ranked variable was another radially structured polarisation- 
modulated geometric pattern, named ‘Windmill’. Both the 
Star and Windmill geometric patterns, together with their 
simulated foveal fixation percepts, are shown in Figure 2.

The Windmill polarisation-modulated geometric pattern 
and age were selected as predictors of foveolar involvement, 
with all remaining features identified as redundant. It is note-
worthy that that the Star polarisation pattern was not 
selected but was nonetheless the third highest ranked vari-
able. Of further note is that, for both macular damage and 
foveolar involvement, the lowest FCBF ranked variable was 
Eye (i.e., right or left eye of participant), which provides 
further support for the use of data from both eyes of each 
individual (see Methods).

These results are supported by standard chi-square ana-
lyses, which were used to assess the significance of the rela-
tionship between all features and the target variables. 
Macular damage showed significant (p < 0.001) associations 
with 16 features, with the Star pattern ranked highest based 
on the Chi-square value (X2 = 37.33). Foveolar involvement 

showed significant (p < 0.001) associations with 15 features, 
with the Windmill pattern ranked highest (X2  = 37.85).

Naïve Bayes, with the FCBF selected features, provided 
a good prediction for macular damage (area under the recei-
ver operating characteristic curve = 0.773), with a medium 
size effect (Matthews correlation coefficient = 0.458). The 
model also provided a good prediction for foveolar involve-
ment (area under the receiver operating characteristic curve  
= 0.763), again with a medium size effect (Matthews correla-
tion coefficient = 0.356).

The log-odds ratios (i.e., Log Likelihood ratios) for macular 
damage and foveolar involvement were computed to aid 
interpretation of Naïve Bayes predictions, allowing for more 
information on the relative influences of age and the selected 
polarisation-modulated geometrical patterns. The results are 
shown in Table 3. To aid clarity, the log-odds ratios for pre-
dicting macular damage and/or foveolar involvement were 
converted to probabilities (relative to chance, 50%). For exam-
ple, failure to detect the Star polarisation-modulated pattern 
raises the probability of macular damage by 20.1%, whereas 
successfully identifying the pattern reduces it by 26.1%.

Discussion

The belief that sensitivity measures of polarisation-modulated 
stimuli could offer a unique method for predicting macular 
damage arises from the fact that humans perceive polarised 
light solely because diattenuating macular structures convert 
it into a luminance signal. This mechanism guarantees that 
the resulting luminance signal covers the entire extent of the 
fovea but does not extend beyond the macula, making it 
a stimulus purely targeting the macula. However, despite 
the use of a wide array of polarisation patterns to evaluate 
macular function, including uniform and non-uniform polar-
isation fields, polarisation-modulated optotypes and struc-
tured light, their predictive accuracy remains unclear.

In this study, a machine learning approach was utilised to 
assess the predictive potential of polarisation patterns for 
macular damage and foveolar involvement. This involved 
extracting relevant features from a large dataset comprising 
sensitivity measures and patient variables to uncover subtle 
trends that might otherwise be challenging to identify. 
Through this method, it was discovered that: (i) polarisation 
measures outperform conventional logMAR acuity measures 
in predicting macular and foveal damage; (ii) geometric pat-
terns are more effective than polarisation-modulated 

Table 2. Fast Correlation-Based Filter (FCBF) ranking of 21 independent vari-
ables (features) for predicting macular damage and foveolar involvement, with 
ranked order based on symmetrical uncertainty, an entropy-based correlation 
measure. FCBF ranking based on data from a total of 520 eyes. Features 
selected for inclusion in the machine learning model are bolded and marked 
with a double asterisk (**). Representations of the polarisation-modulated 
patterns are given in Figure 2. Abbreviations used: Haidinger’s brushes (HB); 
alternating chequerboard (AltCheck); visual acuity (VA); fundamental spatial 
frequency in cycles/degree (# cpd); vertical square wave grating (bars). See text 
for definition of polar logMAR and polar contrast.

Rank
Macular 
Damage Foveolar Involvement

1 Star** Windmill**
2 Age** Age**
3 Windmill Star
4 Check 0.25 cpd Check 0.25 cpd
5 Circles Dynamic HB
6 Dynamic HB Circles
7 Check 2 cpd Check 2 cpd
8 AltCheck 1 cpd Polar logMAR
9 Polar logMAR AltCheck 1cpd
10 Bars 1 cpd logMAR VA
11 logMAR VA Bars 1cpd
12 Check 4 cpd Check 6 cpd
13 Static HB Media
14 Media Static HB
15 Grid Grid
16 Check 6 cpd Check 4 cpd
17 Polar Contrast Polar Contrast
18 Check 12 cpd Check 12 cpd
19 Check 9 cpd Check 9 cpd
20 Sex Sex
21 Eye Eye

Table 3. Log-odds ratios for predicting macular damage (top panels) and 
foveolar involvement (bottom panels). The Fast Correlation-Based Filter 
(FCBF) selected variables for predicting macular damage were the star polar-
isation-modulated pattern and age. The variables for predicting foveolar invol-
vement were the Windmill polarisation pattern and age. Log-odds ratios 
(provided by Orange, version 3.36.2) were converted to odds values using 
odds = e(Log odds), with probability (P) determined using p = odds/(1+odds). For 
each condition, the probability (%) for predicting pathology is expressed (in 
brackets) relative to chance (i.e., 50%).

Macular Damage
Star Identified Detected Not Detected

−1.16 (−26.1%) −0.20 (−5.0%) 0.85 (20.1%)
Age <63 years 63–77 years >77 years

−1.71 (−34.7%) 0.14 (3.5%) 0.58 (14.1%)

Foveolar Involvement
Windmill Identified Detected Not Detected

−1.37 (−29.7%) −0.35 (−8.7%) 0.70 (16.8%)
Age <63 years 63–77 years >77 years

−2.03 (−38.4%) 0.13 (3.2%) 0.58 (14.1%)
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optotypes for evaluating macular function; and (iii) radially 
structured polarisation-modulated patterns are particularly 
effective for predicting both macular damage and foveolar 
involvement.

The present findings are based on a sample in which the 
majority of participants had moderate to severe retinal 
damage. It remains an open question as to how a more 
even distribution of cases from mild to severe retinal damage 
might have influenced the outcomes.

The FCBF feature selection method was crucial in the 
machine learning approach employed, which evaluated 21 
independent variables. Commonly used in machine learning 
studies,17,18,29 this method effectively eliminates redundant 
variables, ensuring that the selected variables are highly 
correlated with the target (macular damage or foveolar 
involvement) but not with each other. This process, known 
as data reduction, enhances machine learning performance 
by highlighting the most influential predictors of macular 
damage.

In this study, the FCBF method identified two polarisation- 
modulated patterns (Star and Windmill) and age as key pre-
dictors of macular and foveal damage. Notably, it did not 
select sensitivity measures related to conventional logMAR 
visual acuity. However, this should not be taken to suggest 
that visual acuity lacks predictive value or that it is unrelated 
to other variables, such as sex, eye or ocular media (e.g., 
cataracts). It is well-established, for example, that visual acuity 
is affected by macular disease and can also be influenced by 
conditions like cataracts. The FCBF method simply shows that, 
in this context, the predictive power of visual acuity is weaker 
compared to that of polarisation-modulated patterns.

Considering that macular damage is predominantly asso-
ciated with ageing, the inclusion of age in the machine 
learning model would be expected. That it was included 
reinforces confidence in the FCBF feature selection method.

For readers more familiar with traditional statistics than 
machine learning, Chi-square analyses were conducted to 
examine the relationship between all features and the 
target variables in this study. This conventional statistical 
method supported the main findings: the Star pattern 
showed the strongest association with macular damage, 
while the Windmill pattern was most strongly linked to 
foveolar involvement (see the FCBF ranking in Table 2 for 
comparison).

Although the Chi-square test effectively provided tradi-
tional statistical support for the machine learning findings, it 
has significant limitations when used for feature selection. 
Specifically, the Chi-square test examines the relationship 
between each feature and the target variable independently, 
without accounting for potential redundancy among fea-
tures. This limitation likely explains why significant associa-
tions were evident for most independent variables (see 
Results). In contrast, FCBF provides a more sophisticated 
approach by directly addressing feature redundancy.

As noted above, FCBF efficiently identifies a minimal sub-
set of features that are strongly correlated with the target 
variable while minimising redundancies among them. In 
other words, the few selected features collectively provide 
all the necessary information for identifying the target. As 
a result, FCBF yielded a more robust and informative feature 
set for subsequent modelling using Naïve Bayes.

Both selected polarisation-modulated patterns, specifically 
the Star and Windmill patterns, feature radial geometric 

structures. The Star pattern ranked highest among the FCBF 
features for predicting macular damage, while the Windmill 
pattern ranked highest for predicting foveolar involvement. 
These patterns were designed based on the radial dispersion 
of the Henle fibre layer from the foveal centre in a healthy 
macula. It is hypothesised that the shared radial symmetry 
between the architecture of the retina and the polarisation 
pattern confers an advantage over visual patterns lacking 
radial symmetry. In brief, disruptions in the radial structure 
of the macula through disease may be most effectively iden-
tified using a corresponding radially structure stimulus.

The reasons behind the differing rankings of the Star and 
Windmill patterns for predicting macular damage are unclear. 
The sole distinction between these two polarisation patterns 
lies in their angular frequency: the Star pattern features an 
angular frequency of π/12, while the Windmill pattern has an 
angular frequency of π/2 (Figure 2). Considering that a shared 
radial symmetry between the visual stimulus and macular 
architecture offers the most advantageous scenario for asses-
sing macular function, a speculation is that the greater den-
sity of radial pattern features at higher eccentricities for the 
Star pattern compared to the Windmill pattern may provide 
the former with an advantage in predicting macular damage.

Recent work by Kapahi et al.30 lends support to the notion 
that radial patterns could be the most effective for evaluating 
macular function. Using structured light, they found that the 
visual angle over which radially patterned entoptic phenom-
ena are perceivable is significantly larger compared with pre-
viously observed ranges for non-radial polarisation- 
modulated patterns.

Naïve Bayes machine learning, utilising variables selected 
by the FCBF method, offered a reliable prediction for macular 
damage and foveolar involvement, showing a medium effect 
size. This emphasises the clinical applicability of the findings. 
Not recognising the Star geometric pattern raises the prob-
ability of macular damage with intact foveal function. Not 
recognising the Windmill pattern raises the probability of 
macular damage which includes damage to the foveola. 
Additionally, advancing age further heightens the probability 
of both.

Log-odds ratios, increasingly pivotal in clinical decision- 
making,31,32 offer a straightforward interpretation of the find-
ings. Positive and negative values indicate the extent to 
which suspicion should shift towards or away from 
a macular defect, respectively (see Table 3). Expressing 
these ratios as probabilities, it was observed that among 
individuals aged 63–77 years who cannot detect the Star 
pattern, there is a 46.4% higher likelihood of macular damage 
compared to those who can identify the pattern. Similarly, 
among individuals in the same age group who cannot detect 
the Windmill pattern, there is a 47.2% higher likelihood of 
macular damage with foveolar involvement compared to 
those who can identify the pattern.

In conclusion, radially structured polarisation-modulated 
geometric patterns have potential to predict both macular 
damage with and without foveolar involvement, surpassing 
various other polarisation patterns, including optotypes, and 
standard logMAR measures of visual acuity. The observed 
medium-size effects support the need for further investiga-
tion into developing a clinical nomogram for predicting 
macular damage, as artificial intelligence-based models hold 
significant promise for integration into clinical ophthalmic 
practice.
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