

The Role of FPGA Technology

in the Design of Smart

Transceivers for use in Optical

Communications Systems

MICHAEL J ANDERSON

Doctor of Philosophy

ASTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

December 2023

©Michael Anderson, 2023

Michael Anderson asserts his moral right to be identified as the author of this thesis.

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright belongs to its author and that no

quotation from the thesis and no information derived from it may be published

without appropriate permission or acknowledgement.

M.J.Anderson, PhD Thesis, Aston University 2023

2

Aston University

The Role of FPGA Technology in the Design of Smart

Transceivers for use in Optical Communications Systems

Michael J Anderson

Doctor of Philosophy

2023

Abstract

This thesis looks at where the recent advances in Field Programmable Gate
Array (FPGA) technology have been or could be used to complement and further the
development of smarter optical devices in both the in-service and product
development environments.

One approach to the development of cost-effective integrated components is
the utilisation of low cost, low power circuitry, built as part of the module, which is
capable of being repurposed from providing automated manufacturing orientated
functions, such as characterisation and calibration, to operational control functions.
Although these individual functions are well known, computationally efficient and
low-cost implementations are required to enable competitive module pricing. This
work examines the case of an optical Mach Zehnder Modulator (MZM) where the
relationship between bias voltages and output power requires determining. With this
aim, this study investigates the self-characterisation of this relationship with low cost
and low power components which could be readily integrated into an optical module.
In particular, the behaviour and capabilities required for automatic digital bias
characterisation functionality, implemented in small gate count, low-cost FPGAs, are
developed. The suitability of highly efficient implementations of DSP functions within
the bias measurement function, such as digital filters, is tested, by investigating
experimentally the use of a computationally efficient algorithm for computing a single
component of a discrete Fourier transform, as a demonstration of the viability of using
low-cost digital hardware to implement a circuit capable of monitoring the MZM
transfer function. The results of this experiment are then used to investigate whether
a simple Machine Learning model can be trained to extract characterisation data for
the modulator.

Smarter optical modules, deployed in optical networks, are being developed
as part of the solution to the increasing demand for bandwidth. There is a growing
interest in augmenting existing communication systems, to carry greater bandwidth
over the existing installed infrastructure, by adopting more parallel transmission
techniques, such as Spatial Division Multiplexing (SDM), and by the application of
advanced Digital Signal Processing (DSP) methods, e.g. compensating for non-linear
impairments, allowing a higher transmit power and thus improving the Signal to
Noise Ratio (SNR) which is required to support higher order modulation formats.
Here, the role which can be played by FPGAs is investigated, through the first-time
realization in FPGA technology of a real time, recurrent machine learning solution
addressing optical channel non-linearities.

M.J.Anderson, PhD Thesis, Aston University 2023

3

This thesis reports on three first-time achievements:
• the real time demonstration and the novel use of a filter based on the

computationally efficient Goertzel algorithm to monitor an MZM
transfer function.

• the implementation in FPGA technology of a biLSTM based equalizer
for non-linear effects in optical communications systems. This is a
novel use of the biLSTM architecture for this application.

• the use of a small size Neural Network to perform the Vπ and VOFFSET
characterisation of an MZM optical component. In this work the
novel application of ML, a NN with only 3 hidden layers of 8 neurons
per layer and a small input layer of 82 inputs, is demonstrated as
being able to determine the V and VOFFSET parameters of a real MZM.

The combination of the computationally efficient filter and the small NN
capable of processing the output from the filter together show the ability of cost-
optimised FPGAs to perform the analysis and processing of data required to carry
out characterisation procedures on the photonic module, without the time
overheads associated with large scale data transfers to a computer. Additionally, the
implementation of a novel biSTLM equalizer demonstrates a practical design flow to
realise the applications of NNs in FPGAs.

Keywords: Field Programmable Gate Array, Nonlinear Equalization, Cost-effective

Characterisation, Manufacturing, Parallelism, Repurposable Design, Machine

Learning, Neural Networks, High Level Synthesis.

M.J.Anderson, PhD Thesis, Aston University 2023

4

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor Prof. Wladek Forysiak for

encouraging me to pursue my ambition to study for a PhD at Aston University. I am

deeply grateful to him for his guidance, the remarkable patience and the great

support.

I would also like to express my gratitude to my associate supervisors Dr

Paul Harper and Dr Richard Nock.

I would like to thank my employer TerOpta Ltd for their support and

flexibility in my undertaking of this venture.

I would like to acknowledge my fellow researchers and colleagues at AIPT,

most particularly Dr Ian Phillips for his valuable support in the lab and for his help

sourcing equipment for my experiments. I also would like to thank Dr Pedro J Freire

for his help and advice on Machine Learning when I needed it.

Finally, a special thanks to my wife Annette for her continuous support and

encouragement.

M.J.Anderson, PhD Thesis, Aston University 2023

5

TABLE OF CONTENTS

ABSTRACT ... 2

ACKNOWLEDGEMENTS ... 4

TABLE OF CONTENTS .. 5

LIST OF ABBREVIATIONS .. 7

LIST OF FIGURES.. 9

LIST OF TABLES ... 12

LIST OF PUBLICATIONS ... 13

Peer-reviewed.. 13

Conference proceedings .. 13

1 INTRODUCTION ... 14

1.1 Thesis Structure ... 16

1.2 Motivation ... 18

1.3 Requirements Study ... 19

1.4 Hypothesis .. 25

2 PARALLELISATION, SUPERCHANNELS AND THE NEED FOR ARRAYED MULTICHANNEL

COMPONENTS .. 27

2.1 The Growth of Optical Network Traffic .. 27

2.2 Increasing Bandwidth through Parallelism .. 32

2.3 Summary ... 40

3 FIELD PROGRAMMABLE GATE ARRAYS .. 41

3.1 Introduction to FPGAs ... 41

3.2 Multichannel Transceivers – The role of FPGAs in their Operation 48

3.3 Superchannel Transceivers - Manufacturability .. 51

3.4 Summary ... 55

4 MACH ZEHNDER MODULATORS ... 57

4.1 Introduction ... 57

4.2 Theory of operation .. 57

4.3 Filter Implementation .. 62

4.4 Experimental Setup .. 71

M.J.Anderson, PhD Thesis, Aston University 2023

6

4.5 Results……………………………………………………………………………………………………….. 74

4.6 Summary ... 77

5 EMBEDDED SOFT MICROCONTROLLER ... 79

5.1 Design Flow Analysis ... 79

5.2 Summary ... 87

6 MACHINE LEARNING ... 88

6.1 Concepts of Machine Learning ... 88

6.1.1 FPGAs and ML ... 91

6.2 Challenges when implementing a neural network based equalizer in an FPGA. 93

6.2.1 C++ Implementation of Neural Networks and Generation of VHDL

through High Level Synthesis ... 97

6.2.2 The Physical Synthesis Step to the FPGA Realization 102

6.2.3 Conclusions from the implementation of a biLSTM NN equalizer 104

6.3 MZM and ML ... 107

6.3.1 Results ... 112

6.4 Summary .. 115

7 CONCLUSION AND FUTURE WORK .. 117

7.1 Conclusion ... 117

7.2 Future Work .. 119

APPENDIX A TENSORFLOW AND PYTHON CODE ... 121

A.1. Python code and steps used to generate curve fitting ANN. 121

A.2. Python code and steps used to generate ANN predicting Vπ and Voffset. 124

8 REFERENCES ... 132

M.J.Anderson, PhD Thesis, Aston University 2023

7

LIST OF ABBREVIATIONS

ADC – Analogue to Digital Convertor

AI – Artificial Intelligence

ALU – Arithmetic Logic Unit

ANN – Artificial Neural Network

ASIC – Application Specific Integrated Circuit

biLSTM – Bidirectional Long Short-Term Memory

CDC – Chromatic Dispersion Compensation

CNN – Convolutional Neural Network

CPU – Central Processing Unit

DAC – Digital to Analogue Convertor

DBP – Digital Backpropagation

DFT – Discrete Fourier Transform

DPR – Dynamic Partial Reconfiguration

DSP – Digital Signal Processing

DWDM – Dense Wavelength Division Multiplexing

FEC – Forward Error Correction

FPGA – Field Programmable Gate Array

FFT – Fast Fourier Transform

FIR – Finite Impulse Response (filter)

HDL – Hardware Description Language

HLS – High Level Synthesis

I2C – Inter Integrated Circuit Bus

IIR – Infinite Impulse Response (filter)

IoT – Internet of Things

IP – Internet Protocol

ISP – Internet Service Provider

LE – Logic Element

LUT – Look Up Table

ML – Machine Learning

MSA – Multiple Supplier Agreement

MZM – Mach Zehnder Modulator

NN – Neural Network

M.J.Anderson, PhD Thesis, Aston University 2023

8

OWC – Optical Wireless Communications

PC – Personal Computer

PCB – Printed Circuit Board

PIC – Photonic Integrated Circuit

POF – Programmer Object File

ReLU – Rectified Linear Unit

RISC – Reduced Instruction Set Computer

ROSA – Receiver Optical Sub-Assembly

SDM – Spatial Division Multiplexing

SDN – Software Defined Networks

SDR – Software Defined Radio

SOA – Semiconductor Optical Amplifier

SPI – Serial Peripheral Interface

SoC – System on Chip

TOSA – Transmitter Optical Sub-Assembly

TEC – Thermoelectric Cooler

UART – Universal Asynchronous Receiver Transmitter

VHDL – Very High-Speed Integrated Circuit Hardware Description Language

M.J.Anderson, PhD Thesis, Aston University 2023

9

LIST OF FIGURES

Figure 1-1 Breakdown of the cost structure of a 400 Gb/s pluggable transceiver

[1]. .. 18

Figure 1-2 Ethernet standards evolution – The path to single lane [9]. 22

Figure 1-3 Illustration of the cost sensitive components of the calibration engine

within an optical module. ... 22

Figure 1-4 Example design of a laser controller based in an Intel MAX10 FPGA. 24

Figure 1-5 Example design of a laser calibration engine based in an Intel MAX10

FPGA. ... 25

Figure 2-1: Predicted growth in global internet traffic to 2030 under 4 possible

scenarios with CAGR ranging from 17% to 32% [21] 31

Figure 2-2 Annual size of the Global Datasphere [22]. ... 31

Figure 2-3 The diversity of Ethernet traffic sources [9]. ... 32

Figure 2-4 Spectral Superchannels avoid filtering penalties [11]. 33

Figure 2-5 Structure of (a) spectral vs (b) spatial Superchannel transceiver –

From Scaling Disparities to Integrated Parallelism [30]. 34

Figure 2-6 Parallel processing in the CPU and Superchannel World –

Superchannels to the Rescue [34]. ... 36

Figure 2-7 Schematic functionality of the Dual IQ Modulator Chip together with

an optical image [38]. Phase control is by thermal elements

‘Phase(n)L/R’ .. 39

Figure 3-1 The basic architecture of a FPGA [41]. .. 42

Figure 3-2 ASIC design costs comparison [48]. ... 44

Figure 3-3 Architecture of a Sliceable Transceiver - Sliceable Variable Bandwidth

Transponder: The IDEALIST Vision [36]. .. 50

Figure 3-4 1.2Tb/s PIC architecture [60]. .. 51

Figure 3-5 Flowchart of a simplified tunable laser calibration sweep. 53

Figure 3-6 Example result of a laser tuning sweep showing the variation of

output power monitor current with Phase and Bias DAC setting.

(Original image shared in confidence) ... 55

Figure 4-1 Simplified MZM structure. .. 58

Figure 4-2 Transfer function of a Mach Zehnder Modulator showing the key

operating points. .. 59

M.J.Anderson, PhD Thesis, Aston University 2023

10

Figure 4-3 Variation of harmonic power with VBias. ... 61

Figure 4-4 FIR filter architecture with N taps. ... 63

Figure 4-5 IIR Filter architecture with N taps. ... 63

Figure 4-6 Standard form Goertzel filter structure showing relationship of Q0, 1,

2, Coeff, Sine and Cosine. .. 67

Figure 4-7 Simulated power response of the Goertzel algorithm based 4 kHz

frequency filter to a range of sinusoids between 3 kHz and 5 kHz. 67

Figure 4-8 Simplified form Goertzel filter structure as implemented 68

Figure 4-9 Magnitude responses of equivalent FIR (a) and IIR (b) filters to the

Goertzel based filter used in this experiment. ... 69

Figure 4-10 Filter implementation in Intel MAX10 primitive cells. 70

Figure 4-11 Experimental setup for filter response DC bias sweep. 73

Figure 4-12 Optical power output of the MZM vs DC Bias compared with the

calculated theoretical transfer function. .. 74

Figure 4-13 FFT of ADC input taken at Null operating point with marker at 8 kHz.

 ... 75

Figure 4-14 FFT of ADC input signal with markers at 4 kHz and 8 kHz(a) and

Optical eye (b) at Quadrature. .. 76

Figure 4-15 Fundamental frequency filter output with averaging vs Bias voltage.

 ... 76

Figure 4-16 2nd harmonic frequency filter output with averaging vs Bias voltage.

 ... 77

Figure 5-1 Initial Golden Hardware Reference Design architecture [77]. 81

Figure 5-2 GHRD Memory Map. .. 82

Figure 5-3 DAC interface interconnect into NIOS II using QSYS. .. 84

Figure 5-4 Block Schematic representation of the QSYS system with DAC. 85

Figure 5-5 Extracted LUT counts for GHRD with DAC interface. .. 86

Figure 6-1 An Artificial Neural Network [80]. .. 89

Figure 6-2 Common non linear activation functions include the sigmoid function

and the Rectified Linear Unit (ReLU) [81]. ... 90

Figure 6-3 Machine learning applications in optical communications [84]. 90

Figure 6-4 Neuron function mapped into generic FPGA function categories. 92

Figure 6-5 FPGA design flow to device realization. .. 93

Figure 6-6 3-cell section of a biLSTM. .. 95

Figure 6-7 Recurrent equalizer using biLSTM Hidden Layers [88]................................... 96

M.J.Anderson, PhD Thesis, Aston University 2023

11

Figure 6-8 AMD Toolchain and the steps used to realize a NN [88]. 96

Figure 6-9 Structure of an LSTM cell showing the recursive path and the

implementation of the LSTM showing buffers [88]. 99

Figure 6-10 Pipelining of loop operations. ... 100

Figure 6-11 Unrolling of looped functions. ... 101

Figure 6-12 Design placement biLSTM based equaliser. .. 105

Figure 6-13 Q-factor versus launch power for the different types of equalizer

(described in the legends) by experiment [94] .. 106

Figure 6-14 ANN curve fitting to a filter response obtained during the experiment

of Section 4. ... 108

Figure 6-15 Visualisation of the ANN used to find the transfer function of Figure

6-14. ... 109

Figure 6-16 ANN structure used to Determine Vπ and Offset. ... 111

Figure 6-17 Plot of generated target vs predicted data points. .. 113

Figure 6-18 Experimental data used as input to ANN.. 114

Figure 6-19 2nd experimental sweep data used as input to ANN 114

Figure 7-1 Example speech pictogram showing frequency magnitude vs time 120

Figure A-0-1 Extracted training data for curve fitting ANN. ... 122

Figure A-0-2 Normalized training data for curve fitting ANN. ... 123

Figure A-0-3 predicted curve using trained ANN .. 124

Figure A-0-4 Reduction of Loss parameter during ANN training.................................... 130

Figure A-0-5 Example generated validation test data. .. 131

M.J.Anderson, PhD Thesis, Aston University 2023

12

LIST OF TABLES

Table 2-1 Predicted increase in IP traffic to 2021 [13]. ... 29

Table 2-2 Predicted increase in network connection speeds to 2023 [20]. 30

Table 3-1 Intel/Altera SoC family comparison of performance and logic capacity

(Compiled from [43], [44], [45]). .. 43

Table 3-2 Cross vendor comparison of low/mid range SoC capabilities [54]. 46

Table 4-1 Goertzel algorithm based filter - Post Technology Fitting resource

utilisation. ... 71

Table 6-1 Post Fit resource utilisation biLSTM based equalizer. 105

Table 6-2 Parameter Count of the ANN used to find the transfer function in Figure

6-14. ... 109

Table 6-3 Parameter count of the ANN used to determine Vπ and Offset. 112

Table 6-4 generated target values vs predicted testpoints with error (mV). 112

Table 6-5 Experimental recorded values vs ANN predicted values 114

M.J.Anderson, PhD Thesis, Aston University 2023

13

LIST OF PUBLICATIONS

Peer-reviewed

Anderson, M., Philips, I., Callan, P., & Forysiak, W. (2021). Repurposable hardware

in smart photonic components. Journal of Physics: Conference Series, 1919(1),

[012010]. https://doi.org/10.1088/1742-6596/1919/1/012010

Freire, P. J., Srivallapanondh, S., Anderson, M., Spinnler, B., Bex, T., Eriksson, T. A.,

Napoli, A., Schairer, W., Costa, N., Blott, M., Turitsyn, S. K., & Prilepsky, J. E. (2023).

Implementing Neural Network-Based Equalizers in a Coherent Optical Transmission

System Using Field-Programmable Gate Arrays. Journal of Lightwave Technology,

[10113728]. https://doi.org/10.1109/JLT.2023.3272011

Freire, P. J., Napoli, A., Ron, D. A., Spinnler, B., Anderson, M., Schairer, W., Bex, T.,

Costa, N., Turitsyn, S. K., & Prilepsky, J. E. (2023). Reducing Computational

Complexity of Neural Networks in Optical Channel Equalization: From Concepts to

Implementation. Journal of Lightwave Technology.

https://doi.org/10.1109/jlt.2023.3234327

Conference proceedings

Freire, P. J., Anderson, M., Spinnler, B., Bex, T., Prilepsky, J. E., Eriksson, T. A., Costa,

N., Schairer, W., Blott, M., Napoli, A., & Turitsyn, S. K. (2022). Towards FPGA

Implementation of Neural Network-Based Nonlinearity Mitigation Equalizers in

Coherent Optical Transmission Systems. In 2022 European Conference on Optical

Communication, ECOC 2022 (2022 European Conference on Optical Communication,

ECOC 2022). IEEE.

https://doi.org/10.1109/JLT.2023.3272011

M.J.Anderson, PhD Thesis, Aston University 2023

14

1 INTRODUCTION

With continuous advances being made in FPGA technology, this thesis

examines where these devices have been used and could be used to complement and

further the development of smarter optical transceivers in a product development

environment. In the context of this thesis, the definition of smart optics is intended

as meaning ‘having the capability of autonomously performing complex analytical

functions which may normally be performed by an operator’, for example to

characterise a control surface or transfer function, or to find optimum operating

points. It is essential, however, that this does not add excessive cost overheads to

the module and this is where the concept of repurposable hardware is introduced –

by being able to reuse elements of the module which are present for normal

operation, potentially multiple times, additional costs can be minimised.

Both FPGAs and optics are fast moving technology fields and, as such, the

majority of papers concerning FPGAs contributing to this review have been

published in the time period beginning five years prior to the start of this work, in

respected international industry journals and conferences, and have been identified

through searches of online facilities such as Google Scholar and ResearchGate. Older

literature is also included as it does provide an insight to the diversity of

applications of FPGAs and of the rapid developments in optical component

bandwidth.

During the course of this work, three of the largest FPGA vendors have

been acquired – Altera by Intel, Xilinx by AMD and MicroSemi by MicroChip.

Consequently, the names are used interchangeably throughout this thesis and the

referenced literature.

 Contributions of the Thesis

This thesis reports on three first-time achievements:

• the real time demonstration and the novel use of a filter based on

the computationally efficient Goertzel algorithm to monitor an

MZM transfer function. This algorithm enables a digital filter to be

designed with lower complexity in terms of multiplications and

additions per input sample and significantly fewer stored weighting

factors when compared with conventional digital filter structures

M.J.Anderson, PhD Thesis, Aston University 2023

15

with the same parameters. The use of computationally efficient

methods is essential when investigating low-cost, self-

characterising hardware.

• the implementation in FPGA technology of a biLSTM based

equalizer for non-linear effects in optical communications systems.

This is a novel use of the biLSTM architecture for this application. A

study of the steps required to implement a large, recurrent neural

network in an FPGA was performed as part of an investigation into

the viability of NN based equalizers for commercial applications.

The real-time implementation of this biLSTM equalizer was shown

by experiment to offer a 1.7 dB improvement in Q-factor when

compared with a standard DSP based Chromatic Dispersion

Compensation block for only a 2.5x increase in estimated FPGA

capacity at a throughput of 400 Gbit/s.

• the use of a small size Neural Network to perform the Vπ and

VOFFSET characterisation of an MZM optical component. In this work

the novel application of ML, a NN with only 3 hidden layers of 8

neurons per layer and a small input layer of 82 inputs, is

demonstrated as being able to determine the V and VOFFSET

parameters of a real MZM, in conjunction with the Goertzel filter,

using experimentally obtained data, with electronic system noise,

from an automated voltage sweep of the DC bias electrode. The

determined parameters are shown to match those obtained from a

manual measurement and voltage sweep to within 2% of V . The

complexity of implementing this small scale NN solution is

compared with the complexity of implementing a ‘soft’ IP

microcontroller to analyse whether such an approach is compatible

with the use of cost optimised FPGAs to create smarter, self-

characterising photonic components.

M.J.Anderson, PhD Thesis, Aston University 2023

16

1.1 Thesis Structure

This thesis has been broken down into 7 chapters:

The following parts of this chapter present the motivation for this piece of

work, by analysing the implications on the cost of manufacturing high bandwidth

optical transceivers and what approaches could make such a transceiver ‘smarter’

and able to reduce costs by incorporating self-test capabilities.

Chapter 2 introduces the need for parallelisation in optical communication

systems by exploring the increasing requirements for optical bandwidth which is

being forecast by multiple industry sources. The effects of the changing nature of the

traffic and the subsequent need for flexibility in the network presents further

challenges to the transceiver manufacturer. The adoption of multichannel optical

modules, using tightly spaced Superchannels and implemented using arrays of

components, is shown as one possible approach to satisfying this appetite for data.

This presents new challenges for the transceiver manufacturer when trying to

control the test and assembly costs associated with packaging arrays of components

together in a single transceiver entity.

Chapter 3 offers a background on FPGA technology, introducing the basic

architectural building blocks, or logic elements, which form these devices. The

advantages and disadvantages of FPGAs over custom integrated circuits are

underlined, particularly in the light of the development costs associated with the

latter. By looking at the development of new features in these devices over time and

also at the broad range of device capabilities – in terms of the number of resources

available – the chapter evaluates the potential advantages of FPGAs in this

application by inspecting two areas of operation:

1. The traffic path of an in-service multichannel transceiver

2. The set up and control of multichannel transceiver optics during

manufacture.

In chapter 4, the operation of the Mach Zehnder Modulator is examined.

Within the subject of this thesis these components are a compelling and relevant

example to study. Initially, the behaviour of the Mach Zehnder is well described

arithmetically and the theory behind this is presented. Then, the design of digital

filters, used as a means of monitoring the Mach Zehnder harmonically, is discussed

M.J.Anderson, PhD Thesis, Aston University 2023

17

and a resource efficient algorithm for implementing filters is introduced and

compared with the more commonly used FIR and IIR structures. Finally, this

chapter reports on an experiment assessing the suitability of using such a filter,

implemented using this resource efficient method, of monitoring the transfer

function, via harmonic analysis, of these devices.

Chapter 5 examines the design process involved in the implementation of a

small microcontroller based system in an FPGA. Such a system commonly forms part

of an integrated design. Firstly, this chapter provides an assessment of the

complexity of the design process by implementing the steps involved in building the

embedded microcontroller system using commercially available ‘soft’ cores as well

as creating a bespoke, embedded build of the Linux operating system. Then, the

design itself is examined, by analysing the FPGA resources – logic and memory –

consumed by its implementation and where this may be optimised.

Chapter 6 is focussed on the potential of Machine Learning to be used in

FPGAs. Firstly, the concepts of Machine Learning are introduced and a brief review

of the current uses of Machine Learning in optical communications is given. The

mapping of Machine Learning functionality onto the fundamental building blocks of

an FPGA is analysed. A design flow, starting with a high level description of a

Machine Learning model, is examined in detail, through the implementation of a

machine learning based solution capable of solving non-linear effects, and the

optimisation approaches required during this activity are discussed. Finally, to

answer the question about whether it is possible to implement self characterisation

functions in an FPGA the application of machine learning to the task of

characterising an MZM is investigated.

The final chapter brings together the conclusions from the preceding

chapters and sets out some suggestions for the activities required to further pursue

this study into FPGAs as a route to smarter optical transceivers.

Appendix A gives further details about the Tensorflow method and the

Python code used in the design of the Neural Networks used in Chapter 6.3.

M.J.Anderson, PhD Thesis, Aston University 2023

18

1.2 Motivation

In the light of the growing trend for data transfer capacity across all areas

of the optical network, from the edge to the optical core, as a result of both high

bandwidth consumer services such as IP TV and low bandwidth but high-volume

applications such as the Internet of Things, coupled with tightening cost, power and

footprint requirements, the integration of multiple optical components into

transceiver modules has become standard practice. Transceiver modules are now

complex micro system assemblies built from many discrete components [1] [2] [3].

There is an ongoing need for cost efficiency in the manufacture of these

modules in order to service ever tightening capital budgets and ‘cost per bit’ targets.

One area of device production which can be examined for cost reduction

opportunities is the unit test and characterisation step which occurs before and

after packaging. Packaging operations can account for a substantial proportion of

the module production costs, with an estimate of almost 40% of the cost of a

400Gb/s pluggable transceiver being due to the test, assembly and packaging

activities as indicated in Figure 1-1 [1]. Throughout the manufacturing process there

are multiple stages involved in the packaging operation. At each stage, test and

characterisation procedures are required to be repeated to ensure that failed

assemblies are removed from the process.

Figure 1-1 Breakdown of the cost structure of a 400 Gb/s pluggable transceiver [1].

The implementation of self-contained, intelligent functions within an

optical module to perform aspects of test and characterisation can potentially

reduce costs by allowing for reduced floorspace in the factory, reduced operator

time and reduced equipment infrastructure. By embedding such functions in the

M.J.Anderson, PhD Thesis, Aston University 2023

19

module, it then also becomes possible to repeat these functions after deployment in

the network for maintenance purposes or to increase operational life, for example;

through periodic recalibration, without the need for engineer site visits. This remote

repeatability of tests will take on greater importance as optics find newer

applications and markets such as in satellites [3]. The concept of creating cost

effective, repurposable hardware is essential for implementation and inclusion in

optical devices deployed in communications networks and beyond.

1.3 Requirements Study

The first part of this study has been dedicated to examining the practical

requirements associated with the implementation of a smart transceiver equipped

with a calibration engine. When reporting on the design of a calibration and control

engine, we first need to define the functions required of such an engine and any

limitations placed on its implementation.

Based on commercial experience and on the literature reviewed in the

early sections of this report, it is proposed that such an engine would need to

conform to the following requirements:

• The chosen solution must demonstrate the capacity to process at least 16

tuneable lasers plus modulators and other components forming part of a 16

channel multiple wavelength tuneable module; and must be easily scalable

for future use with larger scale integrated arrays.

• The capability to carry out automated measurements and recording of data.

This data should be stored in on-unit non-volatile memory and should be

available to be transmitted through the test management interface to an

external host.

• The calibration engine must be able to perform the computations associated

with the calibration routines for both transmit and receive functions in order

to provide on-unit analysis of the measured data; for example, sample mean,

standard deviation, z score, identification of peaks, troughs and points of

maximum slope.

• The solution must be able to use a standard optical module management

interface for communications – this is typically a low rate low pin count

M.J.Anderson, PhD Thesis, Aston University 2023

20

serial protocol such as I2C or IEEE 802.3 MDIO [4] and is defined by a

multiple supplier agreement (MSA) which standardises the user side

interface. There are two drivers towards the use of the standardised

management interface. Firstly, the cost and complexity of implementing a

high speed serial interface, e.g. USB with the relevant software stack and

hardware physical layer, can be avoided. Secondly, by retaining the

standardised management interface, existing system level management

solutions can be easily modified to provide access to this calibration

functionality while the module is ‘in the field’. There is currently no ratified

physical layer agreement in place for modules with a transmission capacity >

800 Gb/s (Figure 1-2) although this activity is ongoing within the industry

standards bodies as two separate groups, one (IEEE P802.3df [5]) defining

800 Gb/s Ethernet based on 100 Gb/s lane technology and the second (IEEE

P802.3dj [6]) defining 800Gb/s and 1.6 Tb/s using lanes of 200Gb/s and

above. A set of MSAs for 800Gb/s pluggable modules targeting datacentres

[7] [8] has been released however, and the current lack of a physical layer

standard is not an issue to the pursuit of this study. The management

interface is defined within the MSA covering the module form factor, but as

the physical layer standards evolve this could also change. There is no

requirement for the interface to be the same between factory and field.

Taking advantage of the reconfigurable nature of FPGAs, the interface

protocol can be changed to suit the requirements of the application. Complex

higher rate protocols such as Ethernet and USB would not generally be

chosen for the calibration engine due to the increased hardware overhead of

implementing the physical layer of the interface and the software overhead

associated with these protocols which would not usually be required in the

control application. As these serial interfaces tend to be low rate – in the

region of 2.5 Mb/s in the case of MDIO and 1 Mb/s for I2C, some processing

of the data on module is essential to prevent this interface becoming a

bottleneck to the factory process.

• The calibration engine must be able to perform autonomous test and

calibration routines with minimal operator interaction. The upload and

implementation of new test routines should be simple. The test solution

development needs to be separate from the engine design activity. Skilled

FPGA designers and embedded software engineers are a scarce resource

M.J.Anderson, PhD Thesis, Aston University 2023

21

more effectively used in product development, designing FPGAs and

software, whereas skilled test engineers do not necessarily have the specific

skills required to develop FPGA based solutions. The requirement for

significant upskilling of engineering staff in order to adopt this method of

working would not be viewed favourably by industry, therefore this project

must create a base solution to which new test scripts or test application

software can be downloaded without requiring an FPGA redesign.

• The additional cost of the electronics required to implement the calibration

engine must be significantly less than the cost of the optical assembly. Some

initial tests of the optical components are performed at the wafer production

stage to identify faulty optics. These tests, from experience, tend to be

repeated throughout the subsequent manufacturing steps. There is scope for

cost savings not only from automating these tests, but from the possibility of

reducing the number of reiterations by eliminating some tests with the risk

that faults will be discovered during the calibration activity later in the

process. As a result, the calibration and control electronics need to be

considered disposable. The cost of the control-related electronic

components, including power supplies and TEC related components, should

be minimised. The controller device, used to implement the calibration

engine, should have multi-channel ADCs and/or DACs integrated into the

device in order to save costs, both monetary and board space. The ADCs and

DACs used for calibration, generally, will only require a low sample rate of,

perhaps, 1 MSps once allowances for the settling times of the electronics to

an input change are made. This cost consideration excludes the PCB and the

high speed traffic parts of the design. These additional costs can be

amortised if there are increases in throughput and reductions in the cost of

manufacturing through reductions in test plant equipment. If the cost of the

calibration engine is kept very low with respect to the cost of the optical

assembly then, even if repurposing is not implemented, the potential of cost

savings by integrating test and calibration functions on the module still

exists.

M.J.Anderson, PhD Thesis, Aston University 2023

22

Figure 1-2 Ethernet standards evolution – The path to single lane [9].

The cost sensitive component area is illustrated in Figure 1-3 . The dashed

line encloses the items to be included in the cost minimised design.

Figure 1-3 Illustration of the cost sensitive components of the

calibration engine within an optical module.

Controller

ADC/DAC

Analogue signal

conditioning

DC

PSUs

TEC

Drive

Modulator

Drivers
TOSA

ROSA

Connector

CDRs and Gear-

box

Datapath FPGA

fabric (if

applicable)

Cost sensitive

items

M.J.Anderson, PhD Thesis, Aston University 2023

23

The options available for implementing such circuits are:

• FPGA alone, all the test routines and processing would be coded as hardware

modules. This would provide a solution with a high degree of parallelisation,

able of performing multiple processing tasks simultaneously, but, it would

prove harder to make subsequent test routine changes without involving the

FPGA design team. Also, although FPGAs are very effective at performing

high speed repetitive actions with deterministic timing, they can be

inefficient at implementing functions such as arithmetic dividers which

become hardware resource costly, or functions which may only be required

once or twice in a test and otherwise sit dormant. During in-field use an

FPGA based solution can prove to be very powerful – as it is able to parallel

process multiple control loops in a deterministic time.

• Microcontroller alone, using a low level operating system and Embedded C

code – this is a feasible route but requires the product design team to assist

in the development of test routines. Although new programming files can be

written; the hardware itself is dedicated to being a microcontroller. Many

small microcontrollers execute processes in an interleaved manner, leading

to non-deterministic execution times.

• An embedded high-level operating system such as Linux would offer the

ability to use scripts written in standard scripting languages such as shell

script which is designed to be run using the command line interpreter built

into Linux. Other high level, interpreted languages such as Python could be

proposed but the impact of including support for these in the operating

system image will need to be analysed.

The availability of embedded, high level and customisable yet compact

operating systems such as Linux is providing an accessible route for non-

programmers into these embedded devices. After the initial effort of creating an

operating system build tailored to the hardware in question, subsequent activities

become no less familiar than file manipulation on a regular PC and executing

commands from a command line interface.

The optimum solution is expected to be a mix of FPGA (for deterministic

timing and parallelisation of functions) and embedded microcontroller or other

processor functionality for controlling sweeps and processing data. The FPGA fabric

M.J.Anderson, PhD Thesis, Aston University 2023

24

can be used to implement both virtual instrumentation functions and coprocessors

such as an ALU for enhanced software performance.

An example of a laser controller device functional architecture, showing the

main functional components is given below in Figure 1-4. In this example, based on

the architecture of the Intel MAX10 devices [10], communication off the device is via

a low speed I2C interface, the DAC is a discrete component accessed over a serial

interface whereas the ADC, in this device family, is integrated onto the chip. 4

parameters are being controlled - optical power, optical frequency, optical

modulation depth and unit temperature – using a state machine.

Figure 1-4 Example design of a laser controller based in an

Intel MAX10 FPGA.

By inspecting the common driver functions between the controller and the

calibration functions it becomes possible to propose the calibration engine

architecture shown in Figure 1-5. In this case, the ADC and DAC peripherals remain

the same. Communication off the device is either by the same I2C or the pins and

M.J.Anderson, PhD Thesis, Aston University 2023

25

logic can be repurposed to an alternative 2 wire interface standard for increased

throughput or compatibility with the test environment. The state machine controller

logic has been reused by a soft microcontroller with a separate Arithmetic Logic Unit

(ALU).

Figure 1-5 Example design of a laser calibration engine based in an Intel

MAX10 FPGA.

1.4 Hypothesis

For all the reasons given above, it would appear to be a worthwhile

endeavour to investigate what would be required in a smart photonic module to

achieve the goal of increasing test efficiency when manufacturing the device, and

enabling remote retest with the aim of increasing service life, by embedding the

appropriate functionality in the module. The following hypothesis is therefore put

forward:

M.J.Anderson, PhD Thesis, Aston University 2023

26

‘That it is possible and practical to design repurposable hardware functions,

hosted in a photonic module and based on FPGA technology, to enable test and

characterisation activities to be performed in a cost efficient manner in the

factory or laboratory and remotely after installation.’

M.J.Anderson, PhD Thesis, Aston University 2023

27

2 PARALLELISATION, SUPERCHANNELS AND THE

NEED FOR ARRAYED MULTICHANNEL

COMPONENTS

In this chapter the requirement for arrayed components is introduced.

Such arrays can be a means of improving optical channel density in optical

communications equipment. The increasing requirement for optical bandwidth, and

the nature of the traffic driving this increase is examined and the principle of

Superchannels, constructed using arrays of components, is discussed as one possible

solution to this growth. Finally, the implications on the manufacturing process of

packaging arrays of components together in a single transceiver entity are

examined.

2.1 The Growth of Optical Network Traffic

In an invited tutorial for the Journal of Lightwave Technology [11] Peter J

Winzer and David T Neilson examine the current trends in network growth which

has been seen as increasing across all segments of the network. They identify this

growth as coming from the ongoing development of newly emerging and largely

unpredicted digital services. These new services are creating new sources of traffic

which are beginning to overtake the previously dominant sources. For example, data

traffic overtook voice traffic in the early 2000s [12], only to be then overtaken by

video streaming and now machine to machine traffic, which dominates the IP traffic

of operators today.

At the beginning of this study, in 2016, smartphone traffic was being

predicted to exceed personal computer (PC) traffic over the period 2016-2021,

rising from 13% to 33% of global IP traffic [13], and with the emergence of the

Internet of Things (IoT) expected to dominate mobile data traffic in the near future

[14]. By 2021, the number of IP connected devices was forecast to be 3.5 per capita

globally [13].

Winzer and Neilson presented their view of a network consisting of

relatively few, large, datacentres connected together by long haul networks. These

M.J.Anderson, PhD Thesis, Aston University 2023

28

connect to a greater number of regional metro networks to terminate at edge

servers where content from many sources is brought together and handed off to

ISPs. The regional networks would require a higher degree of connectivity since the

number of metro areas would likely exceed the number of large datacentres. The

metro space is where they expect to see the need for most switching and

reconfiguration: users will switch between the kinds of applications or content they

use; the location of users changes as they move through the metropolitan space

during the day and week; and the type of access changes with them, fixed or

wireless.

They conclude that there was a, then, current requirement for 1Tb/s

interfaces and that by 2024 there would be the need for 10 Tb/s optical interfaces as

a part of optical transport systems operating in the 1 Pb/s range in order to avoid an

optical network capacity crunch. Given the then trends in the industry, where

interoperable 400Gb/s interfaces were still a work in progress [15], they deemed it

unlikely that 1Tb/s and 10 Tb/s single carrier interfaces will be available on

schedule to meet the identified growth in demand.

This theme of growth through new services and new traffic sources is

continued in a further, more recent, invited paper investigating capacity scalability

issues and options [16]. Here, a network traffic growth figure equating to a doubling

every 1.5 to 2 years is presented [12] [17], and is attributed to the uptake of cloud

computing and video streaming services. However, in contrast to the earlier

literature, 1Tb/s per wavelength capacity has become commercially available [18]

due to advances in DSP ASIC and ADC technology in the intervening time between

the two studies. This later paper concludes that parallelism (in this case spatial

parallelism through SDM) is key to answering this traffic growth.

Cisco Networks concur with this growth viewpoint in their Visual

Networking Index 2016 to 2021 [13]. It was predicted in their report that globally,

by 2021, total IP traffic will experience a 3-fold growth (24% compound growth

year on year), internet traffic (defined as IP traffic crossing an internet backbone)

will increase by 26% year on year with the peak demand for internet traffic

increasing by 35% p.a. and the proportion of this traffic being carried metro to

metro will increase from 22% in 2016 to 35% by 2021 (see Table 2-1).

M.J.Anderson, PhD Thesis, Aston University 2023

29

It was this anticipated increase in metro traffic that is one of the motivating

factors of this study. The need to develop and deploy cost effective bandwidth

increases in metro market transceivers, and how to assist this cost saving through

manufacturing cost reduction based on repurposable hardware, together with the

anticipated peak demand increases highlighting the need to adopt flexibility and

reconfigurability in transceivers to cope with surges in demand [19] provides this

motivation.

Subsequent white papers concerning network traffic growth produced by

Cisco have changed focus from the volume of network traffic to use the number of

connected devices and users as well as connection speeds as a metric [20]. The

reported trend is still one of large scale growth. Between 2018 and 2023 the number

of internet users is expected to have increased from 3.9 billion to 5.3 billion (6%

compound growth year on year), the number of total connected devices is increasing

at a compound annual rate of 10% and of these devices, M2M or IoT connections are

expected to increase at the greatest rate reaching a predicted 14.7 billion

connections by 2023 (see Table 2-2).

IP Traffic,

2016–2021

2016 2017 2018 2019 2020 2021 CAGR

2016–

2021

By Type (Petabytes [PB] per Month)

Fixed

Internet

65,942 83,371 102,960 127,008 155,121 187,386 23%

Managed IP 22,911 27,140 31,304 35,226 38,908 42,452 13%

Mobile data 7,201 11,183 16,646 24,220 34,382 48,270 46%

Total (PB per Month)

Total IP

traffic

96,054 121,694 150,910 186,453 228,411 278,108 24%

Table 2-1 Predicted increase in IP traffic to 2021 [13].

M.J.Anderson, PhD Thesis, Aston University 2023

30

Connection

speeds,

2018–2023

2018 2019 2020 2021 2022 2023 CAGR

(2018–

2023)

By Type (Mbps)

Fixed

Broadband

45.9 52.9 61.2 77.4 97.8 110.4 20%

Mobile 13.2 17.7 23.5 29.4 35.9 43.9 27%

WiFi (inc public

hotspots

30.3 36.3 50.8 58.9 72.9 91.6 25%

Table 2-2 Predicted increase in network connection speeds to 2023 [20].

Following from Ciscos predictions of network growth, Nokia are predicting

a continuing picture of increasing growth to 2030 [21]. Based on 4 possible scenarios,

termed Conservative (least growth), Moderate, Aggressive and Disruptive (most

growth), using CAGR estimates between 17% and 32% they predict global internet

traffic will reach between 1730 EB and 4819 EB per month through 2030.

M.J.Anderson, PhD Thesis, Aston University 2023

31

The major network equipment suppliers, such as Cisco and Nokia, are not

the only source predicting massive data expansion. In a Seagate sponsored study

titled ‘Data Age 2025’ [22], the market intelligence company IDC predict a

‘Datasphere’ (the sum of all data created, captured and replicated) which will

increase 10-fold from 16.1 ZetaBytes in 2016 to 163 ZetaBytes by 2025 (Figure 2-2).

Their predicted growth is based on IoT and the emerging cloud-based AI data

analytic systems.

Figure 2-2 Annual size of the Global Datasphere [22].

Figure 2-1: Predicted growth in global internet traffic to 2030 under 4 possible scenarios with
CAGR ranging from 17% to 32% [21]

M.J.Anderson, PhD Thesis, Aston University 2023

32

The diversity of sources contributing to this data growth is clearly

summarised in Figure 2-3 from The Ethernet Alliance industry consortium.

Figure 2-3 The diversity of Ethernet traffic sources [9].

2.2 Increasing Bandwidth through Parallelism

Driven by a relentless demand for ever increasing amounts of optical

network capacity, generated by advances in web based services, cloud computing

and media content quality, the long established optical multiplexing techniques of

Dense Wavelength Division Multiplexing (DWDM) have evolved over recent years to

define what was termed a ‘Superchannel’ in 2009 by S.Chandrasekhar and X.Liu

[23]. Faced with finite fibre bandwidth and including the cost of installing new

fibres, improving the spectral efficiency of DWDM systems has been recognised as

an effective way of addressing the growing demand [24].

In order to address the requirement to improve the utilisation of the

available optical spectrum and a need by the network service providers to improve

operational efficiency, the Superchannel proposes combining multiple optical

carriers or subchannels together into a single unified entity which is brought into

M.J.Anderson, PhD Thesis, Aston University 2023

33

service in a single commissioning cycle, hence improving the bandwidth increase to

operational effort ratio, and is transmitted through the network as a single entity.

This allows the gap between optical subchannels within the Superchannel to be

reduced compared to conventional DWDM, as shown in Figure 2-4, reducing

filtering penalties and resulting in increased spectral packing and improved

utilisation of the available spectrum [25] [26].

Figure 2-4 Spectral Superchannels avoid filtering penalties [11].

In their tutorial Winzer and Neilson [11] explore a range of possible

bandwidth scaling options including improved fibre, which is dismissed as requiring

extensive research effort to make a moderate gain, and advanced modulation which

is already in use in QAM systems. However, there are trade offs between higher

order modulation schemes and top end reach and laser phase noise and ADC/DAC

resolution at the lower reach end, which puts a limit to advancing both single carrier

interface rates and WDM system capacities through higher-order modulation.

They propose a solution based on wavelength parallelism using both

wavelength (spectral) and space (spatial) multiplexing to form a hybrid

Superchannel as one possible solution which would be applicable in some network

scenarios.

Spatial multiplexing in the optical domain is a mechanism whereby

multiple data streams are carried in multiple transverse modes of a fibre that is not

M.J.Anderson, PhD Thesis, Aston University 2023

34

single mode. Multiple modes in multimode fibre, multiple cores in multicore fibre or

a combination of the two can be used to implement spatial multiplexing [27] [28]

[29]. These multiple data streams may all use the same optical carrier frequency

hence increasing the data bandwidth transmitted over each carrier. A comparison of

the architectures of a spectral and spatial multiplexed transceiver is shown in Figure

2-5. This clearly shows the reduced number of lasers required by spatial

multiplexing compared to spectral multiplexing, for the same number of channels.

One of the drivers behind this approach is to make best use of the available

wavelengths across the C + L bands in the low loss fibre transmission window and

the challenges of using frequencies outside of these bands due to OH absorption

(~1400 nm in the E band) and interference from Raman pumps placed in the S Band

in order to provide gain to the L band. The adoption of spatial multiplexing as part of

the optical network solution is initially most likely to occur where the required

multiple parallel fibre paths either already exist or new fibre would be deployed

with the system (e.g. submarine links) rather than in the metro market where there

is already an existing fibre base.

Figure 2-5 Structure of (a) spectral vs (b) spatial Superchannel transceiver – From

Scaling Disparities to Integrated Parallelism [30].

The hardware of a spatial Superchannel transceiver is similar in concept to

that required by a spectral Superchannel transceiver, consisting of laser sources,

receivers, modulators and possibly amplifiers. When examining the possibility of

manufacturing such a device, the complexity of the calibration activity and the in-

service control of the optical components can be thought of as being broadly similar.

M.J.Anderson, PhD Thesis, Aston University 2023

35

The use of spectral super channels as a path to evolve into hybrid Superchannels is

considered a favourable path from current technology [11].

However, Winzer and Nielson’s views on the downside of higher order

modulation are not universally held. In a paper published in 2014 [31], Charles

Laperle of Ciena Corporation explores the requirements of next generation

transceivers. In his literature Laperle reports on the needs of both the long

haul/submarine sectors and the metro/data centre market, identifying that a

significant cost reduction is required and, in his opinion, that there was a need to

carry 400Gb/s on a single wavelength. He supports his position by examining

advances in ADC/DAC and DSP technology as enablers for advanced multi-

dimensional modulation [32], together with compensation for optical fibre non-

linearities [33] and stronger FEC algorithms to improve coding gain, in order to

address the limitations identified by Winzer.

The methods proposed by Laperle are brought together to present an agile,

flexible rate transceiver solution where factors such as reach, noise tolerance, data

rate and carrier occupancy may be reprogrammable – possibly, even by the

transceiver itself by means of machine learning.

Whichever approach is taken the benefits of having a reconfigurable

transceiver for the network operator remain the same, namely:

• The ability to respond quickly to service requests.

• Cost reduction for supporting short term or busy hour increased

bandwidths.

Writing in an article for the Lightwave journal [34], Geoff Bennett from

Infinera draws a good analogy between Superchannels and the development of

multicore microprocessors (Figure 2-6) where, in both cases, it is recognised that

the parallel architecture has allowed for a greater step improvement in operational

performance than the underlying technology would otherwise have allowed in the

same time period, but this is hidden from the user who only sees a single unit of

capacity.

M.J.Anderson, PhD Thesis, Aston University 2023

36

Figure 2-6 Parallel processing in the CPU and Superchannel

World – Superchannels to the Rescue [34].

So far, the commercial use of Superchannels, and the majority of research

projects, have primarily been targeted at the Long-Haul market, where there is a

need for high bandwidth connections; and the unit of capacity required to be

brought into service is many multiples of 100Gb/s, even beyond 1Tb/s. This

technology is now rolling back into the metro network arena, where high bandwidth

user connections, for example High Definition Television broadcast, ever-evolving

network standards and the interest in flexible Software Defined Networks (SDNs)

are presenting new challenges for the network operator. The metro market is far

more sensitive to cost, size and power consumption when compared to long haul.

Two independent and highly influential US industry reports predict the

concentration and localisation of traffic within the metro network as the demand for

IP traffic increases. In one, the anticipated proliferation of data-centres for video

delivery and cloud services was expected to drive a 560% increase in metro traffic

by 2017 such that it was increasing at double the long haul traffic rate by 2017 [35],

while the other predicted metro traffic would surpass long haul traffic, and grow at

twice the long haul rate to 2017 [13].

While, in the long-haul market, a unit of 1Tb/s or above capacity may be

appropriate, in the metro market a customer may not require all this capacity at day

one. They may also not know what protocol they will wish to connect with in the

future and they certainly will not want to pay for capacity which is not being used,

instead preferring to take a ‘Pay as you Grow’ approach. This day one cost is

presenting an obstacle to the take up of Superchannels, yet in order to provision for

future growth and to make use of network operational efficiencies, a 1Tb/s +

M.J.Anderson, PhD Thesis, Aston University 2023

37

Superchannel transceiver may be appropriate in the longer term.

Irrespective of the type of Superchannel generated (Spectral or Spatial), the

architecture of future Superchannel transceivers will tend towards the integration

of components into large scale (in the context of this thesis, large scale is defined as

being 16 elements or greater) arrays in order to benefit from reduced cost, energy

and footprint. Such transceivers will likely contain arrays of IQ modulators and

SOAs, as well as tuneable laser sources per spectral subcarrier [36].

Tuneable laser sources require control algorithms to manage their phase

and bias electrodes as well as temperature. Optical modulator bias currents require

more complex control functions based around sinusoidal pilot tones and 1st/2nd

order harmonic detection via bandpass filters, or using the calculated ratio of

monitored input and output power levels. Both these functions can now be

performed digitally using digital frequency synthesis and DSP digital filtering

techniques.

All control functions will require factory calibration during manufacture to set

optimum operating parameters for maximum stability over the expected

operational life of the transceiver. From the industrial experience of the author, due

to the complex nature of the optical techniques employed (particularly in the

tuneable laser and Mach Zehnder modulator), the verification, calibration and set-up

process for such devices requires a significant amount of external test equipment

and is time-consuming. In particular, the capital cost of the required test equipment

significantly increases the business overheads and also the incremental cost of

scaling to higher production volumes. Floor space used by the equipment also

contributes to overheads. This situation is exacerbated by the fact that several

batches of tests are repeated a number of times throughout the manufacturing cycle,

requiring further equipment and test time.

For the single tuneable laser, these costs are manageable. However, for

modules containing arrays of lasers and modulators, the simple replication of an

identical process across all of the laser-modulator transmit paths would potentially

result in a direct multiplication of the costs and effort involved.

Some of these scalability issues have been examined in the context of a

typical ‘Rack and Stack’ type factory test solution for a 4x25 Gb/s optical transceiver

[37]. Here, the test time for 4 characterisation tests (referred to as Optical DC,

M.J.Anderson, PhD Thesis, Aston University 2023

38

Optical AC level, Optical AC level margin and Optical AC total jitter) at a single

wavelength, performed using a typical factory test approach, was presented as being

311 seconds. Including the additional testing activities required for a Transmit

Optical Sub Assembly (TOSA) featuring a single full band tuneable laser source, SOA

and Mach Zehnder modulator a test duration of 30 minutes, as suggested in private

communications and derived from factory process records, seems to be reasonable.

This activity is repeating tests previously completed at the wafer level, so faulty

components have already been filtered out, on a complete assembled device after

assembly bakes and thermal cycling. For the mode test the SOA and Mach Zehnder

controls are fixed and scans are performed to collect data for mode analysis.

Analysis of the data is carried out on a PC using custom software. The checks and

analysis carried out include:

• Estimation of mode centre lines

• Average optical power for each mode (used to calculate output SOA

settings)

• Identification of areas of phase current hysteresis

• Estimation of mode hysteresis-free centre lines

• Estimation of mode forward sweep centre lines

For the Mach Zehnder modulator the characterisation techniques normally

involve numerous steps performed, as detailed below, with no RF modulation in order

to calculate the z-score of characterised values. The z-score is a statistical measure of

variability in the batch under test, which indicates the difference between a value and

the mean of the value measured across a batch:

1. Sweep DC and AC Electrode currents at discrete points

2. Take multiple samples of output power at each point

3. Calculate the mean of these samples at each point

4. Calculate the standard deviation (from each sample subtract the

mean, square that result, find the mean of the squared differences. The

square root of the mean squared difference is the standard deviation)

5. Normalize the samples by calculating the number of standard

deviations from the mean of the sample (z-score)

M.J.Anderson, PhD Thesis, Aston University 2023

39

The results of these tests are stored off chip in a large database.

This activity is repeated throughout subsequent test steps as small changes

to most parameters e.g. determining optimum SOA settings for each tuning point,

cause a change to previous calibrations.

Considerations towards automated testing have been presented by main

stream component vendors such as Oclaro [38] who implemented a full set of

integrated waveguide detectors along with phase controls for use in set-up, testing

and ongoing monitoring of a dual modulator (Figure 2-7), although the primary aim

of that work was to examine possible routes to package miniaturization and co-

packaging with a tuneable laser [39].

Figure 2-7 Schematic functionality of the Dual IQ Modulator
Chip together with an optical image [38]. Phase control is by thermal

elements ‘Phase(n)L/R’

M.J.Anderson, PhD Thesis, Aston University 2023

40

2.3 Summary

The pressure on the capacity of optical networks is increasing at an ever-

increasing rate. In this chapter the growth in network traffic has been examined

using data from a number of different published reports, from different sources,

covering the period from the beginning of this study in 2016 through to 2030 and all

echo this continuing growth prediction. Not only is the capacity increasing, but the

nature of the traffic responsible for this growth is changing from one led by the

metro market to one dominated by many low bandwidth IoT devices

communicating with centralized datacentres. Also driving this growth is an increase

in cloud based services such as streaming high-definition TV on demand. This shift

in the nature of the traffic drives a need to offer network flexibility e.g. through

reconfigurable transceivers to manage ‘busy hour’ bursts throughout the network.

The use of arrays of co-packaged components to build future generations of

optical transceivers, utilising parallelism and arrays of components to generate

Superchannels, with the bandwidth to address the continuing growth in network

traffic has been examined. Two specific methods of adopting parallelism were

discussed – spatial and spectral multiplexing – in the context of the hardware

architecture of devices implementing these methods and some of the steps in the

manufacturing process have been introduced to highlight where costs will increase.

In conclusion, the challenges presented during the manufacturing of such

devices, in order to keep costs under control (as discussed in Section 1.2), will call

for innovative solutions to be found.

M.J.Anderson, PhD Thesis, Aston University 2023

41

3 FIELD PROGRAMMABLE GATE ARRAYS

This chapter introduces the principal technology of the Field Programmable Gate

Array (FPGA). The history of this technology, from the basic architecture, features

and advantages of the devices to the trend towards the introduction of more

specialised cells, dedicated to a single high performance function is presented. A

comparison with Application Specific Integrated Circuit (ASIC) technology is made

to highlight where FPGAs are finding an advantage. Finally, the dual role this

technology can play in the operation and manufacturing of arrayed or multichannel

optical devices, leveraging the reconfigurable nature of this technology, is assessed.

3.1 Introduction to FPGAs

FPGA technology has been commercially available since the mid-1980s.

The FPGA is a user configurable integrated circuit which consists of a matrix of low

level or primary functions such as Logic Blocks containing Look Up Tables (LUTs)

for storing Boolean logic equations and storage elements such as latches or memory

connected through a configurable interconnect or routing layer (Figure 3-1). In a

short paper examining the benefits of FPGAs in the context of the implementation of

Network Interface controllers using programmable hardware [40], Gordon Brebner

of AMD/Xilinx Inc. examines the benefits of FPGAs and identifies a key feature of

FPGAs as being that they offer the performance of hardware with the flexibility of

software. This is an important point. FPGAs should not be considered to be just

hardware or software but, when coupled with higher level description languages

such as VHDL or System C interfaces into tools such as MATLAB™ and high level

abstraction design entry methods using C++, known as HLS, they can form a flexible

tool accessible to a wide range of designers and engineers.

M.J.Anderson, PhD Thesis, Aston University 2023

42

Figure 3-1 The basic architecture of a FPGA [41].

Initial devices were able to offer in the region of 128 3-input LUTs in a

device with which to implement a design. In the subsequent 30 years, FPGA

technology has seen many significant advances. As semiconductor geometries have

shrunk to 14nm and below, internal clock speeds have increased, power has been

reduced, features such as embedded high performance microcontrollers and high

speed serial interfaces have been added and LUT counts (giving a measure of digital

logic capability) have increased in size and complexity to several millions of 6 input

LUTs (see Table 3-1), giving unprecedented reconfigurable logic capacity [42].

M.J.Anderson, PhD Thesis, Aston University 2023

43

Table 3-1 Intel/Altera SoC family comparison of performance

and logic capacity (Compiled from [43], [44], [45]).

FPGAs, however, have long been thought of as the ‘poor cousin’ to custom

or semi-custom ASICs due to the latter’s general higher performance and lower

Process Technology

(Device family)

28 nm TSMC

(Cyclone V)

20 nm TSMC

(Arria 10)

14 nm Intel

Tri-Gate

(Stratix 10)

Processor

Dual-core

ARM Cortex-

A9 MPCore

Dual-core

ARM Cortex-

A9 MPCore

Quad-core

ARM Cortex-

A53 MP Core

Maximum Processor

Performance
1.05 GHz 1.5 GHz 1.5 GHz

Logic Core

Performance
300 MHz ~500 MHz 1 GHz

Power Dissipation 1X 0.6X 0.3X

Logic Density Range

350 – 462K

logic element

(LE)

160 – 660K

LE

500K LE -

5.5M LE

Embedded Memory 23 Mb 39 Mb 229 Mb

18 x 19 Multipliers 2,136 3,356 11,520

Maximum

Transceivers
30 48 144

Maximum

Transceiver Data

Rate (Chip to Chip)

10 Gbps 17.4 Gbps 30 Gbps

M.J.Anderson, PhD Thesis, Aston University 2023

44

power. Subsequently a number of factors are now considered to be changing this

dynamic:

• Integrated circuit costs are rising – see Figure 3-2 – mask costs alone at 40nm

can run into millions of dollars [46] and 100s of millions of dollars at the latest

7 nm and smaller process nodes [47] [48] which are enabling the Terabit rate

pluggable optical modules [18]. This reduces the number of developments

which can be committed to by a commercial entity.

• ASIC complexity has lengthened development time.

• R&D resources and headcount are decreasing.

• Revenue losses for slow time-to-market are increasing – standards are

evolving rapidly (see Figure 1-2).

Figure 3-2 ASIC design costs comparison [48].

These trends are encouraging FPGAs to be looked at as an alternative to

ASICs for applications where they previously may not have been used.

Advances in FPGA technology in recent years have seen the features

usually reserved for high end, high cost devices roll down into the mid-range, lower

cost families, while the high end devices get larger. For example, the current mid-

range Intel/Altera Arria 10 family [49] features a large number (‘000s) of high speed

DSP multipliers, the capability to support floating point arithmetic in a non-

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/R%26D

M.J.Anderson, PhD Thesis, Aston University 2023

45

microcontroller, concurrent processing environment and up to 28 Gb/s serial IO;

AMD/Xilinx Inc. have developed another enhancement by including multiple 5 GS/s

12 bit ADCs and 9.85 GS/s DACs on a chip, initially aimed at the 5G radio market,

and Intel/Altera have announced a further development of a new device family with

the availability up to 8 64 GS/s 10 bit ADCs and DACs on a single device [50]

Together with high speed DSP capability [51], this supports the possible

development of transceivers using reconfigurable higher order modulation schemes

while benefiting from a lower power consumption due to the removal of the high

bandwidth electrical interface between data convertor and DSP.

Low power, embedded microcontrollers can now be found even in some of

the lower end devices (See Table 3-2), where the ARM M class processor has proven

itself to be very powerful [52] – running applications as complex as hosting webpages.

In the mid and high end devices, ARM A class processors appear to dominate [53].

System performance can be optimized by developing hardware parallel processing

engines using FPGA logic and integrating with software algorithms running on the

processor system of a SoC FPGA. SoC is the mixing of multiple, diverse system

elements such as digital logic/FPGA, microprocessor, volatile and non-volatile

memory into a single integrated package in order to reduce board footprints and save

power due to reduced IO counts. Finding a balance between FPGA and software

implementations has enabled functions to be handed off which previously would have

been very slow in software. The nature of FPGA technology and design methodology

is intrinsically parallel down to a very low level. This parallel structure allows the time

spent on a processing function to be determined. Unlike processors FPGAs do not

have a fixed design structure, functions can be designed so they do not have to

compete for the same resources, each independent function is allocated to a dedicated

area of the FPGA and can function without influence from other logic functions owing

to the presence of multiple clock and routing resources.

It is this parallel structure which presents another design advantage of

FPGAs. Where functions can operate autonomously it is possible to design reusable

blocks or modules which can then be carried across designs once proven, so reducing

subsequent design effort and ensuring design repeatability.

The increase in hardened (i.e. dedicated, non-reconfigurable functional

cells) DSP multiplier availability and in the available width of these multipliers (up to

36x36 bits) has enabled high speed DSP arithmetic to be implemented efficiently in

M.J.Anderson, PhD Thesis, Aston University 2023

46

FPGAs rather than traditional DSP processors. The advantage of this approach is that

the FPGA can be configured and indeed reconfigured to perform other tasks as well.

Table 3-2 Cross vendor comparison of low/mid range SoC

capabilities [54].

Perhaps the most important feature to have been added to the FPGA design

flow over recent years is Partial Reconfiguration. As the name suggests, Partial

Reconfiguration is a means by which a subset of the FPGA matrix can be

reprogrammed while keeping other parts of the matrix operational. In an evaluation

M.J.Anderson, PhD Thesis, Aston University 2023

47

of the technique when used in a Software Defined Radio (SDR) environment [55] the

advantages of Dynamic Partial Reconfiguration (DPR), when part of the device is

kept operational during reconfiguration, are discussed using the example of

differing convolutional encoders required for 3G and WiFi communication systems;

in the experiment one encoder is loaded into the FPGA at a time. The convolutional

encoder is a large building block and a major function of the SDR transceiver. DPR is

experimentally shown to add flexibility to the hardware design for the cost of a

relatively small additional overhead to the logic area and the requirement to

floorplan the design to reserve a suitable size partition for the encoders to occupy.

This addition is, however, easily offset by removing the necessity to implement all

identified encoders in one design. An additional benefit also afforded by DPR is a

reduction in static power consumption by reducing the area or logic block count of

the implemented design .

The study highlights the growth of SDR and the development of new

standards, leading to the likelihood of current hardware designs becoming obsolete

in a short period. Similarities can be seen between SDR in this case and the current

developments in optical networks where both are undergoing a rapid evolution of

standards.

In an earlier paper from 2009 [56], J. Huang et al investigate Discrete

Cosine Transformation (DCT) computation for image processing applications using a

scalable FPGA architecture. This paper focusses on reasonably small blocks

implementing fundamental, low level mathematical functions of the DCT using

memory based computations and the possibility of reusing these areas for other

mathematical functions at the expense of reduced DCT performance. In this example

an empty architecture is also defined to allow for a region to be unconfigured,

resulting in a reduction in power. Although this paper is older than other literature

reviewed in this work, and deals with relatively small and less complex

reconfigurable blocks, it is included here as it reports the interesting case where

partial reconfiguration may be applied during a calculation without interruption.

M.J.Anderson, PhD Thesis, Aston University 2023

48

3.2 Multichannel Transceivers – The role of FPGAs in their

Operation

FPGA technology can prove to be applicable in the operation of arrayed

component transceivers. One of the core components identified as part of such a

transceiver is the ‘Traffic Path ASIC’. Functions of this ASIC could include traffic path

related features such as a dynamic modulation format encoder/decoder, FEC or

dispersion compensation on the transmission line facing interface, or protocol

definition (OTN, Ethernet etc.) on the client facing interface, and device control

processes such as control loops for optical power (per channel or balancing across

all channels), optical frequency, modulation depth and temperature.

Given the point-to-point nature of a Superchannel it may be desirable for

an operator to group the wavelengths available on the transceiver as one high

capacity Superchannel utilising all wavelengths for maximum spectral efficiency or

as two or more lower capacity Superchannels using fewer wavelengths for

maximum flexibility. The advantage of FPGAs in this area is that they can be

reprogrammed and repurposed as requirements and standards evolve, for instance

the modulation scheme can be flexible, allowing the support of different networks

(LH, Metro, etc.) without needing to build all options in or even fix the transmission

spectrum at day one. As previously discussed in Section 2.2, the concept of an agile

and software configurable transceiver, able to adapt as required by adjustments to

modulation scheme, FEC, number of subcarriers etc. is seen as being a key element

to future networks, and FPGAs, particularly using partial reconfiguration, fit well

into this picture. FPGAs are also, as previously stated, intrinsically parallel in their

nature, allowing many tasks to be performed simultaneously.

The concept of a reconfigurable Superchannel Transponder has appeared

in a series of top scored papers presented to ECOC [57] and the Journal of Lightwave

Technology [58]. These papers examine the development of a Bandwidth Variable

Transponder by considering an Ethernet only based system. The papers recognise

the need to aggregate variable client signals from across different domains. The

bandwidth variability comes from a software defined reconfigurability of the line

side modulation format and symbol rate with options of 40 GBaud PM-QPSK/PM-

16QAM or 10 GBaud PM-QPSK depending on transmission link requirements. Whilst

highlighting the advantage of being able to reconfigure the line side characteristics

M.J.Anderson, PhD Thesis, Aston University 2023

49

for capacity and transmission distance, these papers do not discuss the methods

used to reconfigure the FPGA in the transponder and limit themselves to Ethernet

clients and protocols avoiding the ITU OTN standards on one interface due to

concerns over fixed aggregation ratios, modulation format and number of used

carriers in the Superchannel on the line side. The aggregation ratio concerns are

currently being addressed by the standards bodies [59]. A further evaluation would

be whether there is a power advantage to reducing capacity away from peak usage

times by not having unused functions present and whether this could this be

practically achieved by dynamic reconfiguration.

The Bandwidth Variable Transponder concept evolved as part of the FP7

funded IDEALIST project [36] which was a collaboration between industrial and

academic partners including some Tier 1 telecommunications equipment suppliers.

This project expands on the concepts of the previous papers by adding a slicing

function; whereas previously a transponder would aggregate onto a single optical

path, in this paper slicing is defined as the ability to allow Superchannels to be

generated across multiple optical paths for routing towards one or more

destinations. This is considered by IDEALIST as being an important feature for

expanding metro networks which may already have a partially allocated spectrum.

The paper uses the example of splitting a high bitrate signal into multiple lower rate

channels in the scenario of there not being sufficient contiguous space on the optical

spectrum due to other, pre-configured, carriers. It is also possible to imagine this

feature being of value in the case of a network operator wishing to divide the total

bandwidth of the transceiver, in this case 1.2Tb/s, between multiple clients,

although this is not discussed specifically. This theme of flexibility is continued in

more recent papers [19] and is still seen as an essential feature of modern optical

networking.

The IDEALIST paper reviews a possible architecture of such a sliceable

transceiver (Figure 3-3). However, while examining the Optical Transport Layer

(OTN) functionality and the ‘Multiflow’ optical modules, client mapping and the OTN

fabric are not considered and so no conclusions are drawn on the reconfigurability

of the client ports or how this might be managed in a Software Defined Network.

M.J.Anderson, PhD Thesis, Aston University 2023

50

Figure 3-3 Architecture of a Sliceable Transceiver - Sliceable

Variable Bandwidth Transponder: The IDEALIST Vision [36].

The proposed approach to the ‘Pay as You Grow’ question involves the

installation of subsequent client and Multiflow optical modules to provide extra

subcarriers. While this approach certainly addresses one aspect of ‘Pay as You Grow’

– i.e. the high initial cost of having a 1.2Tb/s capable system before the network can

generate revenue from the full capacity- it does require extra operational activities,

e.g. site visits by a commissioning engineer. The proposed architecture does not

address the requirements of a dynamic network, where the total bandwidth

required can change frequently, requiring the full transceiver bandwidth to be

available at short notice and for short periods, nor does it leverage the strides

forward being made in the Long Haul market where 6 or 12 optical subcarriers in a

single optical module (Figure 3-4) are being manufactured by some vendors in order

to achieve 1.2Tb/s [60].

M.J.Anderson, PhD Thesis, Aston University 2023

51

Figure 3-4 1.2Tb/s PIC architecture [60].

As previously stated, the long haul market is still seen as the driver for

Superchannel transceivers. This presents an opportunity to examine if there is a

suitable, repurposable and cost effective architecture which could be adopted and

whether the FPGA technology now exists to support this.

3.3 Superchannel Transceivers - Manufacturability

By their very nature, Superchannel transceivers with multiple optical

carriers can be expected to require more time, and hence cost, to manufacture and

test, if the current working model is applied. Where a transceiver has an increased

number of optical assemblies, then a logical assumption would be that setup and test

would take longer than for a single assembly, so factory time can present a significant

overhead in the device cost. By careful analysis, it should be possible to identify areas

where time savings could be made, and where bottlenecks in the manufacturing

process exist. However, a search of the literature for previous published works based

on this area has provided few results. In the industrial experience of the author such

analysis is ongoing with the component manufacturers; one, highly likely, reason for

the lack of publications is the commercially sensitive nature of the manufacturing

M.J.Anderson, PhD Thesis, Aston University 2023

52

process and the device yield data involved in examining this question. Looking a bit

wider into the area of virtual instrumentation, a block based, open source approach

to FPGA based instruments has been discussed [61] as a means of generating custom

instrumentation to support experimental physics. This paper acknowledges the issue

of design time and specialist skills needed to initiate the design, but once this effort

has been made far less effort is required to build new systems based on this platform.

This leveraging of block based design and reuse methodology is a good approach for

constructing a scalable solution and supports the use of partial reconfiguration.

By use of reprogrammable technology, together with embedded software, it

is possible to save time and cost by performing operations on all channels in parallel

through the FPGA. Furthermore, by allowing the transceivers to be ‘smarter’ and

perform self-test and calibration, it will be possible to reduce infrastructure required

in the factory (e.g. PCs as test controllers and data processors) and hence floor space

required. Integrated Analogue to Digital convertors and, in some devices, Digital to

Analogue convertors further enhance the opportunities to create an embedded test

and calibration System on Chip architecture.

For automated test and setup activities, a balance between hardware FPGA

features and software can enable complex routines to be run autonomously ‘on

module’, with the additional advantage that the FPGA/processor combination can be

repurposed via reconfiguration later for normal day to day operation. The results of

these test routines could then either be passed off module for further processing and

storage, or kept in non-volatile storage on the module.

A typical laser tuning algorithm will consist of a series of nested sweeps

across the control currents of the device under test be it a laser or modulator to form

a grid of output power vs applied control currents and is illustrated in Figure 3-5.

M.J.Anderson, PhD Thesis, Aston University 2023

53

Figure 3-5 Flowchart of a simplified tunable laser calibration sweep.

Set Initial

device

parameters

Max

Bias

Reset Bias,

Increment

Phase

Search for Peaks

Calculate

Averages

Increment

Bias

ADC

Readings

xN

Write

Currents

Internal

Storage

End

Input

sweep

limits

Max

Phase

Stabilize

Y

Y

N

N

M.J.Anderson, PhD Thesis, Aston University 2023

54

The set of currents swept may be a subset of the full ranges possible. At

each current step a settling time is required before sampling starts. At each stage the

output power is monitored either using an external power monitor or ideally using

the hardware which will be used to control the device in the field, and the result is

averaged across multiple samples to find the mean and standard deviation. This data

is logged along with the unit temperature. Mode hops can be seen as discontinuities

in the power readings whereas desirable operating points can be seen as

peaks/troughs in the power reading (zero slope or null points) or points of

maximum slope in the power readings (quadrature points in the transfer function).

In a traditional manufacturing flow, control of the currents and processing of the

resulting data would normally be carried out using a PC at a test station. If this can

be performed using an embedded processor coupled with repurposed logic

capability from the in-service control circuits, then many units could be calibrated in

a smaller bench area and without the additional overhead of a PC. Some post work

with a computer and test equipment may be required to identify frequencies vs peak

power (although a US Patent [62] proposes a calibration method of using a comb

filter to generate digital pulses which could be counted by the FPGA) but this will

require less time as the points of interest are already known.

In Figure 3-6 the axes represent the control value being applied to the on-

board DAC rather than a direct measurement of the applied current. The DAC

control words are controlled by the FPGA implemented control loops in normal

operation. Variations in the external circuit are taken out. Variations in the output

power monitor current are visualised as changes in colour from dark blue (low) to

red (higher).

For a single optical device, the total time taken may seem short, but as

arrayed devices become more widely used to implement Superchannel transceivers,

the time taken to qualify a single device will increase linearly with the complexity. If

a possible result of this process includes the rejection of the device due to

calibration failures, then the less time and cost spent identifying this the better.

M.J.Anderson, PhD Thesis, Aston University 2023

55

Figure 3-6 Example result of a laser tuning sweep showing the variation of output
power monitor current with Phase and Bias DAC setting.

(Original image shared in confidence)

3.4 Summary

The FPGA is a user programmable hardware device which can be

programmed and reprogrammed during the lifetime of the unit it is built into. As a

means of providing a background knowledge of the capabilities of these chips, this

chapter has offered an introduction to the technology of FPGAs, looking at the

architecture and the building blocks or functions which make up these devices, from

the early FPGAs, which were able to perform simple logic tasks, to the latest devices

supporting a wide breadth of applications. The development of FPGAs has, over

time, come to include high performance, hardened blocks with dedicated

functionality as a means of increasing performance and facilitating expansion into

new emerging markets, challenging the position of ASICs.

The advantages of FPGAs over ASICs lie in both their lower development

costs and their reconfigurability. The advantages over microcontrollers are the

inherent parallel processing capabilities available to designers.

M.J.Anderson, PhD Thesis, Aston University 2023

56

The role FPGAs can play in the operation of multichannel transceivers has

been illustrated through the example of the IDEALIST transceiver and the possibility

of offering a pay as you grow, flexible transponder.

Also examined more closely are some of the problems arising during the

manufacturing process once arrays of components are introduced, and where FPGAs

could play a role in mitigating these problems. This could be done by creating

reusable blocks for use during the manufacturing process, and potentially after

deployment, capable of performing operations in parallel and autonomously. These

blocks could then subsequently be reprogrammed and the logic area, plus the

supporting external components, repurposed for operational functions.

In summary, the FPGA is a versatile tool capable of addressing the issues

presented relating to the bandwidth growth and flexibility requirements and the

problems which arise during the manufacturing of the solutions to these issues.

M.J.Anderson, PhD Thesis, Aston University 2023

57

4 MACH ZEHNDER MODULATORS

4.1 Introduction

Analysing the previously identified constituent parts of an arrayed

transceiver product, the Mach Zehnder modulator (MZM) makes an excellent

example to study. MZMs find applications in many areas of photonics such as optical

signal modulation, optical beam steering [63] and quantum computing [64]. The

MZMs behaviour is well defined by an arithmetic transfer function but it is also

prone to drifting away from the set operating point under external influences such

as temperature, ageing, charge accumulation [65] or a variation in wavelength,

hence changing the relationship between applied bias voltage and phase shift which

leads to degraded performance of the modulator.

 The ability to automatically determine the bias voltages corresponding to

the key operating points discussed in Section 4.2 below, using a function contained

within the optical module, would be advantageous for the reasons set out in Section

3.3 earlier.

4.2 Theory of operation

The MZM provides a means of controlling the amplitude of an optical wave.

A simplified MZM structure is shown in Figure 4-1. In the device an input waveguide

is split into two equal arms via a Y junction. If a voltage is applied across one of the

arms an electric field is generated across that arm which varies the refractive index

of the substrate material and thereby introduces a phase shift in the optical wave

passing through it. When the two arms are then recombined, the phase shift

between them is converted into an amplitude difference. If there is no phase

difference then the optical waves in the two arms combine constructively and

maximum output is seen. If the two arms are in complete antiphase then the waves

combine destructively and a minimum output is seen. The difference in the voltage

applied for no phase shift and the voltage required for a phase shift of  is referred

to as the ½ - wave voltage or V.

The MZM has 2 voltage electrodes:

M.J.Anderson, PhD Thesis, Aston University 2023

58

• VDC, also sometimes referred to as VBIAS is used to set the position on

the transfer curve.

• VAC, also sometimes referred to as VRF is used to apply the electrical

signal which is to be used to modulate the output.

Figure 4-1 Simplified MZM structure.

The basic transfer function of the modulator, when driven by a single time

dependent voltage v(t), is

𝐼𝑂𝑈𝑇 (𝑡) ∝
𝐼𝐼𝑛

2
[1 + cos (

𝜋𝑣(𝑡)

𝑉𝜋
)] (4.1)

where

𝐼𝑂𝑈𝑇 (𝑡) is the output Optical Intensity,

𝐼𝐼𝑛 is the input Optical Intensity

and is plotted in Figure 4-2. The output power has been normalised to the

input power assuming an ideal modulator with no insertion loss.

M.J.Anderson, PhD Thesis, Aston University 2023

59

Figure 4-2 Transfer function of a Mach Zehnder Modulator showing the key

operating points.

Analysis of the transfer function using Bessel functions has been discussed

in the literature [66] [67] and the key equations are highlighted here for clarity. It

has been shown that operating at odd integer multiples of V/2, i.e. quadrature

points as shown in Figure 4-2, forces even order harmonic distortion terms to be

zero; in contrast, operating at integer multiples of V (peak/null bias points) forces

the odd order harmonic terms including the fundamental to be zero. Furthermore, it

has been calculated ([68] Section IV) that the amplitude of the 2nd harmonic of a

pilot tone applied to the bias input electrode of a modulator is directly proportional

to the 2nd derivative of the optical output power.

Examine the effect on a simple sinusoid superimposed onto a DC bias voltage

𝑣(𝑡) = 𝑣𝐷𝐶 + 𝑣𝐴𝐶 𝑠𝑖𝑛(𝜔𝐴𝐶 𝑡)

Substituting this into the transfer function equation (4.1) gives

𝐼𝑂𝑈𝑇 (𝑡) ∝
𝐼𝐼𝑛

2
[1 + cos (

𝜋𝑣𝐷𝐶 + 𝜋𝑣𝐴𝐶 sin(𝜔𝐴𝐶 𝑡)

𝑉𝜋

)] (4.2)

and expanding equation (4.2) gives

M.J.Anderson, PhD Thesis, Aston University 2023

60

𝐼𝑂𝑈𝑇 (𝑡) ∝
𝐼𝐼𝑛

2
+

𝐼𝐼𝑛

2
cos (

𝜋𝑣𝐷𝐶

𝑉𝜋

) cos (
𝜋𝑣𝐴𝐶 sin(𝜔𝐴𝐶 𝑡)

𝑉𝜋

) −
𝐼𝐼𝑛

2
sin (

𝜋𝑣𝐷𝐶

𝑉𝜋

) sin (
𝜋𝑣𝐴𝐶 sin(𝜔𝐴𝐶 𝑡)

𝑉𝜋

) (4.3)

By using Bessel function identities (𝐽𝑛) to express the following

cos(𝑥𝑠𝑖𝑛𝑦) = 𝐽0(𝑥) + 2 ∑ 𝐽2𝑘

∞

𝑘=1

(𝑥) cos(2𝑘𝑦)

sin(𝑥𝑠𝑖𝑛𝑦) = 2 ∑ 𝐽2𝑘−1

∞

𝑘=1

(𝑥)sin [(2𝑘 − 1)𝑦]

it is possible to expose equations for specific harmonics from (4.3)

𝐼𝑂𝑈𝑇 𝑜𝑑𝑑 ∝= |𝐼𝑖𝑛𝑠𝑖𝑛 (
𝑉𝐷𝐶

𝑉𝜋
𝜋) 𝐽𝑛 (

𝑉𝐴𝐶

𝑉𝜋
) 𝜋| (4.4)

𝑛 ∈ 〈1,3,5〉

𝐼𝑂𝑈𝑇 𝑒𝑣𝑒𝑛 ∝= |𝐼𝑖𝑛𝑐𝑜𝑠 (
𝑉𝐷𝐶

𝑉𝜋
𝜋) 𝐽𝑛 (

𝑉𝐴𝐶

𝑉𝜋
) 𝜋| (4.5)

𝑛 ∈ 〈2,4,6〉

By implementing equations (4.4) and (4.5) in Python using the SciPy Jv
Bessel function [69], the variation of the power of the fundamental and 2nd
harmonic frequencies with VDC (VBias) can be plotted as in Figure 4-3.

M.J.Anderson, PhD Thesis, Aston University 2023

61

Figure 4-3 Variation of harmonic power with VBias.

It is this harmonic variation with VBIAS which leads to a degradation in

performance of the optical link, but it can also be used as a means of determining

and controlling the operating position on the transfer curve.

Bias control algorithms tend to fall into two categories – dither (applying a

low frequency pilot tone whose modulation depth is expressed as a % of V) which

follows the fundamental and second harmonic behaviour shown in Figure 4-3, and

ratiometric (based on a characterised input to output power ratio) which follows the

transfer function shown in Figure 4-2. The pros and cons of each method are widely

discussed in the literature [70], [71], [72].

A dither-based approach to maintain a bias point, where either primary or

2nd order distortion is zero, is to add a low frequency sinusoid to the bias electrode.

This moves the bias point causing harmonics of the dither frequency to appear on

the modulated optical signal, so if a bias point where the 2nd harmonic distortion is

zero (quadrature point) is required, the dither frequency 2nd harmonic should be

detected and using a feedback loop the bias should be adjusted until the 2nd

harmonic is at a minimum. Conversely, to operate at a point where the primary is

zero (peak or null) the dither frequency should be detected and the bias voltage

should be adjusted to minimise the signal power at the dither frequency [66]. When

using this approach, it is necessary to have correctly characterised the modulator

first in order to determine a suitable starting value for the control loop.

M.J.Anderson, PhD Thesis, Aston University 2023

62

It should be noted that the use of a dither frequency can enable a high

degree of precision in the bias point control but the presence of a dither signal may

not be tolerable in the end application (analogue, RF over Fibre, orthogonal

frequency division multiplexing) due to the presence of intermodulation products

[70].

The dither-based approach consists of a local oscillator or other source, for

example an FPGA or microcontroller for digital frequency synthesis, which

generates a low-frequency pilot tone, normally in the kHz range, and a single fiber-

optic coupler that taps a small percentage of the MZM's optical output power and

feeds it to a single photodetector. From a manufacturing perspective it can be seen

that this pilot tone-type bias controller will cost less to assemble than a ratiometric-

type controller, because it requires only one tap coupler, which does not operate in

polarization-maintaining fibre; it requires only one photodetector in the control

circuit; and the proper feedback circuit settings do not depend on the specific

performance parameters of the modulator, tap coupler, or photodetector.

A dither-based circuit requires the implementation of digital filters to

monitor the power of the fundamental and/or 2nd harmonic of the pilot tone

frequency. In keeping with the low cost, low power ethos followed in this study, this

circuit needs to be as efficient as possible in terms of FPGA internal resource usage.

4.3 Filter Implementation

Analysing the possible implementations of the digital filters, typical

architectures for Finite Impulse Response (FIR) and Infinite Impulse Response (IIR)

digital filters are shown in Figure 4-4 and Figure 4-5.

M.J.Anderson, PhD Thesis, Aston University 2023

63

Figure 4-4 FIR filter architecture with N taps.

Figure 4-5 IIR Filter architecture with N taps.

Each filter has its advantages and disadvantages. The FIR filter is inherently

stable and can be designed to have a linear phase response. There is also no

feedback path so any rounding errors introduced in the arithmetic are not summed

over multiple iterations. The FIR filter tends to require more taps and hence more

coefficients to achieve a sharp cut off and a narrow passband whereas the IIR filter

tends to require substantially fewer taps than an FIR filter of equivalent

performance but sometimes can be unstable as the impulse response doesn’t

M.J.Anderson, PhD Thesis, Aston University 2023

64

become zero but continues indefinitely, and the phase/delay response is not

constant across all frequencies,

Both have many coefficients which need calculating and storing. The FIR

implementation in particular requires a very large number of coefficients. Larger

filters will require more resources from the FPGA and more clock cycles to execute,

additionally long chains of multiply and accumulate functions are required which

leads to increased intermediate product storage in the FPGA. During execution the

intermediate values calculated will exhibit bit expansion as they accumulate and

may require truncation to manage this, leading to cumulative rounding errors.

An alternative is to evaluate a mathematical sequence proposed by Gerald

Goertzel in 1958 [73]. This effectively behaves as a single bin Fast Fourier

Transform (FFT).

Goertzel’s algorithm has historically found uses in applications which

require the presence of a tone to be determined such as dual tone dialling in

telephony where pairs of discrete, orthogonal sinusoid frequencies are used to

encode button presses. The Goertzel algorithm was well suited to this application

compared to a FFT when constrained in an 8 bit microcontroller as it required less

memory and could be targeted at just the eight dual tone frequencies with a narrow

bin width. Its main advantage is that it uses very few coefficients which need

calculating up front and storing. The performance of the filter when used as part of

an MZM monitoring function, where detecting tone absence is also an important

factor, needed to be verified experimentally.

When implementing the Goertzel algorithm the processing is performed on

blocks of data; however, as the numerical calculations are very simple, and as FPGAs

are fast and inherently parallel by design, it is not necessary to store all the samples

in a block before computing the result, although the final result will not be available

until after the last sample in the block is received. Four parameters are required to

be defined, the sample rate, the block size and a pair of precomputed coefficients

(one sine the other cosine). In this experiment, this is reduced further as only the

cosine term was used.

When determining the sampling rate (fs), ideally the frequencies of interest

need to be integer factors of sample rate/ block size. In this case the sample rate

was also determined by the available sample rates which could be configured for the

M.J.Anderson, PhD Thesis, Aston University 2023

65

on-chip ADC function in the Max10 FPGA. Finally, Nyquist rules must also be obeyed

when setting the sampling rate.

The block size (N) controls the bin width or frequency resolution and is

analogous to the number of points in an equivalent FFT. The bin width is given by

sample rate/block size

There is a trade-off to be judged here. A large block size will give a narrow

bin width but will take longer to calculate the filter response. For the frequencies of

interest to be centred in their respective filters they need to be integer multiples of

the bin width.

To define and calculate the two fixed coefficients (sine and cosine), the

starting point is the basic Discrete Fourier Transform (DFT) equation shown in

equation (4.6). The target frequency is in bin k out of a total of N bins, 𝑊𝑘 is the

weighting factor which is the complex term 𝑒−𝑖2𝜋
𝑘𝑛

𝑁 .

𝑋𝑘 = ∑(𝑊𝑘)
𝑛

𝑁−1

𝑛=0

. 𝑥𝑛

 𝑘 = 0,1,2 … , 𝑁 − 1 (4.6)

Finally, as discussed in [74], the equivalent bin number (k) can be

calculated:

k = (int) (0.5 +
Block Size(N) ∗ Target Frequency

sample rate
) (4.7)

Then the equivalent weighting factor (W) can be determined. For

applications such as this where the input samples are real-values, the complex-valued

calculations are reduced to real-valued calculations, leading to the sine and cosine

terms shown below.

W = (2*π/N)*k

 cosine = cos W

 sine = sin W

coeff = 2 * cosine.

M.J.Anderson, PhD Thesis, Aston University 2023

66

In this experiment a 4 kHz sine wave was used as the fundamental pilot tone

giving the following parameters:

Block Size: N = 1500 samples

Sample Rate: fs = 20 ksps

Bin width: fs/N = 13.333 Hz

Finally, the bin width was used to verify the target frequencies were the centre

frequencies of the filter by checking the value of target frequency/bin width was an

integer:

4kHz*N/fs = 300

8kHz*N/fs = 600

These parameters produced calculated cosine terms of 0.309021 for the fundamental

tone filter and -0.809021 for the second harmonic filter.

When implementing the filter a three stage calculation with two pipeline

stages is defined: Q0, Q1, and Q2 (see Figure 4-6). For every input sample n, the

following three equations are calculated:

 Q0(n) = coeff * Q1(n-1) - Q2(n-1) + n

 Q1(n) = Q0(n-1)

 Q2(n) = Q1(n-1).

After running the per-sample equations for the whole block of n = N samples,

the complex output Xk can be calculated as follows:

 Output (Xk) = (Q0(N) – Q1(N)* (cosine+i*Sine))

Also:

 Realterm = (Q0(N) – Q1(N)* cosine)

 Imgterm = (Q1(N) * sine)

 magnitude2 = Realterm2 + Imgterm2

The relationship between these variables is shown in Figure 4-6

M.J.Anderson, PhD Thesis, Aston University 2023

67

Figure 4-6 Standard form Goertzel filter structure showing relationship of Q0, 1, 2,

Coeff, Sine and Cosine.

The simulated response of a Goertzel filter centred on 4kHz, when presented with

a sweep of sinusoids at frequencies between 3 kHz and 5 kHz is plotted in Figure 4-7

Figure 4-7 Simulated power response of the Goertzel algorithm based 4
kHz frequency filter to a range of sinusoids between 3 kHz and 5 kHz.

For the implementation of the fundamental and second harmonic filters a

modified filter structure was adopted as shown in Figure 4-8.

M.J.Anderson, PhD Thesis, Aston University 2023

68

Figure 4-8 Simplified form Goertzel filter structure as implemented

The modified structure has two differences to the structure of the standard

form shown in Figure 4-6. Firstly, as the input samples are real-valued only, then

only the Realterm output based on the cosine weighting factor is evaluated.

Secondly, the implemented filter has an additional delay before calculating the

Realterm output but numerically behaves identically to the standard form, with the

‘per sample’ calculation being identical and the ‘per block’ calculation having the

additional delay which was accounted for in the generated design. This was done to

minimize the length of the Q0 to Realterm combinatorial logic paths in the

implemented design in order to avoid any potential timing problems. The reuse of

the Q1 and Q2 registers to add a clock stage to the output calculation avoided adding

any additional registers to the design.

Implementing a filter using this method, with a 13 Hz bandwidth centred

on the target frequency, requires very few resources when compared with

traditional IIR and FIR designs. Using MatLab to generate comparable functions,

centered on 4kHz with 20 kHz sampling rate, a passband from 3.993 kHz to 4.007

kHz and a stopband attenuation of 60 dB shows the complexity of an equivalent FIR

implementation would be 918th order, whereas an IIR implementation would be 4 x

2nd order sections. The responses of these FIR and IIR filters are plotted in Figure

4-9.

M.J.Anderson, PhD Thesis, Aston University 2023

69

(a)

(b)

Figure 4-9 Magnitude responses of equivalent FIR (a) and IIR (b) filters to the
Goertzel based filter used in this experiment.

These would both involve the calculation and storage of many coefficients

and the implementation of large logic trees in the FPGA in order to realise the filter,

limiting internal FPGA operating speeds and potentially causing routing congestion.

The implemented filter based on the Goertzel algorithm requires by comparison, 2

coefficients (one sine, one cosine implemented as 16 bit signed fixed point

M.J.Anderson, PhD Thesis, Aston University 2023

70

numbers). In this experiment only the real term was evaluated, and, as the value

‘coeff’ equals 2x cosine term, it was only necessary to hardcode a single coefficient,

further reducing complexity and FPGA resource use. By using only the real term we

see a positive and negative answer from the filter which could be used to indicate

the direction in which a closed loop controller should move the bias voltage. In

keeping with the target of demonstrating practical repurposable hardware, the

FPGA used was a low cost, low power MAX10™ 10M08 device from Intel. This has a

small number of DSP specific macrocells capable of performing multiplication and

accumulation actions so the filter algorithm has been chosen for efficiency. The

design itself was implemented using the hardware description language VHDL, using

Intel’s Quartus Prime development tools. The implementation of the filter has been

adapted to the proposed FPGA platform whilst aiming to achieve the best possible

accuracy. To test the effectiveness of the filter implementation a VHDL simulation

was performed and the result compared with that predicted by calculation.

The resource utilisation, post fitting stage, is given in Table 4-1

Figure 4-10 shows the filter following the technology fitting stage of the

FPGA implementation. The wide pipeline stage for Q1 to Q2 (ringed in green) and a

relatively long full adder chain (orange) can be seen, however this design is still

capable of operating with a clock of 53 MHz. The 2 multipliers each constructed

from 2 18x18 bit multiplier hard macrocells are ringed in red and the sample block

counter in blue.

Figure 4-10 Filter implementation in Intel MAX10 primitive cells.

Sample

Block Counter

Q

2*Coeff

M.J.Anderson, PhD Thesis, Aston University 2023

71

Goertzel filter implementation- MAX 10 resource usage (post fitter)
Logic Cells 391: {242 Logic LUT only

 14 Register only
 }

Single Bit logic registers 147
18x18 bit DSP multipliers 4
Memory Blocks 0

Table 4-1 Goertzel algorithm based filter - Post Technology Fitting resource
utilisation.

Fixed point arithmetic was used throughout using a 16 bit representation

of the fractional part of the numbers and a single multiplier stage (35x17 bit signed

binary representation).

The representation of the Cosine term in this format gave an approximation which

was correct to better than 5 decimal places.

4.4 Experimental Setup

In [66] bias control methods using harmonic analysis are examined using

calibrated laboratory equipment. The question then is whether it is practical to

adopt features of these methods as part of a characterisation procedure

implemented with commercially available, low cost and low power components

which could be integrated into an optical module.

The purpose of this experimental activity was therefore to validate the

behaviour of such a control system when implemented using low cost components

and computationally efficient algorithms. To this end it was proposed to digitally

generate a 4 kHz pilot tone to be applied to the DC electrode of an MZM while

applying digital pseudo random (PRBS) traffic at 10 Gbps to the RF electrode, and

examine the performance of digital filters based on the algorithm described by

Goertzel [73] when determining the presence and absence of the applied pilot tone

and its 2nd harmonic. To carry out these investigations the experimental setup

shown in Figure 4-11 was implemented.

The analogue electronics (filters, photo diode (PD)), digital components

(FPGA, ADC, DAC) and user interface blocks (USB) were implemented on a custom

designed circuit board by TerOpta Ltd. The optical components were connected

together on the workbench. A LiNbO3 MZM (JDSU OC192) was connected to a 10

M.J.Anderson, PhD Thesis, Aston University 2023

72

Gb/s Anritsu data source generating a PRBS31 sequence, through a JDSU H301

modulator data driver. The laser source used was a C Band tuneable IDPhotonics

laser set to 1530.0 nm and using a launch power of 15 dBm.

The amplitude of the pilot tone was set to 85 mV peak to peak which is

approximately 2% of the bias electrode V for this MZM. Increasing this value may

be beneficial in the short term if the pilot tone harmonic method is only to be used

during characterisation of the device; however, as stated previously, it may not be

desirable if a pilot tone control method is to be employed [75]. As discussed in [71],

the effect of the pilot tone is not only due to the amplitude of the applied electrical

signal but also to the intensity of the optical signal at the receiver; this can be

adjusted by changing the percentage of the optical signal routed to the controller

through the tap coupler. In this experiment a 5% tap was used together with an

attenuator to limit the optical power of the signal at the controller anti-aliasing filter

to be within the operating range of the receiver circuit, in this instance -19 dBm. The

application of this attenuation limits the electrical signal being monitored by the

ADC within the FPGA. Initially no data was applied to the RF or data electrode as this

may introduce further noise to the system.

The first step was to determine the value of V for the modulator used in

this test. This was achieved by manually altering the value of the DC bias voltage by

setting the DAC control word through the user interface shown in Figure 4-11 while

monitoring the output power of the MZM directly, after the 5% tap, using an optical

power meter.

M.J.Anderson, PhD Thesis, Aston University 2023

73

Figure 4-11 Experimental setup for filter response DC bias
sweep.

The behaviour of the analogue circuitry was then tested by applying a

pseudo random binary sequence (PRBS15) at 10 Gb/s and manually adjusting the

DC bias voltage searching for Peak, Null and Quadrature operating points while

simultaneously monitoring the FPGA ADC input pin with a low speed oscilloscope

performing a FFT and the MZM output with a high speed oscilloscope to examine the

optical data eye.

Finally, a coarse voltage sweep on the DC electrode was performed using

the hardware model. The applied DC bias voltage DAC was varied across its range

representing -10V to +10V in small discrete steps by a software control function

running on a computer; that voltage was then held for 100 seconds. At each step the

output power, filter outputs and averaged filter outputs, calculated using an

exponentially weighted moving average (EWMA), were recorded at 1 second

M.J.Anderson, PhD Thesis, Aston University 2023

74

intervals by the control software. The voltage steps were defined as a fixed increase

of 50 on the 12 bit DAC control word. A total of 82 DAC words were used.

4.5 Results

The results are presented Figure 4-12 as a plot of optical power vs bias

voltage.

Figure 4-12 Optical power output of the MZM vs DC Bias compared with
the calculated theoretical transfer function.

Figure 4-12 shows the result of the manual sweep of output power versus

DC bias voltage. This response agrees with the sinusoidal form of the ideal,

calculated transfer function shown in Figure 4-2, and overlaid here, with a

horizontal offset of 1960 mV due to a combination of thermal drift and

manufacturing variations of the MZM. The small difference in V is due to

calculation differences, the calculated transfer function had used a V of 5000 mV .

Analysis of this sweep gives a V value for this modulator as ~4400 mV.

Figure 4-13 and Figure 4-14 show the FFT and eye traces recorded, at the

MZM output, during the test of the analogue circuits. As predicted by equations 4.4

and 4.5 at quadrature the 4 kHz pilot tone was clearly visible and the 2nd harmonic

(8kHz) was absent. Quadrature was confirmed by the good, open optical data eye

which was observed.

In Figure 4-15 and Figure 4-16, the two filter responses are shown separately as a

plot of the recorded output from the FPGA implemented filter directly against the

applied DC bias voltage in mV. The height of each vertical bar plotted shows the

M.J.Anderson, PhD Thesis, Aston University 2023

75

range of the results recorded at that voltage. It can be seen that the filter centred on

the pilot tone fundamental frequency of 4 kHz exhibited a strong response with

large amplitude and relatively little variation, whereas the 2nd harmonic filter

centred on 8 kHz produced a much weaker, less distinct result. Although it is

expected from theory that the 2nd harmonic will be of considerably lower amplitude

than the fundamental, the large variation in the filter output has been determined to

be predominantly due to interference from electrical noise introduced by switching

convertors and digital circuitry on the test board. In order to improve the 8 kHz

filter response by allowing for a greater analogue gain to be applied to the feedback

signal, an internal attenuation was required to be applied digitally, in the FPGA, on

the input to the 4 kHz filter so as to prevent saturation, which is seen as a digital

rollover in the filter output value. This analogue gain also emphasised any noise

present in the detector chain or on the optical signal from elsewhere in the system.

Even in the presence of this noise the output of this resource efficient filter

implementation still clearly demonstrates the predicted sinusoidal response of the

pilot tone fundamental (Figure 4-15) and 2nd harmonic (Figure 4-16) amplitudes as

a sweep across the MZM transfer function is performed.

Figure 4-13 FFT of ADC input taken at Null operating point with marker at 8 kHz.

M.J.Anderson, PhD Thesis, Aston University 2023

76

(a)

(b)

Figure 4-14 FFT of ADC input signal with markers at 4 kHz and 8 kHz(a) and Optical
eye (b) at Quadrature.

Figure 4-15 Fundamental frequency filter output with averaging vs Bias voltage.

M.J.Anderson, PhD Thesis, Aston University 2023

77

Figure 4-16 2nd harmonic frequency filter output with averaging vs Bias voltage.

Both Figure 4-15 and Figure 4-16 indicate a V of ~4400 mV based on the theoretical

responses plotted in Figure 4-3, with an offset of ~2500 mV. This strongly agrees with

the V figure obtained by examining the modulator output power in Figure 4-12,

which also shows a V of 4400 mV. The offset is a variable figure due to the horizontal

drift of the MZM transfer function over time.

4.6 Summary

This experiment has demonstrated the viability of using a low-cost FPGA to

implement in digital hardware a circuit capable of monitoring the transfer function

of a Mach Zehnder Modulator. Specifically of note is that this is the first reported use

of logic area efficient Goertzel algorithm based filters in this MZM application. The

use of such small size implementations, when compared to the traditional filter

designs, is important as it helps minimise the overheads associated with embedding

test functions within the optical module assembly.

The implemented filters were able to track the harmonic response of the

MZM and indicate a figure for V which agrees, within the limits of the chosen DAC

step size, with that seen by monitoring the MZM output power. This filter

implementation has been shown to have a reduced implementation complexity,

when compared to similarly specified FIR and IIR filters. The main complexity

saving is in the reduction of the number of stored weighting factors from 918, in the

case of the FIR filter or 17 in the case of the IIR filter down to 2 for the Goertzel

filter. The number multiplication and addition operations performed per input cycle

is also reduced. For the FIR filter, 918 multiplications and 917 additions are

M.J.Anderson, PhD Thesis, Aston University 2023

78

required for each input sample, the IIR filter requires 17 multiplications and 12

additions per input sample and the Goertzel filter implementation demonstrated

here only requires 1 multiplication and 2 additions per input sample plus a further 1

multiplication and 1 addition per block of samples. The trade-off is the number of

samples required before an answer is returned, In this experiment, the Goertzel

filter requires 1500 samples, the FIR filter 918 samples and the IIR filter 17. In this

experiment an external computer was used as a controller and multiple readings

were recorded every second. One second was the minimum time the control

software required to poll all required readings. This presents a bottleneck in the

characterisation process as discussed earlier in Section 2.2. The total time required

to perform a DC bias sweep in this case was 136 minutes. This can be addressed by

moving the sweep functionality into the FPGA. Taking the sample rate used in this

experiment of 20kS/s an entire sweep of 82 x 100 samples would require 0.41

seconds.

M.J.Anderson, PhD Thesis, Aston University 2023

79

5 EMBEDDED SOFT MICROCONTROLLER

Following the earlier example of a microcontroller based calibration engine

as shown in Figure 1-5; a soft microcontroller core is, in many instances, considered

to be the first port of call to developing an integrated solution, either to perform all

of the test procedure or a subset of less performance critical steps towards the final

characterisation. Despite the rolldown of features into cost optimised devices, the

availability of ‘hard’, i.e. dedicated functional block, IP microcontrollers in cost

optimised FPGA’s is not universal so a ‘soft’ implementation is required. The

disadvantage of a ‘soft’ microcontroller is that it uses the reconfigurable logic cells of

the FPGA, increasing the chip size to contain the additional functionality and hence

adding to the cost. In this chapter the implementation of a simple microcontroller as

a ‘soft’ piece of IP is evaluated. Here the design process metrics of complexity, logic

and memory requirements relating to a simple microcontroller design, based

around the Intel NIOS soft processor, are assessed in order to set a baseline for the

comparison with the work of the following chapter.

5.1 Design Flow Analysis

When analysing the calibration engine it is important that the design flow

is easily separated. As identified earlier it is desirable to separate the design

environment from the test environment due to the different technical skills required

in these stages.

Initial activity has been based around identifying a suitable FPGA platform

to assess the capabilities of an embedded Linux system and test suitable ways of

working. The method of achieving this was to initially examine a simple case using a

single ADC and a single DAC.

The development board chosen for this stage of the experiment was an

Altera Development Kit fitted with a device from the MAX10 family [76]. This board

was chosen as the MAX10 is a low cost, low power device equipped with embedded

multichannel ADCs, embedded high speed arithmetic multiplier cells for offloading

calculations or building a custom arithmetic unit and has sufficient logic capacity to

implement an embedded microcontroller. The board is equipped with a DAC device

M.J.Anderson, PhD Thesis, Aston University 2023

80

plus memory (volatile and non-volatile) and a UART interface to represent low

bandwidth access. The FPGA device fitted to this board is one of the larger devices

(10M50) offering around 50,000 LUTs and registers plus 1600 Kb of memory.

The processor in this instance is a NIOS II microcontroller developed by

Altera. The NIOS II is termed a ‘soft core’ meaning that the logic used to implement

the microcontroller and peripherals is not dedicated or hardwired to that function

and can subsequently be reprogrammed and reused for another function. The NIOS

II uses a Reduced Instruction Set (RISC) for process execution efficiency and

supports a memory management unit as required by the Linux kernel. There is

support, through an active, open source developer community and by the chip

vendor, to be able to run an embedded version of the Linux operating system,

referred to as the Golden System Reference Design (GSRD) for the Linux operating

system which has been built for this board and the Golden Hardware Reference

Design (GHRD) for the NIOS II FPGA core design presented in Figure 5-1 [77]. This is

a reference design intended to give an introduction to developing embedded

operating systems for field programmable hardware and, although not optimised for

the application required here, gives a starting point from which to gauge the

complexity of creating a generic programmable design for calibration activities. The

GSRD is based on the BuildRoot open source repository and provides a scripted

build environment using the Makefile language.

M.J.Anderson, PhD Thesis, Aston University 2023

81

Figure 5-1 Initial Golden Hardware Reference Design architecture [77].

The stages of the OS build process are detailed in [77] but in summary

involve:

• Building the basic root filesystem for a NIOSII core. At this stage it is possible

to store test scripts in the root file system but they can be downloaded later

using a Linux terminal window.

• Building a customised NIOS II Linux kernel for the development kit

hardware. At this stage we include the board memory map or static device

tree file in order to define the connection between hardware and software.

An example of the hardware memory map is shown in Figure 5-2.

M.J.Anderson, PhD Thesis, Aston University 2023

82

Figure 5-2 GHRD Memory Map.

• Generation of an Altera proprietary format binary file (POF) for

programming into on-card flash, this is required by the toolchain to be a 2

stage process involving the conversion of the NIOS II Linux kernel into an

intermediate format, then into HEX. The built root file system also needs to

be converted into Hex format before both files are combined into a single

POF. The size of the resulting POF is 64 MB.

The initial activity was familiarization with this build flow which

unfortunately highlighted a number of compatibility and feature deprecation issues

within the scripted build process and tools. These included command options no

longer being supported when sourcing design code from the reference design

repositories. This led to software build process failures which prevented even the

original GSRD image being rebuilt. These, unfortunately, proved time consuming to

track down and resolve before the reference design software build process was

repeatable and provided a stable base on which to proceed.

The reference design supplied only makes use of a single 1 MS/s ADC

which is embedded into the FPGA and which is controlled by its own sample

sequencer, running in parallel in FPGA fabric to the main microcontroller software

M.J.Anderson, PhD Thesis, Aston University 2023

83

and passing the results into on chip memory. DAC functionality on the development

board is provided externally to the FPGA with a separate chip.

As a simple trial of the proposed block based, hardware/software hybrid,

virtual instrumentation method, an interface to the on-card DAC device was added.

An interface module was required to be developed in VHDL and inserted into the

reference design to drive this device.

The chosen implementation for the DAC interface was to create a memory

mapped peripheral with the DAC control interface protocol implemented in FPGA

fabric. This approach was chosen, firstly to simplify the design at the software level

by taking the interface protocol into hardware and secondly to leverage the parallel

nature of FPGA fabric, freeing up the software to perform other tasks during the DAC

write. This approach is representative to the method which would be required as

more complex, time intensive features, such as voltage sweeps, are added later. The

DAC fitted to the card is a DAC 8551 from TI and uses a 3 wire SPI connection. To

support the block based approach the module was designed to look like a memory

mapped location using the Avalon bus standard adopted by Altera’s NIOSII system

and the SPI protocol was implemented in VHDL.

The trigger for a DAC write then simply becomes a single write to a

memory mapped location which is a trivial matter to implement in a control shell

script.

The FPGA hardware build process uses the Altera QSYS system generator

tool to define connections between functional blocks, then makes use of Altera

Quartus toolchain for synthesis, routing and timing check activities. Functional

blocks can be created and simulated using any supported Hardware description

language, in this case VHDL was used.

The steps taken to implement this were:

• Design, code and test the DAC interface using VHDL and ModelSim simulator.

• Import the VHDL design into QSYS as a component and define the

microcontroller side interface as being an Avalon bus or conduit. Connect

these interfaces into the NIOS II system. The result is shown in Figure 5-3. A

schematic representation of the QSYS connections is shown in Figure 5-4.

• Allocate an address range in the device memory map to the DAC interface,

which is shown in Figure 5-2. The resulting memory map could then be used

M.J.Anderson, PhD Thesis, Aston University 2023

84

to derive a new static device tree file, to be used in the operating system

design flow, to generate a new NIOS II Linux kernel with the DAC interface

visible to the operating system.

• Synthesise the new hardware design using Quartus and map onto LUTs. The

results are shown in Figure 5-5.

Figure 5-3 DAC interface interconnect into NIOS II using QSYS.

M.J.Anderson, PhD Thesis, Aston University 2023

85

Figure 5-4 Block Schematic representation of the QSYS system with DAC.

M.J.Anderson, PhD Thesis, Aston University 2023

86

Figure 5-5 Extracted LUT counts for GHRD with DAC interface.

Analysing the utilisation figures shown in Figure 5-5 it is apparent that the

soft IP core microcontroller is a large piece of logic. The FPGA device required

(MAX10 M50) is the largest in the family with 50,000 LUTs and DFFs. This NIOS

design requires a little over 50% of these in which to be implemented. For

comparison, the FPGA fitted to the board used in the experiment of section 4.4 is a

MAX10M08 with only 8000 LUTs and DFFs, barely one third the number needed for

the basic microcontroller reference design. When considering the memory required

to run the microcontroller the comparison between devices shows the same result.

The whole NIOS design requires 51% of the available memory of a M50 device

(857872 bits out of 1677312) which is 2.3 x the available memory of the smaller

device used in section 4.4. If the soft microcontroller is part of a design which is

subsequently reconfigured into the control logic, such that the microcontroller is no

longer required, then these additional redundant memory blocks, LUTs and DFFs

are adding cost which would need to be examined for value.

The GHRD contains functions and modules which would not ultimately be

required by a project based on the requirements stated in section 1.3. The Ethernet

module of the GHRD alone accounts for 26% of the present design. Similarly, the

GSRD Linux build is a generic demonstration platform and contains features of the

+--

 Analysis & Synthesis Resource Utilization by Entity

+--+---------------------+---------------------------+-------------+------------+--------------+---

 Compilation Hierarchy Node Combinational ALUTs Dedicated Logic Registers Memory Bits UFM Blocks DSP Elements DSP 9x9 DSP 18x18

+--+---------------------+---------------------------+-------------+------------+--------------+---

 |ghrd_10m50daf484c6ges_top 26166 25499 857872 0 6 0 3

 |debounce:debounce_inst| 120 48 0 0 0 0 0

 |ghrd_10m50daf484c6ges:ghrd_10m50daf484c6ges_inst| 25639 25207 857872 0 6 0 3

 |Avalon_DAC:avalon_dac_0| 40 33 0 0 0 0 0

 |altera_16550_uart:a_16550_uart_0| 521 296 672 0 0 0 0

 |altera_irq_clock_crosser:irq_synchronizer_001| 0 3 0 0 0 0 0

 |altera_irq_clock_crosser:irq_synchronizer_002| 0 3 0 0 0 0 0

 |altera_irq_clock_crosser:irq_synchronizer_003| 0 3 0 0 0 0 0

 |altera_irq_clock_crosser:irq_synchronizer_004| 0 3 0 0 0 0 0

 |altera_irq_clock_crosser:irq_synchronizer| 0 3 0 0 0 0 0

 |altera_reset_controller:rst_controller_001| 0 3 0 0 0 0 0

 |altera_reset_controller:rst_controller_002| 6 16 0 0 0 0 0

 |altera_reset_controller:rst_controller_003| 6 16 0 0 0 0 0

 |altera_reset_controller:rst_controller_004| 0 3 0 0 0 0 0

 |altera_reset_controller:rst_controller_005| 0 3 0 0 0 0 0

 |altera_reset_controller:rst_controller_006| 1 3 0 0 0 0 0

 |altera_reset_controller:rst_controller_008| 1 0 0 0 0 0 0

 |altera_reset_controller:rst_controller_009| 0 3 0 0 0 0 0

 |altera_reset_controller:rst_controller_010| 0 3 0 0 0 0 0

 |altera_reset_controller:rst_controller| 0 3 0 0 0 0 0

 |generic_qspi_controller:ext_flash| 813 566 2064 0 0 0 0

 |ghrd_10m50daf484c6ges_button_pio:button_pio| 17 15 0 0 0 0 0

 |ghrd_10m50daf484c6ges_cpu:cpu| 4073 2863 592128 0 6 0 3

 |ghrd_10m50daf484c6ges_enet_pll:enet_pll| 8 6 0 0 0 0 0

 |ghrd_10m50daf484c6ges_jtag_uart:jtag_uart| 141 112 1024 0 0 0 0

 |ghrd_10m50daf484c6ges_led_pio:led_pio| 10 8 0 0 0 0 0

 |ghrd_10m50daf484c6ges_mem_if_ddr3_emif_0:mem_if_ddr3_emif_0| 5043 3279 15840 0 0 0 0

 |sequencer_m10:cpu_inst| 1190 230 0 0 0 0 0

 |sequencer_phy_mgr:sequencer_phy_mgr_inst| 67 18 0 0 0 0 0

 |sequencer_pll_mgr:sequencer_pll_mgr_inst| 42 39 0 0 0 0 0

 |ghrd_10m50daf484c6ges_mm_interconnect_0:mm_interconnect_0| 6986 11414 8192 0 0 0 0

 |ghrd_10m50daf484c6ges_rgmii_0:rgmii_0| 6642 5592 228224 0 0 0 0

+--+---------------------+---------------------------+-------------+------------+--------------+---

M.J.Anderson, PhD Thesis, Aston University 2023

87

operating system which may not be necessary, so there is significant room for

optimisation.

5.2 Summary

In this section the complexity of implementing a functionally simple

microcontroller system in an FPGA based on a commercially available piece of soft

IP has been evaluated. This design used a custom embedded Linux operating system,

with the aim of attempting to separate the creation of tests, using a scripting

language, from the low level OS interactions with peripherals such as the ADC and

DAC. The build process required to obtain the custom Linux image proved to be

lengthy, obfuscated and complex. The complete processor system hardware itself

occupied approximately 50% of the available memory, logic and registers in the

targeted MAX10 device. Optimisation of the microcontroller system will reduce this

as the bare NIOS II, without peripherals, is only approximately 10% (4000 LUTs) of

the available resources in this device, however the NIOS II alone accounts for a

substantial percentage of the used memory and approximately 35% of the total

memory available on the chip (592128 bits used out of 1677312 bits available in

this case), and this would likely be the limiting factor in any optimisation. This will

have the effect of increasing the minimum device resources required for this

approach and, hence, increasing the cost.

Using an embedded microcontroller is a valid and commonly used

approach to inserting test functionality into an optical module, particularly when

used alongside co-processing blocks implemented in FPGA logic cells which are able

to circumvent the more sequential nature of the microcontroller. However, logic

and, in particular, memory requirements can push the target device size up to allow

for sufficient space. Given this, the question remains as to whether there is an

alternative approach, potentially better suited to the FPGA’s unique advantages.

M.J.Anderson, PhD Thesis, Aston University 2023

88

6 MACHINE LEARNING

As an alternative to using an embedded microcontroller, in this section the

use of Artificial Intelligence (AI) and in particular the sub category of Machine

Learning (ML) is studied as a solution to the characterisation and test tasks

discussed previously. The concepts of ML are introduced and current applications of

ML in optical communications are presented. The application of ML using FPGAs is

discussed through the example of the first-time implementation of an Artificial

Neural Network (ANN) using a recurrent bidirectional architecture. Finally, the

novel use of a small ANN in conjunction with the filter described in Section 4.3 is

presented as a means of characterising an MZM.

6.1 Concepts of Machine Learning

Machine Learning is a broad field which, in general, covers the application

of numerical analytic methods to find answers to problems without having an

explicit set of preprogrammed instructions. Instead, a ML model is taught by finding

the solution to a mathematical optimisation problem by way of exploring sets of

parameters in order to minimise the values of a defined cost function e.g. a mean

squared error. By this definition learning is specifically related to mathematical

optimisation. Classic ML tasks have included classification, curve fitting and anomaly

detection. The training of a ML model can fall under one of 4 general categories:

1. Unsupervised – using unlabelled training data to find general patterns

2. Supervised – using labelled training data to make predictions or

classification of input data

3. Semi-supervised – a combination of labelled and unlabelled training data

4. Reinforcement learning – training via feedback from interactions with the

environment.

While some applications are ‘Cloud’ based, making use of the massive

computing power available with an internet connection, and in parallel with the

growth of IoT services (as discussed in section 2.1), there has been a push to move

ML applications towards the system edge, nearer to the point of data gathering and

M.J.Anderson, PhD Thesis, Aston University 2023

89

with more limited computing resources e.g. spoken keyword detection on smart

household devices, looking for anomalies in sensor readings [78] or enabling the use

of low cost atmospheric pollution sensors by providing correction functions, [79] as

implementation in low cost processing devices becomes possible. This has been in

order to reduce the volume of data sent over the internet and to remove any

network latency involved in the connection back to a cloud server. There is also a

need for the ML algorithms to be available even when network connectivity is lost in

order to be effective constantly.

In these applications ANNs have shown themselves to be an effective tool

in identifying patterns in data which otherwise may be obscure. Neural networks

were inspired by a simple functional model of an animal brain. Layers of artificial

neurons are interconnected to form a network (Figure 6-1).

Figure 6-1 An Artificial Neural Network [80].

 Each artificial neuron is built from a linear sum of products and a non-linear

activation function (Figure 6-2) as shown in equation 6.1 below.

𝑦 = 𝜎 (∑ 𝑊𝑛𝑥𝑛

𝑛

0

+ 𝑏) (6.1)

Where: σ is the activation function

 Wn is the linear gain value or weight for each input

M.J.Anderson, PhD Thesis, Aston University 2023

90

 x is the input value to the neuron

 b is a fixed offset or bias

Figure 6-2 Common non linear activation functions include the sigmoid function

and the Rectified Linear Unit (ReLU) [81].

Over the course of this study the field of Machine Learning across all fields

(for example: speech recognition in smart home devices, image recognition in

autonomous vehicles and drug discovery for clinical trials) has been developing at

speed. In the field of Optical communications, Machine Learning is now proving to

be a useful tool in the optical researchers toolkit [82] [83] [84] [85] (see Figure

6-3) .

Figure 6-3 Machine learning applications in optical communications [84].

M.J.Anderson, PhD Thesis, Aston University 2023

91

6.1.1 FPGAs and ML

To date the majority of published research concerning the use of Machine

Learning in optical communications is focussed on larger scale DNNs used, for

example, for correcting non-linear transmission effects or calculating the optimum

gain settings for Raman amplification. Many of these papers have concentrated on

the offline development of the NN and have used external computers for

implementation.

In Schaedler [86] a Machine Learning approach to correcting for the non-

linearity of a Indium Phosphide MZM transfer function based on an adaptive digital

predistortion algorithm is presented. This experiment makes use of what is termed

the ‘Extreme Learning Machine architecture’ to demonstrate adaptive estimation

and compensation of MZM transfer functions albeit with offline DSP processing.

The use of a trained Neural Network to calculate the pump powers and

wavelengths required to generate a desired Raman Gain profile is proposed by Zibar

[80], with experimental evidence to show that this is quicker to execute than a

traditional Raman Solver program and allows for almost realtime adjustments to be

calculated.

However, practical implementations are being shown to be possible aided

by the use of FPGAs [87] [88]. When implementing a ML algorithm using

programmable logic, there is a potential performance advantage over a CPU based

solution which comes from parallelism in the device. For example, an operation

requiring 100 functionally similar, calculation operations running sequentially on a

CPU using a 1 GHz clock would require 100 cycles giving a throughput of 10M

operations per second. An FPGA, leveraging parallelism, could complete the entire

operation in a single cycle. Assuming a clock speed of 250 MHz in the FPGA this

would give a throughput of 250 M operations per second.

An example of a simple neuron with multiple inputs, following equation

6.1, being mapped into FPGA ‘cells’ is shown in Figure 6-4. With the availability of

DSP cells to perform the multiplication and addition a highly efficient

implementation is possible, using a small RAM block to store the associated weights

and another RAM to implement the activation function as a table. A number of

possible methods to implement the non-linear activation function have been

compared and the implications of each assessed [88]. Using a RAM to implement a

M.J.Anderson, PhD Thesis, Aston University 2023

92

table is a commonly used method [89] due to the high clock speeds/short access

time offered by these blocks. However, FPGA RAM blocks generally only have a

maximum of 2 read ports so can present a bottleneck in the operation of the neuron

and careful analysis of the sequence of events is required. Using this method an

approximation of the activation function can be constructed from a number of

evenly separated points. The architecture of the FPGA allows for the creation of

many small, distributed RAMs using the LUT memory of the LEs which facilitates

parallel calculations, although with the cost of decreased approximation resolution

as the number of bits in each of the distributed RAM blocks is limited.

Figure 6-4 Neuron function mapped into generic FPGA function
categories.

With the introduction of higher level languages such as OpenCL and C++

into the FPGA design flow, toolchains are now becoming available which can utilise

these High Level Synthesis (HLS) methods, integrated with proven physical design

flows, to design the logic associated with ANNs [90] [91]. The steps involved in the

realization of an FPGA design are illustrated in Figure 6-5 and are discussed further

in section 6.2.

M.J.Anderson, PhD Thesis, Aston University 2023

93

Figure 6-5 FPGA design flow to device realization.

6.2 Challenges when implementing a neural network based

equalizer in an FPGA.

The aim of this section is to discuss some of the steps, considerations,

problems and challenges encountered during this first-time implementation, in an

FPGA, of a recurrent NN (RNN) using the bidirectional Long Short-Term Memory

(biLSTM) architecture to solve the problem of non-linearity mitigation in coherent

optical networks.

While the details of non-linearity correction are discussed in detail

elsewhere [92], within the context of this thesis the implementation challenges are

presented in more detail. Specific focus is given to the HLS design flow and the

motivation behind the use of this method in general. This is followed by a brief

description of the tool chain and the necessary steps to create a NN for an FPGA.

Solving the design challenges presented while investigating the viability of

implementing such NN based solutions in an FPGA or ASIC is a key question when

investigating the commercial application of such solutions.

The challenge presented by this piece of work was to achieve the required

throughput using the RNN, as the overall purpose of the experiment was to assess

the possibility of using the biLSTM architecture instead of the more commonly

M.J.Anderson, PhD Thesis, Aston University 2023

94

found feedforward Chromatic Dispersion Compensation (CDC) algorithm [93].

Although the biLSTM RNN can be shown to give a Q factor improvement [94], the

feedback paths in the RNN architecture result in higher latency than the purely

feedforward CDC.

The LSTM cell architecture (as described in section 6.2.1 and illustrated

therein in Figure 6-9) is built from 3 gates – an input gate, an output gate and a

forget gate – which control the flow through the cell. The function of the forget gate

is to discard information from a previous state, thus setting a memory time interval.

The input gate performs the same function on the new input data and the output

gate controls what is forwarded from the cell. Weights and biases for each gate are

determined in the training process. The general equation of an LSTM gate is

expressed in equation 6.2.

ℎ𝑡 = 𝜎(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1) (6.2)

The output state of the current cell at time t (ht) is dependant on a

weighted function of the current input (Wxt) added to a weighted function of the

previous output state (Uht-1) multiplied by an activation function σ.

The biLSTM is constructed from 2 LSTMs, one taking the input in the

forward direction and the other taking it in the reverse direction (Figure 6-6). The

output Y of each biLSTM cell is calculated as a function (σ) combining the outputs of

both forward (hFWD)and reverse (hREV) LSTM cells.

𝑌𝑡 = 𝜎(ℎ𝑡𝐹𝑊𝐷 + ℎ𝑡𝑅𝐸𝑉) (6.3)

M.J.Anderson, PhD Thesis, Aston University 2023

95

Figure 6-6 3-cell section of a biLSTM.

The starting point for this realization is a trained Python model of the

biLSTM network. The proliferation of ML based applications and solutions has

generated a number of readily available software packages and libraries to build and

train ML models, with Python based tools such as Google’s open source platform –

Tensorflow [95] – being commonly used for this task. The Python source code

generated is not directly synthesizable into hardware gates so an additional step is

required where the Python is converted into C++ which can be used as a design

entry point as shown in the design flow depicted in Figure 6-5.

A more detailed description of this model and of its training phase have

been published in [88] but in summary the biLSTM layer consists of 35 hidden units

(equating to ht in equation 6.2) taking 81 inputs and, after a convolutional output

layer, a total of 61 symbols are output (Figure 6-7). It is this parallelisation of the

outputs which allows the FPGA to have a high throughput. Hyperbolic Tangent

activation functions were used in the hidden layers whereas the output used a linear

activation function. The Mean Square Error (MSE) loss function and the Adam

algorithm for stochastic optimisation [96] were used during training.

M.J.Anderson, PhD Thesis, Aston University 2023

96

Figure 6-7 Recurrent equalizer using biLSTM Hidden Layers [88].

The targeted evaluation board for this equalizer implementation was the

AMD Versal VCK190 [97] which is equipped with an AMD XCVC1902 Adaptive

Computing SoC, a high performance device built using a 7nm process technology.

The associated AMD toolchain as part of the overall design process is shown in

Figure 6-8.

Figure 6-8 AMD Toolchain and the steps used to realize a NN [88].

M.J.Anderson, PhD Thesis, Aston University 2023

97

6.2.1 C++ Implementation of Neural Networks and Generation of VHDL through

High Level Synthesis

The HLS design flow allows a functional code block to be described using a

high level of abstraction in C++ code and then automatically converted into

synthesisable VHDL for use in a normal FPGA tool flow. The C++ model is untimed,

that is, it has no internal clocked storage in its functional description and clocked

elements are added later in the VHDL conversion process. The advantage of this

method is that it separates the functional behaviour of the block, in this instance a

biLSTM NN, from the technology specific features of the FPGA. Working at a higher

level of abstraction, the intended functionality can be the focus of attention and be

described more easily in fewer lines of code [98] bypassing the lower level Register

Transfer Level (RTL) constructs associated with languages such as VHDL, e.g.

process sensitivity lists and clock statements, which define the hardware data flow.

As the C++ model is untimed, functional verification in C++ is much faster than

functional simulation in VHDL where a timed model approach is taken i.e. the state

of every node in the model is evaluated (sequentially controlled by the

aforementioned sensitivity lists and clock statements) on every simulation ‘tick’.

This makes it quicker to test and debug the design [99].

Ultimately, the model being described in C++ for HLS is to be targeted at a

hardware device and it is important to recognise this throughout the conversion. It

is important to note that, although HLS supports an extensive range of the C++

language, not all can be synthesized into an FPGA. The FPGA has a different

architecture from a CPU. For example, during the course of NN implementation,

memory allocation is a key part of writing the C++ code that needs to be properly

assessed. In hardware, such as an FPGA, the memory allocations are static and are

assigned to specific instances of RAM during the technology mapping phase of the

physical design flow, meaning that the designer must allow for sufficient memory

before execution. Dynamic memory allocations, as found in many C++ standard

library functions e.g. calloc(), which allocate memory at runtime, cannot be

supported and must be avoided or replaced with functions optimized for

implementation in an FPGA by using the libraries provided by the HLS tool supplier,

in this case, AMD. Similarly, high level functions which would relate to the operating

system such as file or date and time operations have no equivalent meaning in

M.J.Anderson, PhD Thesis, Aston University 2023

98

hardware and all data exchanged with the FPGA block must use simple digital

input/output ports.

As shown in Figure 6-8, two pieces of C++ code are required by the HLS

flow. The first is the testbench, which will not be converted into VHDL, while the

second is the function to be converted and implemented in VHDL. The testbench

code contains the entry point (by convention labelled as the main() function) to the

model and also any functions which do not form part of the synthesizable code, for

example, in this case the testbench was used to read the previously saved signal

inputs and weights derived through Python training and convert them to a fixed-

point 32 bit format. This format was selected to take advantage of the simpler

implementation of integer arithmetic in hardware. The function contained in the

second piece of C++ code was the C++ translation of the Python NN biLSTM

equalization architecture, using fixed-point arithmetic operations. It is this piece of

code which was subsequently converted into VHDL. The purpose of the testbench

was then to take the outputs from the biLSTM code after equalization has been

performed and to verify the performance of the C++ model by calculating the MSE.

The recursive structure of the implemented LSTM cell is illustrated in

Figure 6-9. The recursion is indicated by the dashed line. Expanding on equation 6.2

the equations for each of the LSTM data gates at time t are given as:

𝑖𝑡=𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (6.4)

𝑓𝑡=𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (6.5)

𝑜𝑡=𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (6.6)

𝑐̃𝑡=∅(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (6.7)

𝑐𝑡=𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑐̃𝑡 (6.8)

ℎ𝑡=𝑜𝑡⨀𝜙(𝑐𝑡) (6.9)

∅ is usually the hyperbolic tangent activation function (tanh), σ is the

sigmoid activation function, xt is the input vector at time t, W and U represent the

M.J.Anderson, PhD Thesis, Aston University 2023

99

trainable weight matrices, and b is the bias vector. it; ft; ot; 𝑐̃𝑡, ct, and ht denote input

gate, forget gate, output gate, cell input, cell state, and hidden state vectors,

respectively. The ⊙ symbol represents the elementwise (Hadamard) multiplication.

For the implemented hardware, the input data ht−1, xt, and weight matrices

W and U are read for each gate, and the systolic array technique is used to do the

matrix multiplication. The results are temporarily stored in memory on the chip.

Next, the activation function module reads the data from this temporary buffer and

calculates the output vectors corresponding to each gate; i, f, o, and c, as shown in

Figure 6-9. Each gate's output is then buffered in memory. Finally, the element-wise

computation module reads the data - i, f, o and c from the buffer, completes the

element-wise computation and then obtains the output ht and cell state ct, which will

be used in the next time step. After all required time steps have been completed, the

final output is written back to the memory.

Figure 6-9 Structure of an LSTM cell showing the recursive path and the
implementation of the LSTM showing buffers [88].

When using HLS some human design intervention is still necessary: even

though the conversion to VHDL is automated, engineering decisions, based on an

understanding of the targeted FPGA device architecture and the intended

implementation of the NN, must be taken to achieve the desired performance. This

presented one of the major challenges in achieving a physical implementation which

met its target performance parameters. HLS supports a set of directives, or pragmas,

that can be used to modify and guide the behaviour of the HLS C++ to VHDL

synthesis stage to support these interventions [100]. By utilizing these pragmas, it

is possible to investigate several design structures without re-coding the model in

order to discover the best implementation. Although there are a variety of different

pragmas, here those relating to pipelines, loops and arrays have been used.

M.J.Anderson, PhD Thesis, Aston University 2023

100

Pipelines allow the parallel execution of operations within a function,

lowering the number of clock cycles between commencing loop iterations; these

clock cycles are referred to as the Iteration Interval (II). If there are no dependencies

each loop iteration does not need to end before the next one begins, i.e., the

iterations can overlap. The number of pipeline stages can be controlled by setting

the value of II using the HLS pipeline pragma. Setting the II to 1, as was done in this

project, enables each cycle to begin with a new iteration.

An example of pipelining in action is illustrated in Figure 6-10. A loop

function has been split into 5 operations. Operations A-E each take 1 clock cycle to

execute. With no pipelining (i) a new iteration can only start every 5 clock cycles. If

there are no conflicts or shared resources, applying pipelining with an II of 1 allows

a new iteration to start every clock cycle (ii)

Figure 6-10 Pipelining of loop operations.

Loops can be manipulated by unrolling and flattening. By default, the VHDL

conversion process favours using minimum circuit resources and so leaves loops

within a function rolled up, which means that the loop body is executed sequentially,

utilizing a single set of logic resources. The minimum loop delay is then equal to the

number of loop iterations. By unrolling the loop multiple copies of the loop body

logic are created, enabling parallel execution and reduced latency at the expense of

M.J.Anderson, PhD Thesis, Aston University 2023

101

additional circuit resources. Loops can be entirely or partially unrolled, resulting in

either one copy of the loop body for each iteration, giving optimum throughput, or

fewer copies for reduced resource cost. The flatten directive transforms a hierarchy

of nested loops into a single loop, which eliminates a clock cycle delay while

traversing between higher and lower nested loops and can help with better

optimization of the loop logic. Flattening can only occur if the loops are functionally

perfect. In a perfect loop there are no dependencies between loop iterations.

In Figure 6-11 the rolled loop (i) would take a minimum of 3 cycles to

execute the function on the 3 inputs. Note the multiplexor on the input to Fn which

can lead to a long path. Unrolling the loop (ii) allows execution to be completed in a

single cycle at the cost of 3 implementations of Fn. While unrolling the loop can lead

to a single cycle implementation, as the output of one function is dependent on the

output of the previous function, the overall speed increase is limited and the cycle

time may need to increase to accomplish the additional processing within one cycle.

Figure 6-11 Unrolling of looped functions.

Given this limitation, the loops in the feedforward NN layers were able to

be flattened; however, the loops in the recurrent NN layers were imperfect and

could not be flattened due to their memory dependence. In the recurrent layer,

therefore, only the matrix multiplication function in each LSTM was able to be

flattened.

M.J.Anderson, PhD Thesis, Aston University 2023

102

Array structures can be partitioned and reshaped. HLS will implement

arrays defined in the C++ code as RAM blocks in the VHDL model. This can cause a

restriction in the design concurrency as FPGA RAM blocks only have 2 access ports,

which, if the designer has also used the unroll and pipeline pragmas, will need to be

shared between all instances of the loop body. By reshaping and partitioning the

array, the size and number of these memory blocks can be controlled. To enable the

successful flattening of the loops in the NN architecture, the non-equalized signal

(input signal) and the weights of the NN architecture required partitioning to spread

the implemented array across multiple RAMs and increase the number of visible

access ports.

The final stage of the HLS step was to export the generated VHDL and the

HLS derived constraints for use in the physical design step.

6.2.2 The Physical Synthesis Step to the FPGA Realization

During the HLS C++ to VHDL conversion process, targets relating to the

performance of the design can be set. These area and timing reports generated by

the HLS process are, however, only estimates of the final design performance based

on the technology-specific data libraries for each FPGA; the actual performance

cannot be determined until the physical implementation is complete. For this work,

the Vivado Design suite from AMD was utilized [101]. Vivado uses design entry

through Hardware Description Languages (HDL) such as VHDL. The physical

implementation of the design into the FPGA device is performed by Vivado in three

steps: technology mapping, placement and routing, and timing analysis.

Technology Mapping: Within this step, the VHDL source code is translated

into primitive logic gates and functions described by Boolean logic equations,

followed by mapping these gates and equations onto FPGA programable logic blocks

containing D-type FFs (DFFs) and RAM-based LUTs or more specialized functional

cells, such as DSPs, as covered in Section 3.1. During the technology mapping phase,

the design is optimized eliminating duplicated or unnecessary logic.

The next two steps in the physical implementation constitute an iterative

process executed automatically by the tool based on design constraints, such as a

clock frequency. These limitations can be inherited from the HLS stage or defined in

Vivado. The Vivado tool provides sets of pre-configured options through established

optimization strategies, which are discussed in detail in the AMD user manuals

M.J.Anderson, PhD Thesis, Aston University 2023

103

[102], and which the user can apply depending on the design goals. The optimal

technique is determined by balancing computer runtime and outcomes. In [103] we

can find all potential pairings of synthesis and optimization procedures in Vivado

using a high-speed pulse width modulation circuit as a target design, as well as a

comprehensive evaluation of the runtime versus performance of the different

Vivado optimization methodologies. Since the target here was to increase

throughput, solutions that targeted a reduction in chip size, power, or runtime were

discarded and the Vivado configuration called “Performance ExtraTimingOpt” was

adopted, since it effectively optimizes throughput by reducing timing slack.

Placement and Routing: This stage positions the logic blocks, developed

during the mapping phase, onto the specific elements of the FPGA cell array (Figure

3-1), and configures the signal routing switches between them. The placement

algorithm starts from a random seed position and then moves functions around the

cell array based on the degree of placement congestion observed in parts of the die

and the fanout of the driving function.

Time Analysis: This stage compares the design with the provided timing

constraints to determine whether the overall performance requirement has been

met. Timing analysis, in particular, requires a solid understanding of the FPGA

structure and how the design has been mapped onto the array. It may be necessary

to return to the HLS phase, as indicated by the iteration path in Figure 6-8, to apply

more directives or even adjust the function’s architecture to achieve timing closure.

The time for a data (signal) to travel between two points is determined by a variety

of factors, including DFF switching time, setup requirements (the time at which the

signal must arrive at the destination before the capturing clock edge), logic and

routing path delays, and clock edge uncertainty due to jitter and clock path skew.

The critical metric here is the timing slack.

A negative timing slack indicates that the total delay in the data path

between two DFFs is greater than the requested clock period. In this work the

presence of negative slack, only reported once the physical implementation was

complete, presented a challenge in successfully demonstrating the realization of the

biLSTM in an FPGA. The NN had many nested loops and, as discussed in the previous

Section 6.2.1, unrolling these loops would lead to a larger design consuming more

logic area; but leaving large loops, i.e., the loops with a high number of iterations

rolled up for area efficiency, can produce long logic multiplexer paths, as the inputs

M.J.Anderson, PhD Thesis, Aston University 2023

104

to the loop logic are selected (as illustrated in Figure 6-11 case (i)). Long logic paths

i.e ones which pass through many LUTs’ without any DFF retiming stages,

accumulate long routing delays as the design is distributed during the placement

operation. As previously stated, the HLS conversion phase can only make an

estimate of timing paths as the tool will not be aware of all influencing factors at that

stage, e.g further design features such as 3rd party IP, not being introduced through

the HLS flow. Using Vivado timing analysis reports and an annotated netlist viewer,

it was possible to identify the multiplexor paths which were responsible for the

negative slack. In this case, the solution was to return to the C++ source and, by

understanding how the C++ signal names had been mapped onto VHDL signal

names, reorder the nested loops so that the outer loop, which was not being

unrolled, had fewer iterations; this approach reduced the size of the logic chain in

the multiplexer path leading to a positive timing slack result.

6.2.3 Conclusions from the implementation of a biLSTM NN equalizer

The first conclusion from this implementation is reached when analysing

the resource utilisation in the FPGA. The biLSTM based equalizer required Block

Random Access Memory (BRAM) to store future/past recurrent states, while the

CDC does not need such blocks. BRAM is used to store the hidden states (ht)of an

LSTM cell, which can then be fed back into the NN at the next time step to maintain

its memory. The structure of the system of an LSTM cell is shown in Figure 6-9, and

the buffers, shown between stages, used in the implementation were synthesized as

BRAMs on the chip. The number reported in the Table 6-1 is the number of BRAM

blocks, which was the automatic result reported after the technology mapping step

using Vivado. By using BRAM, the hidden state information can be stored in a

dedicated memory block, separate from the other resources in the FPGA. This can

lead to improved performance, as memory accesses are timing optimized and

dedicated resources are used for memory storage. However, the size of the BRAM

blocks and the memory requirements for the recurrent connections should be

carefully scrutinized when designing an LSTM on an FPGA. The available BRAM

resources may be limited, and it may be necessary to trade off memory size for

performance, depending on the throughput requirements of the specific LSTM

application. BRAM on the Versal FPGA device used here, has a maximum of 2 read

and 2 write ports available per instance [104], limiting the number of neural cells

M.J.Anderson, PhD Thesis, Aston University 2023

105

which can simultaneously access the memory block. This can impact the pipelineing

behaviour discussed previously, preventing pipeline stages operating in parallel and

increasing latency. The resource usage of DSP slices, LUT, and FF in the biLSTM is

shown in Table 6-1. This equates to 64% of DSP slices and 13% of LUTs and FFs in

the Versal VC1902.

biLSTM implementation- Versal VC1902 resource usage (post fitter) and
performance
Logic Cells 113532 (13% of total available)
Single Bit logic registers 224386 (13% of total available)
DSP engines 1260 (64% of total available)
Memory Blocks (36Kb BRAM) 164
Clock Frequency (MHz) 270

Table 6-1 Post Fit resource utilisation biLSTM based equalizer.

The mapping of the biLSTM function onto the VC1902 device is show in Figure

6-12. The columnlike characteristic of the layout is related to the high number of DSP

slices required in the design and the columnar architecture of the FPGA (see Figure

3-1).

Figure 6-12 Design placement biLSTM based equaliser.

Next, in terms of throughput, the clock frequency is the maximum that the

implementation can handle to comply with a zero-negative slack design. The feedback

M.J.Anderson, PhD Thesis, Aston University 2023

106

paths in the LSTM neuron cells caused a bottleneck in the design, limiting the clock

speed.

The performance of this biLSTM based equaliser when addressing channel

non-linearity has been analysed thoroughly, in the experiment described in [94], in

comparison to a traditional one step per span digital backpropagation (DBP)solution,

a deep convolutional neural network (CNN) solution and a DSP based Chromatic

Dispersion Compensation (CDC) block. The Q-factor with respect to launch power for

each solution was plotted as shown in Figure 6-13. The biLSTM based solution was

determined to have given a 1.7 dB improvement in Q-factor when compared to a CDC

solution, which was also better than the gains seen using a CNN or DBP solution. The

HLS approach enabled the biLSTM implementation to be adapted quickly in order to

address timing performance issues due to excessively long paths. From the utilisation

figures reported in [94], comparing the biLSTM, CNN and CDC implementations, it is

observed that, once the solution is scaled up to a throughput of 400 Gbit/s, the biLSTM

only requires 2.5x the FPGA processing capacity when compared to a CDC.

Figure 6-13 Q-factor versus launch power for the different types of
equalizer (described in the legends) by experiment [94]

Finally, with regards to the design flow, the HLS method proved to be

efficient and capable when converting a C++ model of an ANN into VHDL, allowing the

initial model to be developed without extensive knowledge of the FPGA architecture.

The ability to quickly experiment with loop architectures in order to minimise

estimated latency was exceptionally beneficial even though a path timing violation,

shown as negative slack, still occurred after layout. The downside to the HLS approach

M.J.Anderson, PhD Thesis, Aston University 2023

107

was that the model signal names did not persist transparently through the conversion

process. When a timing problem was reported post layout the reverse engineering of

that path to the original C++ model was frustrating but achievable.

This work concludes that NNs are an excellent subject for exploiting the

benefits of HLS, as their nested architecture consisting of multiple layers and several

multiply and accumulate functions can make good use of the loop and pipeline

directives to investigate the trade-off between area and latency to meet the design

requirements.

6.3 MZM and ML

One of the main tasks when characterising a Mach Zehnder modulator is

the determination of the transfer function by finding Vpi. From this value, the initial

positions of the principle operating points (defined in Section 4.2)can be estimated.

The steps involved in the characterisation of an MZM are described in Section 2.2

and involve lengthy calculations which are normally done on a PC connected to a

testbed. Following the example of 6.2 the question is could a ML algorithm be

simpler to implement than a solution based on an embedded soft core

microcontroller and small enough to be realisable in low cost hardware? Hence,

enabling the task to be self contained on the optical transceiver. The key to Machine

Learning is to be able to find features in the data which can be used to train the ANN

model. There is a clear relationship between harmonics and the transfer function, as

predicted by theory and demonstrated here in Chapter 4, which can potentially be

exploited by a small ANN to identify features relating to the main operating points

on the transfer function for characterisation.

Initial research in the published literature has shown a curve fitting NN is

one possibility [105] [106] utilising a feedforward ANN with a small number of

hidden layers. Following this approach, Figure 6-14 shows an attempt by a deep

ANN to find the transfer function sinusoid in a set of noisy data taken from a bias

sweep recorded during the experiment of section 4.4. The data recorded in the

sweep and the applied bias voltage were both normalised to lie between 1.0 and -

1.0, as shown in Appendix A-1 step 3, as part of the ANN training procedure. The

data for this exercise was deliberately chosen to be a noisy dataset to test the ability

of an ANN to find the underlying sinusoid amongst the noise. In this instance the

M.J.Anderson, PhD Thesis, Aston University 2023

108

response of the 2nd harmonic filter was used. As demonstrated in Figure 4-15 and

Figure 4-16, the 2nd harmonic filter response is not as strong as that of the

fundamental filter and does show a greater noise variation. In Figure 6-14 the noise

is most apparent at the trace minima, which would correspond to the null point on

the transfer function.

Figure 6-14 ANN curve fitting to a filter response obtained during the experiment of
Section 4.

The ANN used to obtain this result was constructed with an Input layer with a single

input, 2 densely connected hidden layers, each of 16 neurons using a ReLU

activation function, and an output layer giving a single result as presented in Figure

6-15. The total number of trainable parameters i.e. weights and bias is shown in

Table 6-2. The Python code used to generate and train this ANN is given in

Appendix A.1.

M.J.Anderson, PhD Thesis, Aston University 2023

109

Figure 6-15 Visualisation of the ANN used to find the transfer function of
Figure 6-14.

Layer (type) Output Shape Number of Parameters
dense (Dense) (None: 16) 32
dense_1 (Dense) (None: 16) 272
dense_2 (Dense) (None: 1) 17

Total params: 321
Trainable params: 321
Non-trainable params: 0

Table 6-2 Parameter Count of the ANN used to find the transfer function in Figure

6-14.

Training the ANN in this manner is unsupervised learning as previously

defined in this chapter. The training data is not labelled and the ANN is finding the

M.J.Anderson, PhD Thesis, Aston University 2023

110

trend connecting the applied Bias voltage (X axis) and the corresponding filter

output (Y axis) in the presented data. In the case being reported i.e. a model capable

of finding Vπ in a manufacturing scenario, the model must be transferrable between

modulators no need for retraining. The issue with this curve fitting approach is that

the ANN is trained to look for a single relationship between Bias voltage and filter

output, and as such this is not suitably transferrable between modulators.

As an alternative, finding V for an MZM from a set of data can be

considered very similar to identifying the period of a waveform working with bias

voltage instead of time. This appears to be a better approach to the problem, one

which is more likely to generate a transferable solution, so is the one which is

explored here.

The ANN architecture was determined by experimentation and has an

input layer of 82 input samples, matching the experimental data obtained in Section

4.4, connected to three densely connected hidden layers of eight neurons each using

a ReLU activation function, before a final output layer gives a single numeric answer.

Training data was generated using a python program (see Appendix A.2), using the

equations determined in Section 4.2 a large number (1000) of filter response curves

could be calculated for values of V ranging from 2000 mV to 8000 mV in small but

equal increments. Each filter response curve was labelled with its V value as a

supervised learning approach was to be adopted. For this data generation a Vbias

step size equal to the step size used in the filter characterisation experiment of

Section 4.4 was chosen giving 82 input values from a single simulated voltage

sweep. The ANN was implemented in a Python Notebook using the Tensorflow

Keras libraries and was trained using Google’s Colab server.

During training it became apparent that the Vbias offset was a significant

factor in obtaining a good, repeatable, result. The training data was then enhanced

by adding another step where, for each Vπ value generated a series of 500 evenly

spaced voltage offsets between -3000 mV and +3000mV were applied. This gave a

total number of 500000 training waveforms.

The ability to determine the voltage offset of the transfer function from the

ideal position is very useful when characterising an MZM, so another output was

added to the ANN to give a voltage offset as well as Vπ as outputs and another label,

for the offset, was added to the training data.

M.J.Anderson, PhD Thesis, Aston University 2023

111

The final ANN used to predict the values of Vπ and Voffset was constructed

with an input layer taking 82 inputs ,3 densely connected hidden layers of 8 neurons

using a ReLU activation function in each layer and 1 densely connected output layer

of 2 neurons returning values for V and Voffset. The loss function used during

training was Mean Square Error (MSE). This resulted in an ANN with 664 trainable

parameters in the 1st hidden layer, 72 in 2nd hidden layer and also in the 3rd layer,

then 18 in the final output layer. Giving a total of 826 Weights and biases as shown

in Figure 6-16 and Table 6-3.

Once trained, the ANN model was saved and tested using real data obtained

in the experiment of Section 4.4.

Figure 6-16 ANN structure used to Determine Vπ and Offset.

M.J.Anderson, PhD Thesis, Aston University 2023

112

Layer (type) Output Shape Number of Parameters
input_1 (InputLayer) (None: 82) 0
dense (Dense) (None: 8) 664
dense_1 (Dense) (None: 8) 72
dense_2 (Dense) (None: 8) 72
dense_3 (Dense) (None: 2) 18

Total Params 826
Trainable Params 826
Non-trainable Params 0

Table 6-3 Parameter count of the ANN used to determine Vπ and Offset.

6.3.1 Results

To test the behaviour of the trained neural network another set of data was

generated and was input into the model to generate a prediction. A further two sets

of data taken from the results of the experiment in Section 4.4 was also applied.

A summary of the results is presented in Table 6-4 and plotted in Figure

6-17. The plot shows that the trained ML model is performing the characterisation

task with a good degree of accuracy. It is only at the higher values of V that the

performance drops significantly. This is most likely due to the limit on the upper

bounds of the training data which was chosen.

Target V

(mV)
Target
Offset (mV)

Predicted
V (mV)

Predicted
Offset (mV)

V Error
(mV)

Offset Error
(mV)

5220 2100 5213 2098 7 2
4400 -2700 4365 -2658 35 -42
3140 700 3113 770 27 -70
3140 -700 3182 -727 -42 27
3140 1700 3120 1690 20 10
3140 -1700 3080 -1708 60 8
1250 100 1268 111 -18 -11
7340 -1300 6950 -1166 390 -134
1250 200 1276 225 -26 -25
1000 0 1037 -130 -37 130
7000 0 6794 78 206 -78

Table 6-4 generated target values vs predicted testpoints with error (mV).

M.J.Anderson, PhD Thesis, Aston University 2023

113

Figure 6-17 Plot of generated target vs predicted data points.

The recorded experimental data obtained from Section 4.4 is plotted in

Figure 6-18 and Figure 6-19 below. The derived values in each case, for V (≈ 4390

mV and ≈ 4150 mV) and the absolute value for VOFFSET (≈2700 mV and ≈ 1720 mV),

have been annotated onto the graphs. When the data was presented to the trained

ANN model a V of 4439 mV and VOFFSET of -2768 mV were predicted for the first set

of data and a V of 4102 mV and VOFFSET of -1836 mV were predicted for the first set

(see Table 6-5). The negative value for VOFFSET indicating that the transfer function

was shifted to the right of the nominal position. The overall magnitude of the

prediction errors is in line with the simulated test data, even in the presence of ‘real

world’ noise on the filter output. The prediction errors recorded are all less than one

DC bias ‘sweep step’ (250 mV) of the target value, which is an acceptable starting

point for a subsequent bias point controller to begin managing the transfer function

drift. A reduction in the error could, potentially, be achieved by reducing the sweep

step size and gathering more datapoints from the calibration sweep. The cost of this

would be twofold. Firstly, the complexity of the ML model would be increased and

the number of trainable parameters would also increase. Halving the step size and

gathering 164 input samples, while keeping the hidden layer structure the same,

would increase the number of first layer trainable parameters from 664 to 1320.

This is still substantially less memory than was required by the soft microcontroller

demonstrated in Chapter 5. Secondly, the time required to perform the calculation

would increase. This is the factor which affects the potential cost saving benefits of

using a smarter transceiver for self-characterisation. The additional time required to

M.J.Anderson, PhD Thesis, Aston University 2023

114

take the extra samples is almost totally mitigated by keeping the data processing on

the device. Following the conclusions of Chapter 4, a sweep of 164 DC bias values,

using that experimental setup, would be completed in 0.8 seconds.

Figure 6-18 Experimental data used as input to ANN

Figure 6-19 2nd experimental sweep data used as input to ANN

Target V

(mV)
Target
Offset (mV)

Predicted
V (mV)

Predicted
Offset (mV)

V Error
(mV)

Offset Error
(mV)

4390 2700
 (to right)

4439 -2768 -49 68

4150 1720 (to
right

4102 -1836 48 116

Table 6-5 Experimental recorded values vs ANN predicted
values

The developed ML solution to determining V and VOFFSET has been shown

to be of significantly lower complexity than a soft embedded microcontroller

M.J.Anderson, PhD Thesis, Aston University 2023

115

capable of performing the same task, particularly when comparing the memory

requirements. As demonstrated in Figure 5-5, the RAM requirements are

substantially reduced from 592128 bits, used mostly for program space and

operating system storage by the NIOSII , down to 13216 bits based on 826 x 16 bit

implementations of the trainable parameters. This lower complexity and reduced

memory requirement support the use of a cost-optimised, computationally limited

FPGA.

While proceeding to the implementation step, following the steps set out in

Section 6.2, two issues were found with the toolchain which prevented a successful

implementation. While replicating the high-level design and simulation flow

demonstrated during the creation of the biLSTM solution, the Intel HLS compiler

was found to have been deprecated from the Quartus lite toolchain. As the target

board used in the experiment of Section 4.4 used an Intel MAX10 device, no other

solution was readily available. Section7.2 of this thesis presents some future options

to progress. The quantisation and subsequent simulation of the Python model to use

lower precision fixed point weights and biases was also impacted by unexpected

errors from the Tensorflow lite tool. This prevented the generation of validated

quantised weights and biases which could then have been used to manually code

such a small NN.

6.4 Summary

Chapter 6 has provided an introduction to the developing field of Machine

Learning and introduced some of the wide variety of applications using ML and also

some of the concepts relating to the design and training of ML models. The push to

move ML to the edge to reduce latency and the volume of data transmitted has been

recognised. The suitability of FPGAs to implement ML has been shown by examining

how an ANN can be efficiently mapped onto FPGA logic structures to implement the

neurons of a trained inference model and where this can leverage the advantages of

parallel processing in the FPGA.

The design flow of an ANN, from a high-level functional model to FPGA

realisation, has been demonstrated, through the first time implementation of a

M.J.Anderson, PhD Thesis, Aston University 2023

116

biLSTM based equalizer for non-linear effects, the potential issues this can raise

have been identified and ways of addressing them discussed.

Finally, in addressing the original concept of this thesis, the novel use of a

small ANN to perform a characterisation task on an MZM, as a possible solution to

the problem of increasing test time during manufacture of optical assemblies, has

been examined. With the results presented showing an acceptable degree of

accuracy – generally better than 2% of Vπ and within one bias voltage sweep step-

even with real data with noise. The time saving comes from being able to calculate

sufficiently accurate values for Vπ and VOFFSET on-device, removing the bottleneck of

passing the large quantity of acquired, unprocessed data off-device to an external

computer for analysis. Furthermore, by showing that it is possible to embed the test

intelligence in the module, and without needing external measurement equipment,

it can be seen that it becomes possible to repeat tests away from the manufacturing

factory, potentially without an operator being present.

M.J.Anderson, PhD Thesis, Aston University 2023

117

7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis the need for creating smarter optical transceivers using FPGA

technology has been established from a number of perspectives, starting from the

wider pictures of both the increasing demands on optical capacity and the cost

pressures of manufacturing, before focussing on the specific example of adding

built-in characterisation intelligence to a transceiver using optical MZMs. ML has

been demonstrated as a method of adding this intelligence through implementation

in FPGAs.

As reported in Chapter 2, the nature of network traffic is changing and the

pressures on bandwidth are increasing. This presents the double challenges of

network flexibility and increased bandwidth. Higher bandwidth is now required

further towards the network edge as connected devices and cloud based streaming

services come to dominate the datasphere. The transceivers required to address

these challenges are becoming more complex to build, featuring arrays of co-

packaged components to enable densely packed multichannel optics to be created.

The cost of packaging and testing these arrays of components is a significant portion

of the overall device cost. Components must be tested and retested throughout the

manufacturing process to eliminate failures at as early a stage as possible.

Performing these tests automatically is of financial benefit.

The potential of FPGAs to offer a solution to increasing test times has been

discussed in Chapter 3. Following an introduction to the technology of FPGAs and a

look at the advantages they can offer over ASICs, through their reconfigurability and

low development costs, and microcontrollers, through their parallel processing

capabilities, the issues affecting manufacturing are examined in detail using the

specific examples of determining a laser tuning map and characterising an MZM. By

leveraging their reconfigurability and parallel behaviour the concept of creating

reusable blocks for use during the manufacturing process, capable of reducing test

times by performing operations in parallel and autonomously, is introduced.

Through the experimental work of Chapter 4, the use of low cost digital

hardware to implement a circuit capable of monitoring the transfer function of a

M.J.Anderson, PhD Thesis, Aston University 2023

118

Mach Zehnder Modulator has been confirmed. The small resource requirements of

the Goertzel algorithm based filter, particularly when compared to an equivalent FIR

or IIR digital filter, are a distinct advantage when analysing the overheads of adding

monitoring functionality. Yet, this filter was shown to be able to accurately reflect

the transfer function of the MZM through its fundamental and 2nd harmonic

responses to a bias voltage sweep. Moving the control of the bias sweep function

into the FPGA, alongside the filters, has been calculated to reduce this portion of the

test activity from over 100 minutes to, in the order of, a few seconds.

Chapter 5 explored the, more usual, approach of implementing a small

microcontroller using FPGA cells, which was capable of hosting an embedded Linux

operating system and running tests through scripts. This showed that, although this

is a usable route, the resources required to implement this simple microcontroller

required an FPGA six times larger than the one used to implement the Goertzel

filters of Chapter 4, adding cost overhead to an embedded self-test solution.

Chapter 6 introduced the adoption of ML techniques, specifically ANNs, as

part of a low cost on device characterisation solution. ML is finding new applications

at the system edge, being used to preprocess data in situ, in order to reduce latency

in the decision making process and allow ML to operate at the end of low bandwidth

connections. The use of FPGAs to implement trained ML models has been

established in this thesis, both by showing how an ANN can be mapped onto FPGA

cells and through the demonstration of a high level design flow to realise a

bidirectional RNN, based on a biLSTM architecture, in an FPGA. The issues, relating

to negative timing slack, which occurred in this experiment have been included in

the discussion.

Across this thesis three first-time achievements have been reported, the

first being the demonstration of the use of efficient Goertzel algorithm based filters

as part of the monitoring of an MZM transfer function. The second is the

implementation in FPGA technology of a biLSTM based equalizer for non-linear

effects in optical communications systems and finally, the third is the use of a small

size ANN to perform the Vπ and Voffset characterisation of an MZM optical

component.

In conclusion, this thesis can be regarded to have proved the hypothesis

put forward in Chapter 1.4 – FPGAs are a flexible tool which have been shown to

have the potential to be used in optical transceivers to provide cost-effective and

M.J.Anderson, PhD Thesis, Aston University 2023

119

repurposable embedded test functions in optical transceivers, utilising Machine

Learning techniques, enabling built-in test and characterisation activities to be

performed.

7.2 Future Work

The question of how to address all possible characterisation tasks for the

different, constituent, parts of an integrated optical module, and indeed which are

the most pertinent of these tasks, is quite possibly an entire domain of research in

itself. Machine Learning is currently an ever-expanding field of research as we seek

out new problems that it can solve for us.

As has been seen in this thesis, the availability of large scale, real and

varied data for training and validation of Machine Learning models can present a

challenge. The greatest source of this is likely to be the module manufacturers

themselves, however, this data can be seen as commercially sensitive and not

readily shared. To progress the work started here, an agreement with an industrial

partner would be highly advantageous.

The work contained in this thesis has demonstrated some of what is

possible by using real time micro-scale Machine Learning engines as a part of real

world solutions, but there is still some way to go in order to encourage uptake of

this technique outside of research. First, additional ML model architectures need to

be investigated to see where the most efficient solutions lie. For example, the use of

the 2nd harmonic response as an additional input to the Vπ ANN has not yet been

simulated. Alternatively, consider the case of key word recognition. Here a

pictogram is built from the time varying frequency patterns of the phrase (Figure

7-1 [107]). The pictograms turn this from a frequency detection problem into an

image recognition problem, with the frequency map of a given phrase becoming the

training data for a Neural Network. Based on the results presented earlier using the

simple Goertzel filter, a frequency map based on 1st and 2nd harmonics could be

generated. Also, the use of RNN architectures can be investigated to assess their

potential, such as the biLSTM, for detecting the high and low points of the filter

response. Looking beyond the MZM, ML solutions to the laser tuning

characterisation, as shown in Figure 3-6, would seem to be useful, particularly if

they can then be actioned remotely, when the transceiver is in-service.

M.J.Anderson, PhD Thesis, Aston University 2023

120

Finally, there remain outstanding questions on the implications of

quantisation and the impact on quality of results. The migration of the trained

model’s weights and biases to 16 or 8 bit fixed point or integer representations and

the use of input and output values also in the fixed point or integer form that these

numbers would be represented in the FPGA is essential in order to achieve a

practical implementation of the MZM characterisation. As reported in Section 6.3.1,

the toolchain to support the HLS route to implement the design in the target Intel

Max10 had become unavailable and a new experimental setup, targeting a different

device (for example the Microchip IGLOO2) will provide a solution to this. While the

ANN is small scale and has relatively few interconnections between neurons, the

possibility of manually coding the ANN using a hardware description language such

as VHDL remains as an approach to keep the established experimental setup.

Verifying the quantised design using VHDL remains a challenge if manual coding is

used, due to the relative slow speed of VHDL simulation compared with C/C++.

Figure 7-1 Example speech pictogram showing frequency magnitude vs time

M.J.Anderson, PhD Thesis, Aston University 2023

121

APPENDIX A TENSORFLOW AND PYTHON CODE

A.1. Python code and steps used to generate curve fitting ANN.

1. Firstly, set up the Python environment by loading the relevant libraries.

As the training was performed on Google Colab, a Google drive was also

mounted and the dataset loaded from a file on this drive.

import numpy as np

import matplotlib.pyplot as plt

Mount your Google Drive to access files in a folder

from google.colab import drive

drive.mount('/content/drive')

dataset=np.genfromtxt(r"/content/drive/My Drive/MZMLog_16 October

2019_112334.csv",delimiter=",")

the leading r converts the path string to a raw string otherwise the /

is seen as an escape character

need to remove the initial message and date lines for this to work

2. Extract the relevant data from the columns of the dataset. Plot this data

to confirm it is correct (Figure A-0-1).

train_x = dataset[1:,3].astype(np.float32)

train_y = dataset[1:,6].astype(np.float32)

train_x.shape

plt.rcParams["figure.figsize"] = (12,8)

plt.plot(train_x, train_y, 'o') ;

plt.show()

M.J.Anderson, PhD Thesis, Aston University 2023

122

Figure A-0-1 Extracted training data for curve fitting ANN.

3. Normalize the data and replot to check it is still the same shape (Figure

A-0-2)

train_x = train_x.reshape(-1,1)

train_y = train_y.reshape(-1,1)

train_x = train_x - np.mean(train_x, axis = 0)

train_x = train_x / np.max(train_x, axis = 0)

train_x.shape

train_y = train_y - np.mean(train_y, axis = 0)

train_y = train_y / np.max(train_y, axis = 0)

train_y.shape

plt.rcParams["figure.figsize"] = (12,8)

plt.plot(train_x, train_y, 'o') ;

plt.show()

M.J.Anderson, PhD Thesis, Aston University 2023

123

Figure A-0-2 Normalized training data for curve fitting ANN.

4. Import the Tensorflow libraries, specify the model, train with the

model.fit command and plot the result (Figure A-0-3).

import tensorflow

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.utils import plot_model

tensorflow.keras.backend.clear_session()

n_hidden = 16

model = Sequential()

model.add(Dense(input_dim=1, units=n_hidden, activation='relu'))

model.add(Dense(units=n_hidden, activation='relu'))

model.add(Dense(units=1))

model.summary()

model.compile(loss='mean_squared_error',

optimizer=SGD(learning_rate=0.01))

model.fit(train_x, train_y, epochs=20000, batch_size=m, verbose=0);

y = model.predict(train_x)

plt.plot(train_x, train_y, 'o')

plt.plot(train_x, y, linewidth=5)

plt.show()

M.J.Anderson, PhD Thesis, Aston University 2023

124

Figure A-0-3 predicted curve using trained ANN

A.2. Python code and steps used to generate ANN predicting Vπ

and Voffset.

1. Firstly, set up the Python environment by loading the relevant libraries.

As the training was performed on Google Colab, a Google drive was also

mounted and the file paths set.

import pandas as pd

import numpy as np

from datetime import datetime

import tensorflow as tf

import scipy.special as sp

!pip install keras-visualizer

!pip install graphviz

!pip install pydot

!pip install pydotplus

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.layers.experimental import preprocessing

from keras_visualizer import visualizer

from tensorflow.keras.utils import plot_model

Mount the Google Drive to access files in a folder

from google.colab import drive

M.J.Anderson, PhD Thesis, Aston University 2023

125

drive.mount('/content/drive')

Read the Excel file from the folder

filename1 = '/content/drive/My Drive/Mike/MZMLog_4 Apr_13hz bin85mVpilot

- 2nd no data sweep - 1530nm with avg.xlsx'

modelfile = '/content/drive/My Drive/Mike/MZM_Model'

2. Create a function to generate a set of test data from results recorded

experimentally into an Excel spreadsheet. The column headings were

used to identify the required data. The data is normalized using the ‘max’

normalization i.e. normalized value = value/max absolute value.

def data_generation(filename, v_pi, v_offset, frequency, n_bias_op=0):

 from sklearn import preprocessing

 df = pd.read_excel(filename, dtype={'Timestamp ': np.datetime64})

 # Get the header names of all columns

 header_names = df.columns

 Table_values = df.to_numpy()

 for i in range(len(Table_values[:,0])):

 Table_values[i,0] = np.datetime64(Table_values[i,0])

 index1 = np.where(header_names == ' Goertzel_Quad')

 index2 = np.where(header_names == ' Goertzel_Peak')

 index3 = np.where(header_names == ' Bias Loop Result')

 Goertzel_Quad = Table_values[:,index1].flatten()

 Goertzel_Peak = Table_values[:,index2].flatten()

 # if using the fundamental frequency 4kHz in this case

 if frequency == 4:

 x

=np.copy(preprocessing.normalize([Goertzel_Peak],norm='max'))[0]

 else:

 x

=np.copy(preprocessing.normalize([Goertzel_Quad],norm='max'))[0]

 Bias = Table_values[:,index3].flatten()

 Bias_values = np.unique(Bias)

 if n_bias_op==0:

 n_bias = int(len(Bias_values))

 else:

 n_bias = n_bias_op

 n_bias_ranges = np.zeros(n_bias)

 for i in range(n_bias):

 n_bias_ranges[i]= np.sum(Bias == Bias_values[i])

 data_size = int(np.min(n_bias_ranges))

 print (data_size)

 data_input = np.zeros([data_size,n_bias])

 data_label = np.ones([data_size,2])

 temp=0

M.J.Anderson, PhD Thesis, Aston University 2023

126

 for j in range(n_bias):

 for i in range(data_size):

 data_input[i,j] = x[int(temp+i)]

 data_label[i,(0)] = v_pi

 data_label[i,(1)] = v_offset

 temp += n_bias_ranges[j]

 data_input.shape

 return data_input, data_label

3. Create a function to generate a set of samples from a given Vpi and

Voffset. This is used to create test cases for validation.

def test_stimulus(Vpi, VOffset):

 from sklearn import preprocessing

 import random

 a = 1 ## insertion loss set to 1 for lossless

 Pin = 10000000 ## power in, use as scaling factor to get min/max

 DivScale = 9.5 ## dividing scaling factor to reduce magnitude of

Fundamental curve. Mimics a divisor in the FPGA design

 Stim_StepSize = 50 ## step between adjacent steps sizes when Sweeping

DC Bias DAC

 Vac = 85 ## pk to pk amplitude of the pilot tone in mV

 Stim_n_sample = 50 ## 50 samples at each V

 stim_x = np.arange(0,4100, Stim_StepSize) ## use this to generate x =

DAC values with Stepsize between. the max value isn't included. This

generates values between 0 and 4050 inclusive at 50 increments

 stim_V = ((((stim_x*20.0)/4096.0)-10.0)*1000) ## in mV

 stim_length_x = len(stim_x)

 data_input_stim = np.empty((stim_length_x,Stim_n_sample))

 data_label_stim = np.empty((1,2))

 temp_stim = np.empty((1,Stim_n_sample))

These are the fundamental equations which give the harmonics

 for _j in range(stim_length_x):

 stim_Vdc = stim_V[_j] + VOffset

 ## generate an array of random float between these 2 values to use as

a noise multiplier. Use 1.0 and 1.0 for no noise

 Noise = np.array([random.uniform(1.0, 1.0) for _i in range

(Stim_n_sample)])

 stim_func1 = a*Pin*np.sin(np.pi*(stim_Vdc)/Vpi)

 stim_func2 = (Vac/Vpi)*np.pi

 stim_func3 = a*Pin*np.cos(np.pi*(stim_Vdc)/Vpi)

 data_label_stim[(0),(0)] = Vpi/1000 ## in mV

 data_label_stim[(0),(1)] = VOffset/1000 ## in mv

 # only deriving fundamental at the moment

M.J.Anderson, PhD Thesis, Aston University 2023

127

 temp_stim = (Noise*((stim_func1*sp.jv(1, stim_func2))/DivScale))

 data_input_stim[_j:] = temp_stim

 data_input_stim_transpose=np.transpose(data_input_stim)

 data_input_stim_transpose.reshape(Stim_n_sample,stim_length_x)

 for _k in range (Stim_n_sample):

 data_input_stim_transpose.shape

 data_input_stim_transpose[_k] =

np.copy(preprocessing.normalize([data_input_stim_transpose[_k]],norm='max

'))[0]

 data_label_stim.shape

 data_input_stim_transpose.shape

 return data_input_stim_transpose, data_label_stim

4. Create a function to generate training data from the fundamental

equations describing the harmonic response of the MZM transfer

function.

plot the first 2 harmonics using the derived equations

from sklearn import preprocessing

a = 1 ## insertion loss set to 1 for lossless

Pin = 10000000 ## power in, use as scaling factor to get min/max

DivScale = 9.5 ## dividing scaling factor to reduce magnitude of

Fundamental curve. Mimics a divisor in the FPGA design

StepSize = 50 ## step between adjacent steps sizes when Sweeping DC Bias

DAC

Vac = 85 ## pk to pk amplitude of the pilot tone in mV

x = np.arange(0,4100, StepSize) ## use this to generate x = DAC values

with Stepsize between. the max value isn't included

V = ((((x*20.0)/4096.0)-10.0)*1000) ## in mV

y = np.linspace(1000,8000,1000) # use this to generate multiple filter

responses. Y will be Vpi in mV linspace(a,b,c) creates c evenly

distributed values between b and c

z = np.linspace(-3000,3000,500) # z will be Vdc offset in mV

length_x = len(x)

length_y = len(y)

length_z = len(z)

data_input_train = np.empty(((length_y*length_z),length_x))

data_label_train = np.empty(((length_y*length_z),2))

M.J.Anderson, PhD Thesis, Aston University 2023

128

These are the fundamental equations which give the harmonics

for i in range(length_y):

 Vpi = y[i]

 for j in range(length_z):

 Vdc = V + z[j]

 func1 = a*Pin*np.sin(np.pi*(Vdc)/Vpi)

 func2 = (Vac/Vpi)*np.pi

 func3 = a*Pin*np.cos(np.pi*(Vdc)/Vpi)

 data_label_train[((i*length_z)+j),(0)] = Vpi/1000 ## in mV

 data_label_train[((i*length_z)+j),(1)] = z[j]/1000 ## in mv

 # only deriving fundamental at the moment

 temp = ((func1*sp.jv(1, func2))/DivScale)

 data_input_train[((i*length_z)+j)] =

np.copy(preprocessing.normalize([temp],norm='max'))[0]

data_label_train.shape

data_input_train.shape

#aiming to have 500000 sets of 82 normalized numbers representing filter

response curves

5. Define the ANN.

tf.compat.v1.reset_default_graph()

def model(input_shape1):

 inputs = tf.keras.layers.Input(input_shape1)

 x = tf.keras.layers.Dense(8, 'relu')(inputs)

 x = tf.keras.layers.Dense(8, 'relu')(x)

 x = tf.keras.layers.Dense(8, 'relu')(x)

 output = tf.keras.layers.Dense(2)(x)

 model_created = tf.keras.models.Model(inputs=[inputs],

outputs=[output])

 model_created.compile(loss=["mse"],

optimizer=tf.keras.optimizers.Adam(0.001),

 metrics=["accuracy"])

 return model_created

M.J.Anderson, PhD Thesis, Aston University 2023

129

Model = model((data_input_train.shape[1],))

Model.summary()

plot_model(Model, rankdir='LR', show_shapes='true')

6. Train the ANN. Plot the loss figure during training to look for overfitting

(Figure A-0-4)

%% Training NN Model

%%time

History = Model.fit(

 data_input_train, data_label_train,

 validation_split=0.2,

 batch_size = 1024,

 verbose=0, epochs=100)

hist = pd.DataFrame(History.history)

hist['epoch'] = History.epoch

hist.tail()

Draw a graph of the loss, which is the distance between

the predicted and actual values during training and validation.

def plot_loss(history):

 plt.plot(history.history['loss'], label='loss')

 plt.plot(history.history['val_loss'], label='val_loss')

 plt.ylim([0, 10])

 plt.xlabel('Epoch')

 plt.ylabel('Error')

 plt.legend()

 plt.grid(True)

M.J.Anderson, PhD Thesis, Aston University 2023

130

Figure A-0-4 Reduction of Loss parameter during ANN training

7. Save the Model for future reuse

Model.save(modelfile)

8. Generate a set of validation test data and plot its values (Figure A-0-5),

then use this data to test the trained model

stim_input_test, stim_label_test = test_stimulus(Vpi=3140, VOffset=700)

prediction_v_pi = Model.predict(stim_input_test, verbose=0)

print('V_pi_predicted test', np.mean(prediction_v_pi[0,0]),

np.mean(prediction_v_pi[0,1]) ,'V_pi_label test',

np.mean(stim_label_test[0,0]), np.mean(stim_label_test[0,1]))

plt.plot(stim_input_test[0])

[<matplotlib.lines.Line2D at 0x7950967d1ae0>]

M.J.Anderson, PhD Thesis, Aston University 2023

131

Figure A-0-5 Example generated validation test data.

V_pi_predicted test 3.103526 0.6494898 V_pi_label test 3.14 0.7

M.J.Anderson, PhD Thesis, Aston University 2023

132

8 REFERENCES

[1] C. Minkenberg, R. Krishnaswamy, A. Zilkie and D. Nelson, “Co-packaged

datacenter optics: Opportunities and challenges,” IET Optoelectronics,

vol. 15, no. 2, pp. 77-99, 2021.

[2] T. Kobayashi, J. Cho, M. Lamponi, G. De Valicourt and C. R. Doerr,

“Coherent Optical Transceivers Scaling and Integration Challenges,”

Proceedings of the IEEE, vol. 110, no. 11, pp. 1679-1698, November 2022.

[3] R. T. Logan and D. Basuita, “Space-grade 1–10 Gbps parallel optical

transceivers and fibre optic connectors for SpaceFibre datalinks,” in 2022

International SpaceWire & SpaceFibre Conference (ISC), Pisa, Italy, 2022.

[4] E. Turner and D. Law, “IEEE P802.3ae MDC/MDIO,” September 2001.

[Online]. Available:

https://www.ieee802.org/3/efm/public/sep01/turner_1_0901.pdf.

[Accessed 18 July 2023].

[5] IEEE, “Adopted IEEE P802.3df Timeline (04 Oct 2022),” 4 October 2022.

[Online]. Available:

https://www.ieee802.org/3/df/proj_doc/timeline_3df_221004.pdf.

[Accessed 15 November 2023].

[6] IEEE, “Adopted IEEE P802.3dj Timeline (16 Jan 2023),” 16 January 2023.

[Online]. Available:

https://www.ieee802.org/3/dj/projdoc/timeline_3dj_230116.pdf.

[Accessed 15 November 2023].

[7] 800G Pluggable MSA, “800G-FR4 Technical Specification,” 8 June 2021.

[Online]. Available: https://static.s123-cdn-static-

d.com/uploads/2598123/normal_60bf88b173c87.pdf. [Accessed 2

November 2023].

[8] 800G Pluggable MSA, “800G PSM8 100M SPECIFICATION V1.0,” 28

August 2020. [Online]. Available: https://static.s123-cdn-static-

d.com/uploads/2598123/normal_5f50dfed42c1e.pdf. [Accessed 2

November 2023].

M.J.Anderson, PhD Thesis, Aston University 2023

133

[9] The Ethernet Alliance, “2023 Ethernet Roadmap,” February 2023.

[Online]. Available: https://ethernetalliance.org/wp-

content/uploads/2023/03/EthernetRoadmap-2023-Website-REV-

March-17.pdf. [Accessed 14 November 2023].

[10] Intel Corporation, “MAX® 10 FPGA Device Overview,” 14 June 2022.

[Online]. Available:

https://www.intel.com/content/www/us/en/docs/programmable/683

658/current/fpga-device-overview.html. [Accessed 8 May 2024].

[11] P. J. Winzer and D. T. Neilson, “From Scaling Disparities to Integrated

Parallelism: A Decathlon for a Decade,” Journal of Lightwave Technology,

vol. 35, no. 5, pp. 1099-1115, 2017.

[12] R. Tkach, “Scaling optical communications for the next decade and

beyond,” Bell Labs Technical Journal, vol. 14, no. 4, pp. 3-9, 2010.

[13] Cisco Systems Inc., “Cisco Visual Networking Index: Forecast and

Methodology, 2016 - 2021,” September 2017. [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/complete-white-paper-c11-

481360.html. [Accessed January 2018].

[14] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang and J. Wang, “A first look at cellular

machine-to-machine traffic: large scale measurement and

characterization,” in Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE joint international conference on

Measurement and Modeling of Computer Systems, New York, 2012.

[15] IEEE, “IEEE P802.3bs 400GbE Adopted Timeline,” September 2015.

[Online]. Available:

https://www.ieee802.org/3/bs/timeline_3bs_0915.pdf. [Accessed

Sepetember 2023].

[16] W. Klaus, P. J. Winzer and K. Nakajima, “The Role of Parallelism in the

Evolution of Optical Fiber Communication Systems,” Proceedings of the

IEEE, vol. 110, no. 11, pp. 1619-1654, 2022.

[17] P. Winzer, D. Neilson and A. Chraplyvy, “Fiber-optic transmission and

networking: the previous 20 and the next 20 years,” Optics Express, vol.

26, no. 18, pp. 24190-24239, 2018.

M.J.Anderson, PhD Thesis, Aston University 2023

134

[18] Acacia Communications Inc., “Acacia Unveils Industry’s First Single

Carrier 1.2T Multi-Haul Pluggable Module,” 23 September 2021. [Online].

Available: https://acacia-inc.com/blog/acacia-unveils-industrys-first-

single-carrier-1-2t-multi-haul-pluggable-module/. [Accessed 29 October

2023].

[19] A. Lord, S. J. Savory, M. Tornatore and A. Mitra, “Flexible Technologies to

Increase Optical Network Capacity,” Proceedings of the IEEE, vol. 110, no.

11, pp. 1714-1724, 2022.

[20] Cisco Systems Inc., “Cisco Annual Internet Report (2018–2023) White

Paper,” 9 March 2020. [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html.

[Accessed 1 November 2023].

[21] Nokia, “Global Network Traffic 2030 Report,” 2023. [Online]. Available:

https://onestore.nokia.com/asset/213660. [Accessed 10 May 2024].

[22] International Data Corporation, “Data Age 2025,” April 2017. [Online].

Available: https://www.seagate.com/files/www-content/our-

story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf.

[Accessed November 2023].

[23] S. Chandrasekhar, X. Liu, B. Zhu and D. Peckham, “Transmission of a 1.2-

Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over

7200-km of ultra-large-area fiber,” in 35th European Conference on

Optical Communication, Vienna, Austria, 2009.

[24] A. A. M. Saleh and J. M. Simmons, “Technology and architecture to enable

the explosive growth of the internet,” IEEE Communications Magazine,

vol.49, no.1, pp. 126-132, January 2011.

[25] T. Zami, “Current and Future Flexible Wavelength Routing Cross-

Connects,” Bell Labs Technical Jouranl, vol. 18, no. 3, pp. 23-38, 2013.

[26] J. M. Fabrega, M. S. Moreolo, L. Martín, A. C. Piat, E. Riccardi, D. Roccato, N.

Sambo, F. Cugini, L. Potì, S. Yan, E. Hugues Salas, D. Simeonidou, M.

Gunkel, R. Palmer, S. Fedderwitz, D. Rafique and T. W. H. D. &. N. A.

Rahman, “On the filter narrowing issues in elastic optical networks,”

M.J.Anderson, PhD Thesis, Aston University 2023

135

Journal of Optical Communications and Networking, vol. 8, no. 7, pp. A23-

A33, 2016.

[27] P. J. Winzer, “Energy-Efficient Optical Transport Capacity Scaling

Through Spatial Multiplexing,” IEEE Photonics Technology Letters, vol. 23,

no. 13, pp. 851-853, 2011.

[28] P. J. Winzer, “Modulation and multiplexing in optical communication

systems,” IEEE LEOS Newsletter, pp. 4-8, February 2009.

[29] D. J. Richardson, J. Fini and L. E. Nelson, “Space-division multiplexing in

optical fibres,” Nature Photonics, vol. 7, pp. 354-362, 2013.

[30] P. J. Winzer, “Spatial multiplexing in fiber optics: The 10x scaling of

metro/core capacities,” Bell Labs Technical Journal, vol. 19, pp. 22-30,

2014.

[31] C. Laperle and M. O’Sullivan, “Advances in High-Speed DACs, ADCs, and

DSP for Optical Coherent Transceivers,” Journal of Lightwave Technology,

vol. 32, no. 4, pp. 629-643, 2014.

[32] A. D. Shiner, M. Reimer, A. Borowiec, S. Oveis Gharan, J. Gaudette, P.

Mehta, D. Charlton, K. Roberts and M. O’Sullivan, “Demonstration of an 8-

dimensional modulation format with reduced inter-channel

nonlinearities in a polarization multiplexed coherent system,” Optics

Express, vol. 22, no. 17, pp. 20366-20374, 2014.

[33] Q. Zhuge, M. Reimer, A. Borowiec, M. O'Sullivan and D. V. Plant,

“Aggressive quantization on perturbation coefficients for nonlinear pre-

distortion,” in OFC 2014 Th4D.7., San Francisco, 2014.

[34] G. Bennett, “Superchannels to the rescue!,” Lightwave, vol. 29, no. 2,

2012.

[35] Bell Labs, “Bell Labs Metro Network Traffic Growth: An Architecture

Impact Study,” 2012. [Online]. Available:

https://docplayer.net/10745078-Bell-labs-metro-network-traffic-

growth-an-architecture-impact-study.html. [Accessed 6 November

2023].

[36] E. Riccardi, A. Pagano, E. Hugues-Salas, G. Zervas, D. Simeonidou, M.

Bohn, A. Napoli, D. Rafique, A. D’Errico, N. Sambo, P. Castoldi, T. Rahman,

M. Moreolo, J. Fàbrega and M. Gunkel, “Sliceable Bandwidth Variable

M.J.Anderson, PhD Thesis, Aston University 2023

136

Transponder: The IDEALIST Vision,” in 2015 European Conference on

Networks and Communications (EuCNC), Paris, 2015.

[37] K. Shirahata, T. Mizushima, T. Fujibe, H. Matsumura, T. Itakura, M. Ishida,

D. Watanabe and S. Masuda, “An Optical Interconnection Test Method

Applicable to 100-Gb/s Transceivers Using an ATE Based Hardware,” in

IEEE 25th Asian Test Symposium, Hiroshima, Japan, 2016.

[38] S. C. Heck, S. K. Jones, R. A. Griffin, N. Whitbread, P. Bromley, G. Kate

Harris, D. Smith, L. N. Lloyd N. Langley and T. Goodall, “Miniaturized InP

dual I&Q mach Zehnder modulator with full monitoring functionality for

CFP2.,” in The European Conference on Optical Communication (ECOC),

Cannes, France, 2014.

[39] A. J. Ward, V. Hill, R. Cush, S. C. Heck, P. Firth and Y. Honzawa, “Monolithic

integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ

modulator with small footprint, low power dissipation and long-haul

10Gb/s performance,” in 39th European Conference and Exhibition on

Optical Communication (ECOC 2013), London, 2013.

[40] G. Brebner, “Optical Fiber Communications Conference and Exhibition

(OFC),” in Programmable hardware for high performance SDN, Los

Angeles, 2015.

[41] P. Biswas, “Introduction to FPGA and its Architecture,” 20 November

2019. [Online]. Available: https://towardsdatascience.com/introduction-

to-fpga-and-its-architecture-20a62c14421c. [Accessed 11 October 2023].

[42] Intel Corp., “Intel® Stratix® 10 FPGA and SoC FPGA,” [Online]. Available:

https://www.intel.com/content/www/us/en/products/details/fpga/str

atix/10.html. [Accessed 25 October 2023].

[43] Intel Corp., “Cyclone® V FPGA and SoC FPFA Family Overview Product

Table,” 25 9 2018. [Online]. Available:

https://www.intel.com/content/www/us/en/content-

details/714207/cyclone-v-fpga-and-soc-fpfa-family-overview-product-

table.html?wapkw=FPGA%20soc%20family%20comparison. [Accessed

20 8 2023].

[44] Intel Corp., “Intel® Arria® 10 FPGA and SoC FPGA Family Overview

Product Table,” 1 March 2019. [Online]. Available:

M.J.Anderson, PhD Thesis, Aston University 2023

137

https://www.intel.com/content/www/us/en/content-

details/714167/intel-arria-10-fpga-and-soc-fpga-family-overview-

product-table.html?wapkw=FPGA%20soc%20family%20comparison.

[Accessed 20 October 2023].

[45] Intel Corp., “Intel® Stratix® 10 GX FPGA and Intel® Stratix® 10 SX SoC

FPGA Family Overview Product Table,” 1 October 2020. [Online].

Available: https://www.intel.com/content/www/us/en/content-

details/652478/intel-stratix-10-gx-fpga-and-intel-stratix-10-sx-soc-

fpga-family-overview-product-

table.html?wapkw=FPGA%20soc%20family%20comparison. [Accessed

20 October 2023].

[46] P. J. Quinn, “FPGA based silicon innovation exploiting “More than Moore”

technology,” in Proceedings of the 2013 9th Conference on Ph.D. Research

in Microelectronics and Electronics (PRIME), Villach, 2013.

[47] S. Randel, P. Matalla and M. A. Hossain, Upcoming Challenges in Signal

Processing for Optical Fiber Communications, Glasgow, 2023, p. @1:25:23.

[48] J. Hruska, “As Chip Design Costs Skyrocket, 3nm Process Node Is in

Jeopardy,” 22 June 2018. [Online]. Available:

https://www.extremetech.com/computing/272096-3nm-process-node.

[Accessed 15 October 2023].

[49] Intel Corp., “Intel® Arria® 10 FPGA and SoC FPGA,” [Online]. Available:

https://www.intel.com/content/www/us/en/products/details/fpga/ar

ria/10/article.html. [Accessed 25 October 2023].

[50] Intel Corportion, “Agilex™ 9 SoC FPGA Direct RF-Series,” [Online].

Available:

https://www.intel.com/content/www/us/en/products/details/fpga/agi

lex/9/direct-rf-series.html. [Accessed 9 May 2024].

[51] AMD Inc., “Zynq UltraScale+ RFSoC,” [Online]. Available:

https://www.xilinx.com/products/silicon-devices/soc/rfsoc.html.

[Accessed 21 September 2023].

[52] MicroChip Technology Inc, “SmartFusion® FPGAs,” [Online]. Available:

https://www.microchip.com/en-us/products/fpgas-and-plds/system-

on-chip-fpgas/smartfusion-fpgas#overview. [Accessed 29 June 2023].

M.J.Anderson, PhD Thesis, Aston University 2023

138

[53] Intel Corp., “Intel® Stratix® 10 SX SoC FPGA,” [Online]. Available:

https://www.intel.com/content/www/us/en/products/details/fpga/str

atix/10/sx.html. [Accessed 9 October 2023].

[54] Altera Corp., “What is an SoC FPGA,” [Online]. Available:

https://www.altera.com/en_US/pdfs/literature/ab/ab1_soc_fpga.pdf.

[Accessed October 2018].

[55] A. Hassan, R. Ahmed, H. Mostafa, H. A. H. Fahmy and A. Hussien,

“Performance Evaluation of Dynamic Partial Reconfiguration Techniques

for Software Defined Radio on an FPGA,” in IEEE International Conference

on Electronics, Circuits, and Systems (ICECS), Cairo, 2015.

[56] J. Huang, M. Parris, J. Lee and R. F. Demara, “Scalable FPGA-based

architecture for DCT computation using dynamic partial

reconfiguration,” ACM Transactions on Embedded Computing Systems

Vol.9 Iss.1, p. Article No.9, October 2009.

[57] S. Yan, Y. Yan, B. R. Rofoee, Y. Shu, E. Hugues-Salas, G. Zervas and D.

Simeonidou, “Demonstration of Real-Time Ethernet to Reconfigurable

Superchannel Data Transport over Elastic Optical Network,” in ECOC, Mo

4.2.3, Cannes, 2014.

[58] S. Yan, Y. Yan, B. R. Rofoee, Y. Shu, E. Hugues-Salas, G. Zervas and D.

Simeonidou, “Real-Time Ethernet to Software-Defined Sliceable

Superchannel Transponder,” Journal of Lightwave Technology, vol. 33, no.

8, pp. 1571-1577, 2015.

[59] International Telecommunications Union (ITU-T), G.709/Y.1331, 2016.

[60] Kish, F. A., Lal, V., Evans, P., Corzine, S., Ziari, M. et al, “System-on-Chip

Photonic Integrated Circuits,” IEEE Journal of Selected Topics in Quantum

Electronics, vol. 24, no. 1, 2018.

[61] A. Cicuttin, M. L. Crespo, A. Shapiro and N. Abdallah, “A Block-Based Open

Source Approach for a Reconfigurable Virtual Instrumentation Platform

Using FPGA Technology,” in IEEE International Conference on

Reconfigurable Computing and FPGA's (ReConFig 2006), San Luis Potosi,

Mexico, 2006.

[62] S. Blazo, “Tunable laser calibration system”. US Patent

US20030132375A1, 17 July 2002.

M.J.Anderson, PhD Thesis, Aston University 2023

139

[63] Amin, R., Maiti, R., George, J. K., Ma, X. et al., “A Lateral MOS-Capacitor-

Enabled ITO Mach–Zehnder Modulator for Beam Steering,” Journal of

Lightwave Technology, vol. 38, no. 2, pp. 282-290, 2020.

[64] C.-H. Park, M.-K. Woo, B.-K. Park, S.-W. Jeon, H. Jung, S. Kim and S.-W.

Han, “Experimental Demonstration of an Efficient Mach–Zehnder

Modulator Bias Control for Quantum Key Distribution Systems,”

Electronics, vol. 11, p. Article 2207, 2022.

[65] E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush and N. R. Samant,

“Maximum dynamic range operation of a microwave external

modulation fiber-optic link,” IEEE Transactions on Microwave Theory and

Techniques, vol. 41, no. 8, pp. 1299-1306, 1993.

[66] J. Svarny, “Bias driver of the Mach-Zehnder intensity electro-optic

modulator, based on harmonic analysis,” in Advances in Robotics,

Mechatronics and Circuits, Wseas LLC. ISBN: 978-1-61804-242-2, 2014,

pp. 184-189.

[67] A. Hilt, “Microwave harmonic generation in fiber-optical links,” in 13th

International Conference on Microwaves, Radar and Wireless

Communications. MIKON - 2000, Wroclaw, Poland, 2000.

[68] M. Sotoodeh, Y. Beaulieu, J. Harley and D. L. McGhan, “Modulator Bias and

Optical Power Control of Optical Complex E-Field Modulators,” Journal of

Lightwave Technology, vol. 29, no. 15, pp. 2235-2248, 2011.

[69] The SciPy Community, “scipy.special.jv,” [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jv.h

tml#scipy.special.jv. [Accessed 2 June 2023].

[70] E. R. H. C. C. Ackerman, “Bias Controllers for External Modulators in Fibre

Optic Systems,” Lightwave, 2001.

[71] P. S. Cho and M. Nazarathy, “Bias Control for Optical OFDM

Transmitters,” IEEE Photonics Technology Letters, vol. 22, no. 14, pp.

1030-1032, 2010.

[72] M. H. Kim, B. M. Yu and W. Y. Choi, “A Mach-Zehnder Modulator Bias

Controller Based on OMA and Average Power Monitoring,” IEEE

Photonics Technology Letters, vol. 29, no. 23, 2017.

M.J.Anderson, PhD Thesis, Aston University 2023

140

[73] G. Goertzel, “An Algorithm for the Evaluation of Finite Trigonometric

Series,” American Mathematical Monthly, vol. 65, no. 1, pp. 34-35, 1958.

[74] K. Banks, “The Goertzel Algorithm,” Embedded Systems Programming

Magazine, September 2002.

[75] C. H. Cox and E. I. Ackerman, “Effect of pilot tone-based modulator bias

control on external modulation link performance,” in International

Topical Meeting on Microwave Photonics MWP 2000, Oxford, UK, 2000.

[76] Intel Corp., “Intel® MAX® 10 FPGA Development Kit,” 26 June 2015.

[Online]. Available:

https://www.intel.com/content/www/us/en/products/details/fpga/de

velopment-kits/max/10m50.html. [Accessed 14 September 2023].

[77] RocketBoards.org, “Altera MAX10 10M50 Rev C Development Kit Linux

Setup (ACDS version 16.0),” 17 March 2017. [Online]. Available:

https://www.rocketboards.org/foswiki/Documentation/AlteraMAX101

0M50RevCDevelopmentKitLinuxSetupV160. [Accessed 20 September

2017].

[78] A. B. Nassif, M. A. Talib, Q. Nasir and F. M. Dakalbab, “Machine Learning

for Anomaly Detection: A Systematic Review,” IEEE Access, vol. 9, pp.

78658-78700, 2021.

[79] A. Panjević, T. Uzunović and B. C. Ustundag, “Development of Correction

Models for Three-Electrode NO2 Electrochemical Sensor,” in XXVIII

International Conference on Information, Communication and Automation

Technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 2022.

[80] D. Zibar, A. Ferrari, V. Curri and A. Carena, “Machine Learning-Based

Raman Amplifier Design,” in Optical Fiber Communications Conference

and Exhibition (OFC), San Diego, CA, USA, 2019.

[81] S. Sharma, “Activation Functions in Neural Networks,” Towards Data

Science, 6 September 2017. [Online]. Available:

https://towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6. [Accessed 2 December 2022].

[82] D. Zibar, M. Piels, R. Jones and C. Schaeffer, “Machine Learning

Techniques in Optical Communication,” Journal of Lightwave Technology,

vol. 34, 2016.

M.J.Anderson, PhD Thesis, Aston University 2023

141

[83] J. Mata, I. d. Miguel, R. J. Durán, N. Merayo, S. K. Singh, A. Jukan and M.

Chamania, “Artificial intelligence (AI) methods in optical networks: A

comprehensive survey,” Optical Switching and Networking, vol. 28, pp.

43-57, 2018.

[84] Y. Xie, Y. Wang, S. Kandeepan and K. Wang, “Machine Learning

Applications for Short Reach Optical Communication,” Photonics, vol. 9,

no. 1, p. 30, 2022.

[85] Zibar, D., de Carvalho, L. H. H., Piels, M., Doberstein, A. et al, “Application

of Machine Learning Techniques for Amplitude and Phase Noise

Characterization,” Journal of Lightwave Technology, vol. 33, no. 7, pp.

1333-1343, 2015.

[86] M. Schaedler, M. Kuschnerov, S. Calabrò, F. Pittalà, C. Bluemm and S.

Pachnicke, “AI-Based Digital Predistortion for IQ Mach-Zehnder

Modulators,” in Asia Communications and Photonics Conference (ACP),

Chengdu, China, 2019.

[87] J. Lee, T. Song, J. He, S. Kandeepan and K. Wang, “Recurrent neural

network FPGA hardware accelerator for delay-tolerant indoor optical

wireless communications,” Optics Express, vol. 29, no. 16, pp. 26165-

26182, 2021.

[88] Freire, P. J., Srivallapanondh, S., Anderson, M., Spinnler B. et al,

“Implementing Neural Network-Based Equalizers in a Coherent Optical

Transmission System Using Field-Programmable Gate Arrays,” Journal of

Lightwave Technology, vol. 41, no. 12, pp. 3797-3815, 2023.

[89] T. Yang, Y. Wei, Z. Tu, H. Zeng, M. A. Kinsy, N. Zheng and P. Ren, “Design

space exploration of neural network activation function,” IEEE

Transactions on Computer-Aided Design of Integrated, vol. 38, no. 10, p.

1974–1978, 2018.

[90] Intel Corp., “Intel® High Level Synthesis Compiler,” 3 December 2023.

[Online]. Available:

https://www.intel.com/content/www/us/en/software/programmable/

quartus-prime/hls-compiler.html. [Accessed 11 December 2023].

M.J.Anderson, PhD Thesis, Aston University 2023

142

[91] AMD Inc., “AMD Vivado High Level Design,” [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado/high-level-

design.html. [Accessed 11 December 2023].

[92] Freire, P. J., Napoli, A., Spinnler, B., Anderson, M. et al.;, “Reducing

Computational Complexity of Neural Networks in Optical Channel

Equalization: From Concepts to Implementation,” Journal of Lightwave

Technology, vol. 44, no. 14, pp. 4557-4581, 2023.

[93] M. Kuschnerov, F. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A.

Napoli and B. Lankl, “DSP for Coherent Single-Carrier Receivers,” Journal

of Lightwave Technology, vol. 27, no. 16, pp. 3614-3622, 2009.

[94] P. J. Freire, M. Anderson, B. Spinnler, T. Bex, J. E. Prilepsky, T. A. Eriksson,

N. Costa, W. Schairer, M. Blott, A. Napoli and S. K. Turitsyn, “Towards

FPGA Implementation of Neural Network-Based Nonlinearity Mitigation

Equalizers in Coherent Optical Transmission Systems,” in 2022 European

Conference on Optical Communication (ECOC), Basel, Switzerland, 2022.

[95] Abadi, M., Agarwal, A., Barham, P., Brevdo, E. et al., “TensorFlow: Large-

scale machine learning on heterogeneous systems,” 2015.

[96] A. Gulli and S. Pal, Deep learning with Keras., Packt Publishing Ltd, 2017.

[97] AMD Inc., “Versal AI Core Series VCK190 Evaluation Kit,” AMD Inc,

[Online]. Available: https://www.xilinx.com/products/boards-and-

kits/vck190.html. [Accessed 17 October 2023].

[98] J. Caba, F. Rinc´on, J. Barba, A. Jos´e, J. Dondo and J. C. L´opez, “Towards

driven development for fpga-based modules across abstraction levels,”

IEEE Access, vol. 9, p. 31581–31594, 2021.

[99] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers and Z. Zhang, “High-

Level Synthesis for FPGAs: From Prototyping to Deployment,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 30, no. 4, pp. 473-491, 2011.

[100] AMD Inc., “Vitis High-Level Synthesis User Guide (UG1399),” 7 June 2022.

[Online]. Available: https://docs.xilinx.com/r/2022.1-English/ug1399-

vitis-hls/Getting-Started-with-Vitis-HLS. [Accessed 20 February 2022].

M.J.Anderson, PhD Thesis, Aston University 2023

143

[101] AMD Inc., “Vivado Design Suite,” 2022. [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado.html. [Accessed

9 March 2022].

[102] AMD Inc., “ug904 Vivado Implememtation strategy,” 2022. [Online].

Available: https://docs.xilinx.com/r/2022.1-English/ug904-vivado-

implementation/Defining-Implementation-Strategies. [Accessed 20

March 2022].

[103] A. Lopez-Gasso, “What are the best vivado synthesis and implementation

strategies???,” April 2021. [Online]. Available:

https://miscircuitos.com/vivado-synthesis-and-implementation-

strategies/. [Accessed April 2022].

[104] AMD Inc., “Versal ACAP Memory Resources Architecture Manual

(AM007),” 24 11 2020. [Online]. Available: https://docs.xilinx.com/r/en-

US/am007-versal-memory/Block-RAM-Summary. [Accessed 28 06

2023].

[105] G. Huang, Q. Zhu and C. Siew, “Extreme learning machine: Theory and

applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.

[106] M. Li, S. Wibowo and W. Guo, “Nonlinear Curve Fitting Using Extreme

Learning Machines and Radial Basis Function Networks,” Computing in

Science & Engineering, vol. 21, no. 5, pp. 6-15, 2019.

[107] G. Chen, C. Parada and G. Heigold, “Small-footprint keyword spotting

using deep neural networks,” in 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014.

