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Enhancing Transcranial Blood Flow Visualization with
Dynamic Light Scattering Technologies: Advances in
Quantitative Analysis

Evgeny Zherebtsov, Anton Sdobnov,* Oleksii Sieryi, Mika Kaakinen, Lauri Eklund,
Teemu Myllylä, Alexander Bykov,* and Igor Meglinski*

A comparative application of major dynamic light scattering (DLS)-based
image methodologies applied to transcranial cerebral blood flow imaging is
presented. In particular, the study delves into assessing capability of Laser
Doppler Flowmetry (LDF), Laser Speckle Contrast Imaging (LSCI), and Diffuse
Correlation Spectroscopy (DCS) in enhancing the spatial and temporal
resolution of transcranial blood flow imaging. An integral part of the study is
focused on the modulation of blood flow through the administration of the
vasodilator drug, Sodium Nitroprusside (SNP). This pharmacological
intervention facilitated a direct observation of cerebral vasculature’s
responsiveness to external stimuli, illuminating the physiological adaptations
within the brain’s microvascular architecture. Advanced LSCI processing
techniques are incorporated, notably entropy and principal component
analysis (PCA). Entropy is providing a quantifiable measure of the
randomness and complexity within the speckle patterns of transcranial blood
flow images, revealing remarkably similar outcomes with DSC approach in
terms of blood flow dynamics and its quantitative evaluation. The application
of PCA approach is provided a more nuanced understanding of blood flow
dynamics, facilitating the identification of subtle changes induced by drug
administration. This method proved instrumental in enhancing the
visualization and detection of nuanced blood flow dynamics, thereby allowing
for a more detailed examination of cerebral circulation alterations induced by
SNP administration. The study seeks to offer a wider-ranging insight into
comprehending the translating further the concept of DLS into transcrainial
blood flow vizualization and explore its practical applications, considering
hardware, advanced quantitative image processing, and data acquisition.
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1. Introduction

Understanding cerebral hemodynamics
and blood flow dynamics within the brain
is pivotal for unraveling the intricacies
of brain function and pathology.[1] In the
field of neuroimaging, the visualization
and functional assessment of transcra-
nial blood flow have garnered significant
attention, fueling the development of ad-
vanced imaging techniques.[2,3] Among
these, dynamic light scattering (DLS)
stands out as a promising approach that
offers real-time, non-invasive insights
into blood flow dynamics within the cere-
bral vasculature.[4] DLS harnesses the
principles of light scattering and uti-
lizes them to provide valuable infor-
mation about the movement and ve-
locity of scattering particles.[5] While
DLS was originally designed to study
Brownian motion,[6] its adaptation to
flowing conditions through the use

of modified correlation functions anal-
ysis makes it a powerful tool for flows
monitoring.[7,8] This approach offers the
possibility to significantly enhance our
comprehension of cerebral blood flow
and functional neuroimaging, facilitat-
ing important progress in both neuro-
science and clinical practices.[4] The spin-
off derivative techniques derived from

DLS, including Laser Doppler Flowmetry (LDF),[9,10] Diffus-
ing Wave Spectroscopy (DWS),[11,12] and Laser Speckle Contrast
Imaging (LSCI),[13,14] are extensively utilized for non-invasive
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imaging of blood flow in the brain, skin, muscles, and other
biological tissues.[4] Following advancements in the DWS ap-
proach that utilize NIR light for non-invasivemeasurements, par-
ticularly in the direct assessment of local microvascular cerebral
blood flow (CBF), these techniques are collectively referred to as
Diffuse Correlation Spectroscopy (DCS).[15–18]

In the traditional temporal DCS measurement configuration,
a single speckle grain is monitored over time using a highly sen-
sitive single-pixel detector.[19] In speckle ensembleDCSmeasure-
ments or speckle visibility spectroscopy (SVS),[20] also known
as speckle contrast optical spectroscopy (SCOS)[21] or diffuse
speckle contrast analysis (DSCA),[22] the method relies on the ob-
servation that a rapidly fluctuating speckle pattern captured on a
camera with a fixed integration time will exhibit a more uniform
appearance compared to a slower fluctuating speckle pattern.[20]

The precise determination of speckle decorrelation is achieved by
analyzing the overall speckle statistics.
While SVS offers flexibility in temporal fidelity, it grapples with

camera noise, particularly as commercial camera sensors tend to
be noisier than single-photon counting modules (SPCMs) under
low signal light intensity. This challenge becomes pronounced
when the signal light produces only a few photoelectron counts
per pixel within the exposure time, potentially leading to the sig-
nal being overwhelmed by camera noise. One straightforward
solution is to extend the camera exposure time, but this intro-
duces a trade-off with a reduction in refresh rate, akin to the
trade-off between signal-to-noise ratio (SNR) and measurement
time.
A recent proposed technique, interferometric SVS (ISVS),[23]

offers a solution to the camera noise predicament. ISVS can effec-
tively capture blood flow dynamics even with a limited number
of available signal photons (below 1 photoelectron per pixel). The
interference-based detection of ISVS mitigates camera noise by
amplifying the weak signal term in the heterodyne cross term.
Consequently, the ISVS system achieves a reasonable SNR even
when the mean pixel value from the signal light is less than
1. This capability allows ISVS to conduct measurements swiftly
within a short acquisition time, generating high-rate CBF es-
timates in low-light conditions where conventional DCS may
fall short.
Since DLS-based techniques do not necessitate the use of

contrast agents for visualizing blood flow and offer rapid, non-
contact, full-field assessment of microvasculature (particularly
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in LSCI), they are extensively employed for visualizing tu-
mor vascular network[24] and brain vasculature in both clini-
cal applications[25–27] and animal models.[28–31] Studies have fo-
cused on investigating CBF responses to cardiac arrest[32–34] and
their correlation with mean arterial pressure.[35] In further stud-
ies, the combined use of modern image processing and seg-
mentation approaches, such as Fast Fourier Transform (FFT),
Continuous Wavelet Transform (CWT), and Non-negative Ma-
trix Factorization (NMF), reveals bloodmicroflows and their tem-
poral localization in various sensory regions of the brain for
several hours postmortem.[36] Continuous monitoring of CBF
changes at the individual vessel level has been successfully ac-
complished in rodents subjected to target temperature manage-
ment post-cardiac arrest. Further advancements in this approach
have enabled monitoring of CBF changes resulting from cere-
bral ischemia re-perfusion injury.[37] Additionally, various meth-
ods have been analyzed for assessing CBF alterations during acti-
vation in the somatosensory cortex induced by repetitive whisker
stimulation.[38]

Notably, the application of principal component analysis (PCA)
has demonstrated a significant reduction in noise within speckle
contrast data. Techniques such as fast Fourier transform and gen-
eral linear model analysis have been employed to estimate cor-
tex activation, contributing to a comprehensive understanding
of CBF dynamics during functional activation. A previous study
demonstrated that variations in peripheral arterial pressure in-
duced by mesaton injection affect CBF differently in the small
and large cerebral blood vessels.
LDF-based systems have been successfully introduced for

biomedical applications and pre-clinical studies.[39] Currently,
LDF has become a cornerstone technology with widespread ap-
plications across various biomedical fields. These applications
include the assessment of vascular abnormalities in the brain
vasculature,[40] the development of diabetic foot ulcers,[41] the di-
agnosis of skin vascular complications,[10] and estimation of burn
depth,[42] among other critical areas of research.
Chen and colleagues[43] proposed employing standard LSCI

in conjunction with microendoscopy to gauge CBF responses
amidst hemodynamic shifts at the subcortical tier of the brain. In
a similar study, Uchida et al.[44] delved in vivo into scrutinizing
acetylcholine release and concomitant blood flow variations
within the olfactory bulb in reaction to focused stimulation of
the horizontal limb of the diagonal band of Broca. This investi-
gation was facilitated using LSCI and microdialysis. An array of
studies[45–47] has presented insights into CBF and brain electro-
physiology monitoring pre-, during, and post asphyxial cardiac
arrest and subsequent resuscitation, harnessing both LSCI and
a fusion of LSCI with electroencephalography. Zhao et al.[48]

demonstrated the feasibility of utilizing nanosecond pulse laser
sources within LSCI setups for CBF measurements. Liu and
team[49] put forth a technique based on short-separation speckle
contrast optical spectroscopy, employing point illumination and
detection via multi-mode fiber arrays. This methodology was
validated during post-stroke brain vasculature observation in
an animal model, exhibiting enhancements in signals from
static and slow tissue components when compared to standard
LSCI. An innovative multi-modal approach combining LSCI,
fluorescence spectroscopy, and diffuse reflectance spectroscopy,
as reported by Piavchenko et al.[34], effectively discriminates
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hemodynamic variations within the mouse brain vasculature
following cardiac and respiratory arrest.
Comparative studies of LSCI and LDF have demonstrated that

while both techniques are effective in assessing cutaneous mi-
crovascular function, LSCI generally offers superior reproducibil-
ity and reliability, particularly in measuring blood flow changes
in shallow skin layers.[50] It has also been shown that while both
methods are useful, their data are not interchangeable due to
inherent biases and differences in the measurements.[51,52] In-
deed, although these methods may seem identical, they differ
in the technical requirements imposed on measuring intensity
fluctuations and the spectral power of scattered light, which are
related to each other via the Wiener–Khinchin theorem.[4] In ad-
dition, when comparing LDF and LSCI, the basic implementa-
tion of LDF allows for flow assessment at only a single point in
the observed medium. To assess blood flow over larger areas, a
scanning mode must be implemented in the LDF setup. How-
ever, using the scanningmode results in increasedmeasurement
time compared to full-field single-shot imaging. However, scan-
ning mode results in increased measurement time comparing to
full-field single shot imaging. Serov et al.[53–55] introduced opti-
cal setup combining standard LDF and high-speed CMOS cam-
era allowing for full-field Doppler-shifted lightmeasurement and
comparing of LSCI and LDF measurements.
Several studies have explored the limits of DLS and LSCI in

non-ergodic conditions.[56–59] Experiments using Intralipid solu-
tion phantoms with varying static layer thicknesses show that a
thick layer of static scatterers above the dynamic layer does not
significantly affect speckle contrast processing.[60] This finding
is validated through transcranial visualization of mouse brain
vasculature, considering typical mouse skull thickness.[61,62]

The studies emphasize the importance of proper selection of
LSCI/DLS imaging parameters, including exposure time and
frame quantity, tomitigate non-ergodic effects inmeasurements.
It also provides a rationale for identifying limitations of DLS-
based imaging in accurately quantifying transcranial blood flow
under disrupted ergodicity conditions.
In this paper, we conduct a comparative analysis of the pri-

mary DLS-based imaging modalities,[4] such as LDF, LSCI, and
DCS with a focus on their efficiency and optimal applicability
for transcranial visualization of blood flow and in vivo functional
imaging of brain hemodynamics. Furthermore, the conventional
DLS-based modalities discussed above, our assessment includes
entropy-based laser speckles processing[63] and principal compo-
nent analysis (PCA)[64] applied to the resulting blood flow im-
ages. Harnessing the potential of augmented insights into tran-
scranial blood flow imaging, coupled with advancements in the
light scattering paradigm, signal processing, and multidetector
configurations, our objective is to present an improved method-
ology. This methodology is designed to tackle the challenges aris-
ing from the intricate nature of brain tissue and the demand for
time-resolved imaging. Through the incorporation of NIR wave-
lengths and the integration of time-correlated photon counting,
our aim is to amplify penetration through the skull and brain tis-
sue, simultaneously enhancing the precision and resolution of
blood flow measurements.
Leveraging the capabilities of enhanced insights into tran-

scranial blood flow imaging in conjunction with advancements
in light scattering paradigm, signal processing, and multidetec-

tor configurations, we seek to propose a refined methodology
that addresses the challenges posed by the complex nature of
brain tissue and the need for depth-resolved imaging. By utilizing
near-infrared wavelengths and integrating time-correlated pho-
ton counting, we aim to enhance penetration through the skull
and brain tissue while improving the accuracy and resolution of
blood flow velocity measurements.

2. Dynamic Light Scattering Technologies for
Transcranial Blood Flow Imaging

Within the framework of DLS-based methodologies employed
for blood flow imaging, the principal metric of interest is de-
rived from the temporal variations in light intensity scattered
within biological tissues.[4] These perturbations are primarily at-
tributable to the motion of particulate scatterers, notably ery-
throcytes. Quantitatively, the temporal fluctuations in intensity
are encapsulated by the auto-correlation function of intensity, ex-
pressed as:

g2(𝜏) =
⟨I(t)I(t + 𝜏)⟩⟨I(t)2⟩ (1)

where I(t) and I(t + 𝜏) represent the intensities of scattered light
at temporal instants t and t + 𝜏, respectively. Moreover, a deeper
insight into these fluctuations necessitates an understanding of
their relation to the electric field through the lens of optical coher-
ence. The temporal auto-correlation function of the electric field,
which delineates the coherence characteristics of the electric field
of scattered light, is defined as:

g1(𝜏) =
⟨E(t)E∗(t + 𝜏)⟩⟨E(t)E∗(t)⟩ (2)

with E(t) denoting the electric field of the detected light. Intrigu-
ingly, there exists a relation between these two functions, g1(𝜏)
and g2(𝜏), known as the Siegert’s relation:

g2(𝜏) = 1 + 𝛽|g1(𝜏)|2 (3)

where 𝛽 embodies the specifics of the optical configuration of the
experimental setup. This parameter is not inherently associated
with the dynamics of the scattering entities but is rather tied to at-
tributes such as the polarization and coherence of light, and cer-
tain instrumental parameters. The significance of the Siegert’s
relation is manifold; not only does it permit the extraction of
g1(𝜏) from the empirically measured g2(𝜏), but it also serves as
a critical bridge, especially when considered in conjunction with
the Wiener–Khintchine theorem, thereby establishing an intri-
cate linkage between the spectral breadth of the light and the cor-
relation duration of its intensity perturbations.

2.1. Laser Doppler Flowmetry

An algorithm akin to the one employed in LDF was utilized for
blood perfusion calculation, based on the Fourier transform of
the autocorrelation function. The signal processing procedure
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Figure 1. a) A representative trace of blood flow time-series recorded transcranially in a cortex blood vessel and b) CWT spectra for the experiment with
sodium nitroprusside infusion. Here, green color corresponds to data before infusion, gray color - to 15% blood pressure drop after infusion, red color -
to 20% blood pressure drop after infusion, and blue color - to recovery after infusion. Dashed line (orange) corresponds to power spectrum of  shown
at (a) and calculated via fast Fourier transform.

central to the visualization of blood perfusion in LDF adhered
to a well-established expression[65]:

 =

𝜔2∫
𝜔1

𝜔 ⋅ S[g2(𝜏) − 1]d𝜔

⟨I⟩ (4)

where  is the blood perfusion indexmeasured in arbitrary units
(a.u.); S[g2(𝜏) − 1] is the power spectrum of the resulting record-
ing retrieved from the intensity fluctuation in a pixel of the cam-
era sensor; ⟨I⟩ is the average DC signal from the pixel.

2.1.1. Spectral Analysis of Time-Series Blood Flow

In the study, we visualized the parameters characterizing cor-
tex microcirculation oscillations, in conjunction with the auto-
correlation features inherent to the perfusion time series. In a re-
cent study, a similar approach based on the LSCIwas employed to
visualize respiratory and cardiac oscillations.[66] To decipher the
intricacies of the microcirculatory blood flow regulatory mecha-
nisms, we employed continuous wavelet analysis (CWT) on the
calculated full-field blood perfusion time series, denoted as  (t).
The spectral assessment of these signals was facilitated using
MATLAB, adopting the complex-valued Morlet wavelet for this
analytical expression.
The wavelet transform of a blood perfusion time-series  (t),

represented as Wx(fosc, 𝜏), was articulated concerning the desig-
nated mother wavelet 𝜓(t), as explicated in Equation (5):

Wx(fosc, 𝜏) =
√
fosc ∫

∞

∞
 (t)𝜓∗[fosc(t − 𝜏)]dt (5)

Here, t represents time, 𝜏 represents the temporal shift of the
wavelet, fosc serves as an approximation of the oscillation fre-
quency (represented as ∼ 1∕a, wherein a delineates the wavelet’s
time-scale), and the symbol ∗ demarcates the complex conjuga-

tion operation. The Morlet wavelet can be explicitly characterized
as:

𝜓(t) = e2𝜋ite−t
2∕2𝜎2 (6)

Employing the aforementioned function empowers us to dis-
cern the amplitude and phase attributes of oscillations across
varying frequencies within the signal under scrutiny. Further-
more, the integrated wavelet spectrum was computed through
the integration of Equation (5) across a temporal span T of the
time-series recordings, articulated as:

Mosc(fosc) =
1
T ∫

T

0
|Wx(fosc, 𝜏)|2d𝜏 (7)

Wavelet analysis of the LDF signal unveiled the presence of
five distinct oscillatory components. These components span var-
ious frequency bands, each resonating with unique physiological
mechanisms steering blood flow regulation. Figure 1a shows an
example of typical oscillations in the blood flow in the sagittal
sinus of a mouse recorded transcranially and calculated for one
pixel using parameter  .
The introduction of sodium nitroprusside modulated arterial

blood pressure (BP), leading to changes in relative blood pulsa-
tions in the visualized vessels. Figure 1b displays the averaged
spectrum of oscillations in the range of the mouse’s heart rate
frequencies for four stages of experiment: the first stage is pre-
infusion; the second stage is during sodium nitroprusside infu-
sion when the average pressure dropped by 15%; the third stage
us during infusion when the average pressure decreased by 20%;
and fourth stage is recovery after stopping the drug infusion.
Also, this figure displays the power spectrum of  shown in
Figure 1a and calculated via fast Fourier transform. It can be seen
that for all four stages of experiment the heart rate frequency
takes values ≈ 3.5Hz (or 210 ± 15 beats per minute).
Further, we calculated relative changes in the amplitude of

pulsations at 3.5 Hz frequency. Figure 2a–c shows the rela-
tive change in the amplitude of pulsations corresponding to
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Figure 2. Visualization of the relative changes in the amplitude of pulsations corresponding to 15% blood pressure drop (a), 20% blood pressure drop
(b) and recovery (c) in comparison to the level before the start of sodium nitroprusside infusion. d) Visualization of threshold masks applied to vessel
structure after recovery (red color) and at 20% blood pressure drop (blue color) in area of interest (green rectangle at (b) where a corresponds to artery
and v corresponds to vein). Scale bar is equal 2 mm.

15% blood pressure drop, 20% blood pressure drop and recov-
ery in comparison to the level before the start of infusion. The
figures indicate that sodium nitroprusside infusion resulted in
up to a 3% change in amplitude pulsation within the brain vas-
culature at a heart rate of 3.5Hz. Notably, following the recovery
period, the amplitude pulsation nearly returned to the baseline
control values. Additionally, we applied threshold masks to the
vessel structures both before the infusion and at a 20% reduction
in blood pressure. As shown in Figure 2d, the vessel diameter in-
creased following the sodium infusion. A rough estimation sug-
gests a 10 − 20% increase in diameter during vasodilation, which
is consistent with previous findings.[67]

Thus, frequency analysis using wavelet transformation allows
for functional imaging to identify areas of greatest drug impact
on blood flow, including stages of vasodilation and vasoconstric-
tion.

2.1.2. Principle Component Analysis

In recent years, the application of Principle Component Analysis
(PCA) to image analysis has gained significant attention within
the image processing community.[64,68] PCA, a statistical method
used for dimensionality reduction and highlighting variation in
datasets, has proven effective across various imaging modali-
ties, notably enhancing transcranial blood flow reconstruction
in small laboratory animals and addressing key challenges in
this domain.
One of the primary challenges in transcranial imaging is the

presence of noise from sources such as equipment anomalies,
ambient conditions, and involuntary subject movement. PCA ef-
fectively mitigates this by focusing on the principal components

that capture the most variance, enhancing the visibility of criti-
cal features and improving the identification of regions with al-
tered blood flow dynamics. Additionally, the substantial datasets
produced by transcranial imaging necessitate efficient data man-
agement. PCA addresses this by compressing data through di-
mensionality reduction, which minimizes information loss, con-
serves storage space, and accelerates computational processing,
crucial for high-resolution images.
PCAwhen applied to the image analysis, is represented by data

matrix Φ, where each row corresponds to a different pixel or re-
gion, and each column represents the intensity at a different time
point Φ.[69] The core of PCA involves computing the covariance
matrix from this data matrix, which captures how the intensity
values across different time points or spatial regions co-vary. This
covariance matrix is crucial because it encapsulates the underly-
ing correlations within the speckle patterns, reflecting both dy-
namic and static components of the tissue being imaged.
In the analysis of LDF imaging data, PCA is used to extract

and differentiate between various signal components, including
the true physiological signals and noise. The first three principal
components (PCs) are often retained because they capture the
most significant variance in the data.
Figure 3a–i presents a representative example of PCA decom-

position of the transcranially measured perfusion signal, based
on an algorithm utilizing spectral power density analysis of sig-
nal fluctuation in a pixel (LDF blood perfusion visualization). The
introduction of SNP led to a decrease in the animal’s mean arte-
rial pressure. In this context, the PCA components PC1, PC2, and
PC3 convey distinct information about the redistribution of blood
flow. In Figure 3 PC1 correspond to the general displacement of
RBC or blood flowwithin the tissue across the entire imaged area,
PC2 highlights regional changes in blood flow that differ from
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Figure 3. Visualization of PCA components before (a,d,g) and during infusion of SNP (b,c,e,f,h,i) when the mean BP dropped by 15% and 20%, respec-
tively. Scale bar is equal 2 mm.

the global pattern captured by PC1, and PC3 captures small-scale
or less coherent movements within the tissue that contribute to
the overall variance. Notably, the PC2 component demonstrates
significant changes in blood flow in the animal’s sagittal sinus
when the pressure drops by 20%.
The mathematical link between  and PCA (and/or g2(𝜏) and

PCA, see (4) is indirect, where the correlation function g2(𝜏) in-
fluences the covariance structure of the data, and PCA then ex-
tracts the major axes of variance from this covariance structure.
The PCs can be thought of as capturing the dominant patterns
of correlation present in the data Φ, but they do so by analyzing
the covariance matrix rather than directly measuring the correla-
tion functions.

2.2. Laser Speckle Contrast Imaging

Temporal speckle contrast, often used in LSCI to assess
blood flow dynamics, can be derived from the autocorrelation
function.[69] The second-order intensity autocorrelation function,
denoted as g2(𝜏), relates to the field autocorrelation function g1(𝜏)
via the Siegert’s relation (3). The temporal speckle contrast K is
typically defined as the ratio of the standard deviation 𝜎 to the
mean speckle intensity ⟨I⟩, i.e.:
K = 𝜎⟨I⟩ (8)

In the context of DLS and LSCI, K can be linked to the decay time
𝜏c of g2(𝜏).

[70] The speckle contrast K(T), influenced by the digital

camera exposure time T , is expressed in terms of the autocorre-
lation function as:

K(T) =

√
2𝛽
T ∫

T

0

|||| g1(𝜏)g1(0)

||||
2(
1 − 𝜏

T

)
d𝜏 (9)

where K(T) is the speckle contrast as the function of the digital
camera exposure time T . The parameter 1∕K2 is a more conve-
nient way of obtaining blood perfusion measurements with the
speckle contrast technique since the parameter increases with the
increase of the blood flow.[43,71,72]

Figure 4a illustrates a representative example of transcranial
imaging of brain vessels utilizing temporal speckle contrast. The
clarity of this vascular bed image facilitates the confident identi-
fication of all principal vascular components.

2.3. Diffuse Correlation Imaging

The video camera’s frame rate is not always sufficient to fully re-
construct the autocorrelation function for subsequent determina-
tion of blood flow parameters. In the case of transcranial imaging
ofmouse brain vessels, the required frame ratemay reach several
thousands of frames per second. This also necessitates the use of
a high-power single-mode laser (over 50mWcm−2), complicating
its selection and causing excessive tissue heating. The parame-
ters of the camera used in this study allow for the recording of
the autocorrelation intensity value at a temporal delay of 10−4s
with a resolution of 100 × 150 pixels. For the mentioned imag-
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Figure 4. Representative examples of transcranial imaging using LSCI (a) and the autocorrelation function value in the area of its steepest slope (b). A
representative trace of the intensity fluctuations of the back-scattered light observed in a single pixel of the camera (c) and the corresponding calculated
ACF (d). Scale bar is equal 2 mm.

ing parameters, an example of the recorded intensity fluctuation
at an individual pixel, along with the corresponding calculated
autocorrelation function curve, is presented in Figure 4c, respec-
tively. From Figure 4d, it is evident that only the rising section of
the autocorrelation can be reconstructed, but it is not possible
to record it in its entirety. In this case, the classical method of
reconstructing blood flow through fitting an analytical function
becomes problematic or impossible.
An alternative to fitting could be the use of the autocorrelation

function value in the area of its steepest slope as ametric for blood
flow visualization. With an increase in the speed and volume of
flowing blood, the leftward shift of the autocorrelation function
leads to a decrease in the autocorrelation values at the point. A
decrease in blood flow leads to an increase in autocorrelation for
the same temporal shift value. The experiment demonstrates that
the metric ln[g2(𝜏min) − 1] provides a better linear characteristic
than the parameter of autocorrelation function without logarith-
mic transformation.
Figure 4b shows a typical example of transcranial imaging us-

ing this metric. This approach enables clear visualization of the
sagittal sinus, individual terminal veins, and arterioles, allowing
for one high-quality image per second with significantly reduced
noise compared to temporal speckle contrast imaging with the
same frame accumulation time.
Another alternative characteristic is the maximum slope

of the autocorrelation function constructed in a logarith-
mic scale max[∇g1(𝜏1∕2)]. The parameter we used in our
analysis was calculated from the autocorrelation function
available for the camera frame rate. A representative exam-
ple of transcranial imaging of vessels with the parameter
max[∇g1(𝜏1∕2)] is presented in Figure 5c. The resulting image
clearly visualizes the sagittal sinus, as well as major arteries and
veins.

2.4. Entropy-Based Imaging

Traditional entropy-based algorithms are used to measure the
regularity or orderliness of a time series of physiologic signals
in health and disease.[73] Entropy tends to increase with the level
of disorder, reaching its maximum for entirely random systems.
However, it is important to note that an increase in entropy does
not always correspond to a rise in dynamical complexity. For in-
stance, a randomized time series exhibits higher entropy com-
pared to the original time series. Nevertheless, the generation of
surrogate data in this process breaks down correlations and di-
minishes the information content of the initial signal.
In the context of assessing blood flow using light backscattered

from biological tissue, this method involves utilizing two sets
of experimentally measured intensity fluctuations obtained from
neighboring pixels in the resulting laser speckle images.[63] The
first set comprises intensity fluctuations, each spanning m con-
secutive time points, while the second set follows the same pat-
tern but withm + 1 time points.Within each set, pairs of intensity
fluctuations are subjected to comparison. A threshold value “r” is
employed to determine similarity. If the element-wise difference
between two intensity fluctuations exceeds the “r” threshold, a
similarity value of zero is assigned. Conversely, if the difference
falls below “r,” a similarity value of one is assigned.
To quantify the similarities between the two sets, the nega-

tive natural logarithm is calculated of the conditional probability
that similarities observed in the first set of intensity fluctuations
endure in the second set. This process yields an entropy mea-
sure that characterizes the temporal and spatial complexity of the
laser speckle pattern. Consequently, this method offers insights
into the underlying properties of the tissue and the dynamics of
blood flow in vivo. The obtained entropy quantifies similarities
and merely tallies the occurrences of these similarities.

Laser Photonics Rev. 2024, 2401016 2401016 (7 of 14) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 5. Representative images of transcranial blood perfusion vad flow speed mapping in the murine model with the LDF-based parameter  (a); the
entropy  (b); the maximum slope of the autocorrelation function constructed in a logarithmic scale max[∇g1(𝜏1∕2)] (c); and Imaging with the LSCI
based 1∕K2 parameter (d). Scale bar is equal 2 mm.

Given a discrete speckle image, let us represent the intensity of
the ith pixel as Ii, where i ∈ {1, 2,… , N} andN is the total number
of pixels.
To compute the entropy, the balanced estimator of Shannon

entropy is used:[74]

 = 1
N + 2

M∑
i=1

[
(ni + 1)

N+2∑
i=ni+2

1
j

]
(10)

whereN is the size of data set,M is themaximumgray level value
for captured frames, and ni is the value of the ith gray level.
The computed entropy value  from Equation (10) is used to

visualize blood flow (see Figure 5b). The resulting entropy map
is visualized similarly to a traditional LSCI image (see Figure 5),
where regions of higher entropy indicates higher blood flow and
vice versa. For a region of the image (or for individual pixels),
a lower entropy value indicates a more dynamic scatterer pres-
ence (e.g., moving RBC) and hence higher blood flow, whereas a
higher entropy indicates lesser or static flow. Further, to make it
in the opposite way, we operate with 1 − value.
Thus, entropy-based imaging provides an alternative approach

to traditional LSCI. While there is no simple direct formula con-
necting the correlation function and entropy in general cases,
they are conceptually linked. The correlation function influences
the distribution of intensity values in the speckle pattern, which
in turn affects the entropy. In specific models, such as Gaussian
processes, there can be an approximate logarithmic relationship
between entropy and correlation time[63]:

 ∼ 1
2
log(𝜏c) (11)

where

𝜏c ≈ ∫
∞

0
g2(𝜏)d𝜏 (12)

By focusing on the variability and unpredictability in the
speckle pattern, entrope offers unique insights and a potentially
more robust metric for blood flow visualization. An example of
the image obtained transcranially using the visualization of pa-
rameter  is shown in Figure 5b. The contrast of the obtained
image is inferior to images acquired using calculations based on
power spectrum analysis and speckle contrast computation (see
Figures 5a and 4a). Nonetheless, it should be noted that the qual-
ity of this image does notmatch that achieved bymethods that an-
alyze the autocorrelation function or employ the LDF technique.
Figure 5d displays another example of imaging, this time em-
ploying the 1∕K2 parameter.
One should consider, that while the correlation function g2(𝜏)

in LSCI typically refers to the temporal changes in the speckle in-
tensity patterns, it describes how the speckle intensity at a given
point varies over time, which is related to the motion of the scat-
tering particles (i.e., RBC). Faster motion leads to quicker decor-
relation of the speckle pattern, resulting in a shorter correlation
time. Entropy, in the context of LSCI, refers to the degree of
randomness or disorder in the speckle pattern. Higher entropy
corresponds to a more random and disordered speckle pattern,
which typically occurs when the underlying dynamic process is
more complex or involves multiple scattering events with differ-
ent time scales. Lower entropy indicates a more ordered speckle
pattern, suggesting less complex dynamics or more uniformmo-
tion of scatterers.

Laser Photonics Rev. 2024, 2401016 2401016 (8 of 14) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 6. a) The area of blood flow quantitative measurements in the phantom of small animal brain. Scale bar is equal 2 mm; b) Comparison of the
change of the normalized flow estimated by different DLS-based methods with the change of flow in the phantom: gray line  – the blood perfusion
index by LDF; red line ln[g2(𝜏min) − 1]∕Δ𝜏 – the steepest slope of the temporal intensity autocorrelation function in the area; blue linemax[∇g1(𝜏1∕2)] ≡
grad(g1(𝜏

1∕2)) – the maximum slope of the temporal field autocorrelation function; purple line 1−H – the entropy; green line 1∕K2 – the inverse square
spatial speckle variance (K(T)) proportional to the speed of moving particles (more details in the text); c) Sensitivities corresponding to each DLS-based
approach presented in Figure 6b.

In addition, while the correlation function in LSCI typically
refers to the temporal of the speckle intensity patterns, and de-
scribes how the speckle intensity at a given point changes over
time, that is related to the motion of RBC: faster motion leads to
quicker decorrelation of the speckle pattern, and thus, a shorter
correlation time. Entropy in the context of LSCI refers to the de-
gree of randomness or disorder in the speckle pattern. Higher
entropy corresponds to a more random and disordered speckle
pattern, which typically arises when the underlying dynamic pro-
cess is more complex or involves multiple scattering events with
different time scales. Lower entropy indicates a more ordered
speckle pattern, suggesting less complex dynamics or more uni-
form motion of scatterers.

2.5. Cross-Validation of DLS-Based Approaches for Blood Flow
Evaluation

Figure 6 presents a quantitative comparison of the results de-
rived from direct measurements of absolute flow rate in the
phantom of small animal brain.[75,76] These measurements were
independently obtained using the perfusion index by LDF de-
noted as  , the autocorrelation function value of DCS in the
region of its steepest slope represented as ln[g2(𝜏min) − 1], and
themaximum slope denoted asmax[∇g1(𝜏1∕2)]. Additionally, flow
velocities based on LSCI represented as 1∕K2 and entropy pa-
rameter denoted as 1 − are included in the comparison (see
Figure 6). The results depicted in Figure 6 illustrate the flow of a
5% intralipid solutionwithin vessels, juxtaposed against the back-
ground of microcirculations within a sponge.
It should be noted that there is an evident lack of sensitivity to

blood flow in the minor vessels, as illustrated in Figure 5c. The
phantom measurements (see Figure 6b) demonstrate that the
configuration of the curve of the obtained parameters of flow cor-
responds to the linear increase in flow. This is particularly evident
for the max[∇g1(𝜏1∕2)] parameter, where flows below 10μl min−1

do not contribute to an increase in the signal. The LDF demon-
strates steeper slope at slower flow rates, while LSCI excels in

detecting higher flow rates (refer to Figure 6b). Notably, the DCS
approach and laser speckles processed with entropy exhibit com-
parable curves. The variations in the values in the two represen-
tations of DCS-based results stem from the selection of differ-
ent orders of correlation time (average times for the decorrelation
analysis of intensity fluctuations, 𝜏 and 𝜏2) used in the character-
ization of the slope of the autocorrelation function of the back-
scattered light.[4]

The comparison of the utilized DLS-based approaches in
terms of sensitivity to the flow is shown at Figure 6c and is based
on the following definition[77]:

Sa =
||||dΦdv |||| (13)

whereΦ is the DLS-based approach measured parameter (i.e.  ,
ln[g2(𝜏min) − 1]∕Δ𝜏,max[∇g1(𝜏1∕2)], (1 −) or 1∕K2). As one can
see the  parameter exhibits significantly greater intensity com-
pared to other approaches at low flow rates (0 − 20 μl min−1).
Conversely, the lowest sensitivity at these flow rates is ob-
served for the 1∕K2 parameter. For flow rates in the range of
20 − 40 μl min−1, the highest sensitivity is achieved by the en-
tropy and max[∇g1(𝜏1∕2)] parameters. At high flow rates (50 −
100 μl min−1), the 1∕K2 parameter becomes more sensitive com-
pared to other parameters.

2.6. Future Perspectives

The future perspectives of DLS-based imaging modalities are
centered on several key areas. Technological advancements are
aimed at improving themeasurement signal-to-noise ratio (SNR)
and depth sensitivity through innovations such as multi-source
and parallel detection systems, heterodyne/interferometric de-
tection, multispeckle camera-based methods, long-pathlength
photon selection, and operating at longer wavelengths.[4,78] In-
tegrating these advancements is expected to result in signifi-
cant improvements in SNR, enabling faster acquisition rates and

Laser Photonics Rev. 2024, 2401016 2401016 (9 of 14) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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more sensitive brain perfusion measurements. Emphasis will
also be placed on translating these technological advances into
reliable, compact, and user-friendly instruments for clinical en-
vironments, ensuring measurement accuracy and developing ro-
bust calibration methods to make DCS data interpretable in clin-
ically relevant units. Additionally, there is a growing need to de-
velop wearable, low-cost DLS-based devices to facilitate broader
dissemination and enable studies in naturalistic environments,
similar to functional near-infrared spectroscopy (fNIRS). Con-
tinuous validation studies will be necessary to demonstrate that
DCS perfusion values correlate with established MRI and CT
perfusion quantification methods, and establishing normative
ranges will be critical for clinical adoption. Movement artifacts
are significant issues that limit the clinical application of all DLS-
based modalities. Any movement of the observed object leads to
changes in the measured speckle intensity value, making the de-
velopment of motion artifact correction approaches crucial for
speckle contrast imaging. Several studies have already proposed
methods for correcting motion artifacts in LSCI, including both
software[31,79,80] and hardware[81,82] solutions. By addressing these
areas, DCS has the potential to become a widely used tool for clin-
ical decision-making and functional imaging studies, advancing
the noninvasive monitoring of deep tissue perfusion.
Another promising paths for future improvement of DLS-

based blood flow imaging technology is the development of
multi-modal approaches that combine DCS with other imag-
ing and/or electrophysiological modalities, such as optical coher-
ence tomography (OCT) and fluorescent intravital microscopy
(FIM).[4] Multi-modal assessment holds significant promise for
clinical use as it enables the monitoring of multiple parameters
in biological processes. Additionally, the integration of artificial
intelligence (AI), machine learning (ML), and deep-learning (DL)
algorithms offers a transformative potential for enhancing DLS-
based imaging[83] These technologies can improve the accuracy
and efficiency of image analysis, facilitate real-time processing,
and develop advanced motion artifact correction techniques, fur-
ther expanding the clinical applicability of DLS.
To ensure the clinical utility and widespread adoption of DCS,

future efforts should focus on translating technological advances
into reliable, compact, and user-friendly instruments tailored for
clinical environments. This involves ensuring measurement ac-
curacy and developing robust calibrationmethods to render DCS
data interpretable in clinically relevant units. Additionally, there
is a pressing need to develop wearable, low-cost DCS devices
to broaden the technology’s dissemination and enable studies
in naturalistic environments.[84] Furthermore, continuous vali-
dation studies are essential to demonstrate that DCS perfusion
values correlate with established MRI and CT perfusion quantifi-
cation methods, establishing normative ranges to guarantee the
accuracy of absolute perfusion values for clinical adoption.
Finally, we anticipate that the integration of Orbital Angular

Momentum (OAM) of light[85] in DCS can significantly enhance
the resolution and accuracy of blood flow measurements. The
mechanism behind this improvement involves the unique prop-
erties of OAM light, which can encode information in the OAM
phase of the light wave. This phase information, when preserved
as OAM phase memory,[86] allows for deeper and more precise
tracking of scattered photons, thus enabling more accurate mea-
surements of the velocity and direction of blood flow. Although

integrating OAM into DCS and/or LSCI is still an emerging
research area, continued advancements in DLS-based imaging
technologies will pave the way for groundbreaking developments
and new insights into blood flow diagnostic imaging. In clini-
cal settings, enhanced resolution and accuracy are crucial for the
detailed characterization of microvascular blood flow, which is
essential for diagnosing and monitoring various medical condi-
tions. The ability to detect subtle changes in blood flow direction
and velocity can lead to a better understanding and treatment of
diseases that affect blood circulation.

3. Summary and Conclusion

In the current study, we evaluated various DLS-based imaging
modalities and their application in transcranial blood flow imag-
ing, emphasizing quantitative processing enhancements. Em-
ploying an advanced experimental setup featuring a high-speed
camera and NIR laser, we achieved robust transcranial blood
flow visualization, demonstrating the DLS-based setup’s capabil-
ity to provide high-quality imaging while minimizing potential
tissue damage. This setup’s effectiveness was further validated
using a sophisticated optical small animal phantom, confirm-
ing the system’s accuracy in cerebral blood flow reconstruction.
Our in vivo experiments on anesthetized mice, incorporating
SNP to modulate cerebral blood flow, demonstrated our system’s
sensitivity to dynamic changes in blood perfusion. Through de-
tailed analysis using autocorrelation function techniques, LSCI,
and the novel introduction of entropy as a blood flow metric,
we offered a nuanced understanding of cerebral hemodynam-
ics. These methodologies allowed for the detection and visual-
ization of subtle cerebral circulation alterations induced by SNP,
highlighting the diverse applicability and robustness of DLS tech-
niques. Moreover, spectral analysis and PCA provided deep in-
sights into the oscillatory components of cerebral blood flow,
revealing physiological mechanisms regulating blood flow and
identifying areasmost affected by pharmacological interventions.
These advanced processing techniques underscored the com-
plexity of cerebral microcirculation and showcased the potential
for DLS-based methodologies to advance neuroscience research
and clinical diagnosis. An integration of the LSCI technologies
with the sophisticated image processing approaches has opened
new avenues for understanding the intricacies of cerebral blood
flow dynamics. By enhancing the quantitative processing of tran-
scranial imaging, this work not only advances the field of biomed-
ical engineering but also lays the groundwork for developing clin-
ical strategies to address neurological conditions characterized by
compromised cerebral blood flow.
The introduction of entropy as a metric for blood flow visual-

ization marked a novel approach in this field. By focusing on the
variability and unpredictability in the speckle pattern, entropy-
based imaging offered a unique perspective on blood flow dy-
namics. This method’s ability to quantify the temporal and spa-
tial complexity of laser speckle patterns provided an alternative
yet effective means of assessing blood flow in vivo.
Additionally, spectral analysis via wavelet transform has deep-

ened understanding by analyzing oscillation amplitudes in blood
perfusion, revealing physiological mechanisms during SNP in-
fusion and emphasizing the complexity of cerebral microcircula-
tion.
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Moreover, PCA has effectively tackled noise reduction and data
compression in transcranial imaging, focusing on principal com-
ponents to enhance image clarity andmanage large datasets. This
method helps extract clinically relevant information, offering a
standardized approach for transcranial data analysis.
To sum up, while DCS/DWS and LDFmay seem identical, the

main distinctions between them are in their technical aspects
and sensitivity. In LDF, the detection method typically involves
continuous-wave laser light that is scattered by moving particles
(e.g., red blood cells (RBC) in blood flow). The scattered light is
detected by a photodetector, which produces an electrical signal
proportional to the intensity of the scattered light. The output
from the photodetector is an analog signal that varies in ampli-
tude depending on the Doppler shifts caused by themotion of the
particles. This analog signal is then processed to extract informa-
tion about the velocity and flow characteristics of the particles. In
LSCI, the approach involves illuminating a tissue with coherent
laser light and capturing the resulting speckle pattern using a
camera. The speckle pattern results from the interference of
scattered light waves from moving particles. The contrast of the
speckle pattern (i.e., the variation in intensity) is analyzed to infer
the velocity and distribution of blood flow. In LSCI, the contrast
in the speckle pattern is quantified over time or across multiple
frames, and this contrast is inversely related to the velocity of
the scattering particles. The speckle contrast is then processed
to generate maps of blood flow velocity and dynamics. LSCI pro-
vides spatially resolved, wide-field images of blood flow over large
tissue areas, making it quite convenient for applications where
spatial resolution and coverage are critical. In DCS/DWS, the
detection method often involves single-photon counting, where
highly sensitive photodetectors (such as avalanche photodiodes
or Photomultiplier Tubes (PMTs)) detect individual photons
scattered by particles. The distribution of photon arrival times is
analyzed to determine the dynamics of the scattering particles.
This method is highly sensitive and can provide detailed infor-
mation about the motion of particles, especially in media where
scattering is very strong. Single photon counting is generally
more sensitive than analogous detection in LDF, as it can detect
very low levels of scattered light and provides information at the
single-photon level. LSCI, in contrast, offers high spatial resolu-
tion over a wide area but is less sensitive to deep tissue dynamics
compared to DCS/DWS. Entropy analysis is a versatile statistical
tool that measures the complexity or disorder in a system,
applicable across a broad range of data types to reveal underlying
flow patterns. Entropy is calculated based on the probability
distribution of speckle intensity values. Higher entropy indicates
greater complexity or randomness, while lower entropy suggests
more ordered or predictable patterns. Entropy analysis of speckle
patterns helps differentiate between normal and disrupted states
by identifying changes in the regularity or complexity of flow
dynamics. While DCS/DWS offers depth-specific information
about RBC motion, entropy provides a broader view of system
complexity, useful in various diagnostic and analytical contexts.
PCA, by contrast, is a method for dimensionality reduction, fo-
cusing on identifying and extracting themost significant patterns
in the data. While entropy offers insights into the overall com-
plexity, PCA provides a detailed view of the underlying structure,
making them complementary techniques in data analysis and
interpretation.

Figure 7. a) Simplified schematic presentation of high-speed full-field ex-
perimental imaging setup for transcranial blood flow visualization in-vivo,
including 1 – single mode laser; 2 – collimator; 3 – linear polarizer; 4
– crossed linear polarizer; 5 – high-speed camera up to 180 000 fps. b)
Mouse head phantom employed for measurement verification.

The integration of the DLS-based imaging techniques, and ad-
vanced data analysis offers an in-depth insight into the blood flow
dynamics within the upper cortical layers of small laboratory an-
imals.
The findings from this research underscore the potential of

DLS-based imaging in contributing to both basic neuroscience
research and the development of clinical diagnostic tools, rein-
forcing the significance of translating dynamic light scattering
into practical applications for transcranial blood flow visualiza-
tion.

4. Experimental Section
DLS-Based Experimental Imaging System: The principal scheme of op-

tical setup used in the current study for transcranial mapping blood flow
imaging is presented at Figure 7. The laser beam from single mode NIR
850 nm laser diode (QPhotonics, LLC, USA) was first collimated using a
beam collimator (Thorlabs, USA). After the collimator, the power of the
laser was kept at the level of 20mWcm−2. Further, a ground glass diffuser
was used to broaden the beam (Thorlabs, USA). After, the beam illumi-
nated the area of interest and reflected speckle pattern was registered us-
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ing high-speed camera (EoSens 3CL, Germany) in combination with 50
mm objective (Kowa Optimed Deutschland GmbH, Germany) and frame
grabber card (Silicon Software, Germany). To eliminate the patch of re-
flected light, crossed polarizers (Thorlabs, USA) were placed on the illu-
minating collimator and objective of the camera. This system allows for re-
construction of the blood flow image with a resolution of 150 by 100 pixels,
including calculation of the temporal intensity auto-correlation function of
light within the range 10−4 up to 1 s, as presented in Figure 4d. In the cur-
rent study, for each experiment 96000 speckle frames were captured with
a frame rate of 8000 fps for further processing. Obtained stack of frames
was further processed in offline regime using custom-developed software
in MATLAB R2022a environment. Particularly, in each pixel of stack the
blood perfusion index, the steepest slope of temporal intensity autocorre-
lation, the maximum slope of temporal field autocorrelation, entropy and
speckle contrast parameters were calculated from speckle intensity fluctu-
ations.

Phantoms of Small Animals: For characterizing the cerebral blood flow
in vivo, the developed experimental setup was tested and verified using
phantom measurements before being applied to live subjects. The blood
flow measurements were validated in the optical phantom of a mouse
head of realistic size, shape and optical properties (Figure 6a,b). In addi-
tion to the statically scattering layer, a sponge was added inside the brain
phantom that could be filled with a solution dynamically scattering light. A
more accurate reproduction of the optical signals registered in the phan-
tomwas achieved by combining themodel of Brownianmotion of the RBC
with the model of blood flow through the blood vessel. During the record-
ings, intralipid diluted to a concentration of 5%was driven through the em-
bedded capillary of the phantom by the infusion pump, with different flow
rates in the range of 0 − 100 μl min−1. The range of flow rates was selected
to embrace the typical physiological values of blood flow for the mouse
brain.[87]

In-Vivo Small Animal Studies: For the in vivo measurements, 2-3
month-old C57/Bl6N mice were used. At that age, the typical thickness
of the skull varies in the range of 140–150 µm.[62,88] In previous work, it
was shown that these thicknesses allow for transcranial imaging without
systematic errors related to the issue of non-ergodicity of the observed
media.[60] The mice were anesthetized with a subcutaneous injection of
ketamine (75 mg ⋅ kg−1 or 100 mg ⋅ kg−1) and xylazine (10 mg ⋅ kg−1)
(KX). A thin polyethylene tube was inserted into the femoral vein and artery
for the administration of nitric oxide donor sodium nitroprusside (5 𝜇g ⋅
kg−1min−1) and blood pressure (BP)measurements. The BP tubewas con-
nected to an in-line pressure sensors (BP-102). Data were collected with
an iworx®IX-RA-834 (Iworx Systems Inc.) data acquisition system and
Labscribe 4 software. The head was fixed on a head stabilizer and the scalp
removed to expose the skull. All experimental procedures and animal care
were in accordance with the Finnish and European legislation and were ap-
proved by the Finnish National Project Authorization Board (license num-
bers ESAVI/41363/2019 and ESAVI/2362/04.10.07/2017). Special care
was taken during the preparation phase, where the skin overlying the skull
was meticulously peeled away. It was important that the skull and its un-
derlying structures remained intact and undamaged. This preparatory step
was crucial for gaining unobstructed access to the skull, optimizing it for
the novel imaging technique. To achieve a reproducible alternation in cere-
bral blood flow, which is essential for the reliability of our observations, we
adopted a protocol involving the infusion of sodium nitroprusside (SNP)
intravenously.
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