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Abstract. This paper presents a framework utilising digital twins for 

predictive maintenance planning of fuel cells in electric vehicles, focusing 

on real-time condition monitoring and Remaining Useful Lifetime (RUL) 

prediction. By integrating advanced algorithms, it optimises maintenance 

schedules to reduce downtime and extend fuel cell lifetime. Despite relying 

on simulated data, the findings highlight the potential of digital twins to 

improve fuel cell reliability, and sustainability, illustrating their 

transformative impact on smart urban transportation systems. 

Introduction 

In today's rapidly evolving technologies, digital twins (DTs) have emerged as essential tools 

for linking physical and digital systems. This innovative technology allows for the creation 

of virtual replicas of physical entities, which can range from individual components to entire 

urban infrastructures [1]. The adoption of digital twin technology by cities represents a 

significant advancement towards becoming more intelligent and interconnected. Digital 

twins contribute to the development of smarter cities by offering dynamic simulations and 

predictive models that can anticipate potential issues and optimise urban systems. An 

example of this advancement is seen in projects like DIATOMIC [2], which showcases the 

applications of digital twins in various sectors within the city for fostering and driving digital 

innovation. 

 This paper introduces a framework utilising digital twin in enhancing and optimising 

future urban transportation systems, specifically through enabling predictive maintenance for 

fuel cells in electric vehicles. By utilising the capabilities of digital twins, it is possible to 

monitor the health and performance of fuel cells in real-time, predict potential failures, and 

schedule maintenance activities proactively. This approach not only extends the lifetime of 

fuel cells but also ensures the reliability of electric vehicles, contributing to a more 

sustainable and efficient urban transport system.  

Fuel Cell Electric Vehicles 

Fuel Cell Electric Vehicles (FCEVs) have gained increasing attention in recent years due to 

their potential to offer a clean and sustainable alternative to traditional internal combustion 

engine vehicles. Unlike Battery Electric Vehicles (BEVs), which rely solely on rechargeable 
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batteries for power, FCEVs utilise fuel cells to generate electricity, typically through a 

reaction between hydrogen and oxygen. This process produces only water vapor and heat as 

byproducts, making FCEVs zero-emission vehicles [3,4]. Figure 1 shows the concept of the 

hydrogen fuel cell. Despite its several advantages over Battery Electric Vehicles (BEVs), 

such as energy density, faster refuelling times, longer driving ranges, etc, the complex nature 

of fuel cell systems necessitates careful monitoring and maintenance to prevent performance 

degradation and to address any emerging issues promptly. This is where digital twin 

technology plays a crucial role [4,5].  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fuel cell operation concept. 

 The integration of digital twin technology in the management of FCEVs allows real-time 

monitoring of the operational parameters and health status, which highlights the 

transformative potential of advanced digital tools in paving the way towards more reliable 

and sustainable urban transport systems [6,7]. 

Digital Twin Framework 

1.1 Introduction 

The digital twin technology in FCEV operations offers numerous benefits. These include 

enhancing performance and reliability, improve maintenance practices, and optimise 

operational sustainability. Digital twins allow for real-time monitoring of critical parameters 

of the fuel cell such as temperature, pressure, voltage, and fuel cell health [6,7]. By 

continuously collecting and analysing data from FCEVs in operation, digital twins can detect 

anomalies, predict potential failures, and optimise life cycle usage/operation [8,9]. For 

example, anomalies in fuel cell voltage or temperature could indicate potential issues that 

require attention, allowing for proactive maintenance and minimising downtime [5]. In 

addition to operational benefits, digital twins contribute to sustainability efforts by optimising 

energy usage, reducing waste, and supporting circular economy practices. For instance, by 

monitoring fuel cell degradation and performance over time, digital twins can inform 

decisions regarding remanufacturing, reuse, and end-of-life disposal of fuel cell components. 

1.2 Integration of Digital Twin Technology in Fuel Cell 

The integration of digital twin technology in fuel cell of electric vehicles, shown in Figure 2, 

involves a layered system connecting hardware, data transmission, cloud-based applications, 

and end-users. Hardware components such as sensors, the fuel cell, and data acquisition 

(DAQ) devices are deployed within the FCEV to capture real-time data on parameters like 

temperature, pressure, and voltage. Data is transmitted to cloud-based applications for 

analysis, which include a database for data storage and analysis, and a dashboard interface 

for data visualisation and user interaction. End-users access the digital twin platform via the 
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internet, including stakeholders such as operators and service providers, who use the insights 

provided by the digital twin for performance optimisation and decision-making. This 

integrated system enables continuous monitoring, analysis, and optimisation of fuel cell 

operations, enhancing reliability, efficiency, and sustainability. 

Fig. 2. Architecture of digital twin for fuel cell. 

The proposed digital twin framework incorporates two core functionalities aimed at 

monitoring, analysing, and optimising the performance of the fuel cell. These functionalities 

include: 

• Condition Monitoring: This includes observing various parameters and behaviours of 

the fuel cell in real-time (e.g. temperature, pressure, flowrate, humidity), detecting deviations 

from expected performance and allowing proactive adjustments to enhance overall 

performance and ensure optimal operation.  

• Remaining Useful Lifetime (RUL) Prediction: RUL prediction is a crucial aspect of the 

digital twin framework, particularly for optimising maintenance schedules and extending the 

lifetime of fuel cell components. By employing monitoring data from digital twin, the 

reliability and degradation process are analysed to estimate the RUL of fuel cell components. 

Building on the insights provided by condition monitoring and RUL prediction of digital 

twin, Predictive Maintenance (PdM) planning utilises these outputs to schedule maintenance 

activities in a proactive manner. Although not a direct function of the digital twin, predictive 

maintenance planning employs the real-time monitoring data and RUL estimates to optimise 

maintenance schedules, minimise downtime, and ensure the efficient allocation of resources, 

thereby enhancing the overall reliability and lifetime of the fuel cell system. 

 This paper focuses on presenting the methodology and initial implementation of the 

predictive maintenance planning model for fuel cell utilising outputs from the digital twin 

model. The following section elaborates on the approach and findings. 

Predictive Maintenance Model for Fuel Cell 

In this section, we present the methodology, development, and implementation of the 

predictive maintenance model for fuel cell system based on integrated approach of RUL-

based reliability and cost analysis. 

1.3 Methodology 

The proposed predictive maintenance method of fuel cell utilises inputs from digital twin to 

optimise maintenance scheduling. The predictive maintenance model integrates four sub-

models: RUL Model, which utilises Weibull reliability function to predict the RUL of the 

fuel cell and its components. The Repair Impact Model, which assesses the improvement in 
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component condition after repair or replacement. The Maintenance Cost Model, which 

provides cost estimates for different repair strategies applied to each component. Finally, the 

Core Scheduling Model, which utilises a Genetic Algorithm (GA) to develop maintenance 

plans that minimise maintenance costs while maximising component condition. Figure 3 

illustrates the predictive maintenance scheduling approach based on GAs, while Figure 4 

presents the mathematical formulation of the core scheduling model. 

Fig. 3. Predictive maintenance methodology. 

Fig. 4. Mathematical formulation of the core scheduling model. 
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1.4 Predictive Maintenance Model Development 

1.4.1 Data and Assumptions 

Due to unavailability of data from a digital twin at this stage of development, we adopt a 

simulation-based approach for model development. We use expert judgment supported by 

literature to decompose the fuel cell stack system into five components: Proton Exchange 

Membrane (PEM) Assembly, Gas Distribution System (GDS), Cooling System (CS), 

Electrical Connections (EC), and Housing Cover (HC) [10-13]. Then, we estimate the model 

parameters, as summarised in Table 1, to experiment our approach. These parameters include 

components lifetime, Weibull reliability parameters (Beta and Eta) for RUL prediction, 

maintenance cost data, and percentages of resulting improvements for each component. We 

acknowledge that these estimations are based on expert judgment and assumptions, which 

will be further refined with empirical data as the development of the digital twin progresses. 

Specifically, parameters such as β and η will be derived from real-time monitoring data 

collected for each component of the fuel cell within the digital twin.  
 

Table 1. Predictive maintenance model parameters. 

 

Component 

Weibull 

Parameters 
Maintenance Cost and Resulting Improvement 

Eta 

(η) 

Beta 

(β) 

Repair 

(£) 

% 

Improvemen

t 

Replacement 

(£) 

% 

Improvemen

t 

PEM 

10,0

00 

hrs 

0.8 200 

40 

1,000 

100 

GDS 
8,00

0 hrs 
1.2 150 800 

CS 

12,0

00 

hrs 

1.0 250 1,200 

EC 
7,00

0 hrs 
0.9 100 600 

HC 

15,0

00 

hrs 

1.1 300 1,400 

  

The following assumptions have been considered in model development: 

• PEM and EC components are prone to early life failures, hence assigned β<1. 

• CS component experiences a constant failure rate, hence assigned β=1. 

• GDS and HC components are prone to failures due to aging, hence assigned β>1. 

• The expected lifetime of each component is used as an estimate for the η parameter. 

• Two types of maintenance strategies are considered: Repair or Replacement. 

The predictive maintenance model has been designed to minimise user input while delivering 

essential outputs necessary for informed and proactive decision-making regarding fuel cell 

maintenance. The required user inputs and resulting outputs are outlined below: 

• User Inputs: • User Outputs: 

o Desired period of analysis o Degradation curves 

o Current age of components o Maintenance cost analysis 

 o Maintenance schedule 

MATEC Web of Conferences 401, (2024)

ICMR2024
https://doi.org/10.1051/matecconf/20244011001010010 

5



1.4.2 Implementation and Results 

To implement the proposed predictive maintenance model, a tool based on VBA 

programming language has been developed. It utilises estimated data for each component 

(Table 1) and employs algorithms to simulate degradation, repair, and maintenance processes 

over the fuel cell system’s lifetime. Considering 20,000 hours as a desired period of analysis 

with brand-new fuel cell components, Figure 5 shows screenshots of the main results 

obtained. Screen (a) presents degradation curves for components and the whole system 

throughout the analysis period. These curves show the RUL and illustrate the effects of 

different repair and replacement strategies on component condition. Screen (b) provides 

detailed analysis and insights into the maintenance cost of the fuel cell. It shows cumulative 

costs, costs per intervention, and cost breakdown per component. And screen (c) presents a 

predictive maintenance schedule for each component based on RUL and cost analysis. 

Additionally, it shows statistics on repair and replacement implemented for each component. 

Fig. 5. Screenshots of the predictive maintenance model results. 

Conclusion 

The integration of digital twin in managing fuel cell of electric vehicles offers potential 

benefits in terms of operational reliability and sustainability. By continuously monitoring 

(c) Maintenance schedule and statistics  

(a) RUL and degradation process analysis 

(b) Maintenance cost analysis  
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critical parameters and predicting the RUL of fuel cell components, digital twins facilitate 

proactive maintenance planning. The predictive maintenance model developed in this study 

employs advanced algorithms to optimise maintenance schedules based on real-time data and 

cost analysis. The initial implementation, despite relying on simulated data, demonstrates the 

model’s potential to enhance fuel cell system performance by minimising downtime and 

extending component lifetime. 

 As digital twin model continues to evolve, the accuracy and reliability of predictive 

maintenance models will improve with the integration of empirical data. This will further 

enhance the ability of digital twins to support informed decision-making and resource 

allocation, promoting more sustainable and efficient urban transportation systems. Future 

research should focus on refining the model with real-world data and exploring the broader 

implications of digital twin model in various sectors of urban infrastructure. Ultimately, the 

application of digital twins in fuel cell of electric vehicles highlights their potential in 

fostering smarter and more resilient cities. 
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