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In recent years, deep reinforcement learning (RL) and imitation learning
(IL) have shown remarkable success in many robotics areas. However, the
domain of in-hand dexterous manipulation remains challenging for RL and
IL. Achieving proficiency in these tasks often requires millions of attempts or
demonstrations before a stable strategy is learnt. Consequently, improving
the learning speed and efficiency becomes paramount for RL and IL to be
practically used in real-world in-hand dexterous manipulation tasks.

This thesis primarily addressed multi-goal robot in-hand dexterous manip-
ulation tasks, with various methods proposed to improve learning efficiency:
For RL, (1) the Goal Density-based Hindsight Experience Prioritisation (GDP)
is proposed to improve learning efficiency by prioritising some experiences
during the replay stage; Furthermore, (2) another method called Policy-level-
based Curriculum Goal Selection (PL-CGS) is proposed to automatically gen-
erate goals during the learning process that could form a curriculum learning
process; For IL, (3) the Goal-based Self-Adaptive Generative Adversarial Im-
itation Learning (Goal-SGAIL) incorporates a self-adaptive mechanism into
the GAIL framework that applies to multi-goal learning scenarios.

Extensive experiments were conducted in simulation with OpenAI Gym,
focusing on robot manipulation tasks, to compare the proposed methods against
existing RL and IL approaches. GDP and PL-CGS showed faster learning
speed compared with the vanilla DDPG+HER method for some of the tasks
in the RL experiments. For experiments in IL that involve sub-optimal demon-
strations, especially those with highly sub-optimal demonstrations from hu-
man teleoperation, Goal-SGAIL showed its ability to overcome the demon-
strations’ sub-optimality and outperformed DDPGfD+HER and Goal-GAIL
for some challenging in-hand manipulation tasks.

Keywords: Reinforcement learning, HER, Experience prioritisation, Cur-
riculum learning, Learning from demonstration, GAIL.
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Chapter 1

Introduction

In recent decades, robotic manipulators have seen rapid advancements and
have been increasingly integrated into sectors like industrial manufacturing,
assistance for humans, and medical surgeries. These manipulators, tailored
with various joint structures and control techniques, cater to specific needs
across applications. As a significant subset of robotics, robot manipulators
have been systemically researched, focusing on their kinematic features and
dynamic models [101]. The robot hand, acting as the manipulator’s end-
effector, is pivotal for direct interaction with the environment and, notably,
for grasping objects. The development of robotic hands has spanned over forty
years [44, 81]. leading to the creation of basic models such as two-finger and
three-finger grippers, as well as suction cup grippers, which are commonly
utilized in industrial settings. While these simpler designs prove effective for
particular applications, these simpler designs fall short in complexity in tasks
requiring operation within human-centric environments. Such environments
frequently necessitate the manipulation of tools and devices crafted for hu-
man hands and often require fine manipulation. This poses a challenge to
continuous research and innovation for more sophisticated robotic hand con-
trol methods that are capable of navigating the nuances of human-oriented
tasks.

The human hand distinguishes itself in dexterity and flexibility compared
to those of most other animals. Our brain’s exceptional ability to control our
hands enables us to manipulate objects and perform a vast array of daily tasks
effortlessly. During the lifelong learning process, we enhance our hand manip-
ulation skills through observation, self-discovery, and adaptation to interact
with new objects and navigate complex environments. Inspired by the struc-
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ture of the human hand, numerous anthropomorphic robot hand prototypes
have been developed, with some advancing to commercial production [93].
Similar to the human hand, these robot hands usually feature 4 or 5 fingers,
each with 2 or 3 joints. Typically, these joints are independently controlled
by DC motors [32, 47, 50, 109] or pneumatic actuators [30]. An example of
such a commercially designed anthropomorphic robot hand is illustrated in
Figure 1.1. Later researchers have explored the tendon-driven actuation sys-
tem, inspired by the biomechanics of the human hand [118]. This approach
allows for more natural and fluid movements, bridging the gap further between
robotic and human hands. Additionally, recent work [20, 119] have designed
robot hands that mimic the shapes of human bones and soft tissue struc-
tures, enhancing the robot hand’s ability to perform human-oriented tasks
with greater authenticity.

Figure 1.1: A commercialised anthropomorphic robot hand (Shadow
Hand [93]). Picture from Shadow Robot company website: https://www.

shadowrobot.com/

Beyond mechanical designs, sensors have a crucial role in enhancing the
functionality of robot hand systems by providing necessary feedback. Sensing
based on machine vision, for example, using RGB cameras, is the primary way
to estimate the pose or position of objects and to observe finger movements [3].
This technology equips robotic systems with the capability to acquire a visual
understanding of their surroundings, facilitating precise manipulation and in-
teraction with objects. Tactile sensors, which gather contact information as
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part of the feedback for anthropomorphic hands, have gained more attention
recently [41]. This expansion aims to mimic the human hand’s touch capabil-
ities more closely, allowing for a more nuanced percept and interaction with
objects and surfaces. While most designs incorporate tactile sensors at the
fingertips [93] to maximise sensitivity and accuracy in object manipulation,
some work attempts to extend this coverage across the entire finger and palm
areas [50].

Dexterity, as a concept in the context of anthropomorphic manipulation,
refers to the capability of utilising multiple manipulators, or fingers from a sin-
gle manipulator, to alter an object’s position and orientation from one state to
another [10]. The concept of in-hand dexterous manipulation, however, lacks
a universally accepted definition. The distinguishing characteristic of in-hand
dexterous manipulation, setting it apart from conventional robotics manipu-
lation problems, is its emphasis on object-centred interaction [82]. In-hand
dexterous manipulation encompasses a broad spectrum of tasks, ranging from
basic and conceptual tasks, such as re-grasping, rolling, and sliding [70], to
practical applications like object reorientation, repositioning, and extending
to more intricate activities like twirling pens, opening bottle caps, etc. De-
spite progress in developing the control algorithms for anthropomorphic robot
hands, achieving human-like dexterity and adaptation for these in-hand dex-
terous manipulation tasks remains elusive. Current systems struggle to handle
a variety of objects and adapt to changing environments. The manipulation
skills are still not flexible enough to handle most human daily objects in a nat-
ural, human-like manner. This limitation hampers the potential to use robot
hands as intelligent assistants in real-world settings.

Machine learning offers a possibility for robot controllers to acquire some
level of cognitive capability. It has seen significant achievements across var-
ious domains such as image processing, voice and text recognition, and no-
tably, robotic control. The subsequent advancements in deep neural networks
(DNNs) have been particularly transformative. DNNs, with their deep archi-
tectures, are capable of encapsulating complex and non-linear model informa-
tion. This makes DNNs suitable for modelling and solving the anthropomor-
phic robot hand control problems, which are high-dimensional and non-linear.

Reinforcement learning (RL), a specialised branch of machine learning, has
demonstrated remarkable strength in finding solutions for complex challenges
across a variety of domains, including robotics. Its application to learn in-hand
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dexterous manipulation tasks with anthropomorphic robot hands reveals its
potential to significantly advance the robot’s capabilities [18]. However, due to
the iterative process of policy refinement in RL, it requires the robot to have
extensive interaction with the environment for data collection (usually needs
millions of time steps). When applied to real-world robots, especially those
with delicate structures like anthropomorphic robot hands, this requirement
becomes not only costly and time-consuming but also fraught with safety
concerns. The risk of damaging the robot hands during data collection is a
significant deterrent, which makes RL for complex in-hand dexterous tasks
with a real robot hand nearly infeasible with current technology. Until today,
sampling inefficiency is still the most critical barrier to the wider adoption
of RL in robotic manipulation [79], particularly for tasks requiring the finesse
and subtlety of in-hand dexterous manipulation. Addressing this issue requires
innovations aimed at improving learning efficiency.

Model-based RL approaches such as Guided Policy Search (GPS) [61] and
Probabilistic Inference for Learning COntrol (PILCO) [17] aim to construct an
internal model of the environment, which they then use to simulate interactions
and generate data for policy training. These methods offer promising strategies
to address the data inefficiency problem inherent in traditional model-free
RL methods. Despite their advantages in data efficiency, model-based RL
approaches come with their own set of challenges. They often require detailed
knowledge of specific task domains and extra effort to accurately model the
environment, which can be a complex and daunting task in itself.

Some other strategies focus on improving the balance between exploration
(trying out new actions to discover effective strategies) and exploitation (lever-
aging known strategies to gain rewards) during learning. This is especially im-
portant for tasks in continuous high-dimensional action space, such as in-hand
dexterous manipulation. Techniques such as experience prioritisation [98] and
curriculum learning [26] have shown promise in making learning more efficient.
However, these improvements have limited effects in high-dimensional space
and remain challenging. The development of more sophisticated models, al-
gorithms, and training techniques continues to be a critical area of research in
making RL a practical solution for complex robotic manipulation tasks.

Imitation learning (IL), also recognised as learning from demonstration
(LfD), is another direction to explore that may help overcome RL sampling
inefficiency. Instead of trying to learn the task from scratch in a traditional
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RL pipeline, imitation learning allows the agent to leverage examples of ex-
pert behaviour directly. By imitating the decisions of experts, the agent sig-
nificantly reduces the exploration space required for learning. This leads to
improvements in both the speed and accuracy of the learning process, mak-
ing IL particularly appealing for complex tasks. In the robot manipulation
field, these examples or demonstrations of expert behaviour can be sourced
from robots with established expert control policies or directly from human
operators. The success of imitation learning heavily depends on the quality
and quantity of the demonstrations provided. However, the challenge lies in
gathering a sufficient number of optimal demonstrations, especially for com-
plex tasks such as in-hand dexterous manipulation. Consequently, the issue
of how to learn effectively from a limited set of sub-optimal demonstrations
emerges as a critical area of research within the field of robotic manipulation.

Research focusing on in-hand dexterous manipulation tasks still has many
gaps:

• Challenges of Reinforcement Learning: Many works have attempted
to address in-hand dexterous manipulation through RL. However, these
efforts still encounter obstacles related to learning efficiency. The ma-
jority of these studies are confined to simulations. Despite the acknowl-
edgement of this issue within the research community, a comprehensive
investigation into enhancing RL’s learning efficiency for such tasks re-
mains sparse. This presses the need for more focused research in this
area (more discussion is provided in Section 2.2.3).

• Challenges of Imitation Learning: The application of IL to in-hand
dexterous manipulation, especially with humanoid robot hands, is not
as prevalent. The existing IL approaches for these tasks [34, 90] are
characterised as naive. This indicates a significant opportunity for ad-
vancement, as advanced IL algorithms have not yet been fully explored
or adapted for the nuanced challenges presented by in-hand dexterous
manipulation tasks.

In summary, while RL and IL have made significant achievements in robotics,
their application to in-hand dexterous manipulation tasks is still in its early
stages. Bridging this gap requires targeted research efforts to either enhance
learning efficiency for RL or investigate more sophisticated IL algorithms.

14
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1.1 Research Aim and Research Questions

This thesis focuses on advancing the reinforcement learning and imitation
learning strategies for multi-goal-orientated in-hand dexterous manipulation
tasks using five-fingered anthropomorphic robot hands. The thesis addresses
the following two research questions:

• RQ.1: On the reinforcement learning side, how can the learning effi-
ciency be improved under the multi-goal-orientated condition?

• RQ.2: On the imitation learning side, how to utilise the demonstrations
to accelerate the learning speed of multi-goal learning by applying the
recent advances in imitation learning?

1.2 Thesis Contributions

This section describes the contributions made in response to the research ques-
tions posed in the preceding section. The key contributions of this thesis are
enumerated below:

• C.1: In response to research question RQ.1, an experience prioriti-
sation strategy known as the Goal Density-based hindsight experience
Prioritisation (GDP) method is introduced to boost the efficiency of
the multi-goal reinforcement learning by optimising the exploitation of
experiences gathered during the learning process.

• C.2: Furthermore, in addressing research question RQ.1, this thesis
presents a curriculum goal selection strategy named the Policy-level-
based Automatic Curriculum Goal Selection (PL-CGS). This method is
designed to enhance the learning efficiency of multi-goal reinforcement
learning by facilitating more effective exploration of the task space.

• C.3: In response to research question RQ.2, a Goal-based Self-adaptive
Generative Adversarial Imitation Learning (Goal-SGAIL) strategy is tai-
lored for learning from demonstrations for multi-goal in-hand dexterous
manipulation tasks.
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1.3 Thesis Organisation

This chapter provides an overview of the thesis, beginning with an introduction
to the latest advancements in robot manipulators, with a particular focus
on the anthropomorphic robot hand. It then delves into the application of
machine learning to in-hand dexterous manipulation problems and outlines
the associated challenges. The structure of the remaining contents of this
thesis is outlined as follows:

• Chapter 2: This chapter lays the foundation by introducing the funda-
mental concepts upon which this thesis builds and provides an overview
of prior work in the field. A review and discussion of the related litera-
ture are also included in this chapter.

• Chapter 3: This chapter begins by introducing the definition of the
multi-goal reinforcement learning (RL) problem and examines the ex-
isting literature on Hindsight Experience Replay (HER) related works.
It then introduces the Goal Density-based hindsight experience Prioriti-
sation (GDP) method and the Policy-level-based Automatic Curriculum
Goal Selection (PL-CGS) method, both aimed at enhancing learning
efficiency in multi-goal RL settings.

• Chapter 4: This chapter first discusses the existing research on Gener-
ative Adversarial Imitation Learning (GAIL). It then presents the Goal-
based Self-adaptive Generative Adversarial Imitation Learning (Goal-
SGAIL) approach. Following that, it provides a practical imitation
learning example, employing various methods with data gathered via
human teleportation.

• Chapter 5: This chapter summarises the work detailed in this thesis,
offers conclusions for each method proposed, and highlights potential
directions for future research.

For the sake of brevity in this thesis, the term ‘in-hand dexterous manipu-
lation’ will be abbreviated to ‘InDex’, ‘reinforcement learning’ will be denoted
as ‘RL’, ‘imitation learning’ will be referred to as ‘IL’, and ‘learning from
demonstrations’ will be abbreviated as ‘LfD’ in subsequent chapters. Addi-
tionally, specific abbreviations relevant to our contributions are defined within
each chapter as they are mentioned.
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Chapter 2

Background

This chapter presents a detailed review of the literature relevant to this disser-
tation. It begins by exploring traditional control approaches for robot in-hand
dexterous manipulation. Following this, the discussion shifts to various RL
algorithms suitable for robot manipulation tasks. This is followed by a re-
view of prior studies focusing on deep reinforcement learning in the context of
both general robotic manipulation and specific in-hand dexterous manipula-
tion tasks. Subsequently, the chapter delves into imitation learning approaches
as applied to the broader domain of robotic manipulation, and highlights re-
cent advancements in in-hand dexterous manipulation tasks. The chapter
concludes with a summary that encapsulates the current advancements and
research gaps in deep reinforcement learning and imitation learning within the
realm of robotic in-hand manipulation.

2.1 Traditional research pipeline for dexterous ma-
nipulation

The development of controllers for dexterous manipulation, including those in-
volving in-hand dexterous manipulation, represents a significant and dynamic
field of study within robotic [56]. The majority of efforts in this domain have
focused on understanding and modelling the kinematics and dynamics of the
system, with a particular emphasis on the force of contact and friction be-
tween the finger and the object [13]. In-hand dexterous manipulation tasks
such as rolling [9] and sliding [103,111] have the feature that the contact points
between robot fingers and the object surface move during manipulation. The
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goal of these studies is to build dynamic kinematics models for the points in
contact with the object [51] to help motion control. Additionally, some re-
search has extended to include the role of the hand palm within the analysis
of operational space dynamics [7].

A group of other works emphasises planning the transitions between dif-
ferent motion phases and identifying the events that initiate these transi-
tions [43, 112]. These works address the problems of changing kinematic and
dynamic constraints that are encountered during manipulation tasks, offering
a variety of frameworks to solve the problem. The smoothness of phase tran-
sition triggered by an event is critical since careless motion changes can cause
undesired behaviour, such as dropping the object.

Other studies have investigated optimising grasping strategies. Given the
kinematic redundancy typical of manipulators used for in-hand dexterous ma-
nipulation, an infinite array of grasping options exists. Research focuses on
identifying the ‘optimal’ grasp, either through quality measurements [106] or
by using classifiers trained on human demonstrations [67]. Additionally, there
is research aimed at higher-level planning for in-hand manipulation tasks. Ef-
forts are being made to develop a taxonomy or identify features of manipula-
tion tasks that apply to both human and robotic hands [25,59,68]. Then either
use the feature extracted from human demonstration to guide robot manipu-
lation or regard different actions as sub-tasks and design planning strategy for
more complicated manipulation tasks [85]. The classification method could be
hand-centric, motion-centric or object-centric [10].

Traditional model-based approaches have achieved sufficient control ability
and accuracy on simple structured manipulators. Nonetheless, commanding
multi-finger humanoid hands to execute precise and reliable in-hand manip-
ulation remains challenging. Anthropomorphic hands typically have 20 to 24
degree-of-freedoms. Due to the high degree of freedom involved in system
modelling and the complexity of actuation dynamics, it is extremely challeng-
ing to execute practical dexterous manipulation applications with traditional
methods. Moreover, controllers that are manually designed for specific tasks
within highly restrictive conditions lack the versatility needed to adapt to
different objects or to operate in new environments.
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2.2 Reinforcement learning and in-hand dexterous
manipulation related work

In this section, reinforcement learning under the context of robot manipula-
tion is discussed. A variety of RL algorithms are introduced and compared.
Following this, the discussion shifts to the latest advancements in RL research
pertinent to in-hand dexterous manipulation (InDex).

2.2.1 General reinforcement learning introduction

Reinforcement learning (RL) is one of the three main branches of machine
learning, alongside supervised and unsupervised learning [65]. It focuses on
solving sequential decision-making problems. In RL, an agent observes its en-
vironment, takes actions within that environment, and receives rewards based
on those actions. The reward is designed to encourage positive behaviours and
discourage negative ones. Through a process of trial and error, the agent’s pol-
icy converges towards an optimal strategy which selects actions that maximise
the expected cumulative reward over time [107]. A typical agent-environment
interaction loop of RL is shown in Figure 2.1.

Agent

Environment

ActionRewardState

Figure 2.1: The agent-environment interaction loop for RL

Preliminaries on RL

First, some key concepts and terminologies of RL are given here. A classical
RL problem is formed by an agent interacting with an environment. At each
time step t, the agent receives a state st from the environment and takes action
at according to the policy πθ(at|st) parameterised by θ, a mapping from state
st to action at. After that, the agent receives a reward r defined by a reward
function rt = R(st, at) and the state transits to st+1. The policy can be
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a stochastic distribution of actions over the current state a ∼ πθ(.|s), or a
deterministic function a = µθ(s). θ is the denotation of the policy parameters.

RL problems are typically modelled as Markov decision processes (MDPs),
a mathematical framework for sequential decision-making. Systems repre-
sented by MDP need to satisfy the Markov property: P (st+1|s1, a1, ..., st, at) =
P (st+1|st, at), which means transitions only depend on the most recent state
and action. A MDP is normally represented as a tuple (S,A,R,P, p(s0)):

• State space S, consist of a finite set of possible states s ∈ S;

• Action space A, consist of a finite set of possible actions a ∈ A that the
agent can take;

• A reward function R(s, a) ∈ R;

• A state transition probability function P (s′|st, at): the probability of
transitioning into state s′ if starting in state s and taking action a, it
represents the environments transition rules;

• A distribution of initial states p(s0).

The RL aims to learn an optimal policy π∗, so that following this policy,
the expectation of the long-term return from the initial state is maximised. A
cumulative return is the sum of rewards obtained in a fixed window of steps.
A discount factor γ ∈ (0, 1] is usually applied in cumulative return calculation
to discount how far off in the future the reward is obtained. The discounted
cumulative return Rt at time t is defined as:

Rt =

∞∑
k=0

γkrt+k (2.1)

Two terms are helpful for many RL algorithms: value function and action-
value function(Q-function). The value function determines what is considered
as good in the long run from a state s and always acts according to the policy
π. The value function V π(s) is defined as the expected total discounted reward
from a state s under the policy π.

V π(s) = Eπ[Rt|s0 = s] = Eπ[

∞∑
k=0

γkrt+k|s0 = s] (2.2)

Similarly, the action-value function represents the expected total discounted
reward from a state s if the agent takes an arbitrary action a (which may not
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have come from the policy π), then forever after acts according to the policy
π.

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ[

∞∑
k=0

γkrt+k|st = s, at = a] (2.3)

The optimal value function and optimal action-value function are the func-
tions with π being the optimal policy.

V ∗(s) = max
π

Eπ[Rt|s0 = s] (2.4)

Q∗(s, a) = max
π

Eπ[Rt|s0 = s, a0 = a] (2.5)

By unfolding and iterating the Equations (2.2) to (2.5), the following four
self-consistence Bellman functions are presented as follows:

V π(s) = Ea∼π,s′∼P [R(s, a) + γV π(s′)] (2.6)

Qπ(s, a) = Es∼P [R(s, a) +Ea′∼π[Q
π(s′, a′)]] (2.7)

V ∗(s) = max
a

Es′∼π[R(s, a) + γV ∗(s′)] (2.8)

Q∗(s, a) = Es′∼P [R(s, a) + γmax
a′

Q∗(s′, a′)] (2.9)

The advantage function describes how much better it is to take a specific
action a in state s under the policy π. It is defined as

Aπ(s, a) = Qπ(s, a)− V π(s) (2.10)

During the research over the past decades, various RL methods have been
proposed. The recognised taxonomy of RL algorithms divides the existing
algorithms into two classes: model-free RL and model-based RL [79]. It is
based on whether the agent has access or can learn a model of the environment.

Model-free RL

A majority number of research in RL is dedicated to model-free approaches.
These strategies view the environment as a ‘black box’ and seek to develop
a direct policy mapping through iterative interactions, without explicit mod-
elling of the environment’s dynamics.

Recent advancements in model-free RL leveraged deep neural networks
(DNNs) [31] to process raw input data and identify complex, high-level fea-
tures. With the special layered architecture, DNNs can be employed as policy
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approximators in RL, and have achieved remarkable success across a broad
spectrum of machine learning applications, such as pattern and speech recog-
nition, computer vision and natural language processing [73,74]. This includes
fields like robot manipulation [60] and in-hand dexterous manipulation [45],
where deep learning-enhanced RL methods have demonstrated significant po-
tential and effectiveness.

Current RL algorithms can be further categorised into policy-based, value-
based and actor-critic approaches. This classification hinges on the involve-
ment of the Q-function in the learning mechanism:

• Policy-based: Approaches such as Vanilla Policy Gradient [108], De-
terministic Policy Gradient (DPG) [105], Trust Region Policy Gradient
(TRPO) [99] and Proximal Policy Optimisation (PPO) [100] aim to op-
timise the parameters θ of a stochastic or deterministic policy π(s, a|θ).
This is achieved by applying gradient descent on an objective function
J(π) to adjust the parameters θ of the policy. Policy-based methods offer
gradual updates to the policy, ensuring stable convergence throughout
the training process. However, because the update process relies on data
samples from the current policy iteration, the methods typically oper-
ate on-policy and are therefore seen as less sample-efficient. The need
for extensive online data collection poses a challenge to their practical
application in real-world robot manipulation scenarios.

• Value-based: Another category within model-free methods employs the
Q-learning [116] framework, known as value-based approaches. These
algorithms aim to estimate the action-value function Qπ(s, a) using the
Bellman equation to derive optimum policy Q∗(s, a). The optimal pol-
icy is linked to Q∗ such that the agent’s actions are determined by
a(s) = argmaxaQθ(s, a). Deep Q-Network (DQN) [73], a representative
algorithm in this group, leverages a deep convolutional neural network
(CNN) to model the action-value function Q(s, a), demonstrating its ef-
ficacy in playing Atari games. The Double Q-learning (D-DQN) [113]
method introduces a dual Q-networks structure to simultaneously esti-
mate the value function V (s) and advantage functions A(s, a) with the
action-value function Q(s, a) being the composite of these two. It shows
better convergence compared with traditional Q-learning. In value-based
methods, policy updates are indirect, with learning experiences stored
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in a replay buffer. Updates can utilise data from any stage of training,
sampled from the buffer, allowing off-policy training. This decoupling
of policy training from data generation enhances sample efficiency, mak-
ing these methods appealing for some robot manipulation studies [124].
However, the indirect policy optimisation through training Qθ intro-
duces instability and potential slow convergence, making this approach
generally less stable than policy-based methods.

• Actor-Critic: Strengths and weaknesses are revealed in both two cat-
egories of RL methods mentioned previously. Researchers have since
discovered that policy optimisation and Q-learning can indeed be har-
moniously integrated. In policy-based methods, the policy function, or
actor, is optimised using the accumulated return Rt. By substituting this
with a critic: either the action-value function Q(s, a) or the advantage
function A(s, a), it becomes possible to synergize the two approaches,
jointly updating the actor and critic through gradient descent. This
integration allows the critic to bootstrap the actor, enhancing the opti-
misation process. Actor-critic algorithms, which employ both an actor
network to determine policy functions and a critic network to evaluate
value functions, exemplify this efficient optimization. Notable examples
include the Advantage Actor-Critic (A2C) and its asynchronous variant,
Asynchronous Advantage Actor-Critic(A3C) [72], Deep Deterministic
Policy Gradient (DDPG) [66] and its enhanced iteration,Twin Delayed
DDPG (TD3) [29], and Soft Actor-Critic (SAC) [35,36], etc. Thanks to
the combined advantages of actor-critic methods, they have become a
popular choice for tackling robot manipulation challenges [33,90].

Model-based RL

Model-free RL operates under scenarios where the dynamics of the environ-
ment are too intricate or outright unfeasible to model accurately. Nonetheless,
there are instances, particularly within the realm of robotics, where the transi-
tion dynamics of the environment P (s′|st, at) can either be explicitly defined or
inferred through experiential learning [18, 69]. Algorithms that leverage such
environmental models for RL are categorised under model-based RL [17, 76].
Coincidentally, the principles of model-based RL align closely with the concept
of optimal adaptive control in the automotive control systems [56, 58]. These
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approaches focus on learning the parameters of a predefined model structure,
thereby facilitating the control process. The advantage of having an accurate
model in model-based RL is significantly improved sample efficiency when
compared to model-free approaches. However, model-based RL suffers from
the issue of model identification in which the model can not be estimated ac-
curately. Furthermore, the effectiveness of model-based RL is constrained by
the fidelity of the estimated model, often limiting its overall performance [65].

2.2.2 Existing reinforcement learning works on robot in-hand
dexterous manipulation

Research in RL that focuses solely on learning object manipulation at a sym-
bolic level has been documented [49]. Yet, it was not until nearly a decade
ago that significant advancements in RL research of InDex began to emerge.

The first demonstration of applying RL on dexterous manipulation skill
[114] learns a policy to direct a two-fingered robotic gripper to adeptly rotate
a cylinder between its fingertips. This study introduced a model-free approach
known as non-parametric relative entropy policy search, designed for smooth
learning for non-linear control policy. Tactile sensors positioned on each finger
provided feedback on the interaction between the robot and the object. This
work successfully demonstrated the potential of utilising model-free RL to
teach dexterous manipulation skills to real-world robots. Despite its simplicity
in terms of the robot hand design and the manipulation task used, compared
to subsequent studies, it marked a significant step forward in the field.

Over the next few years after the initial explorations into dexterous manip-
ulation using model-free RL, this topic has witnessed significant advancement,
largely due to the integration of deep learning techniques and the use of deep
neural networks for policy representation. A notable milestone was achieved
by Katyal [48] in 2016, who demonstrated the first trial using a purely vision-
based approach to performing in-hand manipulation RL. Their work was con-
ducted on the ROS (Gazabo) simulation platform and involved a typical InDex
task: controlling a five-finger humanoid robot hand to continuously reorient
a cricket ball within its grasp. The policy was approximated using a 4-layer
deep convolutional neural network, which processes 4 frames of 84×84 pixel
grey-scale images to produce 18-dimensional action signals to control the joint
movement of the robot hand. The DQN method was employed to facilitate
the RL process. Although the author did not declare the condition of termi-
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nology for each episode and the definition of the reward, it is mentioned that
the training had converged to a maximum average reward after approximately
11 million steps. This work presented an end-to-end deep RL solution to the
InDex problem.

Subsequently, research efforts focus on exploring various model-free RL ap-
proaches to solve InDex tasks with a multi-finger anthropomorphic robot hand.
These tasks are notably difficult due to the high degree of freedom and the ex-
tensive potential contact points the robot hand presents. The majority of the
related works were conducted on MuJoCo (Multi-Joint Dynamics with Con-
tact) [110] platform, a physical simulation engine that has gained widespread
popularity in robotics studies. Prototypes of several robot hands, such as the
Shadow Hand [93] and its variant, the ADROIT hand [55], were simulated
within MuJoCo. A variety of in-hand manipulation tasks and sophisticated
grasping activities as been simulated in Mujoco. Figure 2.2 illustrates sev-
eral InDex and grasping tasks performed using the ADROIT hand developed
within MuJoCo.

Figure 2.2: InDex tasks developed for ADROIT robot hand with MuJoCo
physical engine, extracted from the original paper [90].

Mudigonda [75] presented an instance of model-free RL applied to an an-
thropomorphic hand in Mujoco physics engine, focusing on the fundamental
task of grasping and lifting objects. The policy-based TRPO method was cho-
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sen as the learning strategy, employing a multi-layer perceptron (MLP) with
two hidden layers to represent the Gaussian distribution for action sampling.
Given the simulated setting, the agent had full observation of the joint posi-
tion/velocity and the object position information. To encourage the robot’s
attempts at reaching for the object, even if not fully successful, the reward
was designed to penalise the distance from the palm to the object. While the
outcomes were promising, the training process was found to be particularly
sensitive to various parameters like batch size, the initial standard deviation
of the Gaussian policy, and the observation normalising.

Rajeswaran and Kumar [90] evaluated two types of model-free RL meth-
ods: A policy-based Natural Policy Gradient (NPG) [46] method, and an
actor-critic-based DDPG method, across four different robot dexterous ma-
nipulation tasks in the MuJoCo simulation environment. These tasks included
object grasping and relocating, re-orientating an object (such as a pen) within
the hand, opening a door and using tools (specifically picking up a hammer
and then driving the nail into a board). The findings underscored the im-
portance of reward shaping, informed by human prior knowledge, for effective
learning. NPG demonstrated better convergence rates over DDPG when the
rewards were carefully crafted. Nonetheless, both methods struggled to learn
most tasks when only sparse task completion rewards were provided, with
the exception of in-hand reorientation. Further investigation revealed chal-
lenges with using pure RL approaches: the learned policies were not robust
to changes in the environment (e.g., variations in object mass and size) and
tended to produce peculiar and unnatural movements.

This research demonstrates the feasibility of addressing the InDex prob-
lem end-to-end using a model-free RL approach combined with deep neural
networks, particularly in the context of high-dimensional, non-linear anthro-
pomorphic hand robotic systems. However, due to the sample inefficiency
of model-free RL, it is still not possible to directly conduct learning with
a real robot hand. The learning processes mentioned previously are mostly
done in the simulation environment. Furthermore, a common limitation across
nearly all related studies is the necessity for task-specific reward engineering
to achieve successful training or to expedite convergence. This requirement
not only adds complexity but also lacks generalizability across different tasks.
Additionally, the learning process is notably sensitive to the choice of hyper
parameters, and the policies developed often exhibit limited robustness to
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changes in the environment.
Besides the InDex reinforcement learning (RL) examples previously dis-

cussed, which leveraged simulations, the research by Zhu and Gupta [128] aims
to showcase the potential for directly acquiring complex multi-finger manipu-
lation skills using model-free deep RL algorithms on actual robotic platforms.
For their experiments, they utilised two robotic manipulators: a three-fingered
D-claw and a four-fingered Allegro hand. The range of tasks undertaken in
this study encompasses valve rotation, box flipping, and door opening. Figure
2.3 demonstrates the two robot manipulators performing these tasks.

Figure 2.3: D-Claw gripper and Allegro hand used in work [128], duplicated
from the original paper

This research employed the Truncated Natural Policy Gradient (TNPG)
method, a streamlined variant of the NPG introduced by Rajeswaran et al.
[91]. The learning phase was deemed complete, and the policy was considered
successfully learned, upon achieving a 100% success rate across ten evalua-
tions The findings revealed that model-free deep RL can learn these coherent
manipulation skills in a time scale of a few hours. These outcomes suggest
that direct training in real-world settings might offer more efficiency for certain
tasks, and potentially lead to better policies. However, it was noted that while
such learning processes could be conducted with limited data, this feasibility
does not extend to more complex tasks.

Active research in the field suggests that using a deep neural network to
control a multi-finger humanoid robot hand for dexterous in-hand manipu-
lation is becoming increasingly feasible. In 2018, OpenAI showcased their
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research [3] to illustrate a systematic and extensive application of state-of-
the-art deep RL methods for deriving a neural network policy solution to this
complex control challenge. The task is to rotate an object (either a block
or an octagonal prism) to a randomly chosen target configuration (goal) in
hand. A new goal was set upon achieving the current one, continuing until
the object was dropped or successfully handled 50 times. The control policy
was designed as a recurrent neural network (RNN) with memory capabilities,
specifically using the LSTM architecture [40]. The state-of-art policy-based
RL strategy, PPO [100], was employed for training. To enhance training effi-
ciency, the reward is augmented to include an additional reward of 5 for each
goal achieved and a penalty of -20 for dropping the object. Training occurred
on a simulated Shadow Hand model within the MuJoCo platform, with ex-
perience generation carried out by 384 worker machines, each equipped with
16 CPU cores, while network optimization was conducted on a single machine
boasting 8 GPUs. Additionally, a separate vision-based pose estimator was
trained via supervised learning to deduce the object’s pose using images from
three cameras. This estimated pose, along with the fingertips’ positions pro-
vided by a 3D motion capture system, were input into the control policy. The
optimally trained control policy from the simulation was then directly applied
to a physical platform for testing. Figure 2.4 illustrates the system overview
of their work.

The training results in the simulated environment are promising, showing
that the robot hand can consistently perform approximately 30 consecutive
reorientations without dropping the objects, applicable to both object types.
By incorporating a diverse array of manually selected randomisation during the
simulation training, when applied to a real platform, the robot hand managed
to achieve 11 consecutive reorientations with a block and five with an octagonal
prism. The performance approaches perfection when the ground truth object
state is directly supplied by the simulation rather than estimated by vision.
In such cases, the robot hand successfully completes all 50 reorientations in
each trial.

Shortly after their initial work, OpenAI tackled a more challenging prob-
lem: solving a Rubik’s cube with a humanoid robot hand [2]. To this end, they
integrated an existing Rubik’s cube-solving algorithm, the Kociemba solver,
into their system to generate solution sequences. By employing a more accu-
rately calibrated MuJoCo model and introducing a novel automated domain
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Figure 2.4: An system overview of [3], extracted from the original paper

randomization (ADR) method to facilitate curriculum learning in the training
process, the resulting trained policy was able to solve the Rubik’s cube through
manipulation most of the time. Surprisingly, this policy demonstrated high
robustness, effectively managing various perturbations. These two OpenAI
demonstrations represent significant milestones in applying RL to InDex tasks
using real humanoid robot hands.

Due to the nature of model-free RL, previous work on robot manipulation
usually requires extensive reward design and engineering to guide the model
toward proper convergence. This can be exceedingly challenging and requires
expertise and domain-specific knowledge. Yet, in most practical RL scenarios,
rewards are typically sparse and binary and is usually only given upon the
completion of a task. Dealing with such sparse and delayed reward signals is
challenging for continuous robot manipulation RL. Sample efficiency remains
a primary hurdle in the application of RL to robotics, particularly for tasks
characterised by sparse rewards where the agent frequently fails, thereby re-
ceiving predominantly negative reinforcement signals at the early stage of the
training.

Hindsight Experience Replay (HER) [4] proposes a method for sample-
efficient learning from sparse and binary rewards, avoiding the complexity
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of intricate reward engineering. HER is particularly suitable for multi-goal
RL challenges (formally described in [97]), where goals are derivable from
the state representation, and each goal g can be categorised within a set G of
potential goals. HER draws inspiration from the human capacity to learn from
failures. When replaying the experience that falls short of achieving a specific
goal g, identifying instances where an alternative goal g′ was inadvertently
accomplished. This approach not only aids in learning what actions to avoid
when aiming for the original goal g but also in discerning the appropriate
actions to achieve the alternative goal g′. Under the context of HER, Training
an agent to perform tasks in a continuous space becomes easier, thanks to
the generalisation ability of goal space. As a cornerstone of our work, HER is
explained in more detail in chapter 3.

In the foundational work introducing HER, it was combined with one of the
state-of-art actor-critic off-policy RL method, DDPG [66], and applied to the
simulation of a 7-DOF Fetch Robotics arm. Plappert and Andrychowicz [83]
extended this approach to simulate a Shadow Hand robotic hand performing a
series of in-hand reorientation and repositioning tasks. Compared to utilising
DDPG, the combination of DDPG and HER generally results in significantly
faster learning. Later, researchers [96] thoroughly benchmarked and compared
the simple DDPG, a policy-based RL method PPO and DDPG+HER on sev-
eral robotic manipulation tasks with both dense and sparse rewards. Results
reveal that DDPG+HER achieves the best success rate over all InDex tasks
with the sparse rewards applied. Interestingly, it was observed in [83] that the
convergence rate is quicker with sparse rewards rather than with the dense
rewards crafted. In another work [64], The DDPG+HER strategy has also
been successfully employed to derive an operator policy for solving a Rubiks
cube with a dexterous hand and has demonstrated effective performance.

Model-based RL approaches have also been deployed in InDex tasks in
some studies, mostly through the combination of local trajectory optimisation
and RL. In the work proposed by Kumar and Gupta [56], the task is to rotate
a long tube placed on top of the hand click-wisely using the ADROIT robot
hand. A trajectory-centric RL method is designed to learn a series of local
time-varying linear-Gaussian controllers with different predefined initial states,
via the linear-quadratic regulator (LQR) method. Sequentially, they train a
deep neural network to generalise across a wider range of initial conditions
with training data produced by the trained local controllers and compare the
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result with the nearest neighbour switching strategy. Their evaluation results
show that the neural-network-based trained agent cannot compete with the
nearest neighbour strategy regarding success rate.

Nagabandi and Konoglie [77] also utilise model-based RL to learn dexterous
manipulation skills with multi-fingered hands and combine the advantage of
deep neural networks in their work. They designed an online plan strategy with
deep dynamics models (PDDM) to solve a range of InDex problems such as
valve rotation, in-hand reorientation, handwriting, and manipulating Baoding
balls. In their method, a deep neural network model is learned to represent
the underlying system dynamics, then employ an online planning process with
model-predictive control (MPC) to select actions. Their method is evaluated
both in simulation and on the real robot hand platform (Baoding Ball rotation
task). The results show that this method achieves substantially better results
than other prior deep model-based RL methods. Compared with model-free
RL, it requires much less training data thus the training process can be directly
deployed on the real robots.

2.2.3 Challenges on reinforcement learning for robot in-hand
dexterous manipulation

Previous research on RL for InDex tasks has explored a range of activities, with
many studies demonstrating that these tasks can indeed be learned through
RL. However, these investigations also uncovered several underlying issues and
challenges that hinder the application of RL in addressing real-world InDex
problems:

• The issue of sample efficiency remains outstanding and unresolved
for model-free RL on InDex tasks. Even the most advanced current RL
algorithms, mostly off-policy based, require substantial amounts of data
for learning. For instance, in OpenAI’s demonstrations, the Model-free
training process required the involvement of hundreds of machines, and
despite the massive computational resources, days or even months are
needed to achieve the observed performance levels. The approach is
still far from being practically applicable. Model-based algorithms, such
as Guided Policy Search [61] and Probabilistic Inference for Learning
Control (PILCO) [17] method, are generally more data-efficient. This
is because they construct or train a derived model for the environment
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and then use this model to train the policy. Currently, model-based ap-
proaches are considered one of the most effective strategies for improving
sample efficiency in RL for most robotics tasks [79]. However, for InDex
tasks, due to the high complexity of the task itself which results in low
model accuracy, there is not much positive progress. Alternatively, some
approaches aim to generate augmented synthetic data for training, such
as Hindsight Experience Replay (HER) [4]), to circumvent the need for
directly collecting large volumes of training data.

• RL algorithms must engage in the cyclic process of generating new data
through random actions and then training with the collected dataset. For
multi-goal-based tasks [83], it is crucial for the agent to not only explore
new goals but also to revisit previously learned ones. The trade-off
between exploration and exploitation always exists for this process
[120]. The policy can easily be trapped into local optima if this is not
considered carefully. Each RL algorithm applies a different strategy to
tackle this issue. However, discovering an efficient exploration strategy
within the vast action or goal spaces typical of robotics tasks, which are
both continuous and high-dimensional, continues to pose a significant
challenge.

• Generalisation remains a challenge across all RL methods. Most trained
policies are too fitted into the specific task that even minor changes in
the environment or task can lead to failure. Additionally, reproducibility
in RL is an underappreciated issue, influenced by factors such as net-
work structure and random seeds used for initialisation [38], making it
difficult to replicate results consistently.

• In terms of application, most prior studies utilise precise data on the
objects’ and robot joints’ position/orientation as inputs. While such
features are easily accessed in simulations, they pose considerable diffi-
culties in real-world settings. The accurate detection of an object’s
position and orientation in real-time has become a notable hurdle.
Vision-based solutions, which require setting up cameras around the
robot, are commonly employed in RL experiments for robotic manip-
ulation applications. However, this approach remains constrained to
laboratory conditions, and the accuracy of the estimations significantly
impacts manipulation performance. Investigating the integration of ad-
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ditional perception methods, such as tactile sensors, could be beneficial.

2.3 Imitation learning and in-hand dexterous ma-
nipulation related work

This section presents an overview of imitation learning (IL) and delves into
various IL algorithms pertinent to robotic manipulation. Subsequently, it
examines the current state-of-the-art in IL specifically for InDex tasks. The
discussion concludes by summarising some of the prevailing challenges faced
in applying IL to InDex tasks.

2.3.1 Introduction to imitation learning

The RL approach necessitates continuous interaction between the agent and
its environment. In the initial stages of the learning process, the agent pri-
marily engages in random exploration. As a result, the effort and time to
collect sufficient data for the agent to learn the optimal policy is usually mas-
sive. Additionally, RL’s effectiveness exceedingly relies on the reward signal.
However, designing or obtaining suitable rewards that provide frequent and
precise feedback is challenging in many learning environments. In some in-
stances, rewards can be sparse, such as receiving a signal only upon successful
task completion, or in more extreme cases, a direct reward function may be
absent, such as in the context of teaching a self-driving vehicle. An inefficient
reward system can lead to slow training speed in RL or prevent the learning
process from converging to an acceptable solution.

In IL, the agent tries to learn the optimal policy by mimicking the be-
haviour of an expert, typically a human, who provides a set of demonstrations.
These demonstrations are often represented as trajectories τ = (s0, a0, s1, a1,

s2, a2, ...), showcasing the expert’s decisions across different states. Similarly
to RL, IL operates within an environment modelled by Markov Decision Pro-
cess (MDP), characterised by a state space S, an action space A, a transition
mode P (s′|st, at) and an unknown reward function R(s, a). The agent gen-
erates its action based on its policy π, striving to align it with the expert’s
‘optimal’ policy π∗, from which the demonstrations derive. In some cases,
the expert may provide additional demonstrations online, further aiding the
agent’s learning process. To facilitate this learning, a supervised learning algo-
rithm equipped with a proper loss function is employed, enabling the agent’s
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policy π to converge towards the expert policy π∗ by learning from the state
and action pairs extracted from τ .

The efficiency of IL in reducing exploration efforts and minimising trial-
and-error is a significant advantage, offering a high-efficiency learning pro-
cess [42]. IL is particularly beneficial when it is easier to collect desired
behaviour demonstration from the expert than to specify an accurate and
detailed reward function to learn the policy directly. Also, it is often merged
with RL techniques to boost learning speed and accuracy. The IL process typ-
ically encompasses three stages: demonstration, representation and imitation
learning algorithm itself [24].

Demonstration collection methods for robotic manipulation IL can be
mainly categorised into two types: Direct and Indirect [56]. Direct demon-
strations involve acquiring teaching examples directly from the robot, ensuring
that the demonstrated state-action samples are highly compatible with the tar-
geted robot system and can be readily transformed into learning data. Robots
are typically controlled through kinesthetic teaching [89] or teleoperation [57]
in this approach. Conversely, indirect demonstrations are collected in a sep-
arate environment where the robot itself is not involved. This method nor-
mally captures human motion through visual system [102] or wearable devices
equipped with tactile sensors. Robots learn by observing images of human
motion or contact signals. The indirect approach facilitates the convenient
collection of a large volume of demonstrations. However, the transforma-
tion of state-action samples to the targeted robot system is less precise due
to kinematic differences between humans and robots. Consequently, indirect
demonstrations tend to be less optimal compared with direct demonstrations.

During the representation stage, characterised information is extracted
from the demonstration for use in supervisor learning algorithms. Lower-
level representations, such as time series of system states and actions, can be
abstracted to form the trajectory τ . Additionally, some high-level symbolic
representations can be derived to help identify the millstones of the task.
The symbolic characteristics are particularly useful for dividing the task into
several segments or stages, facilitating the learning process for complex and
multi-step tasks.

The algorithm is pivotal in Imitation Learning (IL), enabling robots to
replicate expert behaviour and generalise this behaviour across unfamiliar sce-
narios. The mainstream imitation algorithms applied in the field of robotic
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manipulation can be broadly categorised into the following types:

• Behaviour Cloning (BC): this method represents the simplest form of
IL, where the policy is derived through supervised learning from demon-
stration data. The agent is trained to precisely mimic the state-action
mapping observed in the demonstrations. BC is notably efficient and
excels in tasks that are simple and focused on a single target. However,
the limited number of demonstrations cannot encompass the state-action
distribution. Cumulative errors during operation add up and can put the
policy into a state the demonstration has not covered. The behaviour in
these unseen states can be unreachable, or not executable, and can lead
to catastrophic failure. Consequently, a BC-learned policy often lacks
the capacity to generalise to unseen states, making it less suitable for
complex tasks that require long-term planning.

• Inverse Reinforcement Learning (IRL): this method seeks to de-
cipher the underlying reward function characterising expert behaviour
from demonstrations, subsequently leveraging this reward function to
identify the optimal policy via forward reinforcement learning [28]. The
process of learning the reward function presupposes the expert’s opti-
mality, aiming to distil the intentions behind the expert’s actions [52].
The implementation of the reward function can adopt a structured for-
mat, such as a linear combination of features, or a model-free approach,
utilising neural networks, for instance. The strength of IRL lies in its
ability to generalise the learned strategy from a limited set of demonstra-
tions. A primary challenge in IRL is the potential for an infinite array of
reward functions to correspond to the same expert policy. Approaches
like maximum entropy IRL [1] have been developed to address this issue.

• Generative Adversarial Imitation Learning (GAIL) [39]: In-
spired by the structure of IRL and the principles of Generative Ad-
versarial Networks (GANs), GAIL employs a discriminator network to
discriminate how much the data generated by the training agent is differ-
ent from the expert demonstrations. The discriminators feedback then
serves as the reward signal for training the agent (generator) using stan-
dard RL methods, encouraging the agent to produce data indistinguish-
able from the demonstrations. Eventually, it will converge to the expert
as much as possible. GAIL can handle complex, high-degree-of-freedom
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robot manipulation tasks and demonstrates strong generalisation capa-
bilities in unseen scenarios, Further developments have enabled GAIL to
sometimes surpass the performance of expert demonstrations [130]. A
more detailed discussion on GAIL is presented in Chapter 4.

2.3.2 Existing imitation learning works on robot in-hand dex-
terous manipulation

For InDex, the dimension of both state space and action space is notably
higher compared with other robot manipulation challenges, yet the margin for
achieving a successful solution is exceedingly slim. During the initial learn-
ing phases, a significant portion of the experiences tend to result in failure,
underscoring the heightened challenge of exploration. This intense need for
exploration substantially slows down the training process. Moreover, facili-
tating adequate exploration becomes particularly problematic when training
involves a physical robot, due to the practical limitations and potential risks
associated with extensive trial-and-error in the real world.

In the model-based RL study by Kumar and Gupta [56], a grasp and
pick-up strategy is learned using IL. Expert demonstrations are captured via
MuJoCo Haptix system [57], which employs a cyber-glove for teleoperating a
robotic hand in a simulated environment, complemented by stereoscopic visu-
alisation through OpenGL projection, simulating the user’s viewpoint. Follow-
ing a successful demonstration, a trajectory encompassing hand joint angles,
object position and rotation, cylinder pressure vectors, and valve command
signals are utilised for Behavior Cloning (BC). However, due to the distri-
bution discrepancy between the simulated and real robot hands, the initial
learned policy fails to pick up the object. To address this, the authors intro-
duce a hybrid approach, merging Learning from Demonstration (LfD) with
RL, leveraging the BC-derived policy as a foundation for RL. By integrating
an additional shaping cost in the RL phase, they ensure the learning trajectory
remains aligned with the expert demonstration, culminating in the acquisition
of a successful policy.

In another study by Jain [45], BC is applied to acquire a deep visuomo-
tor policy for various manipulation tasks, extending the work of [90]. They
present an end-to-end framework in simulation that combines three continuous
frames of camera images, robot joint sensors and tactile sensors that provide
on-off contact signals. The demonstrations are acquired from a pre-trained
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simulation-based policy from previous work [90]. BC and a more advanced
IL approach called Dataset Aggregation (DAgger) [94] are tried to learn the
policy. The finding indicates that both IL methods can efficiently train a pol-
icy within a few hundred trajectories, with DAgger slightly outperforming BC
in most scenarios. Notably, tactile feedback proves beneficial, especially in
situations of object occlusion, enhancing learning efficiency.

The idea of object-centric demonstration which only demonstrates the mo-
tion of the object was adopted in InDex tasks in the work of Gupta and Epp-
ner [34]. A soft robotic hand, where each finger is powered by an individual
air valve, is used in this work. The affordability and adaptivity of this type of
robotic hand make it suitable for a wide range of grasping tasks. However, it is
extremely hard to model such a hand structure. The object-centric demonstra-
tions were collected from humans. The authors formulated a methodology to
train multiple controllers under diverse initial conditions, aiming to replicate
the demonstration trajectories that the robot could most accurately mimic. An
innovative algorithm was developed to determine the most suitable demonstra-
tion for imitation based on each initial state, excluding those unattainable by
the robot. Following this, a neural network is trained to generalise across the
assorted controllers, utilising the Guided Policy Search (GPS) framework [60].

In the previously mentioned model-free RL works [90, 128], the concept
of demonstration-initialised RL has been explored. These two works utilise
a technique known as Demo Augmented Policy Gradient (DAPG) for IL.
DAPG melds demonstration data with policy gradient methods, starting with
an initial policy crafted through Behavior Cloning (BC) and further refined
by RL fine-tuning, incorporating an augmented loss function. Demonstra-
tions were gathered via teleoperation using Virtual Reality (VR) technologies.
Their teleportation system includes motion tracking and visual monitoring
with Cyber-glove&HTC Vive, alongside the MuJoCo Haptix system for work
in [90], while [128] employed kinesthetic teaching for data acquisition. The
findings from these investigations indicate that DAPG performs slightly bet-
ter convergence performance in training relative to BC and BC combined with
Natural Policy Gradient (NPG), and outperforms other model-free IL methods
like DDPG from Demonstrations (DDPGfD) [115].

Teleoperation via virtual reality and cyber gloves are considered expensive
and complex to deploy. Later works [86] [5] have proposed vision-based tele-
operation techniques to collect demonstrations. These methods only require a
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single camera to detect and estimate the human hand geometry, then perform
motion retargeting to map the joint skeleton of the human hand to various
robot hands. In these two works, DAPG is also used to conduct IL to learn
several robot manipulation tasks including in-hand object rotation tasks.

Ruppel and Zhang [95] proposed a pioneering approach to learning control
frameworks directly from human demonstrations, bypassing the need for tele-
operation. They employed an instrumented glove to capture human finger and
object motion trajectories along with tactile information. A trajectory-based
reconstruction method is designed to regularise and reconstruct the collected
demonstrations for the learning process. Subsequently, they trained two types
of trajectory-based policy networks, a feed-forward structure and a recurrent
structure, using the reconstructed demonstration data. Models for tactile feed-
back and object state were also developed as part of the learning framework.
The trajectory commands generated by the policy network are converted into
robot joint angles via online trajectory optimisation, facilitating the robot’s
execution of various manipulation tasks. This approach was tested on tasks
ranging from simple object pick-and-place to more complex actions like whip-
ping and opening a bottle lid. IL directly from human demonstration largely
reduces the cost of data collection and allows humans to perform diverse tasks
more naturally.

A similar idea applies to work presented by Qin and Wu [87]. They in-
troduced a vision-based learning from demonstration approach called Dexter-
ous Manipulation from Videos (DexMV) that applies IL directly from human
demonstrations. Their key contribution lies in devising an optimisation-based
method to convert human hand trajectories into robot hand demonstrations,
employing pose estimation and motion retargeting. An overview of the DexMV
learning pipeline is shown in Figure 2.5. For the learning aspect, they utilise
and compare both state-action Imitation Learning with Generative Adversar-
ial Imitation Learning (GAIL) [39] and Demo Augmented Policy Gradient
(DAPG) [90], as well as a state-only Imitation Learning method, State-Only
Imitation Learning (SOIL) [88]. The learning experiments focused on a variety
of manipulation tasks in simulation, including object relocation, pouring from
a mug, and placing an object within a container. The findings indicate that
all IL methods, utilising the translated demonstrations, significantly surpass
the baseline RL performance achieved with Trust Region Policy Optimisation
(TRPO) [99], showcasing the effectiveness of leveraging direct human demon-
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strations for dexterous manipulation tasks.

Figure 2.5: An overview of DexMV, duplicated from the original paper [87]

2.3.3 Challenges on imitation learning for robot in-hand dex-
terous manipulation tasks

Previous research in Imitation Learning (IL) for InDex tasks has explored
various strategies for gathering and leveraging demonstrations. A range of
algorithms has been developed to implement IL using these demonstrations.
Despite these advancements, several challenges remain in the field:

• The traditional methods for demonstration collection in robot ma-
nipulation primarily involve kinesthetic teaching or teleoperation. Kines-
thetic teaching, while straightforward, becomes challenging with com-
plex robotic hands, such as those with five fingers, especially for tasks
necessitating responsive and smooth movements. Teleoperation allows
for direct use of collected demonstrations in learning, bypassing the need
for data transfer. Glove-based teleoperation systems for humanoid hands
tend to be expensive and require careful calibration for each operator.
On the other hand, vision-based teleoperation systems offer a more cost-
effective and user-friendly alternative, gaining popularity in recent re-
search. Despite these advantages, teleoperation systems generally lack
tactile feedback, making it difficult for operators to perform precise ma-
nipulations.

• The scope of demonstrations that can be collected is inherently limited.
When it comes to multi-task learning or tasks with varying initial condi-
tions, gathering a sufficient number of demonstrations to cover the entire
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exploration space presents a significant challenge. Consequently, data
augmentation becomes necessary to increase the volume of available
demonstrations for IL, enabling a more comprehensive understanding
and replication of desired behaviours.

• In the realm of IL algorithms, a significant trend involves designing
model-based IL approaches tailored to specific problems, enhancing their
feasibility for application on physical robots. However, the intricacy
of creating models for diverse tasks and robotic structures limits their
adaptability for general use. On the model-free front, Behavior Cloning
(BC) is seen as rudimentary and struggles with efficient learning in com-
plex tasks requiring long-term planning, primarily due to mismatches
in data distribution. The most utilised IL algorithms for InDex tasks
include DDPG from Demonstrations (DDPGfD) and its variant, Demo
Augmented Policy Gradient (DAPG), which have demonstrated com-
mendable performance across various studies. Yet, other IL algorithms,
such as Inverse Reinforcement Learning (IRL) and Generative Adversar-
ial Imitation Learning (GAIL), have seen limited exploration within the
context of multi-goal-oriented robot manipulation, suggesting potential
avenues for advancing the field.
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2.4 Summary

In this chapter, the fundamental concepts of RL and IL are explained, followed
by a concise overview of some elementary algorithms within these domains.
Additionally, the current state-of-the-art in robotic InDex was examined from
three perspectives: traditional control approaches, RL, and IL. A summary
and comparative analysis of the key aspects of recent RL and IL research, as
outlined in the core papers discussed in this chapter, are presented in Table 2.1
and Table 2.2

Previous research on InDex with RL has illuminated novel pathways dis-
tinct from traditional non-learning methods. The fusion of deep neural net-
works with model-free RL approaches has yielded promising outcomes in tack-
ling InDex challenges. Yet, learning efficiency remains a significant barrier,
hindering the application of anthropomorphic robotic hands in practical set-
tings. Among the various tasks explored, multi-goal-oriented robot manipula-
tion tasks [83] have attracted considerable interest due to the intricate contin-
uous goal space they present, posing substantial challenges to most existing
RL methodologies. Hindsight Experience Replay (HER) [4] has emerged as
a notably effective strategy for enhancing learning efficiency in these complex
scenarios. The concept of re-labelling experiences in hindsight introduces a
broadly applicable strategy for refining RL techniques in robot manipulation.
Combining HER with recent advancements in RL to improve RL learning
efficiency further is a promising research direction.

In Chapter 3, we delve into our contributions toward enhancing Hindsight
Experience Replay (HER) for tackling multi-goal-oriented InDex tasks.We in-
troduce two novel methods aimed at accelerating the learning process and
addressing specific challenges identified in section 2.2.3 Our first innovation,
Goal Density-based Hindsight Experience Prioritisation (GDP), introduces
a prioritised experience replay mechanism designed to boost learning speed,
which seeks to enhance sample efficiency, directly addressing the first challenge
outlined in section 2.2.3. The second method, Policy-level-based Curriculum
Goal Selection (PL-CGS), incorporates a curriculum-based goal selection strat-
egy, tailored to optimise the learning pace further. PL-CGS tries to balance
between exploration and exploitation during the learning process. which ad-
dresses the second challenge highlighted in the RL challenges in section 2.2.3.

Simultaneously, some work has investigated the IL approaches for InDex
tasks. In terms of algorithms, a majority of the work has predominantly
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applied fundamental techniques like Behavior Cloning (BC) and Deep Deter-
ministic Policy Gradient from Demonstrations (DDPGfD), along with their
variations. However, more sophisticated and recent algorithms such as Inverse
Reinforcement Learning (IRL) and Generative Adversarial Imitation Learning
(GAIL) have seen limited exploration within the domain of multi-goal-oriented
robot manipulation. This indicates a potential area for further research, sug-
gesting that these advanced IL algorithms could offer novel insights and im-
provements for tackling the complexities associated with multi-goal-oriented
tasks in robotic manipulation.

In Chapter 4, we present our innovative approach, Goal-based Self-Adaptive
Generative Adversarial Imitation Learning (Goal-SGAIL), which tailors GAIL
to multi-goal-orientated InDex tasks. Goal-SGAIL employs a strategy of ap-
plying hindsight to demonstration trajectories, thereby augmenting the data
available for demonstration. This approach is further enhanced by incorpo-
rating several recent advancements in GAIL, aiming to significantly boost the
efficiency of IL. Our methodology seeks to address the second and third chal-
lenges associated with IL, as detailed in section 2.3.3, offering a comprehensive
strategy to overcome the hurdles faced in IL for multi-goal-oriented robotic
manipulation.
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Chapter 3

Reinforcement Learning for
In-Hand Dexterous
Manipulation

In this chapter, we will explore multi-goal reinforcement learning (RL) with
sparse reward, focusing on InDex tasks. We begin by introducing key concepts
related to multi-goal RL, followed by a review of the most relevant work to
our research. After highlighting the limitations of existing approaches, we pro-
pose two novel methods designed to enhance learning efficiency from distinct
perspectives:

• Goal Density-based Hindsight Experience Prioritisation (GDP), which
aims to improve learning efficiency by prioritizing certain experiences
during the experience replay phase;

• Policy-level-based Curriculum Goal Selection (PL-CGS), aimed at en-
hancing learning efficiency through the automatic generation of goals
that facilitate a curriculum learning process during training.

Both proposed methods undergo thorough evaluation in a simulated envi-
ronment across a range of robotic manipulation tasks. The chapter concludes
with a summary and discussion of our findings.
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3.1 Related work

3.1.1 Multi-goal RL

In many robotic RL problems, agents learn to solve a multitude of related
tasks, each characterised by seemingly different reward functions. For exam-
ple, pick a load and place it in a specified location, where the target location
varies for each task instance. In most cases, these ’meta-tasks’ can be con-
ceptualised as ’goals’: a subset of the observation state space that defines the
task’s objective. For multi-goal tasks, where the goals occupy a continuous
space, Universal Value Function Approximators (UVFAs) [97] have been pro-
posed.UVFAs utilise a single value function approximator to learn across the
goal space, demonstrating a strong generalisation ability to unseen goals.

Here is a formal description of a multi-goal RL problem: considering an
RL problem modelled as a Markov decision process (MDP): (S,A, R, P, p(s0)),
with state space S and action space A. In this context, goals are used here to
describe the desired outcome of a task. A goal g is sampled from a possible
goal space G and can be mapped from the observation states s by g = f(s),
which makes the goal space a subset of the state space G ⊂ S. Each episode
starts with an original goal g0 ∈ G initialised alongside the initial states s0

and stays fixed throughout the whole episode. The reward function is not
only dependent on states and actions but also is goal-conditional. RL aims
to learn a universal goal-conditioned policy π(st, g0) that can maximise the
cumulative reward with a reward function Rg across the whole goal space G.

3.1.2 Hindsight Experience Replay (HER)

RL needs the environment to provide rewards as feedback for training. How-
ever, in the real world, the reward signal is usually sparse, meaning rewards
are only given when successful. For multi-goal scenarios with sparse rewards,
a positive reward is only given when the desired goal is considered achieved
within a certain tolerance. Dealing with such sparse rewards is especially
challenging for most existing RL algorithms. On the other hand, most ex-
periences are unsuccessful during the earlier stage of learning and, therefore,
cannot provide enough positive reinforcement when a sparse reward is applied.
For continuous multi-goal RL problems, researchers have proposed Hindsight
Experience Replay (HER) [4] to conquer the difficulties of sparse reward. It
allows the agent to learn from its ‘failure’ by using achieved goals on their

46



Y. Kuang, PhD Thesis, Aston University, 2023

past trajectories as substitute goals to replace the original goals as the tar-
gets. The rewards are recalculated based on these substitute goals. This tech-
nique greatly increases the percentage of positive rewards, thus speeding up
the learning process. When combined with the off-policy RL algorithm Deep
Deterministic Policy Gradient (DDPG) [66], it shows a much better learning
efficiency on OpenAI multi-goal robotics tasks [83].

In a multi-goal RL problem, at each time step of an episode, an achieved
goal g′ can be extracted from the states s. By comparing the achieved goal
g′t+1 of the next time-step t + 1 and the desired goal gd, the reward of each
time-step t can be represented as rgd(t) = −[f(g′t+1) = 0], f(g′) = |g′−gd| < ϵ,
where ϵ is a fixed tolerance. The reward is -1 for unsuccessful and 0 for
successful time steps. As an off-policy algorithm, HER stores the experience
in a replay buffer. Observation states, actions, the desired goal (do not change
during the episode), and the current achieved goal are stored as one data tuple
(st, at, g

′
t, gd) in the replay buffer. During the replay stage, some experiences

are modified to use the achieved goals from the future time steps as substitute
goals gs to replace the original desired goals gd. an achieved goal from the
future time-step g′future of the same episode is used as substitute goal gs to
replace the original desired goal gd. The reward of these experiences will be
calculated based on the substitute goals. rgs(t) = −[f(g′t+1) = 0], f(g′) =

|g′ − g′future| < ϵ. By using this approach, the RL algorithm can learn to
achieve a goal even if that goal is not the original.

Although HER can be considered the current state-of-the-art method for
multi-goal sparse reward RL, it can still be improved in several ways. There are
two directions to improve learning efficiency: setting new goals to optimise the
experiences gained (i.e. goal generation [92]) and efficiently exploiting existing
experiences in the buffer.

3.1.3 Experience Prioritisation for HER

Off-policy RL algorithms leverage previous experiences stored in a replay
buffer for training. Typically, these experiences are uniformly randomly sam-
pled from the replay buffer and utilised to update the policy and value ap-
proximators.

The importance of experience prioritisation was highlighted by Schaul [98],
who proposed a method for prioritizing experiences based on their higher
temporal-difference (TD) error. TD error quantifies the discrepancy between
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the ultimately correct reward and the current prediction for a sampled experi-
ence. Experiences with higher TD errors are indicative of potentially greater
losses for the current policy, thus holding more value for training. While this
method effectively identifies valuable experiences, it is computationally de-
manding. It necessitates recalculating the TD error for all experiences each
time the networks are updated, making it resource-intensive.

Another method, Energy-based Prioritisation (EBP), as proposed by Zhao
et al. [126] utilises the trajectory energy to indicate the difficulty level of the
achieved trajectory. The trajectory energy is calculated as the sum of three
types of transition energies (potential, kinetic, and rotational) of the target
object along the movement trajectory. The trajectories with higher trajectory
energy are deemed more challenging but still achievable for the agent, and
therefore, are prioritised for training.

HER primarily learns from the hindsight experience, where the substi-
tute goal distribution is biased from the original goal distribution [125]. Most
achieved goals cluster around the starting states and are overrepresented as
substitute goals, risking the agent’s overlearning from a homogeneous set of
easily achieved goals. To mitigate this ‘hindsight bias’ in HER, various meth-
ods have been proposed. Naive approaches include filtering out experiences
that do not cause the object to move [71] or whose final achieved points are
not sufficiently close to the original targets [80]. Other strategies focus on pri-
oritizing experiences deemed more instructional [71] or more interesting [127]
to the agent.

A universal approach is to apply entropy-regularisation over goal states.
The Maximum Entropy-based Prioritisation (MEP) method [125] estimates
the entropy of the trajectory and prioritises those with higher entropy, deter-
mined by the probability distribution of trajectory goals. The rarer a trajec-
tory is, the more likely it is to be sampled for replay. This approach introduces
the concept of trajectory entropy, highlighting the value of rare experiences for
learning. However, it applies goal density fitting for each trajectory, and expe-
rience prioritisation remains confined to the trajectory level, with experience
sampling within a trajectory still being random.

3.1.4 Curriculum Goal Generation for Multi-goal RL

Curriculum learning was first introduced and explored within the realm of
supervised learning [8]. The core idea involves optimising the sequence in
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which experiences are utilised for learning by the agent [78]. In the RL domain,
curriculum learning modifies the distribution of training data by adjusting the
learning situation according to the capabilities of the RL agent. This can be
implemented at the data collection stage, employing a series of auxiliary tasks
to guide policy optimisation [27], or at the data exploitation stage, organising
a sequence of experiences for replay from the data stored in the buffer [14].
Our discussion will primarily focus on the former scenario.

In multi-goal RL, goals are typically generated randomly within the goal
space G, which is naive and cannot provide progressive exploration for the
overall task. In the initial stages of learning, some goals may be too challenging
for the agent to achieve, offering little to no positive reinforcement. Conversely,
in later stages, it becomes crucial for the agent to explore more novel and
challenging goals while revisiting previously learned goals to prevent forgetting
past learnings. To accommodate this, it’s advisable to enable the agent to set
its own goals, strategically selecting those of intermediate difficulty that are
most appropriate for its current stage of learning [84].

This objective is realised in GoalGAN [26], where a generator, based on
a Generative Adversarial Network (GAN), is trained to propose goals of in-
termediate difficulty, referred to as GOID. In this framework, a ‘policy-level’
measure is introduced to assess the difficulty of goals relative to the current
capabilities of the agent. A generator and a discriminator are trained in tan-
dem with the learning agent: the discriminator learns to identify goals that
are suitably challenging for the agent at its current level, while the generator
is trained to produce these optimally challenging goals. Although this method
has been applied to a series of simple 2D navigation problems, it has yet to
be evaluated on more complex 3D robot manipulation tasks. Furthermore,
the authors have not yet explored integrating their algorithm with hindsight
experience replay (HER).

Rather than training a GAN to generate suitable goals, the Curriculum
Goal Masking (CGM) method proposed by Eppe et al. [22] employs masks on
goals (sub-goal combinations) to generate various combinations of sub-goals
and to associate different levels of difficulty with distinct goal masks. The
authors posit that sub-goals sharing the same goal mask have equivalent diffi-
culty levels. By evaluating the success rate of sub-goals generated by each goal
mask based on the most recent rollouts, the method selects the goal mask that
achieves an optimal ‘Goldilocks’ difficulty level, thereby maximising learning
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efficiency. However, this method faces scalability issues, as the number of goal
masks increases exponentially with the dimensionality of the goal space, mak-
ing it impractical for tasks involving high-dimensional robotic manipulation,
such as those in the InDex context. Furthermore, CGM is better suited to
tasks that can be decomposed into discrete sub-tasks, like reach-and-push or
reach-grasp-and-move.

A more straightforward method for assessing the difficulty of robotic ma-
nipulation tasks involves using distance as a metric. Hindsight Goal Genera-
tion (HGG), proposed by Ren et al. [92], aims to identify achieved goals from
previously visited trajectories that are closest to the target goal distribution.
These selected achieved goals are then utilised as new objectives for guided
exploration. Initially, the method randomly selects a set of goals within the
target goal region and employs a bipartite matching technique to find a subset
of achieved goals from the replay buffer that closely matches these selected
goals. This strategy has been shown to accelerate learning speed across a
variety of custom OpenAI goal-oriented robotic manipulation tasks, particu-
larly in scenarios where the initial starting region does not overlap with the
target region. However, it has not yet been evaluated in a more generalised
environment setup. Additionally, while the method traditionally calculates
the distance between two goals using Euclidean distance, this metric may not
accurately reflect the complexity of in-hand object rotation tasks, where goal
distances should ideally be measured by orientation differences.

3.2 Goal-density based Prioritised Experience Re-
play (GDP)

In this section, we concentrate on the question of how to efficiently exploit the
experience collected during the learning process. To address this, we analyse
the density distribution of achieved points, giving priority to those that are in-
frequently encountered in the replay buffer for use as substitute goals in Hind-
sight Experience Replay (HER). Furthermore, we introduce the Prioritisation
Switching with Ensembling Strategy (PSES) method. This approach involves
alternating among different experience prioritisation algorithms throughout
the learning process, thereby enabling the selection of the most effective strat-
egy at each stage of learning.
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3.2.1 Methodology

Definition of goal-pair

During the replay stage, HER first samples trajectories and then samples an
achieved goal from each trajectory to be the substitute goal and synthesis a
new experience. This essentially means that for each trajectory, the number
of possible experiences for HER to sample equals the number of trajectory
time steps. The total number of possible experiences that could be sampled
for replay buffer is the number of trajectories m times the trajectory length n

in time steps (assuming that all trajectories have the same length).
Our algorithm is inspired by the Maximum Entropy-based Prioritisation

(MEP) [125]. Original MEP estimates the probability distribution of the goal-
state trajectories p(τ gd) and prioritises the rare trajectories in the overall tra-
jectory density distribution for replay. However, we seek to estimate the den-
sity distribution of the possible experiences that could be sampled for replay
instead.

Assuming that only one specific route exists from each initial achieved
point p0 to each substitute goal point ps, each experience could be represented
by the pair of an initial point and a substitute goal point (p0, ps). In HER, the
initial point pτ0 of an episode trajectory τ is essentially the achieved goal of the
initial time-step, and here we define it as initial goal gτ0 . Since a substitute goal
point pτs of trajectory τ can only be sampled from the future achieved goals,
an achieved goal g′τ at each time-step (except for the initial time-step of τ)
can be used to express its possible substitute goal point. For each trajectory
τ in the replay buffer, there exists n achieved goals, thus n sets of such goal
pair (gτ0 , g

′τ ) that can represent all possible experience samples exist. In our
algorithm, all pairs of initial and achieved goals (g0, g

′) of all trajectories are
used to estimate the goal density. The total number of elements in the density
distribution of m trajectories is m× n.

The Algorithm

The complete training algorithm for HER with GDP is provided in Algo-
rithm 1. In short, GDP constructs goal-pairs with initial goals and achieved
goals during the data collection stage and uses them to fit a goal-density
model. The density values are used to prioritise those achieved goals with
lower goal-density for HER to use as substitute goals. Using this method, the
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substitute goal distribution for HER is less biased, and rare experiences are
utilised more often during the learning phase. Each step of the algorithm is
explained below:
Data collection and storage: The data-collecting process of the proposed
method is the same as the original HER. At the beginning of each episode,
an initial state s0 and a desired goal gd are randomly sampled. At each
time step, the agent takes an action at according to the current policy with
randomisation, and a new state is reached afterwards. Each episode has a
fixed number of time-step n.

For each episode trajectory τ , the original HER records the observation
states s, the actions a, all achieved goals g′ including the initial goal g0 and
the desired goal of the episode gd. In GDP, the goal-pair of each time-step’s
initial goal and achieved goal t as pairt = (g0, g

′
t) are also recorded and stored.

Each trajectory records n sets of goal-pairs. These goal-pairs are used for
goal-density estimation.
Goal density estimation: After some episodes of experience are collected,
the density model ρ is fitted using the goal-pairs stored in the buffer. A
variational Bayesian Gaussian Mixture Model (GMM) is used to represent the
density distribution of the goal-pairs. A finite mixture model with Dirichlet
distribution is used as the type of weight concentration prior. The Expectation
Maximisation (EM) algorithm is used to estimate the parameters of the GMM.
The density model is fitted every epoch for all goal-pairs saved in the replay
buffer:

ρi = GMM(pairi). (3.1)

Then, the density is normalised as follows:

ρī =
ρi − ρmin∑N

n=1(ρn − ρmin)
, (3.2)

where ρmin is the minimum value of all density values, N represents the current
number of data points in the replay buffer. After normalisation, all density
values are within the range 0 < ρ̄ < 1 and stored in the replay buffer for
prioritisation afterwards.
Experience replay with goal prioritisation: During the HER sampling
stage, the normalised density values of goal-pairs are used to prioritise the
achieved goals as HER substitute goals. To ensure that rare experiences with
smaller density have higher prioritisation, the complementary density values
are ranked and the ranking number rank(1 − ρ̄) is directly used to calculate
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Algorithm 1 HER with Goal Density-based hindsight experience Prioritisa-
tion (GDP)
Require:

- An off-policy algorithm A ▷ e.g. DDPG, DQN
- A goal-based reward function S ×A× G → R ▷ e.g. r(s, a, gd) = −1 if
fails, 0 if success

1: Initialise actor and critic networks for A
2: Initialise replay buffer R
3: for epoch = (1, L) do
4: for episode = (1,M) do ▷ Step 1: data collection and storage
5: Sample an desired goal gd and initial state s0

6: Extract the initial goal g0 from the initial state s0

7: for t = (0, T − 1) do
8: Sample an action at using the behaviour policy π from A
9: Execute the action at and observe a reward rt and a new state

st+1

10: end for
11: Store the trajectory τ = (st, gd, g

′
t, at, rt)

T
t=0 in the replay buffer R

12: Store the goal-pairs pairt = (g0, g
′
t)
T
t=1 of trajectory τ in R

13: end for
14: Fit the goal-density model using the goal-pairs in R ▷ Step 2: goal

density estimation
15: Update the densities ρ and ρ̄ using Eq. (1) and (2) for all samples in

R
16: for batch = (1, N) do ▷ Step 3: experience replay
17: Sample a set of achieved goals g′i based on the probability p(g′i)

using Eq. (3) ▷ goal prioritisation
18: Sample transitions (st, gd, at, g

′
t, st+1, g

′
t+1) based on g′i

19: r′t = r(st, at, gs) using the achieved goals as substitute goals gs = g′i

▷ recalculate reward (HER)
20: Store resembled transitions (st, at, st+1, r

′
t) in the mini-batch B

21: Perform one step optimisation using A and B
22: end for
23: end for
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the probability for sampling. For an achieved goal g′i in trajectory τ with goal-
pair represented as pairi = (gτ0 , g

′
i), where gτ0 is the initial goal of trajectory

τ , its goal density is ρi = GMM(pairi). Its probability is then sampled for
replay as follows:

p(g′i) =
rank(1− ρī)∑N

n=1[rank(1− ρn̄)]
. (3.3)

If an achieved goal g′i from time-step i in trajectory τ is sampled for replay,
a transition (st, at, g

′
t, gd) is then uniformly sampled from the same trajectory

τ , but before the achieved goal time-step i, which means t ∈ (0, i). The
achieved goal g′i is used as substitute goal gs = g′i to replace the original goal
gd for this transition to calculate the reward using the HER algorithm.

Algorithm 2 Prioritisation Switching with Ensembling Strategy (PSES)
Input:

- RL algorithms A1, A2, A3 ... with different prioritisation method. ▷ e.g.
GDP, MEP, PER etc.
- A time window T ▷ e.g. 5 epochs

Output:
- The outcome algorithm Ao

1: Initialise the selector S with one of the algorithms.
2: for epoch = 1, L do
3: Switch outcome algorithm to the selector Ao → S

4: if epoch == T then
5: Calculate the average performance for all algo-

rithms A1,A2,A3...

6: Point the selector to the best algorithm with the
highest average performance S → Ab, where
Ab ∈ {A1,A2,A3 ...}

7: end if
8: end for

Prioritisation Switching with Ensembling Strategy (PSES)

There exists a number of experience prioritisation methods that can be com-
bined with HER [98,125,126] in addition to GDP. Each method benefits differ-
ent types of tasks and improves learning efficiency at different training stages.
For an unknown task, it is hard to decide which approach to be used that
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can provide the best performance. In our work, an ensembling strategy is
proposed that utilises several different prioritisation methods simultaneously
and achieves the overall best performance at all learning stages. This strategy
is inspired by ensembling learning, in which multiple algorithms are trained to
solve the same problem. The prediction of all algorithms is combined to get a
better prediction.

During the learning process, several algorithms with different prioritisation
methods run in parallel. The ensembling selects algorithms based on a time
window strategy. A time window is used to analyse the average performance
of each method by stages. The average performance within a time window
is defined as the average test success rate during this time window. The
method selection of each time window is based on the method with the best
average performance of the previous time window. The complete algorithm
for Prioritisation Switching with Ensembling Strategy (PSES) is summarised
in Algorithm 2.

When combining different prioritisation methods with PSES, the method
used as the output is adjusted on the fly. This ensures the best-performed
method is always chosen at each stage, and a more monotonic learning curve
is achieved. One can reasonably expect that the finest time window leads to
the best outcome performance. However, larger time windows sometimes still
achieve relatively good results and require less computing power. In the next
section, we present experiments that optimise the time window.

3.2.2 Experimental Results

Environments

The proposed GDP method is tested on various OpenAI Gym simulated
robotic manipulation tasks, see Figure 3.1. These tasks are all multi-goal
scenarios that are challenging for evaluation:

• FetchPush-v1 : A block is placed on a table in this task. A random
goal position is chosen on the table, and the fetch robot arm needs to
manipulate its end-effector to push the block to reach the goal position.

• FetchSlide-v1 : A block is placed on a long slippery table. A random goal
position outside of the robot’s reach is chosen. The fetch robot needs to
use its end-effector to hit the block with a force so that it slides towards
the goal position and stops at the goal position due to friction.
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• FetchPickAndPlace-v1 : A random 3D position is chosen in the air above
the table. The fetch robot needs to grasp a box originally placed on the
table to reach the goal position.

• HandManipulateEggRotate-v0 : An egg-shaped object is placed in the
palm of a shadow robot hand. The robot hand needs to manipulate its
fingers to rotate the egg to reach a goal orientation, which is different
from the original orientation.

• HandManipulateBlockRotateXYZ-v0 : Similar to the egg rotation task,
the shadow robot hand needs to manipulate its finger to rotate a block-
shaped object in its palm to reach a new orientation goal.

• HandManipulatePenRotate-v0 : Similar task for the shadow robot hand
needs to rotate a long thick pen-shaped object placed in its palm to reach
a new orientation.

The length of each episode is fixed for these environments: 50 time steps
for fetch environments and 100 time steps for hand environments. The rein-
forcement learning setup for these environments is described below:

Observation: the position and velocity of the robot’s gripper/joints and
the object’s position, rotation, and velocity. For fetch environments, it also
consists of the object’s relative position and velocity to the gripper.

Desired goal gd: a vector containing the object’s target position and
rotation (only for hand environments). The environment randomly generates
the desired goal and keeps its value throughout the episode.

Achieved goal g′: extracted from the observation and provided as a
separate vector. It is constructed by the object’s current position and rotation
(only for hand environments). The achieved goal has the same dimension as
the desired goal.

Reward: binary and sparse. It is 0 when the desired goal is considered
achieved, which means the difference between the desired goal and the achieved
goal after the robot takes action is within a threshold ϵ, otherwise -1.

Action: For fetch environments, it includes the positions to control the
robot gripper’s movement and the binary signal to control the opening and
closing of the gripper. For hand environments, it consists of the absolute
positions to control the non-coupled hand joints for hand environments.
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(a) FetchSlide (b) FetchPush (c) FetchPickPlace

(d) HandEgg (e) HandBlock (f) HandPen

Figure 3.1: OpenAI Gym robotics multi-goal RL environments: These envi-
ronments are created with the MuJoCo [110] physical simulation platform and
wrapped with API functions for RL training. The first three environments are
to slide, push or pick and place a small block to reach the goal position in
2D/3D space with the 7-DoF fetch robotics arm. The latter three environ-
ments fine-manipulate an object (egg/block/pen) within hand to reach the goal
position and orientation in 3D space with the 24-DoF Shadow robotics hand.
More details about the setup for these environments can be found in [83].

Implementation detail

We use the vanilla HER method as the baseline and compare it against MEP
and our GDP methods. In our experiments, we consider each cycle to be a
combination of 40 episode data collection loops and 40 batches of network
updates with mini-batch size 5120. Every 50 cycles are regarded as one epoch.
The hyper-parameters used for DDPG and HER are the same for all compari-
son experiments. After each epoch, we update the density model for MEP and
GDP and do the evaluation. Each task’s experiments are carried out using five
randomly selected seeds, with the seeds being consistent across the different
learning methods.

Performance comparison

The learning performance of DDPG is combined with three different types of
experience utilisation and prioritisation methods in 6 robotics environments.
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Figure 3.2: The learning curve for different methods in all six multi-goal
robotics environments. The orange, green, and blue lines represent the learn-
ing curve for vanilla HER, HER+MEP and HER+GDP, respectively. The
red lines are the performance of the PSES method with all three approaches
combined. The time window used for PSES is two epochs for all tasks.
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FetchPush FetchSlide
stage 1 2 3 4 stage 1 2 3 4
seed1 0 0.05 0.08 0.01 seed1 0 -0.01 0.04 0.05
seed2 0 0.04 0.06 0 seed2 -0.01 -0.01 0.06 -0.10
seed3 0.01 0.01 0.05 0 seed3 0 0 -0.02 0.04
seed4 -0.01 0.10 0.07 0 seed4 0 -0.02 -0.03 -0.11
seed5 0 -0.07 0.01 0 seed5 -0.01 -0.04 -0.11 0.09
mean 0 0.03 0.05 0 mean 0 -0.01 -0.04 -0.01
std 0.01 0.06 0.02 0 std 0 0.02 0.05 0.08

p-value 1.000 0.139 0 0.083 p-value 0.168 0.067 0.002 0.650
FetchPickAndPlace HandManipulateEggRotate

stage 1 2 3 4 stage 1 2 3 4
seed1 0 -0.02 -0.02 0 seed1 -0.03 -0.04 0.01 0.01
seed2 0 0 -0.05 0.02 seed2 -0.01 0.03 -0.01 0.01
seed3 0.04 -0.04 -0.05 -0.08 seed3 0.01 0.03 0 0
seed4 0.03 0.07 0 0 seed4 0.02 0.03 0 -0.03
seed5 0.01 0.06 0.07 0.04 seed5 0.01 0 -0.03 -0.02
mean 0.01 0.02 0.01 -0.01 mean 0 0.01 -0.01 -0.01
std 0.02 0.04 0.04 0.04 std 0.02 0.03 0.01 0.02

p-value 0.014 0.089 0.186 0.073 p-value 0.806 0.255 0.215 0.185
HandManipulateBlockRotateXYZ HandManipulatePenRotate
stage 1 2 3 4 stage 1 2 3 4
seed1 0 0.08 0.05 0.03 seed1 0.02 0.07 0.05 0.02
seed2 0.01 0.04 0.09 -0.03 seed2 -0.01 0.05 0.01 0.03
seed3 0 0.01 0.05 0.02 seed3 0.03 0.06 -0.01 0.03
seed4 0.01 0.05 0.05 0.01 seed4 0.02 0.11 0.03 0.01
seed5 0 0.02 0.07 0.02 seed5 0.02 0.07 0.02 -0.01
mean 0 0.04 0.06 0.01 mean 0.02 0.07 0.02 0.02
std 0 0.02 0.02 0.02 std 0.01 0.02 0.02 0.01

p-value 0.098 0 0 0.184 p-value 0.001 0 0.002 0.011

Table 3.1: The Statistical analysis for stage improvements for GDP: The stage
improvement during each learning stage is calculated for each run with a
different seed. The mean and standard deviation across five seeds are also
given. The p-value of a one-sample t-test is given to indicate whether the
improvement is considered statistically significant and not random (p < 0.05).
We specifically highlighted stages showing significant positive improvements,
where the mean is greater than 0 and the p-value is less than 0.05
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The average learning curves across five seeds are shown in Figure 3.2, with a
shaded area representing the standard deviation for each method.

Statistical analysis is also conducted on the learning results. We utilise
improvement, defined as the difference in success rate between HER+GDP
and the vanilla HER baseline, to assess how much GDP enhances the learning
speed. Each set of 10 epochs (or 5 for FechPush) is considered a learning stage,
and we calculate the stage improvement by averaging the improvement during
this stage. The stage improvements from the five runs of each experiment,
along with their mean and standard deviation, are presented in Table 3.1. To
assess whether the improvement is consistent and not occurring by chance, we
conduct a one-sample t-test with the collection of improvements across five
runs for each learning stage. The p-values from the t-test for each learning
stage are also provided in Table 3.1. We consider the improvement to be
statistically significant and not random if p < 0.05.

Analysis of the learning curves and statistical data reveals that, for most
Fetch robot tasks (with the exception of the third stage of FetchPush) and the
hand egg rotation task, GDP does not yield significant improvement. However,
for more challenging hand rotation tasks, such as HandBlockRotation and
HandPenRotation, the enhancement is noteworthy. This is particularly evi-
dent in the HandManipulatePenRotate task, where improvement is observed
consistently throughout the entire learning period. Nonetheless, this pattern
does not extend to all difficult tasks. For instance, FetchSlide, despite being
considered challenging due to the learning process not converging within the
allotted simulation time, experiences a decrease in learning speed during the
third and fourth stages upon the introduction of GDP.

Here, we explore several potential reasons why GDP may not lead to im-
provements in certain tasks. The HandManipulateEggRotate task is relatively
simple compared to other hand rotation tasks. After initial learning, all goals
seem to contribute evenly to the learning process, making the prioritization of
goals less impactful. This is also observed with MEP, which also does not en-
hance learning speed for HandManipulateEggRotate, as depicted in Figure 3.2.
In the FetchPickAndPlace task, a critical bottleneck occurs when the robot
successfully reaches and grasps the object before lifting it. Here, prioritisa-
tion should ideally target trajectories involving successful grasps. FetchSlide
presents a unique challenge, as the robot makes only a single contact with
the object. In such cases, learning to control the force exerted by the robot
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Window
(in epoch)

1 2 3 4 5 10 15 20

seed 1 58.0 46.0 50.0 40.0 36.0 40.0 52.0 50.0
seed 2 50.0 68.0 70.0 64.0 58.0 44.0 42.0 42.0
seed 3 66.0 74.0 72.0 60.0 64.0 34.0 36.0 34.0
seed 4 46.0 56.0 50.0 56.0 52.0 54.0 44.0 54.0
seed 5 72.0 74.0 70.0 70.0 60.0 44.0 50.0 30.0

average 58.4 63.6 62.4 58.0 54.0 43.2 44.8 42.0
std 9.7 10.9 10.2 10.1 9.8 6.5 5.7 9.1

(a) FetchSlide-v1
Window

(in epoch)
1 2 3 4 5 10 15 20

seed 1 42.5 52.5 50.0 47.5 42.5 55.0 40.0 35.0
seed 2 55.0 72.5 75.0 70.0 65.0 65.0 52.5 45.0
seed 3 57.5 60.0 57.5 62.5 65.0 50.0 57.5 50.0
seed 4 70.0 65.0 67.5 57.5 55.0 45.0 50.0 27.5
seed 5 57.5 65.0 37.5 35.0 47.5 50.0 60.0 40.0

average 56.5 63.0 57.5 54.5 55.0 53.0 52.0 39.5
std 8.8 6.6 13.1 12.2 9.0 6.8 7.0 7.8

(b) HandManipulatePenRotate-v0

Table 3.2: The optimality (in percentage) for PSES. Experiments are done
with two environments and repeated with five random seeds. Different time
windows are compared. The average and the standard deviation across five
seeds are also calculated for each time window.

to achieve closer positions may merit prioritisation in the early stages. This
could explain the negative effects observed when prioritising trajectories with
novel reaching positions.

In addition to assessing the performance of GDP, we also implemented
PSES alongside all three prioritization methods. For this strategy, an optimal
time window of 2 epochs was chosen.The mean test success rate is depicted
by red lines in Figure 3.2. The results indicate that PSES enhances overall
performance by dynamically selecting the most effective method during the
learning process across all tasks.

Ideally, we would expect the method to select the one with the best perfor-
mance at all times. However, in real cases, the algorithm has no knowledge of
the current step’s performance and selects the method based on the most re-
cent history. To analyse how accurately our strategy selects the best method,
we calculate the optimality of each PSES learning process. Optimality is
defined as the percentage of time steps (epochs) among the whole learning
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process that PSES selects the method with the best performance. Different
time windows are applied and compared in Table 3.2.

It can be seen that with a relatively small time window of fewer than ten
epochs, the performance is robust and better than random selection in general.
On the other hand, when the time window is too large (i.e. larger than ten
epochs for FetchSlide-v1 task, or 20 epochs for HandManipulatePenRotate-
v0 task), it is not always that the performance outperforms the individual
components, thus making the strategy less useful in this specific case.

3.3 Policy-level-based Automatic Curriculum Goal
Selection (PL-CGS)

The research question we focus on in this section is: How to efficiently explore
the goal space by generating goals in a curriculum form during the learning
process.

We consider the design of a curriculum learning approach that selects goals
for the agent, which allows a continuous multi-goal task to be learned more
efficiently. This method considerably improves the sample efficiency of the
learning process to reach all feasible goals. We were enlightened by the concept
of policy-level [6, 26] to label collected experiences. We extend this idea to
a hindsight experience replay (HER) setup and adapt it to complex robot
manipulation and InDex scenarios. Our proposed method selects new goals for
each learning stage based on analysing the goal-pairs of the previously collected
experiences that satisfy a certain restriction based on the policy-level. Our
method selects goals at an appropriate difficulty level for the current agent.
The agent first learns how to reach easier goals, then gradually approaches
more complex goals, and finally achieves all target goals.

3.3.1 Methodology

In our work, we focus on solving multi-goal robotic manipulation problems.
The ultimate objective for these tasks is to learn to reach all possible goals
in a continuous goal space. In each episode E, the object starts its pos with
the initial goal ginit, and its original final goal is to reach go. In the tth

step, the object reaches an achieved goal gt. All episodes have the same time
step length T . The reward of these tasks is sparse and goal conditioned:
Rgd(t) = −[d(gt+1) = 0], where gd is the goal that the reward is checked upon,
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normally is the original final go, and can be any future selected goal g′future in
HER algorithm. ϵ is a fixed tolerance. The goal distance function d(g, gd) is
task-specific: usually Euclidean distance for position orient tasks, and object
orientation difference for object rotation tasks. The overall learning objective
is to find a policy π(at|st, go) that can produce trajectories with higher episode
returns.

Our method can be divided into three parts: First, we label the goal-pairs
from the most recent experience by their policy-level to identify whether they
are at the appropriate difficulty level for the current agent. The goal-pairs with
the policy-level that are neither too easy nor too hard for the current agent
are saved in a buffer Rgp. Then, we analyse the distribution of these goal-
pairs saved in the buffer by either fitting a Gaussian Mixture Model (GMM)
or training a discriminator that can determine if a given goal-pair is at an
appropriate level of difficulty. Finally, we select new goal-pairs based on the
GMM/discriminator and apply these selected goal-pairs to the next training
iteration.

Policy-level and goal-pair labelling

The episodes selected by the curriculum need to be at an intermediate level
of difficulty for the current agent. We use goal-pair gp = [ginit, go], which
combines the initial goal ginit and the original final goal go, to represent the
target of an episode. We inherited the concept of policy-level from [6] to define
the level of difficulty of different goal-pairs for the current agent. The policy-
level C(i) describe the level of policy (π(i)) that produces episode E(i). There
are many ways to describe the policy-level in a sparse reward setup:

• Ci
1 = 1|d(gi(T − 1), gio) < ϵ indicates whether the last element of the

episode gi(T − 1 reaches the original final goal gio, where Ci
1 = 1 if

the episode is successful. The function d(.) is the Euclidean distance
for position-based tasks and quaternion difference for orientation-based
tasks, and ϵ is a small tolerant;

• Ci
2 = (

∑
j 1|d(gij , gio) < ϵ)/T , named the goal-stay ratio [26], indicates

the ratio of the reached states in the whole episode Ei counting from the
end of the episode.

• Ci
3 = 1|d(gi(T − 1), giinit) > ϵ indicates the object starts to move away

from the initial goal. This value could be especially important for
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some object non-contact manipulation cases like FetchPush and Fetch-
PickAndPlace;

In our proposed method, all three ways shown above are combined to
describe the policy-level:

C(i) =
∏

i=1,2,3

Ci (3.4)

We store the most recent experiences’ goal-pairs and their corresponding
policy-level in a replay buffer Rgp for further analysis. In order to extend
these experiences saved in the buffer Rgp, which will be used for analysing
and selecting the proper goal-pairs for the next iteration, we apply hindsight
experience replay (HER) when calculating the policy-level. For each episode
E(i), the original final goal go can be replaced with the achieved goal gt at a
given time-step t. The goal-pair constructed in this case is called the currently
achieved goal-pair gpt = ginit, gt. Here we assume that the achieved goal stays
at gt after time-step t when calculating the policy-level for gpt. After applying
HER, one episode E(i) will be transformed into T episodes, and the number
of currently achieved goal-pairs and associated policy-levels that are saved in
Rgp is T.

Goal-pairs distribution analysing

We utilise the goal-pairs associated with their policy-level stored in the buffer
Rgp to analyse what goal-pair is at an intermediate level of difficulty to be
proposed for the next training iteration. Buffer Rgp uses the FIFO method to
store data, thus the information saved in Rgp always represents the experiences
collected with the current policy or the most recent policies.

To define which goal-pair is appropriate to learn for the current policy, we
refer to the idea of Goals of Intermediate Difficulty (GOID) in [26]. First,
we aim to train the policy with goal-pairs with which the policy can reach
the final goal with some minimum return, thus C ⩾ Cmin. We also would
not like to train the policy from the goal-pairs that the policy mastered. In
this case, the policy-level is restricted to C ⩽ Cmax so that the policy focuses
on training those goal-pairs that still need improvement. The overall GOID
restriction can be represented as:

C ∈ (Cmin, Cmax) (3.5)

64



Y. Kuang, PhD Thesis, Aston University, 2023

We regard those goal-pairs with policy-levels that satisfy the GOID restric-
tion as positive goal-pair examples and treat others as negative goal-pair
examples. The next step is to analyse the distribution of these goal-pairs
to identify if a new goal-pair belongs to the ‘positive’ or ‘negative’ category.
There are two methods in our experiments that are used to model the goal-pair
distribution:

• Gaussian Mixture Model (GMM): A Bayesian Gaussian Mixture
Model is used to fit the goal-pair values of the positive examples saved
in the buffer Rgp. After each model fit finishes, the highest and lowest
scores (log-likelihood) of all positive examples under the current model
are recorded, and a tolerance score is calculated as

stol = γ(shigh − slow) + slow (3.6)

If the score of a given new goal-pair gp is higher than the tolerance score
sgp > stol, it will be considered an appropriate goal-pair for the current
policy to learn;

• Neural network Discriminator: A neural network, multi-layer per-
ceptron (MLP), in our experiments, is trained as a discriminator to dis-
tinguish the positive and negative examples. After each training batch
finishes, the positive examples will have a high predicted score approach-
ing one and the negative examples have a low predicted score approach-
ing zero. If the predicted score Dgp of a random new goal-pair gp is
higher than a certain tolerance Dtol (for example, 0.6 is used in our ex-
periments), it will be considered a positive example and used for learning.

Curriculum goal selection

During the data-collecting stage, random initial and final goals are generated
after resetting the environment for a new episode. The goal-pair of this episode
is extracted and forwarded to the GMM/Discriminator to check whether this
goal-pair is appropriate for the current agent to learn. If the goal-pair is se-
lected, the agent will continue this episode until finished to collect new data.
If the goal-pair is not selected, this episode will be discarded, and the envi-
ronment will be restarted again with a new goal-pair generated.
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Algorithm 3 HER with Policy-Level-based Curriculum Goal Selection (PL-
CGS), with GMM
Require:

- An off-policy algorithm A ▷ e.g. DDPG, DQN
- A goal-based reward function S ×A× G → R ▷ e.g. r(s, a, gd) = −1 if
fails, 0 if success
Initialise actor and critic networks for A
Initialise replay buffer R and goal-pair replay buffer Rgp

for epoch = (1, L) do
for episode = (1,M) do ▷ Step 1: data collection and storage

Sample original desired goal go and initial goal ginit
Construct goal-pair for this episode gp = [ginit, go]

Calculate the GMM score sgp of gp
if Rgp is not half filled or sgp > stol then

for t = (0, T − 1) do
Sample action at using the behaviour policy π from A
Execute the action and observe reward rt and new state st+1

Construct the currently achieved goal-pair gpt = [ginit, gt]

Calculate policy-level Ct for gpt using Equation (3.4)
Save gpt and Ct in Rgp if Ct satisfies Equation (3.5) ▷

Goal-pair storage
end for
Store the trajectory τ = (st, gd, g

′
t, at, rt)

T
t=0 in R

end if
end for
Fit GMM using goal-pairs in Rgp ▷ Step 2: goal-pair distribution

analysis
Update tolerance score stol using Equation (3.6)
for batch = (1, N) do ▷ Step 3: policy update with HER

Sample transitions (st, go, at, gt, st+1, gt+1) in R, store them in B
Apply HER on transitions in B, recalculate the reward
Perform one step optimisation for A using B

end for
end for
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Algorithm 4 HER with Policy-Level-based Curriculum Goal Selection (PL-
CGS), with Discriminator
Require:

- An off-policy algorithm A ▷ e.g. DDPG, DQN
- An discriminator D ▷ usually MLP
- A goal-based reward function S ×A× G → R ▷ e.g. r(s, a, gd) = −1 if
fails, 0 if success
Initialise actor and critic networks for A and discriminator network for D
Initialise replay buffer R
Initialise positive goal-pair buffer Rp

gp and negative goal-pair buffer Rn
gp

for epoch = (1, L) do
for episode = (1,M) do ▷ Step 1: data collection and storage

Sample original desired goal go and initial goal ginit
Construct goal-pair for this episode gp = [ginit, go]

Calculate the discriminator predicted score Dgp of gp using D
if Rgp is not half filled or Dgp > Dtol then

for t = (0, T − 1) do
Sample action at using the behaviour policy π from A
Execute the action and observe reward rt and new state st+1

Construct the currently achieved goal-pair gpt = [ginit, gt]

Calculate policy-level Ct for gpt using Equation (3.4)
Save gpt and Ct in Rp

gp if Ct satisfies Equation (3.5), otherwise
save them in Rn

gp. ▷ Goal-pair storage
end for
Store the trajectory τ = (st, gd, g

′
t, at, rt)

T
t=0 in R

end if
end for
for batch = (1, Nd) do ▷ Step 2: Train discriminator

Sample positive transitions in Rp
gp, sample negative transitions in Rn

gp

Train D
end for
for batch = (1, N) do ▷ Step 3: policy update with HER

Sample transitions (st, go, at, gt, st+1, gt+1) in R, store them in B
Apply HER on transitions in B, recalculate the reward
Perform one step optimisation for A using B

end for
end for
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The Algorithm

The complete training method for Policy-Level-based Curriculum Goal Selec-
tion (PL-CGS) is provided in Algorithm 3 (using a GMM) and Algorithm 4
(using a Discriminator). The algorithm first learns freely with all episodes
generated by the environment (no goal selection) to collect enough initial data
for goal-pair analysis (Step 1). At each time step of an episode, HER is ap-
plied to calculate the policy-level of the currently achieved goal-pair gpt. The
goal-pair with the policy-level that satisfies the GOID restriction is saved in
the goal-pair buffer with its associate policy-level. In the discriminator ver-
sion, they are saved in a ‘positive’ goal-pair buffer, and other goal-pairs that
do not satisfy the restriction are saved in a ‘negative’ goal-pair buffer. The
goal-pair analysis process is not started until the goal-pair buffers are filled
enough (usually half of the full goal-pair buffer size).

In the goal-pair analysis stage (Step 2), the distribution of the goal-pairs
saved in the goal-pair buffer is analysed. In the GMM version, a GMM is fit
for all goal-pairs saved in the goal-pair buffer. In the discriminator version, a
neural network discriminator is trained to distinguish the goal-pairs saved in
the ‘positive’ and ‘negative’ buffer.

After the goal-pair buffer is initialised and the first batch of analysis is
finished, the data collection stage (Step 1) uses the GMM/Discriminator to
select goal-pairs generated by the environment. Only the selected goal-pairs
are used for further data collection. Others are discarded, and the environment
is restarted to generate new goal-pairs.

The difference between the GMM and the discriminator versions is in the
goal-pair storage part in Steps 1 and 2. The off-policy learning strategy (Step
3) is not altered from the original algorithm (DDPG+HER in our experi-
ments).

3.3.2 Experimental Results

Environments

The proposed PL-CGS method is tested on various OpenAI Gym simulated
multi-goal robotic manipulation tasks, see Figure 3.1. Here are the environ-
ments we have used in our experiments (a detailed introduction of these envi-
ronments is provided in Section 3.2.2):

• FetchPush-v1 : Push a block on a table to reach a target position with
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the fetch robot;

• FetchSlide-v1 : Hit a block on a slippery table to slide to a target position
with the fetch robot;

• FetchPickAndPlace-v1 : Pick a block on the table with the fetch robot
and reach a target position in the air;

• HandManipulateEggRotate-v0 : Rotate an egg-shaped object within hand
to reach a target orientation using the Shadow hand robot;

• HandManipulateBlockRotateXYZ-v0 : Rotate a block-shaped object within
hand to reach a target orientation using the Shadow hand robot;

• HandManipulatePenRotate-v0 : Rotate a pen-shaped object within hand
to reach a target orientation using the Shadow hand robot;

Furthermore, we have customised some of the environments to use a fixed
initial goal so that we can analyse how the selected target goals progress
through different learning stages:

• FetchPushFixInitPos-v1 : The initial position of the block is always in
the centre of the table;

• HandEggRotateOnlyFixInitPos-v0 : The initial position and orientation
of the egg-shaped object in hand are always the same;

Implementation and Experiment setup

We implemented our method using both GMM and discriminator versions
and compared it to the baseline vanilla HER method. In our experiments,
each epoch consists of 50 training cycles, where each cycle first collects 40
episodes of data and then trains the policy networks using 40 batches with a
mini-batch size of 5120. After each cycle, we update either the GMM model
or the discriminator. The discriminator network is trained with the same
batches and batch size as the policy networks. Following the completion of
each epoch, we conduct an evaluation to assess performance. Both the policy
and discriminator networks utilize MLP as their neural network structure,
featuring three fully connected hidden layers with 256 nodes each.

The goal-pair data collected in the goal-pair buffer includes the two most
recent cycles for Fetch environments and the five most recent cycles for Hand
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environments. The GOID restriction employs Cmin = 0.1 and Cmin = 0.9

for all tasks. To prevent the method from falling into a local minimum, we
collect only 75% of the data via PL-CGS, with the remainder of the data being
selected goals randomly.

Performance Comparison

The experiments were conducted across two environments with fixed initial
goals and six environments with completely random initial and target goals.
For each environment, experiments were run repeatedly using five different
random seeds. We compared the HER+PL-CGS method, employing either the
GMM or the MLP discriminator, against the baseline vanilla HER method.

Figure 3.3 presents the learning curves averaged across five seeds for each
environment, with the shaded areas indicating the standard deviation. From
the learning curves, we observe that for PL-CGS with GMM, the learning rate
is faster than that of vanilla HER in certain environments (FetchPush, Fetch-
Slide, and HandPenRotate). It is slightly faster in FetchPushFixInitPos, and
similar to HER in other environments (FetchPickAndPlace, HandEggRotate).
In the HandBlockRotate task, the learning rate starts slightly faster but be-
comes slower than HER later, continuing this trend until convergence. For
PL-GCS with the discriminator, the learning speed is not significantly faster
than the HER baseline in all environments.

Since the improvement is not necessarily significant across all stages for
PL-CGS with GMM, we aim to finely evaluate how much our method outper-
forms the baseline throughout different stages of training. We define improve-
ment as the difference in success rate between our method and the baseline.
We consider every 10 epochs (5 for FechPush and FetchPushFixInitPos) as
a learning stage and calculate the average improvement during this period
as stage improvement, denoted as δ. The stage improvements from the five
runs of each experiment, along with their mean and standard deviation, are
presented in Table 3.3. To assess whether the improvement is consistent and
not occurring by chance, we conduct a one-sample t-test with the collection
of improvements across five runs for each learning stage. The p-values from
the t-test for each learning stage are also provided in Table 3.3. We consider
the improvement to be statistically significant and not random if p < 0.05.
From the statistical analysis results, we observe that in most environments,
PL-CGS with GMM demonstrates a stable, albeit minor, improvement during
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Figure 3.3: The learning curve for different methods in all eight multi-goal
robotics environments. The green, blue, and red lines represent the learning
curve for vanilla HER, HER+PL-CGS (with GMM), and HER+PL-CGS (with
discriminator), respectively.
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FetchPushFixInitPos HandEggRotateOnlyFixInitPos
stage 1 2 3 4 stage 1 2 3 4
seed1 0.05 0.1 0 0 seed1 0.02 0.01 -0.06 -0.06
seed2 0.01 0.07 0.01 0 seed2 -0.04 0.04 -0.03 -0.03
seed3 -0.01 0.02 0.02 0 seed3 0.02 0 -0.04 -0.02
seed4 0.04 0.11 0.01 0 seed4 0.03 0.04 -0.05 -0.05
seed5 -0.01 -0.02 0 0 seed5 0.02 0.03 -0.06 -0.06
mean 0.01 0.06 0.01 0 mean 0.01 0.03 -0.05 -0.04
std 0.03 0.05 0.01 0 std 0.02 0.02 0.01 0.01

p-value 0.257 0.006 0.032 0.753 p-value 0.329 0.011 0 0
FetchPush FetchSlide

stage 1 2 3 4 stage 1 2 3 4
seed1 0 0.15 0.02 0.01 seed1 -0.01 0.11 0.09 0.18
seed2 0 0.11 0.09 -0.01 seed2 -0.01 0.05 0.08 0.22
seed3 0 0.06 0.02 0 seed3 0 0.09 0.06 0.08
seed4 0.01 0.12 0.01 0 seed4 0 0.05 0.05 0.10
seed5 0 0.11 0.13 0 seed5 0 0 0.10 0.17
mean 0 0.11 0.05 0 mean 0 0.06 0.08 0.15
std 0 0.03 0.05 0 std 0 0.04 0.02 0.05

p-value 0.679 0 0.080 0.832 p-value 0.014 0 0 0
FetchPickAndPlace HandEggRotate

stage 1 2 3 4 stage 1 2 3 4
seed1 0.02 0.08 -0.05 -0.09 seed1 0.02 0.01 -0.02 -0.04
seed2 0.06 0.07 -0.03 -0.09 seed2 0.01 0.01 -0.04 -0.02
seed3 0.03 0.05 0.08 -0.01 seed3 0.02 0.04 -0.06 -0.04
seed4 0.01 -0.02 -0.05 -0.06 seed4 0.04 0.07 -0.04 -0.02
seed5 0.01 0.02 -0.04 -0.06 seed5 0.05 -0.01 -0.02 -0.01
mean 0.03 0.04 -0.02 -0.06 mean 0.03 0.02 -0.04 -0.02
std 0.02 0.03 0.05 0.03 std 0.02 0.03 0.01 0.01

p-value 0.010 0.002 0.149 0 p-value 0 0.024 0 0.001
HandBlockRotate HandPenRotate

stage 1 2 3 4 stage 1 2 3 4
seed1 0.02 0.07 -0.01 -0.12 seed1 0.02 0.06 0.08 0.05
seed2 0.02 -0.01 -0.10 -0.09 seed2 0 0.05 0.04 0.02
seed3 0.01 0.02 -0.11 -0.2 seed3 0.03 0.09 0.05 0.02
seed4 0.03 0.03 -0.11 -0.17 seed4 0.02 0.08 0.04 0.04
seed5 0.01 0.03 -0.1 -0.1 seed5 0.01 0.06 0.06 0.06
mean 0.02 0.03 -0.09 -0.14 mean 0.01 0.07 0.05 0.04
std 0.01 0.03 0.04 0.04 std 0.01 0.02 0.01 0.02

p-value 0 0.016 0 0 p-value 0.007 0 0 0

Table 3.3: The Statistical analysis for stage improvements for PL-CGS with
GMM: The stage improvement during each learning stage is calculated for
each run with a different seed. The mean and standard deviation across five
seeds are also given. The p-value of a one-sample t-test is given to indicate
whether the improvement is considered statistically significant and not random
(p < 0.05). We specifically highlighted stages showing significant positive
improvements, where the mean is greater than 0 and the p-value is less than
0.05
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the early and mid-stages of the learning process.
However, negative effects are observed in many environments (FetchPickAnd-

Place, two HandEggRotate tasks, and HandBlockRotate) during the later
stages when learning has converged, leading to a lower success rate compared
to the HER baseline. This could be because, in the final stages of learning,
as it approaches convergence, the goals used for learning should increasingly
represent scenarios that have never been reached. However, due to the nature
of the GOID restriction, PL-CGS tends to select goals that have already been
achieved. To address this, we have introduced a portion of goals selected ran-
domly during learning, though this percentage is fixed at 25%. Introducing a
mechanism to gradually anneal PL-CGS and shift it towards standard HER
practices as the learning approaches converge could be beneficial. In other en-
vironments (FetchSlide and HandPenRotate) where improvement is consistent
across all stages, these tasks are considered the most challenging on Fetch and
Hand robots. The baseline learning strategy struggles to learn all goals across
the entire goal space within the applied simulation window in our experiments.
PL-CGS provides a good curriculum mechanism to select proper goals.

In the FetchPushFixInitPos environments, where the initial goal is always
fixed, we can examine and plot the final goals stored in the ‘good’ goal-pair
buffer, as well as the GMM-selected final goals for different learning stages, as
depicted in Figure 3.4. The figures illustrate that, during the earlier stages of
learning (epochs 1 and 2), the goals in the ‘good’ goal-pair buffer and those
selected by the GMM are predominantly clustered around the initial goal
point. Starting from epoch 3, the distribution of goals begins to spread more
evenly across the goal space.

For PL-CGS with the discriminator version, the learning rate is similar
to HER baseline across most environments. We have noticed that, in many
cases, the discriminator does not converge sufficiently, meaning that the goals
selected by the discriminator do not accurately represent the distribution of
‘good’ goal-pairs. As illustrated in Figure 3.5, we have analysed the goals
stored in the good and bad goal-pair buffers throughout the learning process.
We found that the distributions of good and bad goals overlap significantly, in-
dicating that the discriminator struggles to distinguish between these two cat-
egories. Moreover, the bad goal-pair buffer only includes goals from achieved
trajectories, omitting unachieved goals that could also be considered ’bad’. As
a result, the distribution of bad goals in this buffer fails to accurately reflect
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Figure 3.4: The goal distribution of different learning stages (cycle 10 for
epochs 1 to 4) for FetchPushFixInitPos task for PL-CGS (GMM version). The
green dots represent the goals saved in the good goal buffer. The GMM will
use these goals to analyse the distribution. The blue dots represent the goals
selected for learning for the next learning cycle. The black square represents
the 2D target goal space.
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Figure 3.5: The good and bad goal distribution of different learning stages
(cycle 10 for epochs 1 and 5) for FetchPushFixInitPos task for PL-CGS (dis-
criminator version). The green and red dots represent the goals saved in the
good and bad goal-pair buffer. The blue dots represent the goals selected for
learning for the next learning cycle. The black square represents the 2D target
goal space.
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the true distribution of undesirable goals.

3.4 Summary

In this chapter, we discussed the multi-goal RL problem and the related meth-
ods that can be applied to improve learning efficiency. The OpenAI robotic
manipulation environments are used in the experiments for evaluation.

Firstly, we introduce the Goal density-based hindsight experience
prioritisation, which prioritises novel achieved experiences based on the den-
sity of the initial and final goal pairs. We implemented the GDP algorithm and
evaluated its performance against vanilla HER and other density-based pri-
oritisation methods, such as Maximum Entropy-based Prioritisation (MEP).
Furthermore, we propose the Prioritisation Switching with Ensemble Strategy
(PSES), a novel approach that amalgamates various experience prioritisation
methods. This strategy optimises overall performance by dynamically select-
ing the best-performing method at each stage of the learning process. Experi-
mental results indicate that while GDP enhances learning efficiency in certain
tasks, it does not significantly impact or may even worsen outcomes in others.
However, the application of PSES, which integrates GDP with other prioriti-
sation methods, consistently outperforms the vanilla HER method across all
evaluated scenarios.

The contribution of GDP lies in offering a new perspective on analysing
experience density, where leveraging goal-pair density achieves a reduction in
computational effort compared to prior density-based methods like MEP. The
limitation of GDP, however, is its lack of generalisability across diverse
manipulation tasks, where only prioritising novel seen goals is not enough.

Next, we introduced the Policy-level-based curriculum goal selection
(PL-CGS). This approach analyzes the most recently collected experiences to
determine the distribution of goals that possess the optimal difficulty level for
the current agent’s learning phase, thereby using this distribution to select new
goals for subsequent learning iterations. We implemented PL-CGS with two
different distribution analysis strategies (GMM and MLP discriminator train-
ing) and benchmarked it against the vanilla HER method. Our findings reveal
that the PL-CGS (GMM version) accelerates the learning rate for several chal-
lenging robot manipulation tasks. Nonetheless, it fails to significantly enhance
the learning speed in tasks where all goals equally contribute to the learning
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process, such as HandEggRotation. Meanwhile, the PL-CGS (discriminator
version) struggles due to difficulties in training an effective discriminator to
identify suitable goals, offering limited curriculum guidance for most tasks.

The contribution of PL-CGS is its innovative approach to analysing
Goals of Intermediate Difficulty (GOID) for goal selection/generation within
the context of multi-goal learning. The limitation of PL-CGS becomes
evident as we observe a decrease in the success rate when learning nears con-
vergence across many tasks. The reliance on GOID leads to a preference
for achievable goals, overlooking the potential learning benefits of unexplored
goals in the later stages. Addressing this issue, through a methodological
transition, presents an avenue for future exploration.
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Chapter 4

Imitation learning for
In-Hand Dexterous
Manipulation

In this chapter, we delve into the realm of imitation learning for model-free RL
problems,with a particular emphasis on its application to manipulation tasks.
We specifically explore Learning from Demonstration (LfD) methods tailored
for multi-goal learning challenges. The LfD is based on demonstrations of
manipulation tasks performed with a Fetch robot arm (in simulation) and a
Shadow robot hand (in both simulation and real).

Our discussion begins with a discussion of the foundational works that
inform our research, including Generative Adversarial Imitation Learning [39]
(GAIL), Self-adaptive GAIL [129] and Goal-conditioned GAIL [21].

Following this, we introduce our innovative approach, Goal-based Self-
Adaptive Generative Adversarial Imitation Learning (Goal-SGAIL), which is
expressly designed for tackling multi-goal robot manipulation learning prob-
lems. We assess the efficacy of our methods on robot manipulation learning
tasks within the MuJoCo simulator, setting them in contrast with conventional
LfD techniques and goal-GAIL.

Additionally, this chapter covers how various LfD methods, including Goal-
SGAIL, can be adapted to leverage demonstrations obtained from human tele-
operation. This adaptation is exemplified through a block rotation task ex-
ecuted by the Shadow robot hand on the PyBullet platform. We detail the
teleoperation technique employed to gather demonstration data and subse-
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quently analyse the learning outcomes.
To conclude, we summarize and reflect on the contributions and implica-

tions of the Goal-SGAIL method.

4.1 Related work

4.1.1 Traditional learning from demonstration (LfD) methods

Unlike some LfD scenarios where an expert agent provides examples online,
our research utilises pre-collected expert trajectories. During training, the
trainer has access only to these demonstration data as examples.

There are two primary methods for leveraging these demonstrations: Be-
havior Cloning (BC) and Inverse Reinforcement Learning (IRL). BC involves
supervised learning using state-action pairs from the expert trajectories to di-
rectly maximise the likelihood of replicating the expert actions. In contrast,
IRL seeks to infer the underlying reward function that guided the expert’s
behavior based on the demonstrations, then performs forward reinforcement
learning to maximize this inferred reward. We have previously discussed the
limitations of both approaches in Chapter 2.

4.1.2 Generative Adversarial Imitation Learning (GAIL)

IRL involves a computationally intensive cycle of deriving the reward function
from demonstrations and then executing forward RL to determine the optimal
policy under the current reward function. This process, aimed at enabling the
learner to replicate the actions of the expert, can be resource-intensive. Draw-
ing inspiration from IRL and the breakthroughs in Generative Adversarial
Networks (GAN), a more streamlined method known as Generative Adversar-
ial Imitation Learning (GAIL) [39] has been introduced. GAIL adopts a more
direct strategy compared to IRL by implementing a specific RL procedure
with a cost function designed to steer the policy towards expert behaviour,
thus circumventing the intermediate steps required by IRL. In essence, GAIL
seeks a cost function that assigns low cost to the expert policy while high cost
on other divergent policies.

In GAIL, A discriminator D(s, a) is trained to fit the expert state-action
distribution and distinguish the expert transitions (s, a) ∼ τexpert, from the

79



Y. Kuang, PhD Thesis, Aston University, 2023

agent transitions(s, a) ∼ τE . D is trained to minimise:

LD(s,a) = E(s, a) ∼ τ [logD(s, a)] + E(s, a) ∼ τexpert[log(1−D(s, a))] (4.1)

The agent τ is treated as a generative model G to be trained to con-
fuse the discriminator so that, eventually, the agent is good enough that the
discriminator cannot differentiate it from the expert. The link between the
discriminator model D and the generative modelG (the agent τ ) is to use the
output of logD(s, a) as the reward to train the agent policy to maximise:

E(s, a) ∼ τ [logD(s, a)] (4.2)

GAIL can be integrated with both on-policy and off-policy RL methods.
In the foundational GAIL study [39], it is combined with the Trust Region
Policy Optimisation (TRPO) method and applied across nine physics-based
robotic control tasks. These experiments demonstrate that GAIL’s learning
outcomes surpass those of the basic BC method in all tasks, leveraging expert
demonstrations acquired through RL-trained expert agents.

4.1.3 Self-adaptive Generative Adversarial Imitation Learning

Most LfD algorithms significantly depend on both the quality and quantity of
the demonstrations. However, in practical scenarios, collecting a substantial
number of expert demonstrations can be challenging and costly. Moreover,
there are instances where the teacher may be sub-optimal, leading to demon-
strations of limited quality. These challenges can cap the learned performance
to that of the provided demonstrations, preventing the agent from reaching
its optimal performance.

To address the limitation posed by sub-optimal demonstrations, Self-adaptive
Generative Adversarial Imitation Learning (SAIL) [129] has been proposed.
Unlike traditional approaches that rely solely on expert-generated trajecto-
ries for demonstrations, SAIL also considers high-quality trajectories pro-
duced by the actor during training as viable demonstrations. A trajectory
is deemed high-quality if its episode cumulative return surpasses a specific
threshold re(τ) > CdT . This threshold CdT , is dynamically updated with
CdT = min[re(τi)|re(τi) ∈ Wk], where Wk is a window to track the top K

trajectory rewards of all trajectories in RT .
SAIL represents an exploration-driven LfD method that maintains an op-

timal balance between exploration and exploitation. More crucially, SAIL
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enables the agent to surpass the experts performance level when the agent
becomes more proficient than the demonstrations provided. In their research,
SAIL was applied to the same robotic control tasks as GAIL, demonstrat-
ing superior final learning outcomes compared to both GAIL and the expert
demonstrations.

4.1.4 Goal-conditioned Generative Adversarial Imitation Learn-
ing (Goal-GAIL) for multi-goal oriented learning

GAIL has demonstrated a robust capability for learning from demonstrations
across various decision-making problems and straightforward robotic control
tasks. However, its application to multi-goal conditioned tasks, which are in-
herently more complex, is not straightforward. Moreover, the challenge of ob-
taining a sufficient number of high-quality demonstrations to comprehensively
cover the extensive range of goals in continuous spaces further complicates
matters. The expert policies represented by these samples often fall short in
adequately covering the goal space.

Goal-conditioned Generative Adversarial Imitation Learning (Goal-GAIL)
[21] emerges as the pioneering method to adapt GAIL to multi-goal robotic
RL problems, specifically those with binary rewards. Goal-GAIL integrates
the advantages of GAIL with Hindsight Experience Replay (HER), leveraging
demonstrations to enhance learning efficiency while employing HER’s experi-
ence relabelling to augment goal space coverage within the demonstrations.

Within Goal-GAIL, GAIL is synergies with the off-policy method DDPG
and HER. The amalgamation of DDPG and HER has already shown promising
learning capabilities in a variety of multi-goal robotic tasks. HER is imple-
mented during the experience replay phase to ensure a robust positive rein-
forcement signal. Furthermore, Goal-GAIL introduces the novel concept of
applying HER experience relabelling to demonstration sampling, effectively
extending the expert demonstration dataset. This can be considered a type of
data augmentation and proves especially beneficial in scenarios with limited
available demonstrations.

On the GAIL side, the loss function to train the discriminator D has the
same structure as GAIL. However, it is also goal-conditioned. The discrimi-
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Figure 4.1: The implementation structure of Goal-GAIL [11], copied from the
original paper: https://arxiv.org/pdf/1906.05838.pdf

nator D(s, a) is trained to minimise:

LD(s,g,a) = E(s, g, a) ∼ τ [logD(s, g, a)]

+ E(s, g, a) ∼ τexpert[log(1−D(s, g, a))]
(4.3)

Rather than using the discriminator’s output D directly as the reward for
RL, Goal-GAIL integrates it with the normal binary reward received from the
agent to balance self-learning by the agent and learning from demonstrations.
The implementation structure of Goal-GAIL is depicted in Figure 4.1.

4.1.5 Demonstration data collection via teleoperation for In-
Dex tasks

Collecting demonstration data is an integral part of LfD. For robot manipu-
lation tasks, it is essential to gather this data directly on the robot (either in
simulation or on an actual robot platform) to maintain kinematic consistency.
The robot is typically operated by an expert agent or a human instructor [104].
For complex, multi-fingered InDex tasks, teleoperation techniques, which allow
humans to remotely control a robot by hand, are widely used.
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Traditional methods for dexterous robot hand teleoperation often employ
CyberGloves, available in both custom-made [117] and commercial versions
[90]. These gloves can accurately capture the joint movements of the human
hand, which are then translated to the robot hand using various kinematic
transformation methods [62]. Despite their precision, CyberGloves necessitate
user-specific calibration, making them somewhat inconvenient for widespread
use.

An alternative teleoperation method involves vision-based hand tracking
systems [63]. rimary vision sensors like RGB cameras [37, 123] and the Leap
Motion Controller (LMC) [15] are utilized in these systems. For simulated
robot hands, integrating a virtual reality system [57] is typically necessary,
providing feedback to the operator for more accurate and fluid control.

4.2 Goal-based Self-adaptive Generative Adversar-
ial Imitation Learning (Goal-SGAIL)

4.2.1 Motivation

Although Goal-GAIL extends the GAIL framework to multi-goal task learning,
showing enhanced learning efficiency over GAIL, there remains room for im-
provement. Often, the available demonstrations are too limited to adequately
cover the state and action space of multi-goal problems, or the quality of the
demonstrations may be sub-optimal, making learning from such demonstra-
tions a challenge.

SAIL offers a promising approach by incorporating high-quality, self-generated
trajectories into the expert demonstration buffer, treating these experiences
on par with expert demonstrations. However, the original SAIL formulation
is not directly applicable to multi-goal learning problems due to the varying
difficulty levels of different goals. The episode rewards from goals of differing
difficulties cannot be straightforwardly compared, as such comparison must be
goal-conditioned. Thus, the straightforward strategy of selecting high-quality
trajectories falls short in multi-goal scenarios.

4.2.2 Methodology

Our proposed approach, named Goal-based Self-adaptive Generative Adversar-
ial Imitation Learning (Goal-SGAIL), draws inspiration from SAIL and seeks
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to extend self-adaptive learning principles to Goal-conditioned GAIL. The
principal contribution of our method lies in introducing a goal-conditioned
strategy for incorporating high-quality, self-generated trajectories into the ex-
pert buffer.

Goal-conditioned high-quality self-generated trajectory selection

In Goal-SGAIL, we exclusively incorporate new expert demonstrations from
successful self-generated trajectories. Upon collecting a new successful tra-
jectory, our objective is to identify a trajectory within the expert buffer that
matches its difficulty level for a comparative analysis of their episode rewards.
Drawing inspiration from our previous RL work, PL-GCS, detailed in Chap-
ter 3, we employ the initial and final goal pairs, denoted as gp = [ginit, go],
to succinctly indicate a trajectorys difficulty level. To assess the similarity
in difficulty levels between two successful trajectories, we compare their goal
pairs.

For each newly collected success trajectory τ i, its goal pair is represented
as gpi = [giinit, g

i
o]. The combined goal pair distance between τ i and an expert

trajectory τ e with goal pair gpe = [geinit, g
e
o] is calculated as:

dcomb(τi, τe) = d(giinit, g
e
init) + d(gio, g

e
o) (4.4)

For each successful self-generated trajectory, we calculate the combined
goal pair distance to every expert trajectory in the expert buffer. The expert
trajectory that has the minimum combined goal pair distance, denoted as
τe(min), is deemed to have the most similar difficulty level to the successful
self-generated trajectory τi:

τe(min) = τe ∼ min[dcomb(τi, τe)|τe ∈ RE ] (4.5)

The episode cumulative returns of τi and τe(min) are then compared. If
the episode cumulative return of τi’s episode cumulative return exceeds that
of τe(min), it is deemed a higher-quality trajectory for the current policy and
subsequently stored in the expert buffer RE .

Sometimes the goal pair distribution within the expert demonstrations may
not be uniformly distributed, often resulting in most demonstrations being of
a similar, relatively easy level of difficulty. This scenario is particularly com-
mon with sub-optimal experts who can only offer success trajectories of lower
difficulty levels. Consequently, the expert trajectory τe(min) identified as most
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similar to τ i, might still have a high combined goal pair distance, rendering
it substantially different from τ i. Under these circumstances, comparing the
episode returns of these two trajectories becomes less meaningful. To address
this issue, we introduce a threshold, Ccombduring the search for the mini-
mum combined goal pair distance. If the smallest combined goal pair distance
found in the expert buffer exceeds this threshold, dcomb(τi, τe(min)) > Ccomb, it
indicates that the trajectory τ i significantly diverges from any existing demon-
strations and can therefore be directly added to the expert buffer.

Algorithm

Goal-SGAIL adopts the Goal-GAIL learning framework, utilising the off-policy
RL method DDPG and Hindsight Experience Replay (HER) for the RL learn-
ing component. To manage trajectories, we maintain two replay buffers, RE

for expert demonstrations and RB for self-generated trajectories. We have
expanded the expert buffer RE to include high-quality self-generated trajec-
tories, enhancing its compatibility with self-adaptive learning. To prevent the
expert buffer RE from becoming overwhelmed with outdated samples, we cap
its maximum size and employ a first-in-first-out (FIFO) strategy for incorpo-
rating new trajectories. This approach not only keeps the buffer current but
also allows for the removal of older demonstrations that may no longer be
optimal for the agent’s current learning phase.

During the experience replay stage, samples are drawn from both the ex-
pert buffer RE and the self-generated buffer RB. with HER applied to experi-
ences from both sources. We use a mixed distribution for sampling experiences,
balancing between expert (dE) and self-generated (dB) trajectories as follows:

dmix = αdE + (1− α)dB (4.6)

where α is the expert demonstration’s sample rate.
The discriminator training in Goal-SGAIL follows the same approach as

in Goal-GAIL. The loss function is presented in Equation4.3 in Section 4.1.4.
For training the discriminator, experiences are sampled using Hindsight Expe-
rience Replay (HER) for both expert and self-generated experiences. The re-
ward function for RL incorporates the output from the discriminator. Various
methods can be applied to utilise the discriminator’s output as the GAIL re-
ward, for example, use D(s, g, a), log(sigmoid(D(s, g, a))), or sigmoid(D(s, g, a)).
In our experiments, we opt for sigmoid(D(s, g, a)) as the GAIL reward. The
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Algorithm 5 Goal-based Self-adaptive Generative Adversarial Imitation
Learning (Goal-SGAIL)
Require:

- An off-policy algorithm A ▷ e.g. DDPG
- An discriminator D ▷ usually MLP
- A goal-based reward function S × G ×A → R ▷ e.g. r(s, a, gd) = −1 if
fails, 0 if success
- A self-collected replay buffer RB and an expert replay buffer RE

Initialise actor and critic networks for A and discriminator network for D
Initialise RB, initialise RE with expert demonstration trajectories
for episode = (1,M) do ▷ Step 1: data collection and storage

Collect trajectory τ using behaviour policy π from A
Find expert trajectory τe(min) using Equations (4.4) and (4.5) ▷ Check

if high-quality
if dcombine(τ, τe(min)) > Cdcombine

then
Store τ in RE if its episode return is higher than τe(min)

else
Directly store τ in RE

end if
end for
for batch = (1, Nd) do ▷ Step 2: Train discriminator

Sample demonstration transitions in RE, sample self-collected transitions
in RB

Train D using Equation (4.3)
end for
for batch = (1, N) do ▷ Step 3: policy update with HER

Sample transitions in RE and RB, apply the ratio stated in Equation 4.6
Combine these transitions and store them in B
Apply HER on transitions in B, recalculate the reward
Calculate combined reward for all samples using Equation (4.7) ▷ Add

GAIL reward
Perform one step optimisation for A using B

end for
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combined reward used for learning is as follows:

rcombined = (1− δGAIL) ∗ renv + δGAIL ∗ sigmoid(D(s, g, a)) (4.7)

where the GAIL weight δGAIL is used to control how much the GAIL reward
affects the learning. The complete algorithm of Goal-SGAIL is shown in Al-
gorithm 5.

4.2.3 Experimental Results

Environments

(a) FetchSlide (b) FetchPush (c) FetchPickPlace

(d) HandEgg (e) HandBlock (f) HandPen

Figure 4.2: OpenAI Gym robotics multi-goal RL environments [83]

The proposed Goal-SGAIL method is tested on various OpenAI Gym sim-
ulated multi-goal robotic manipulation tasks, see Figure 4.2. These environ-
ments are all designed for robot manipulation and are goal-conditioned:

• FetchPush-v1: Push a block on a table to reach a target position with
the Fetch robot;

• FetchSlide-v1: Hit a block on a slippery table to slide to a target
position with the Fetch robot;

• FetchPickAndPlace-v1: Pick a block on the table with the Fetch
robot and reach a target position in the air;
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• HandManipulateEggRotate-v0: Rotate an egg-shaped object within
hand to reach a target orientation using the Shadow hand robot;

• HandManipulateBlockRotateXYZ-v0: Rotate a block-shaped ob-
ject within hand to reach a target orientation using the Shadow hand
robot;

• HandManipulatePenRotate-v0: Rotate a pen-shaped object within
hand to reach a target orientation using the Shadow hand robot.

Implementation details and hyperparameters

In our experiments, each epoch is composed of 50 training cycles. Within
each cycle, we first gather data from 40 episodes, followed by training the
policy networks across 40 batches, each with a mini-batch size of 5120. After
the completion of each epoch, we conduct an evaluation over 100 episodes to
assess performance. Both the policy and discriminator networks are structured
as MLPs, featuring 4 layers with 256 nodes per layer.

The proportion of expert to self-collected samples utilised for training ad-
heres to Equation 4.6 with α set at 0.3. In both Goal-GAIL and Goal-SGAIL
implementations, we apply a GAIL weight δGAIL of 0.1. The discriminator
undergoes training for 40 batches per cycle, with a mini-batch size of 512

Specifically for Goal-SGAIL, we cap the maximum size of the expert buffer
RE at ten times the count of initial expert trajectories. The calculation of the
combined goal pair distance in Goal-SGAIL takes into account the task-specific
goal distance d(ga, gb). For robot manipulation tasks, object position control
tasks (Fetch tasks) utilise Euclidean distance, whereas object rotation tasks
(Shadow hand tasks) employ the quaternion rotation difference as the distance
metric. Furthermore, the threshold Ccomb for combined goal pair distance
checking varies between task types. In our experiments, we set Ccomb = 0.05

for object position control tasks (Fetch tasks), and Ccomb = 1.0for object
rotation tasks (Shadow hand tasks).

4.2.4 Performance comparison

In our experiments, Goal-SGAIL is evaluated alongside the vanilla HER (as
the RL baseline), and the imitation learning methods DDPGfD+HER and
Goal-GAIL. For all LfD algorithms, expert demonstrations are generated with
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Figure 4.3: The learning curve for different LfD methods with optimal demon-
stration provided by a fully-trained RL agent. The purple, blue, green and
red lines represent the learning curve for vanilla HER, DDPGfD+HER, Goal-
GAIL, and Goal-SGAIL, respectively. The brown line represents the average
success rate for the expert agent that is used to produce the demonstrations
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Figure 4.4: The learning curve for different LfD methods with sub-optimal
demonstration provided by a semi-trained RL agent. The purple, blue, green
and red lines represent the learning curve for vanilla HER, DDPGfD+HER,
Goal-GAIL, and Goal-SGAIL, respectively. The brown line represents the
average success rate for the expert agent that is used to produce the demon-
strations
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FetchPush FetchSlide
stage 1 2 3 4 stage 1 2 3 4
seed1 0.03 0.44 0.11 0 seed1 0 0 0.04 0.05
seed2 0.03 0.52 0.04 -0.02 seed2 0 0.01 0.01 0.03
seed3 0 0.38 0.11 0.01 seed3 0 0.03 0.07 0
seed4 0.05 0.46 0.09 0.01 seed4 0 -0.01 0.10 0.06
seed5 0.04 0.41 0.04 -0.01 seed5 0 0.01 -0.03 0.03
mean 0.03 0.44 0.08 0 mean 0 0.01 0.04 0.04
std 0.02 0.05 0.03 0.01 std 0 0.01 0.04 0.02

p-value 0.022 0 0.001 0.335 p-value 0.378 0.172 0.005 0.009
FetchPickAndPlace HandManipulateEggRotate

stage 1 2 3 4 stage 1 2 3 4
seed1 0.10 0.03 -0.01 0.01 seed1 0.11 0.13 -0.01 -0.01
seed2 0.06 0.06 -0.04 -0.03 seed2 0.09 0.08 -0.03 -0.02
seed3 0.10 0.04 0 -0.02 seed3 0.11 0.14 -0.01 -0.03
seed4 0.11 0.06 0 0.01 seed4 0.10 0.08 -0.01 -0.01
seed5 0.12 0.15 0.09 0.03 seed5 0.15 0.09 -0.02 0.02
mean 0.10 0.07 0.01 0 mean 0.11 0.10 -0.02 -0.01
std 0.02 0.04 0.04 0.02 std 0.02 0.03 0.01 0.02

p-value 0 0 0.269 1.000 p-value 0 0 0.012 0.211
HandManipulateBlockRotateXYZ HandManipulatePenRotate
stage 1 2 3 4 stage 1 2 3 4
seed1 0.06 0.25 0.05 -0.12 seed1 0.04 0.11 0.06 0.06
seed2 0.05 0.20 0.14 -0.03 seed2 0.08 0.07 0.03 -0.02
seed3 0.06 0.23 0.09 -0.06 seed3 0.05 0.13 0.03 0.08
seed4 0.04 0.17 0.10 0 seed4 0.04 0.11 0.08 0.03
seed5 0.07 0.24 0.06 -0.13 seed5 0.05 0.09 0.03 0.03
mean 0.06 0.22 0.09 -0.07 mean 0.05 0.10 0.05 0.04
std 0.01 0.03 0.03 0.05 std 0.01 0.02 0.02 0.04

p-value 0 0 0 0 p-value 0 0 0 0.001

Table 4.1: The statistical analysis of stage improvements: Comparing Goal-
SGAIL to HER using sub-optimal RL demonstrations. The stage
improvement during each learning stage is calculated for each run with a dif-
ferent seed. The mean and standard deviation across five seeds are also given.
The p-value of a one-sample t-test is given to indicate whether the improve-
ment is considered statistically significant and not random (p−value < 0.05).
We specifically highlighted stages showing significant positive improvements,
where the mean is greater than 0 and the p-value is less than 0.05
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FetchPush FetchSlide
stage 1 2 3 4 stage 1 2 3 4
seed1 0.01 0.11 0.01 0.01 seed1 -0.01 0.01 0.01 -0.02
seed2 -0.01 0.08 0 -0.02 seed2 0 0 -0.02 -0.04
seed3 -0.01 -0.03 0 0 seed3 0 -0.02 -0.01 0
seed4 -0.01 0.06 0 0 seed4 0 -0.01 0.05 0.06
seed5 -0.01 0 0 0 seed5 0 -0.01 -0.01 0.10
mean 0 0.04 0 0 mean 0 -0.01 0 0.02
std 0.01 0.05 0.01 0.01 std 0.01 0.01 0.02 0.05

p-value 0.177 0.006 0.302 0.273 p-value 0.646 0.301 0.817 0.186
FetchPickAndPlace HandManipulateEggRotate

stage 1 2 3 4 stage 1 2 3 4
seed1 0.02 -0.02 0 0 seed1 0.02 0.01 0 0.02
seed2 0 -0.05 -0.01 0 seed2 -0.01 -0.03 -0.03 -0.01
seed3 -0.03 -0.08 -0.03 -0.01 seed3 -0.01 0.01 -0.01 0.01
seed4 -0.02 0.03 0.03 0.02 seed4 0 -0.03 0.02 0.01
seed5 -0.01 0.10 0.11 0.04 seed5 0 0.05 0.02 0.03
mean -0.01 0 0.02 0.01 mean 0 0 0 0.01
std 0.02 0.07 0.05 0.02 std 0.01 0.03 0.02 0.01

p-value 0.127 0.686 0.025 0.028 p-value 0.974 0.768 0.901 0.046
HandManipulateBlockRotateXYZ HandManipulatePenRotate

stage 1 2 3 4 stage 1 2 3 4
seed1 0.01 0 0.02 0.04 seed1 0.01 0.01 0.01 0.03
seed2 -0.02 -0.02 0.09 0.15 seed2 0.03 0 0 -0.02
seed3 -0.02 0.04 0.07 0.11 seed3 0.01 0 -0.01 0.01
seed4 0 0 0.07 0.15 seed4 0 -0.01 0.02 0
seed5 0 -0.02 0.03 0 seed5 0 0.01 -0.02 0.01
mean -0.01 0 0.06 0.09 mean 0.01 0 0 0.01
std 0.01 0.02 0.03 0.06 std 0.01 0.01 0.02 0.01

p-value 0.291 0.938 0 0 p-value 0.096 0.695 0.953 0.282

Table 4.2: The statistical analysis of stage improvements: Comparing Goal-
SGAIL to Goal-GAIL using sub-optimal RL demonstrations. The
stage improvement during each learning stage is calculated for each run with
a different seed. The mean and standard deviation across five seeds are also
given. The p-value of a one-sample t-test is given to indicate whether the
improvement is considered statistically significant and not random (p < 0.05).
We specifically highlighted stages showing significant positive improvements,
where the mean is greater than 0 and the p-value is less than 0.05
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random goals, collecting only successful trajectories. We utilise 10 demonstra-
tions for the FetchPush and FetchPickAndPlace tasks, 100 demonstrations for
the FetchSlide task, and 200 demonstrations for all three hand rotation tasks.
Each experiment is conducted with five random seeds per environment/LfD
method, and results are averaged across these seeds.

Initially, we assess Goal-SGAIL’s performance relative to other LfD meth-
ods using optimal demonstrations provided by a fully trained RL agent. Subse-
quently, we explore LfD with demonstration datasets deemed sub-optimal due
to inadequate goal space coverage. These sub-optimal demonstrations, col-
lected from a semi-trained RL agent, are all successful trajectories but exhibit
imbalanced goal coverage, particularly lacking in challenging goals. Our aim
is to determine how Goal-SGAIL enhances learning efficiency in comparison
to DDPGfD+HER and Goal-GAIL, especially in the context of demonstration
sub-optimality.

Performance with optimal demonstration: The learning curves utilis-
ing different methods with optimal demonstrations are depicted in Figure 4.3.
The results indicate that all three LfD algorithms (DDPGfD+HER, Goal-
GAIL, and Goal-SGAIL) markedly outperform the vanilla HER baseline in
terms of learning speed, particularly during the initial and intermediate stages
of the learning process across all tested environments In specific tasks, such as
FetchPush and HandEggRotation, both Goal-GAIL and Goal-SGAIL exhibit
a marginally faster learning rate than DDPGfD+HER. However, the differ-
ence in performance between Goal-GAIL and Goal-SGAIL is not statistically
significant.

While DDPGfD+HER and Goal-GAIL do not reach the same performance
level as the RL baseline in certain tasks (notably HandEggRotation and Hand-
BlockRotation), Goal-SGAIL consistently achieves an optimal performance
level comparable to the RL baseline within the allocated learning time frame.

Upon examining the demonstration dataset, it becomes apparent that the
demonstrations provide comprehensive and evenly distributed coverage of the
goal space. The majority of the demonstration trajectories are near-perfect,
achieving their goals within just a few steps. Leveraging HER for experience
relabelling, the basic DDPGfD+HER method extracts sufficient information
to enhance the learning process. Goal-GAIL sees a slight improvement in
learning performance, thanks to the additional GAIL reward for all expert-
like self-collected experiences. However, since only a limited number of self-
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collected trajectories surpass the demonstrations during learning, Goal-SGAIL
does not notably increase the learning rate. Nonetheless, in scenarios where
demonstrations are insufficient for LfD to achieve peak performance, Goal-
SGAIL offers a valuable means to bypass this limitation.

Performance with sub-optimal expert demonstration: The learn-
ing curves comparing various methods with sub-optimal demonstrations are
illustrated in Figure 4.4. A statistical analysis was performed on the learning
results from these demonstrations to quantify the performance improvement
attributed to Goal-SGAIL. The improvement is defined as the success rate dif-
ference between Goal-SGAIL and the methods it’s compared against, such as
the vanilla HER (the RL baseline) and Goal-GAIL (the IL baseline), to evalu-
ate how significantly Goal-SGAIL accelerates the learning process. We regard
each set of 10 epochs (or 5 for FetchPush) as a learning stage and calculate
the stage improvement by averaging the improvement during this stage. The
stage improvements from five runs of each experiment, including their mean
and standard deviation, are detailed in Table 4.1 for comparisons between
Goal-SGAIL and HER, and in Table 4.2 for comparison between Goal-SGAIL
and Goal-GAIL. To determine the consistency of the improvement and ensure
it’s not due to chance, we conduct a one-sample t-test on the improvements
collected from five runs at each learning stage. The resulting p-values for each
learning stage are also listed in the mentioned tables. An improvement is
deemed statistically significant and not random if p < 0.05.

From the learning curves and statistical analysis, we observe that in rela-
tively simple robot manipulation tasks (FetchPush, FetchPickAndPlace, and
HandEggRotate), where learning can converge within the specified simula-
tion window, all LfD methods are capable of learning an optimal policy with
sub-optimal demonstrations. In these instances, Goal-SGAIL demonstrates
significant improvement during early and intermediate learning stages when
compared to HER, though it shows only slight improvement at some stages
compared to Goal-GAIL. In more complex tasks, such as HandBlockRotation,
DDPGfD+HER and Goal-GAIL exhibit faster convergence rates in the ini-
tial stages of learning but fail to learn the optimal policy. While displaying
a convergence rate similar to that of Goal-GAIL, Goal-SGAIL overcomes the
bottleneck and ultimately achieves a similar final performance compared with
optimal policy. For tasks such as FetchSlide and HandPenRotate, mastering
an optimal policy through RL presents a significant challenge. Despite this, all
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Learning from Demonstration (LfD) methods, supported by successful demon-
strations, demonstrate slight advantages in achieving final performance over
the HER baseline. In terms of learning speed, all LfD approaches exhibit
marginally faster progress than HER in FetchSlide and are notably quicker in
HandPenRotate. However, in these scenarios, Goal-SGAIL does not exhibit
improvement over Goal-GAIL.

Upon reviewing the demonstration dataset, we find that despite the sub-
optimal demonstrations lacking comprehensive coverage of the goal space,
these trajectories excel at achieving their local goals. Consequently, they still
offer sufficient guidance to enable all LfD methods to surpass the performance
of the expert in most environments. However, in practical application scenar-
ios where an RL agent is unavailable and demonstrations are typically gathered
through human teleoperation, the quality of these sub-optimal demonstrations
may be further compromised. This is attributed to the challenges human op-
erators face in remotely controlling the robot to execute such complex tasks.
In the following section, we will explore a case study that delves into using
human teleoperation for LfD.

4.3 Learning from demonstration with data collected
from teleoperation (Leap motion controller)

In this section, we present an LfD case study utilising a human expert and
data gathered through teleoperation. We focus on a block rotation task with
a Shadow Hand in the PyBullet [16] physics engine, as detailed by Zahlner et
al. [122]. Additionally, they have developed a teleoperation system employing
a Leap Motion Controller (LMC) for collecting demonstration data.

We will begin by outlining the setup of the environment and the proce-
dure for acquiring human demonstration data. Following this, we will explore
various LfD strategies, including our own Goal-SGAIL method, using human
demonstrations and evaluating their respective performances.

4.3.1 Environment setup

The learning environment is based on a shadow hand block rotation task within
the OpenAI Gym environment, utilising PyBullet [121]. The structure of the
teleoperation system implemented by Zahlner et al. [122] and a visualization
of the task are depicted in Figure 4.5. In this setup, a block is positioned
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Figure 4.5: PyBullet shadow hand block rotation task and the teleoperation
system structure in [122], copied from the original paper.

in the hand with a randomly assigned initial orientation. The objective is
to manipulate the object in-hand to achieve and maintain a specific target
orientation, within a predefined threshold of ϵ = 0.1 rad. Each episode spans
99 timesteps.

The action space is comprised of 20 dimensions, corresponding to the ab-
solute positions of all controllable hand joints. The observation space includes
the positions and velocities of the 20 non-coupled hand joints, the object’s
current Cartesian pose, its linear and angular velocities, and the desired tar-
get pose. Since the environment is designed for goal-conditioned learning,
this environment facilitates the extraction of the object’s desired and achieved
goals for separate use. A sparse binary reward system is employed, where the
agent receives a score of -1 when the target goal is not achieved and 0 upon
successful achievement.

4.3.2 Data collection with human teleoperation

The teleoperation system employs the LMC, which uses an infrared stereo
camera to track human hand movements. The LMC comes equipped with
an SDK that fits a hand model to the image stream, providing the positions
of the hand’s joints. This system leverages an inverse kinematic model of the
shadow robot hand [19] to translate human finger movements into robotic joint
positions within the PyBullet simulation platform. Human demonstrators
control the simulated robot hand, manipulating the object while observing
the action through PyBullet’s real-time rendering on the screen.

During the data collection phase for the shadow hand block rotation task,
hand joint data from the LMC is captured in real-time across each 99-timestep
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episode. Successful episodes, where the object is manipulated as required,
are stored in an expert buffer along with state, action, and episode-specific
information, forming the demonstration dataset.

4.3.3 Experimental Results

We compare the LfD performance over two demonstration datasets: 50 suc-
cessful trajectories produced by a fully-trained RL agent (RL demos), and 50
successful trajectories collected through human teleoperation (Human teleop
demos).

Analysis for demonstration datasets

Before comparing the learning performance, we discuss some differences be-
tween the two types of demonstration datasets. The teleoperation system’s
setup is relatively simple (especially when compared to CyberGloves and VR
simulation) and lacks feedback, making it challenging for human demonstra-
tors to control the simulated robot hand smoothly and accurately. Addition-
ally, the RL-trained agent controls the robot hand in a unique manner that
diverges from typical human habits.

The average episode cumulative return for the human teleoperation demon-
strations is -76, whereas for RL demonstrations, it is -15, indicating superior
performance by the RL demos compared to the human demos. Additionally,
we examined the distribution of goal distances between the initial position
and the target goal d(ginit, go) across all trajectories in each dataset, as illus-
trated in Figure 4.6. For a multi-goal learning problem, LfD stands to gain
from demonstrations that adequately cover the goal space. Ideally, the goal
distances d(ginit, go) across all trajectories should span all ranges and be more
uniformly distributed, a pattern observed in the RL demos. In contrast, the
majority of human teleoperation demos feature shorter goal distances (repre-
senting easier goals), with scarcely any coverage of longer goal distance areas
(indicating more challenging goals). This suggests that while human tele-
operation demos provide ample examples of easier sub-tasks, they fall short
in offering demonstrations for more challenging sub-tasks. In summary, the
human teleoperation demonstrations seem less optimal compared to the RL
demonstrations.
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Figure 4.6: The distribution of the initial and target goal distances of all
trajectories for the two types of data sets in LfD experiments: we calculate
the goal distance d(ginit, go) between the initial pos ginit and the target goal
go for each demonstration trajectory, and classify them into different distance
intervals. The density of the distance intervals of all trajectories is plotted for
the two datasets.

Learning performance comparison

In our LfD experiments, we compare three LfD algorithms: DDPGfD with
HER, Goal-GAIL, and our proposed method, Goal-SGAIL, using vanilla HER
RL as the baseline. The implementation parameters for all algorithms remain
consistent with those detailed in Section 4.2.3, with the exception of setting
the expert ratio to α = 0.5 and the GAIL weight to δGAIL = 0.3.

The learning curves for both human teleoperation demonstrations and RL
demonstrations are illustrated in Figure 4.7, with the results averaged across
three random seeds for each method. We perform a statistical analysis similar
to the one in Section 4.2.4, focusing on the data obtained from human teleop-
eration demonstrations. Our analysis specifically evaluates the improvement
of Goal-SGAIL over HER and Goal-SGAIL over Goal-GAIL. The findings are
presented in Table 4.3.

The analysis indicates that with optimal RL demonstrations, all Learn-
ing from Demonstration (LfD) methods outperform the vanilla DDPG+HER.
Specifically, DDPGfD+HER and Goal-GAIL enhance the learning process
more effectively than Goal-SGAIL. When employing human teleoperation demon-
strations, both DDPGfD+HER and Goal-GAIL experience a reduction in
learning rates during the intermediate and final stages, failing to achieve
the performance level of the RL baseline. Conversely, Goal-SGAIL markedly
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Figure 4.7: The learning curve for different LfD methods with human teleop
demos and RL demos on PyBullet Shadowhandblockrotate environment. The
purple, blue, green and yellow lines represent the learning curve for vanilla
DDPG+HER, DDPGfD+HER with demonstration, Goal-GAIL, and Goal-
SGAIL, respectively.

Improvement of
Goal-SGAIL over HER

Improvement of
Goal-SGAIL over Goal-GAIL

stage 1 2 3 4 stage 1 2 3 4
seed1 0 0.06 0.07 -0.05 seed1 0.02 0.08 0.14 0.06
seed2 0.02 0.07 0.05 -0.01 seed2 0.03 0.09 0.22 0.15
seed3 0.02 0.13 0.07 -0.03 seed3 0.05 0.17 0.22 0.17
mean 0.01 0.09 0.06 -0.03 mean 0.04 0.11 0.19 0.13
std 0.01 0.03 0.01 0.01 std 0.01 0.04 0.04 0.05

p-value 0.083 0 0.001 0 p-value 0 0 0 0

Table 4.3: The statistical analysis of stage improvements: Comparing Goal-
SGAIL to HER/Goal-GAIL using human demonstrations. The stage
improvement during each learning stage is calculated for each run with a
different seed. The mean and standard deviation across three seeds are also
given. The p-value of a one-sample t-test is given to indicate whether the
improvement is considered statistically significant and not random (p < 0.05).
We specifically highlighted stages showing significant positive improvements,
where the mean is greater than 0 and the p-value is less than 0.05
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boosts the learning rate during the intermediate stages and attains a final
performance that is on par with the RL baseline, showcasing notable advance-
ments over HER during these phases. Furthermore, it consistently surpasses
Goal-GAIL at every stage. However, it is noted that Goal-SGAIL’s final per-
formance is marginally lower than HER’s, a pattern also observed in Han-
dEggRotation and HandBlockRotation with sub-optimal RL demonstrations
in Table 4.1. This may suggest that relying more on self-generated demon-
strations in the final learning stages does not benefit the learning process.

In our experiments, the human teleoperation demonstrations were markedly
sub-optimal, predominantly focusing on simpler sub-tasks beneficial only in
the initial learning phases. As LfD algorithms’ RL components begin to mas-
ter these easier sub-tasks, they move on to tackle more challenging ones, ren-
dering the human teleoperation demonstrations less instructive. Goal-SGAIL,
by augmenting the demonstration dataset with successful self-generated tra-
jectories that surpass the original demonstrations, manages to outperform the
other methods.

4.4 Summary

This chapter explores Learning from Demonstration (LfD) methods tailored
for multi-goal learning challenges. We have examined the Generative Ad-
versarial Imitation Learning (GAIL) method, along with enhancements to
GAIL aimed at overcoming the challenges posed by sub-optimal demonstra-
tions (SAIL) and adapting GAIL for multi-goal contexts (Goal-GAIL).

We introduced the Goal-based Self-adaptive Generative Adversar-
ial Imitation Learning (Goal-SGAIL) method, which merges Goal-GAIL
with the self-adaptive concept inspired by SAIL. This incorporation of the
self-adaptive approach transitions the Learning from Demonstration (LfD)
process from relying on existing demonstrations to leveraging high-quality,
self-generated experiences as the agent’s performance surpasses that of the
demonstrations. This transition aims to address the challenges associated
with the sub-optimal quality of the demonstrations.

The initial experimental outcomes using demonstrations from RL-trained
agents show that with optimal RL demonstrations, even simple LfD meth-
ods like DDPGfD with HER, as well as more advanced methods like Goal-
GAIL, can enhance learning speed. However, when faced with sub-optimal
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RL demonstrations, both DDPGfD+HER and Goal-GAIL encounter limita-
tions. Goal-SGAIL, leveraging its self-adaptive strategy, assists the learning
process in surmounting the sub-optimality of the demonstrations. Moreover,
in real-world LfD settings, such as multi-goal in-hand object rotation tasks
using demonstrations collected via human teleoperation, the quality of the
demonstrations is significantly sub-optimal in terms of both goal space cov-
erage and the speed of achieving individual local goals. When implementing
various LfD approaches with human teleoperation demonstrations, methods
like DDPGfD+HER and Goal-GAIL do not achieve the same optimal level as
the RL baseline. In contrast, Goal-SGAIL demonstrates resilience against the
profound sub-optimality of the demonstrations, managing to learn an optimal
policy and markedly outperforming both DDPGfD and Goal-GAIL.

The contribution of Goal-SGAIL is its development of a strategy for
selecting high-quality, self-generated trajectories within a multi-goal learning
framework and incorporating these into the GAIL demonstration dataset to
facilitate a self-adaptive transition during the learning process. However, the
limitation of Goal-SGAIL lies in: Firstly, in scenarios where demonstra-
tions are less sub-optimal, such as those provided by RL, Goal-SGAIL does
not demonstrate significant improvement over Goal-GAIL. Secondly, there are
instances where the final performance of the learning process falls short of the
RL baseline. This suggests that Goal-SGAIL may need to be annealed during
the final stages of learning to encourage more exploration through RL itself.
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Chapter 5

Conclusions and Future Work

In this dissertation, we explored reinforcement learning (RL) and imitation
learning (IL) methods for in-hand dexterous manipulation tasks (InDex) in-
volving anthropomorphic robot hands, with a particular emphasis on enhanc-
ing learning efficiency for multi-goal-oriented tasks. Through this endeavour,
we developed several methods within both RL and IL frameworks:

(1) An experience prioritisation method designed to boost RL learning
efficiency by optimising the use of experiences;

(2) An automatic goal selection method intended to enhance RL learning
efficiency through improved exploration of the task space;

(3) A GAIL-based imitation learning approach aimed at increasing the
efficiency of GAIL imitation learning in multi-goal contexts.

This chapter wraps up the dissertation by summarising their key contri-
butions and limitations, and by proposing directions for future research.

5.1 Conclusions

5.1.1 Goal Density-based Hindsight Experience Prioritisation
(GDP)

In Chapter 3 (Section 3.2), we addressed the research question RQ.1 (outlined
in Section 1.1)by exploring how to effectively leverage the experience accumu-
lated during the RL learning process. We introduced the GDP method, which
priorities experiences based on the density distribution of achieved points,
specifically targeting those rarely seen in the replay buffer to enhance the
learning process’s sample efficiency. Furthermore, we developed the Prioriti-
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sation Switching with Ensemble Strategy (PSES), a strategy that amalgamates
various experience prioritisation methods to optimise overall performance by
selectively applying the most effective component from each method through-
out the learning process.

The contribution of GDP is providing a novel approach to analyzing
experience density, specifically through the utilization of goal-pairs. This ap-
proach results in decreased computational effort compared to previous density-
based methods such as MEP.

The limitation of GDP, on the other hand, stems from its limited ap-
plicability across a wide range of manipulation tasks. Merely focusing on
prioritizing newly encountered goals proves insufficient.

5.1.2 Policy-level-based Curriculum Goal Selection (PL-CGS)

In Chapter 3 (Section 3.3), we continued addressing the research question
RQ.1 by investigating efficient strategies for exploring the goal space through
curriculum-based goal generation during the learning process. We introduced
the PL-CGS method, which assesses the goal-pair distribution of the most re-
cently collected experiences and adopts a curriculum approach to select goals
of intermediate difficulty appropriate for the current agent’s learning stage.
To analyse the goal-pair distribution, we implemented two types of distribu-
tion analysis strategies: GMM and MLP discriminator. Experimental findings
indicated that PL-CGS, when paired with GMM, enhances both the learning
speed and the final outcomes in challenging robot manipulation tasks. How-
ever, the PL-CGS approach utilising a discriminator encounters difficulties in
effectively training a discriminator to accurately identify suitable goals, lead-
ing to subpar performance.

The contribution of PL-CGSlies in its novel method for analyzing Goals
of Intermediate Difficulty (GOID) to guide goal selection and generation,
specifically within the framework of multi-goal learning.

The limitation of PL-CGS is highlighted by a noticeable drop in success
rates as learning approaches convergence in various tasks. This approach’s
emphasis on GOID tends to favour achievable goals, thereby neglecting the
learning opportunities presented by unexplored goals during advanced stages.
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5.1.3 Goal-based Self-Adaptive Generative Adversarial Imita-
tion Learning (Goal-SGAIL)

In Chapter 4, we tackled research question RQ.2 (outlined in Section 1.1),
focusing on Generative Adversarial Imitation Learning (GAIL) [39] and its
enhancements. We introduced the Goal-SGAIL method, aimed at enhanc-
ing learning efficiency by selecting high-quality, self-generated trajectories for
inclusion in the GAIL demonstration dataset. Goal-SGAIL proved effective
in addressing the sub-optimality of demonstrations, demonstrating improved
learning outcomes in certain tasks. Additionally, we explored a practical
Learning from Demonstration (LfD) scenario involving a multi-goal in-hand
object rotation task, utilising demonstrations gathered through human tele-
operation. We found that the quality of demonstrations significantly impacts
performance, especially when compared with RL outcomes for traditional
LfD methods like DDPGfD+HER and Goal-GAIL. Nevertheless, Goal-SGAIL
managed to surpass RL performance, even with highly sub-optimal demonstra-
tions from human teleoperation.

The contribution of Goal-SGAIL lies in its innovative approach to
selecting high-quality, self-generated trajectories within a multi-goal learning
framework and integrating these into the GAIL demonstration dataset to fa-
cilitate self-adaptive learning.

The limitation of Goal-SGAIL is twofold: Firstly, in situations where
the demonstrations are less sub-optimal, such as those generated by RL, Goal-
SGAIL does not exhibit a marked improvement over Goal-GAIL. Secondly,
there are occasions when the final performance of the learning process does not
meet the RL baseline. This indicates that Goal-SGAIL might require tapering
off during the latter stages of learning to promote increased exploration driven
by the RL component.

5.2 Future work

Machine learning has demonstrated significant capabilities in addressing a
wide range of robotic tasks. However, when it comes to object manipula-
tion tasks involving humanoid robot hands, the high degree of freedom in
the robot’s structure and the complexity of operating environments limit its
application in real-world scenarios, necessitating further enhancements.

In Reinforcement Learning (RL), tackling multi-goal-oriented in-hand dex-
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terous manipulation (InDex) tasks presents a notable challenge. While Hind-
sight Experience Replay (HER) has enhanced sample efficiency for such sce-
narios, there’s ample room to boost learning efficiency through various ap-
proaches.

Our investigation into existing methods led us to propose a novel approach
for experience prioritization. However, few studies address the need for adap-
tive experience sampling strategies across different learning stagesmost focus
on only one aspect. In the initial stages of learning, sampling should predom-
inantly come from achieved areas, enabling the agent to swiftly grasp a basic
model of the state-goal and action space mapping. In contrast, during the later
stages, as the agent becomes proficient with easily achieved goals, prioritising
experiences related to seldom-achieved goals becomes crucial for advancing the
agent’s capabilities. Developing a curriculum strategy that transitions expe-
rience sampling from ’most seen’ to ’rarely seen’ experiences warrants further
exploration.

Curriculum learning strategies are applicable not only in experience utili-
sation but also in data collection for goal generation in goal-conditioned tasks.
We’ve introduced an automated goal-generation method that suggests goals
based on the current capabilities of the agent. However, the approach to adapt-
ing the policy level for different goals remains simplistic. The reliance on prior
experiences, even if recent, introduces a delay in goal generation. Enhancing
the analysis strategy to determine appropriate goals, which are challenging
enough to guide the agent without being overly difficult, requires additional
research effort.

In the field of Imitation Learning (IL), leveraging learning from demonstra-
tion has proven highly effective in accelerating learning speeds across many
straightforward robot manipulation tasks. However, algorithms tailored for
multi-goal-oriented tasks still require significant research attention. While
we’ve introduced a method to enhance learning efficiency for the goal-based
Generative Adversarial Imitation Learning (GAIL) approach, there’s room for
improvement in the strategy for selecting high-quality self-collected experi-
ences as demonstrations. Expanding beyond merely selecting from successful
trajectories, we could consider incorporating unsuccessful trajectories and ad-
justing experiences through hindsight experience relabelling. Additionally, the
quality of self-collected experiences should be evaluated in relation to differ-
ent learning stages, ensuring that appropriate experiences are presented as
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demonstrations for each stage of learning.
In practical scenarios, gathering demonstrations with human experts is

often deemed the most efficient approach, with teleoperation being a viable
method. However, as outlined in Section 4.1.5, the quality of collected demon-
strations may not always meet the standards required for Learning from Demon-
stration (LfD). And it is time-consuming to collect enough demonstrations for
LfD to utilise. Therefore, it becomes imperative to develop methods aimed
at enhancing the quality and quantity of demonstrations provided by human
experts. Recent advancements have enabled the collection of vision-based
demonstrations from humans without the need for teleoperation [87]. Fur-
ther research can explore the integration of this technique with our proposed
Goal-SGAIL method to achieve LfD from human demonstrations.
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