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Abstract: This study investigates hydrogels based on 2-Acrylamido-2-methyl-1-propanesulfonic
acid sodium salt (AMPS) copolymers, incorporating N-hydroxyethyl acrylamide (HEA) and 3-
sulfopropyl acrylate potassium salt (SPA). The addition of HEA and SPA is designed to fine-tune the
hydrogels’ water absorption and mechanical properties, ultimately enhancing their characteristics
and expanding their potential for biomedical applications. A copolymer of AMPS, 2-carboxyethyl
acrylate (CEA) combined with methacrylic acid (MAA) as poly(AMPS-stat-CEA-stat-MAA, PACM),
was preliminarily synthesized. CEA and MAA were modified with allyl glycidyl ether (AGE)
through ring-opening, yielding macromers with pendant allyl groups (PACM-AGE). Copolymers
poly(AMPS-stat-HEA-stat-CEA-stat-MAA) (PAHCM) and poly(AMPS-stat-SPA-stat-CEA-stat-MAA)
(PASCM) were also synthesized and modified with AGE to produce PAHCM-AGE and PASCM-AGE
macromers. These copolymers and macromers were characterized by 1H NMR, FT-IR, and GPC,
confirming successful synthesis and functionalization. The macromers were then photocrosslinked
into hydrogels and evaluated for swelling, water content, and mechanical properties. The results
revealed that the PASCM-AGE hydrogels exhibited superior swelling ratios and water retention,
achieving equilibrium water content (~92%) within 30 min. While the mechanical properties of
HEA and SPA containing hydrogels show significant differences compared to PACM-AGE hydrogel
(tensile strength 2.5 MPa, elongation 47%), HEA containing PAHCM-AGE has a higher tensile
strength (5.8 MPa) but lower elongation (19%). In contrast, SPA in the PASCM-AGE hydrogels
led to both higher tensile strength (3.7 MPa) and greater elongation (92%), allowing for a broader
range of hydrogel properties. An initial study on drug delivery behavior was conducted using
PACM-AGE hydrogels loaded with photosensitizers, showing effective absorption, release, and
antibacterial activity under light exposure. These AMPS-based macromers with HEA and SPA
modifications demonstrate enhanced properties, making them promising for wound management
and drug delivery applications.

Keywords: hydrogels; macromers; 2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt;
photosensitizer; biomedical applications

1. Introduction

Hydrogels, defined as three-dimensional (3D) networks formed through the physical
or chemical crosslinking of hydrophilic polymers, are a versatile class of materials exten-
sively used in the biomedical field. Their applications include soft tissue engineering (such
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as skin, muscles, and blood vessels), drug delivery systems, and wound dressings [1]. This
versatility arises from their ability to retain large amounts of water due to their hydrophilic
nature, and their tunable chemical, mechanical, and biological properties, which allow
them to mimic the extracellular matrix (ECM) of biological tissues [2–5]. Among these
applications, hydrogel wound dressings stand out due to their ability to maintain a moist
environment, protect against infections, and promote healing [6,7]. However, designing
the ideal hydrogel dressing to meet specific requirements remains a challenge in modern
medical technology, especially mechanical properties of high-water-content materials.

The polymers used for hydrogel dressings can be classified mainly into two categories:
natural polymers (such as chitosan, silk fibroin, collagen, hyaluronic acid, and gelatin)
and synthetic polymers (such as polyurethane, poly(vinyl alcohol) (PVA), poly(lactide-co-
glycolide) (PLGA), poly(acrylic acid) (PA), poly(2-hydroxyethyl methacrylate) (PHEMA),
poly(acrylamide), and poly(2-acrylamido-2-methyl propane sulfonic acid) (PAMPS)) [5,8].
In general, natural polymers provide superior biocompatibility, whereas synthetic poly-
mers offer enhanced mechanical strength and customizable properties [9,10]. Among
synthetic polymers, PAMPS shows great promise due to its active functional groups.
The presence of a sulfonate group in AMPS residues resembles the glycosaminoglycan
present in the skin’s extracellular matrix, which plays a key role in maintaining and
providing moisture to the body [11]. Other monomers used for copolymerization with
AMPS include acrylic acid, acrylamide, 2-hydroxyethyl acrylate [12–14], methacrylic acid,
N,N-dimethylacrylamide [15] methyl methacrylate, and 2-hydroxyethyl methacrylate [16].
However, reported AMPS hydrogels often exhibit poor mechanical properties due to their
low cohesive force [17,18]. In our previous work [19], we synthesized copolymers of AMPS
using acidic monomers (2-carboxyethyl acrylate (CEA) and methacrylic acid (MAA)) to
form poly(AMPS-stat-CEA-stat-MAA) (PACM) copolymers. This PACM copolymer was
further modified using a ring-opening reaction with allyl glycidyl ether (AGE) to generate
poly(AMPS-stat-CEA-stat-MAA)-graft-AGE (PACM-AGE) macromer, which showed rapid
hydrogel synthesis using UV-initiated crosslinking with poly(ethylene glycol) diacrylate
(PEGDA). This process produced hydrogels within 10 s, significantly faster than regular
vinyl monomers [19].

Herein, we have significantly advanced our previous work on AMPS-based macromers
by exploring the effects of copolymerizing AMPS with 3-sulfopropyl acrylate potassium
salt (SPA) or N-hydroxyethyl acrylamide (HEA). The primary motivation was to use these
co-monomers to tune the water absorption and mechanical properties of the hydrogels,
ensuring they do not become overly absorbent and prone to breaking. SPA was chosen for
its ionic nature and ability to stabilize acrylic dispersions, which enhance the mechanical
strength and water retention of the hydrogels [20–23]. HEA was selected as a non-ionic
hydrophilic monomer, reducing swellability whilst providing long-term antifouling and
durability suitable for biomedical applications [24,25]. By incorporating SPA or HEA, we
aimed to balance the mechanical integrity of the hydrogels with their water absorption
capability, making them more robust and suitable for practical applications.

The successful synthesis of copolymers and macromers was confirmed using a suite
of analytical techniques before being used to fabricate hydrogel dressing sheets using free-
radical polymerization with UV-initiated crosslinking using PEGDA (see Figure 1). The
hydrogel sheets, derived from AMPS-based macromers, were assessed for their mechanical
properties, water content, swelling ratios, and morphologies. Additionally, we incorporated
water-soluble dyes (Rose Bengal and Methylene Blue) to study the uptake and release
profiles of these photosensitizing agents and assessed antibacterial properties against
Gram-positive and Gram-negative bacteria. Our findings suggest that the innovative
design of these AMPS-based macromer hydrogels presents a promising avenue for drug
delivery systems, with particular benefits for enhancing wound-management techniques.
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Figure 1. (a) Chemical structures of monomers, (b) schematic diagram of the synthesis of statistical
copolymers (PACM, PAHCM, and PASCM) and macromers (PACM-AGE, PAHCM-AGE, and PASCM-
AGE) via free-radical polymerization, and (c) the fabrication of hydrogel sheets from different co-
macromers by photopolymerization along with their tensile properties.

2. Materials and Methods
2.1. Materials

2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) 50 wt.% in H2O,
2-carboxyethyl acrylate (CEA), methacrylic acid (MAA), N-hydroxyethyl acrylamide (HEA),
3-sulfopropyl acrylate potassium salt (SPA), ammonium persulfate (APS), allyl glycidyl ether
(AGE), zinc, poly(ethylene glycol) diacrylate (PEGDA) (Mn = 575 g/mol), diphenyl(2,4,6-
trimethylbenzoyl phosphine oxide) (TPO), Rose Bengal (RB), phosphate buffer saline (PBS)
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tablets, and acetone were purchased from Sigma-Aldrich (Gillingham, UK). The Methylene
Blue (MB), AR grade, used was from Q RëC™ (Bangkok, Thailand).

2.2. Synthesis of AMPS-Based Copolymers and AMPS-Based Macromers

Three different co-polymers based on AMPS were first synthesized (see Table 1),
following our previous work [19]. Briefly, a copolymer of AMPS, CEA, and MAA was
synthesized as a control sample via free-radical polymerization, using APS as a thermal
initiator in water at a temperature of 80 ◦C for a duration of 6 h, while maintaining a
stirring speed of 320 rpm. This procedure allowed for the formation of a statistical copoly-
mer of poly(AMPS-stat-CEA-stat-MAA) (PACM) [19]. Two additional copolymers were
synthesized by the addition of either HEA or SPA into the polymerization system utiliz-
ing the same method of synthesis as PACM. The additional copolymers were defined as
poly(AMPS-stat-HEA-stat-CEA-stat-MAA) (PAHCM) and poly(AMPS-stat-SPA-stat-CEA-
stat-MAA) (PASCM), respectively.

Table 1. Compositions of AMPS-based copolymers and macromers.

Code Synthesized Samples

Macromers (mol eq.) Reactants (mol eq.)

AMPS
(A)

HEA
(H)

SPA
(S)

CEA
(C)

MAA
(M) APS AGE Zn

Copolymers
PACM Poly(AMPS-stat-CEA-stat-MAA) 1 - - 0.4 0.4 0.02 - -

PAHCM Poly(AMPS-stat-HEA-stat-CEA-
stat-MAA) 0.75 0.25 - 0.4 0.4 0.02 - -

PASCM Poly(AMPS-stat-SPA-stat-CEA-
stat-MAA) 0.75 - 0.25 0.4 0.4 0.02 - -

Macromers

PACM-AGE Poly(AMPS-stat-CEA-stat-MAA)-
graft-AGE 1 - - 0.4 0.4 0.02 0.8 0.06

PAHCM-AGE Poly(AMPS-stat-HEA-stat-CEA-
stat-MAA)-graft-AGE 0.75 0.25 - 0.4 0.4 0.02 0.8 0.06

PASCM-AGE Poly(AMPS-stat-SPA-stat-CEA-
stat-MAA)-graft-AGE 0.75 - 0.25 0.4 0.4 0.02 0.8 0.06

2.3. Synthesis of AMPS-Based Macromers

The AMPS-based macromers of PACM-AGE, PAHCM-AGE, and PASCM-AGE were
synthesized through the transformation of the pendant acid groups of CEA and MAA into
pendant allyl groups, following our previous work [19]. Briefly, the PACM, PAHCM, and
PASCM copolymers were reacted with AGE, using zinc as a catalyst at 80 ◦C for 18 h with
a continuing stirred speed of 320 rpm in water (see Table 1). After the completion of the
reaction, the resultant macromer solution was added dropwise into acetone to precipitate
and to purify the synthesized macromers before the elimination of residue acetone, first by
decanting and then by rotary evaporator, and finally dried in a hot air oven at 60 ◦C for
24 h before use.

2.4. Fabrication of Hydrogel Sheet

Hydrogel sheets for all macromers, PACM-AGE, PAHCM-AGE, and PASCM-AGE,
were fabricated through a conventional photo-initiated free-radical crosslinking system.
A total of 0.2 g of macromer was mixed with 0.1 g of PEGDA (Mn = 575 g mol−1) (as the
crosslinker) and 0.002 g of TPO (as the photo-initiator) with 0.6 mL of deionized water as
the solvent (water content = 66.67%). This mixture was shaken using an orbital shaker at a
speed of 30 rpm for 24 h to promote a homogeneous mixture solution before exposing with
UV radiation at a wavelength of 395 nm with an intensity of 425 mW cm−2 in a silicone
mold (5 cm × 3 cm).
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2.5. Characterization of Copolymers and Macromers

2.5.1. Chemical Structures: 1H NMR Spectroscopy

The chemical structures of copolymers and macromers were analyzed by proton (1H)
nuclear magnetic resonance (NMR) spectroscopy using a Bruker 300 MHz UltraShield
cryomagnet with an Advance Neo console (Bruker, Coventry, UK), with 128 scans and
256 scans on average per spectrum. The non-crosslinked samples were prepared by dis-
solving them in D2O. To ensure complete dissolution, the samples were thoroughly mixed
before analysis, which was conducted at room temperature (25 ◦C). A concentration range
of 0.05–0.10 mg/mL was used for the examination.

2.5.2. Chemical Functional Groups: FT-IR Spectroscopy

The functional groups of copolymers and macromers were tested by Fourier transform
infrared (FT-IR) spectroscopy using a PerkinElmer Spectrum Two spectrometer (Waltham,
MA, USA) with UATR at 4000–400 cm−1. All samples were kept dried at room temperature
before testing.

2.5.3. Molecular Weight: GPC

Molecular weight distributions of copolymers and macromers were assessed by gel
permeation chromatography (GPC) using water (0.05% w/v NaN3) as the eluent, and the
flow rate was fixed at 1.0 mL min−1. Two columns of Agilent (Agilent 1260 Infinity II
system (Agilent, Stockport, UK) PL Aquagel-OH mixed-H, 7.5 × 300 mm, 8 µm, with a
PL aquagel guard column (molecular weight in ranges of 6000–10,000,000 Da) in place
were set up with temperature of 35 ◦C and an RI detector. A PEG/PEO nominal Mp
106–1,500,000 Da (PL2080-0201, Agilent, Stockport, UK) was performed for calibration.

2.6. Characterization of Hydrogel Sheets
2.6.1. Equilibrium Water Content

The percentage of equilibrium water content (%EWC) was conducted using a gravi-
metric technique. The swollen hydrogel sheets (Ws) were weighed and then dehydrated
in an oven at 60 ◦C for 72 h. Then, the dehydrated hydrogel sheets (Wd) were weighed.
The %EWC was reported until the weight of the samples reached to a constant value. Each
hydrogel sheet was measured three times under the same conditions and the average
values were reported using the following equation:

%EWC = ((Ws − Wd)/Ws) × 100%

where Ws and Wd are the swollen and dried weights of the hydrogel sheets, respectively.

2.6.2. Differential Scanning Calorimetry (DSC)

The water structure in the hydrogel samples was analyzed using differential scanning
calorimetry (DSC) (Mettler Model DSC1, Greifensee, Switzerland) to determine the per-
centage of freezing water and non-freezing water. The DSC heating curves of all hydrogel
samples exhibited endothermic peaks between −10 and 20 ◦C, corresponding to the melt-
ing of various forms of water that had frozen during the cooling phase [26]. For sample
preparation, swollen hydrogels at their equilibrium water content were cut into pieces
using a cork borer and weighed (~12 mg), then sealed in aluminum pans to prevent water
evaporation. This procedure was repeated for each sample in triplicate (N = 3). The pans
were placed in the sample holder of the thermal analyzer, and the samples were scanned
using the following parameters:

Cool from 25.0 ◦C to −70.0 ◦C, hold for 5 min at −70.0 ◦C, heat from −70.0 ◦C to
−25.0 ◦C at 20.00 ◦C/min, and heat from −25.0 ◦C to 25.0 ◦C at 10.00 ◦C/min.

The area under the endothermic peak(s) represents the energy needed to melt the
freezing water within the sample. Given the known sample weight and the specific energy
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required to melt 1 g of pure water (333.5 Jg−1) [27], the calculation of the percentage of
freezable (free) water in the sample was used based on Equation (1).

Free water (%) = [∆HTr/(m × ∆Hf)] × 100 (1)

where ∆Hf = 333.5 J/g, ∆HTr = heat of transition, and m = sample weight (mg). The amount
of non-freezing water was obtained by subtracting the amount of freezing water from the
total percent water content following Equation (2).

Non-freezing water content (%) = Total water content (%) − Free water content (%). (2)

2.6.3. Swelling Test

The swelling behavior of the hydrogel sheets was studied by completely immersing
the samples in de-ionized water at room temperature. The swollen hydrogel sheets were
taken out from the de-ionized water, and excess water at the surface was removed and
weighed at each time interval, ranging from 1 to 180 min. The % swelling was calculated
based on the change in weight using the following equation:

%swelling =
Wf − Wi

Wi
× 100%

where Wi and Wf are the initial weight and final weight at different times, respectively.
The samples were measured three times for each sample and reported as the average %
swelling with the standard deviation.

2.6.4. Tensile Testing

The tensile stress and percentage of elongation at break of the hydrogel sheet samples
(at a fabricated hydrogel water content of 66.67%) were tested following ASTM D638 [28],
type 5. The specimen dimensions were a gauge length of 7.62 mm, a specimen width in
the gauge length area of 3.18 ± 0.5 mm, and a thickness of 2.5 mm. The hydrogel sheets
were cut into a dog-bone shape and stored at room temperature before testing. Testing
was conducted at room temperature using an Instron 5965 (Norwood, MA, USA) with
pneumatic side-action grips (Instron 2712-04x series, 1 kN model, Norwood, MA, USA)
and at a crosshead speed set to 30 mm/min. Each hydrogel sample was tested six times to
determine the mean and standard deviation values.

2.6.5. Dye Uptake and Release

The hydrogel sheet of PACM-AGE was chosen to study the release profiles using two
different water-soluble photosensitizer dyes: Rose Bengal (RB) and Methylene Blue (MB).
The PACM-AGE hydrogel sheet was soaked in 1.0 mL of dye solution with a concentration
of 0.001 M, following the minimum inhibitory concentration (MIC) guidelines, for 30 min
to reach equilibrium before testing dye release [29] and MB [30]. After that, the hydrogels
containing the absorbed dye were placed into vials containing 1 mL of Phosphate Buffer
Saline (PBS). The release times for each dye were studied at intervals of 1, 2, 3, 4, 5, 6, 12,
16, 18, and 24 h. After each time period, the solution was removed, and 1 mL of fresh PBS
was added to the vial for the next interval. The amount of dye released was measured in
triplicate (n = 3) using UV absorbance with a multiplate reader (Biotek, Model Synergy H1
Hybrid Reader, Santa Clara, CA, USA). The wavelengths used were 550 nm for Rose Bengal
and 668 nm for Methylene Blue. The absorbance of the solution at each time point was
converted to concentration using calibration curves for both dyes. To assess dye absorption
in the hydrogels, UV absorbance of the dye solution was measured both before and after
the uptake process using calibration curves.
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2.6.6. In Vitro Anti-Bacterial Experiments

The antimicrobial activities of the PACM-AGE hydrogel sheet incorporated with Rose
Bengal (RB) and Methylene Blue (MB) were examined using the disk diffusion method
according to Clinical and Laboratory Standards Institute (CLSI) guideline M02-A11 [31].
Staphylococcus aureus (S. aureus) ATCC 25923 and Escherichia coli (E.coli) ATCC 25922 were ob-
tained from the American Type Culture Collection (ATCC; Manassas, VA, USA). The turbid-
ity of the inoculum was adjusted to 0.5 McFarland standard around 1–2 × 108 CFU/mL [32].
For the quality-control (QC) group, an antibiotic disk 10 microgram Gentamicin (CN) was
used as a control for Staphylococcus aureus (S. aureus) ATCC 25923 and Escherichia coli (E. coli)
ATCC 25922. The hydrogel samples were cut into 6 mm diameter disks using a cork borer
to ensure consistent size. The bacterial isolates were steaked on Mueller–Hinton Agar
(MHA, Oxoid, Basingstoke, UK) plates with the samples, and were incubated at approx-
imately 37 ◦C for 18 h. The inhibition zones were measured in diameter (mm) using a
vernier caliper.

3. Results and Discussion

The effects of incorporating N-hydroxyethyl acrylamide (HEA) and 3-sulfopropyl
acrylate potassium salt (SPA) into AMPS-based hydrogel sheets were studied. PACM-
AGE hydrogels inherently absorb a substantial amount of water due to osmotic pressure,
which can result in inferior mechanical properties. This research aims to enhance the
performance characteristics of hydrogels for potential biomedical applications. By intro-
ducing HEA and SPA, the goal is to improve the hydrogels’ mechanical strength and
water retention, which are critical for applications such as wound dressing and drug de-
livery systems. The incorporation of non-ionic monomers such as HEA mitigates this
issue by reducing the extent of swelling, thereby preserving the structural integrity of the
hydrogel at equilibrium water content (EWC). Conversely, the addition of another type
of anionic monomer, such as SPA, alters the mechanical properties differently. Initially,
the copolymers poly(AMPS-stat-CEA-stat-MAA) (PACM), poly(AMPS-stat-HEA-stat-CEA-
stat-MAA) (PAHCM), and poly(AMPS-stat-SPA-stat-CEA-stat-MAA) (PASCM) were syn-
thesized. These copolymers were then modified by reacting their acid functional groups
with AGE, producing three distinct macromers: poly(AMPS-stat-CEA-stat-MAA)-graft-
AGE (PACM-AGE), poly(AMPS-stat-HEA-stat-CEA-stat-MAA)-graft-AGE (PAHCM-AGE),
and poly(AMPS-stat-SPA-stat-CEA-stat-MAA)-graft-AGE (PASCM-AGE). All copolymers
and macromers were characterized to confirm their chemical structure, functional groups,
and molecular weight. These macromers were subsequently formed into hydrogels using
conventional free-radical crosslinking. The resulting hydrogels were then tested for their
swelling behavior, water structure and content, mechanical properties (tensile stress and
elongation), photosensitizing agent release profiles, and antibacterial activity.

3.1. Copolymers and Macromers

3.1.1. Chemical Structure Verification by 1H NMR Spectroscopy

The 1H NMR spectra of the copolymers (PAHCM and PASCM) and macromers
(PAHCM-AGE and PASCM-AGE) (Figure 2) indicate changes in the proton environ-
ments before and after polymerization and functionalization. The copolymer structures of
PAHCM and PASCM are confirmed in Figure 2a,c. The epoxide groups of AGE reacted
with the pendant carboxylic acid groups of acidic monomers, resulting in polymer chains
with pendant allyl groups, as confirmed by 1H NMR spectroscopy in Figure 2b (PAHCM-
AGE macromer) and Figure 2d (PASCM-AGE macromer). The signals of the attached allyl
groups from the modification with AGE were observed at 4.0 (r), 5.2 (q), and 5.8 (p) ppm.
For the PACM copolymer and PACM-AGE macromer, the 1H NMR spectra showed the
same chemical shifts as observed in our previous work [19].
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copolymer, and (d) PASCM-AGE macromer.

3.1.2. Chemical Structure Verification by FT-IR Spectroscopy

FT-IR spectroscopy was additionally employed to confirm the successful modification
of AGE onto the copolymers of PAHCM and PASCM (Figure 3). The FT-IR spectra of both
copolymers and macromers exhibited absorption bands at 3300 and 2900 cm−1, correspond-
ing to N–H and O–H stretching, as well as methyl and methylene groups (C–H stretching).
Additionally, bands around 1600 and 1700 cm−1 were observed, attributed to amide I
(C=O stretching) and amide II (C=C stretching), respectively. The FT-IR spectra revealed
differences in the characteristic bands of the copolymers (PAHCM and PASCM) before
functionalization and the macromers (PAHCM-AGE and PASCM-AGE) after functionaliza-
tion with AGE. The macromers exhibited new bands corresponding to allyl groups, notably
the appearance of C=C–H bending around 920 cm−1 and O–H bending (out-of-plane)
at 900–860 cm−1, derived from the opened epoxide ring of AGE [33]. This observation
confirmed the successful attachment of allyl groups from AGE within the co-macromer
structure. The FT-IR spectra of the PACM copolymer and PACM-AGE macromer also
demonstrated the presence of C=C–H bending belonging to allyl groups, consistent with
our previous work [19].
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Figure 3. FT-IR spectra of (a) PAHCM copolymer and PAHCM-AGE macromer and (b) PASCM
copolymer and PASCM-AGE macromer.

3.1.3. Molar Mass Analysis by GPC

GPC analysis was conducted to further validate the effective synthesis of the macromers.
The macromers (both PAHCM-AGE and PASCM-AGE) demonstrated an increase in molec-
ular weight compared to their respective copolymers (PAHCM and PASCM) (Figure 4).
The shift of the peak towards a lower retention time indicated an increase in molar mass
after functionalization with AGE, which was consistent with expectations. Specifically, for
PAHCM, the molar mass increased from 105,600 g mol−1 (dispersity, Ð = Mw/Mn ~ 2.02)
to 149,000 g mol−1 (Ð ~ 3.87) after modification to PAHCM-AGE. For PASCM, the molar
mass increased from 88,500 g mol−1 (dispersity, Ð = Mw/Mn ~ 1.95) to 99,500 g mol−1

(Ð ~ 2.02) after the modification to PASCM-AGE, whereas the molecular weight of PACM
showed at 103,400 g mol−1 (dispersity, Ð = Mw/Mn ~ 1.72) and PACM-AGE showed at
136,500 g mol−1 (dispersity, Ð = Mw/Mn ~ 3.28) [19]. The analysis of NMR, FT-IR, and
GPC all show the distinctive features of the successful addition of HEA and SPA into the
system and copolymerization to form PAHCM-AGE and PASCM-AGE. From the shoulder
peak and increase in both Mn and Mw/Mn in PAHCM-AGE compared to PASCM-AGE, it
is proposed that the PAHCM-AGE contains crosslinked partial macromers (as seen with
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PACM-AGE in our previous work), whereas PASCM-AGE, only presents an increase in Mn
in line with the addition of AGE.
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3.2. Hydrogel Sheets

The next step to assess the newly synthesized PAHCM-AGE and PASCM-AGE macromers
was to fabricate them into hydrogel sheets via conventional free-radical polymerization
(crosslinking) in the presence of PEGDA (Mn = 575 g mol−1) as the crosslinker. These
hydrogel sheets were evaluated for their mechanical properties, morphology, and swelling
behavior. Hydrogel sheets fabricated from PACM-AGE, with and without PEGDA, were
used as control samples to assess the effects of HEA and SPA in the macromer compositions.
Additionally, drug-model release profiles and antibacterial performance of two photody-
namic agents were assessed on the control hydrogel (PACM-AGE), as these hydrogels are
potential candidates for the transdermal delivery of active agents.

3.2.1. Hydrogel Swelling Behavior and Morphology

Since the water in hydrogels often considerably influences their final properties, we
initially assessed the water content, water behavior, and swelling ratio of the crosslinked hy-
drogel sheets of PACM-AGE, PAHCM-AGE, and PASCM-AGE (Figure 5). The crosslinked
PASCM-AGE hydrogel exhibited the highest swelling within 30 min, with an increase of
approximately 1.7 times in length and width, and 1.6 times in thickness compared to the
non-soaked sample (Figure 5a). The swelling ratios of all hydrogels were observed and
compared (Figure 5b). It was found that all hydrogels absorbed water rapidly within the
first 5 min, followed by a slower absorption rate until reaching equilibrium water content
within 30 min. Notably, the crosslinked PASCM-AGE hydrogel absorbed greater quantities
of water than the PACM-AGE and PAHCM-AGE hydrogels, respectively. The equilib-
rium water content measurements showed that the crosslinked PASCM-AGE hydrogel
exhibited a water content of ~92%, which is higher than that of PACM-AGE (~89%) and
PAHCM-AGE (~77%) (Figure 5d). The mass ratios of freezing to non-freezing water, as
assessed from the DSC isotherms (Figure 5c), are 71:1 for PASCM-AGE hydrogel, 12:1 for
PAHCM-AGE hydrogel, and 61:1 for PACM-AGE hydrogel. These ratios demonstrate
that the PASCM-AGE hydrogel had more water molecules present between the polymer
chains (free water), enabling water retention within the hydrogel networks. Conversely,
the lower mass ratio in the PAHCM-AGE hydrogel suggests a tighter network structure
with extensive hydrogen bonding within the hydrogels. These results align with expecta-
tions, as SPA, containing sulfopropyl potassium salt, has a greater affinity for attracting
water compared to PACM-AGE and PAHCM-AGE. In contrast, HEA does not contain any
sulfonate groups, resulting in the lowest water content and swelling performance. This
supports our initial motivation to tune the water content and mechanical properties of the
hydrogels by incorporating specific co-monomers.
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Figure 5. Optical images (a), swelling ratio (b), DSC thermograms, (c) and % total water content,
showing mass ratios of non-freezing and freezing water (d) of crosslinked hydrogel sheets of PACM-
AGE, PAHCM-AGE, and PASCM-AGE.

Additionally, the morphology of all crosslinked hydrogel sheets was examined both
after polymerization (before soaking in water) and after soaking in water until they reached
equilibrium water content. The samples were then freeze-dried and analyzed using FE-
SEM, with the results shown in Figure 6. A dense surface morphology was observed in
all hydrogels before soaking in water (Figure 6(a1,b1,c1)). After soaking the hydrogels to
their EWC, an increase in porosity was observed in the dense structure of the PACM-AGE
hydrogel due to the removal of water molecules contained within the gels (Figure 6(a2–a4)).
In contrast, a series of interconnecting droplets (or fused-sphere morphology) with macro-
porous structures (voids between the spheres forming a continuous porous space) were
observed in the PAHCM-AGE (Figure 6(b2–b4)) and PASCM-AGE (Figure 6(c2–c4)) hy-
drogels. In this case, the excess water molecules in the hydrogel networks could trigger
the formation of fused-sphere morphology and pores, leading to phase separation. Ad-
ditionally, the PAHCM-AGE hydrogel exhibited a more regular phase separation with
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smaller fused-sphere morphology, larger voids, and less swelling in water compared to
PASCM-AGE. This difference is attributed to the effects of HEA and SPA molecules, as
HEA, with its molecular structure, has a greater capacity for hydrogen bonding, inducing
different behaviors in the crosslinked polymer networks within the hydrogels. This result
was also observed in the study of water content and in the ratio of freezing to non-freezing
water from the DSC thermograms (Figure 5c,d).
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Figure 6. FE-SEM images of crosslinked hydrogel sheets of (a) PACM-AGE, (b) PAHCM-AGE, and
(c) PASCM-AGE before soaking in water ((a1,b1,c1)—cross-sectioned images at magnification of
200×) and after soaking in water until equilibrium water content (EWC) ((a2,b2,c2)—surface image at
magnification of 200× and 500× (inset images); (a3,b3,c3)—cross-sectioned images at magnification
of 200×; (a4,b4,c4)—cross-sectioned images at magnification of 500×).

3.2.2. Mechanical Performance of Hydrogels

One reason for incorporating HEA and SPA into the macromer was to enhance the
mechanical performance of the resulting hydrogel sheets, in line with our overall goal
of tuning the water content and mechanical properties to ensure durability and prevent
excessive water absorption. Figure 7 shows the tensile strength and percentage of tensile
elongation of all hydrogel sheets. The crosslinked PACM-AGE hydrogel sheet (hydrogel as
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fabricated as control sample) exhibits a tensile elongation of approximately 47% with a ten-
sile strength of 2.5 MPa. When HEA (H) and SPA (S) were incorporated into the macromer
chains, as in PAHCM-AGE and PASCM-AGE, respectively, considerable changes in tensile
strength and elongation were observed. Specifically, the inclusion of HEA in the PAHCM-
AGE hydrogel sheet resulted in a higher tensile strength (approximately 5.8 MPa) but lower
elongation (approximately 19%) compared to the crosslinked PACM-AGE hydrogel. In
contrast, the inclusion of SPA in the PASCM-AGE hydrogel enhanced both tensile strength
(approximately 3.7 MPa) and elongation (approximately 92%) compared to the crosslinked
PACM-AGE hydrogel. There are many factors that affect the tensile properties of polymers,
such as molecular weight, crosslink density between polymer chains, crystallinity, testing
velocity, temperature, and filler content. In this work, as previously reported, the molar
masses of the macromers followed the order of PAHCM-AGE > PASCM-AGE > PACM-
AGE. Macromer chains with higher molar masses are more entangled and less free to move,
contributing to the higher tensile strength observed in PAHCM-AGE hydrogels compared
to PASCM-AGE and PACM-AGE hydrogels. Additionally, the presence of the amide group
in HEA can enhance intermolecular forces (through both hydrogen bonding and Van der
Waals forces) between polymer chains, further promoting higher tensile strength; this is
similar to other hydrogels that contain HEA [34]. Thus, there are two factors affecting this
mechanical performance: the molar mass of the polymer and the molecular structure of
the polymers. Additionally, as the macromers have the ability to form networks without
the addition of an external crosslinker, PACM-AGE was selected and tensile performance
assessed without any crosslinker. The non-crosslinked PACM-AGE showed high tensile
elongation (ca. 142%) but very low tensile strength (ca. 0.05 MPa) when compared with
other crosslinked hydrogels. This low strength results in a material that lacks elasticity to
an applied force.
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Figure 7. Tensile strength and percentage of elongation of crosslinked hydrogel sheets of PAHCM-
AGE, PASCM-AGE, and PACM-AGE fabricated using PEGDA (Mn = 575, crosslinker), and PACM-
AGE fabricated without crosslinker.

3.2.3. Dye Release Profiles

To further explore the potential applications of hydrogels derived from macromers,
we investigated the uptake and release of two water-soluble photosensitizing agents, Rose
Bengal (RB) and Methylene Blue (MB), from PACM-AGE hydrogels. The cumulative
dye release was calculated using standard calibration curves for both RB and MB. Results
indicated that PACM-AGE hydrogels exhibited greater uptake of RB (79%) compared to MB
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(45%). The release profiles of both RB and MB from the PACM-AGE hydrogels showed a
continuous increase over time, with MB consistently releasing at higher concentrations than
RB at each observed time point (Figure 8a). Specifically, PACM-AGE hydrogels released
RB in the range of 0.18 µM to 5.52 µM and MB in the range of 1.08 µM to 6.66 µM. This
variation in release is likely attributed to the differences in molecular weight between RB
(1017.64 g/mol) and MB (319.85 g/mol), as well as the specific interactions between the
dyes and the macromer structure, influenced by their charges (RB being anionic and MB
being cationic). To better understand the release kinetics, three release kinetic models were
used to assess cumulative release: zero-order (cumulative release vs. time), first-order (log
cumulative release vs. time), and the Higuchi model (cumulative release vs. square root of
time). As shown in Figure 8b, the release of both RB and MB from PACM-AGE hydrogels
best fit the Higuchi model, with linear correlation coefficients (R2) of 0.9643 for RB and
0.9480 for MB. This suggests that the release mechanism is primarily diffusion-controlled,
consistent with the nature of these hydrogels.
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Figure 8. (a) Dye release profiles of PACM-AGE hydrogel sheet using Rose Bengal (RB) and Methylene
Blue (MB) in PBS over 24 h, (b) table of linear correlation derived from kinetic models, and (c) table
showing inhibition zone (mm) for both bacteria, Staphylococcus aureus (S. aureus) and Escherichia
coli (E. coli), of hydrogels with RB and MB as photosensitizing agents.
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3.2.4. Anti-Bacterial Properties

The antibacterial activity of the dye, for both RB or MB, was examined by the disk
diffusion method according to CLSI guidelines [35] and the diameter of the inhibition
zone was observed. The microorganisms used in this study were S. aureus ATCC 25923, a
representative of Gram-positive bacteria, whereas E. coli ATCC 25922 was representative of
Gram-negative bacteria. Gentamicin and the PACM-AGE hydrogel without a photosensitiz-
ing agent were used as the positive and negative controls, respectively. To test the samples,
hydrogels loaded with RB were exposed to green light at 532 nm, while hydrogels with MB
were exposed to red light at 650 nm. The light exposure for both photosensitizing agents
lasted for 5 min before the start of the antibacterial test. The antibacterial activity of RB and
MB is primarily attributed to their function as photosensitizers. Upon exposure to specific
wavelengths of light, RB and MB generate reactive oxygen species (ROS), such as singlet
oxygen and free radicals. These ROS cause oxidative damage to bacterial cell membranes,
proteins, and DNA, leading to cell death. This photodynamic effect is well-documented for
both Gram-positive and Gram-negative bacteria, making RB and MB effective antibacterial
agents when activated by light [36]. Figure 8c presents the inhibition zone data of the
hydrogels (see ESI Figure S1 for agar plate photographs of inhibition zones). For S. aureus,
PACM-AGE hydrogels with RB disks gave a mean inhibition zone of 6.7 ± 0.3 mm, while
PACM-AGE hydrogels with MB gave a mean of 7.3 ± 0.9 mm. For E. coli, PACM-AGE
hydrogels with RB disks gave a mean inhibition zone of 5.3 ± 0.4 mm, while PACM-AGE
hydrogels with MB gave a mean of 6.7 ± 0.5 mm. The positive control gave inhibition
zones of 18.6 ± 0.6 mm for S. aureus and 14.3 ± 1.2 mm for E. coli, while the negative
control (PACM_AGE hydrogel, no dye) showed no inhibition zones for both bacteria.
These results align with findings in the literature [37], indicating that RB and MB exhibit a
dose-dependent effect on bacterial inhibition for both Gram-positive and Gram-negative
bacteria. The negative control (PACM-AGE hydrogel without a photosensitizer) highlights
that the hydrogel itself has no antibacterial activity. However, with the incorporation of RB
and MB, these macromers can be used in applications that benefit from this behavior, such
as wound dressing.

4. Conclusions

The novel AMPS-based macromers, PAHCM-AGE and PASCM-AGE, have been
successfully synthesized to develop AMPS-based hydrogels. The co-macromers showed
effective hydrogel formation with improved control over mechanical strength, swelling
ratio, and water content. All results revealed that incorporating HEA or SPA enhanced
mechanical performance and swelling behavior, preventing excessive water absorption and
improving mechanical strength. PASCM-AGE hydrogels demonstrated superior tensile
strength and elongation compared to the original macromer hydrogel. Additionally, PACM-
AGE hydrogels with photosensitizers Rose Bengal (RB) and Methylene Blue (MB) exhibited
light-activated antibacterial activity. While these are promising results, the limitation
of requiring further in vivo studies is acknowledged to comprehensively evaluate the
potential of the hydrogels as effective wound dressings in the future. In summary, PAHCM-
AGE and PASCM-AGE hydrogels with enhanced properties were successfully developed,
highlighting the importance of controlling water intake and mechanical properties for
robust biomedical hydrogels.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym16172522/s1. Figure S1: Agar plate examples from an-
tibacterial testing with Staphylococcus aureus (S. aureus) (a–d) and Escherichia coli (E. coli) (e–h). (a,e)
Positive control (10 mg gentamicin); (b,f) negative control (PACM-AGE hydrogel without dye); (c,g)
PACM-AGE hydrogel with Rose Bengal (RB); (d,h) PACM-AGE hydrogel with Methylene Blue (MB).
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