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Abstract

Presented here is a thorough theoretical and numerical investigation into the dynamics of vortex

dipoles in point vortex and point vortex adjacent systems. We begin by reviewing the basic

laws of fluid flow and thus standard hydrodynamic turbulence after which, motivated by the

vortex filament description of fluid flow, we introduce the intriguing phenomenon of quantum

turbulence. From this quantum turbulence we motivate study of the point vortex model,

including a description of the basic theory of point vortex systems. Using Kirchoff’s Hamiltonian

formulation of the 2D point vortex model in the infinite domain, we consider work done into

dipole-vortex collisions, as well as extending this to consider the dipole-dipole collisions in both

the integrable and non-integrable cases. Here we solve for important dynamical quantities such

as the scattering angle, of great importance to the mixing of turbulent systems, and also the

vortex separations at the dipole periapsis, as well as the extremum values of dipole separation,

and we discuss the possibility of dipole creation in such systems. We consider this as a numerical

analysis but also analyse each interaction regime theoretically where possible, finding perfect

agreement between theoretical predictions and numerical results where this is done. The study

then continues by considering the collisions of dipoles with same-signed rotating vortex clusters,

and also analysing the possibility of approximating the dynamics of a dipole colliding with

large vortex clusters by the dynamics of a dipole colliding with equivalently strong single point

vortices, we find such an approximation is even more effective than may first be considered,

with the dipole-vortex simulations often faithfully reproducing the dynamical quantities of the

dipole-clusters. We also consider the scattering angles and dipole creation possibility as before,

noting the highly chaotic behaviour found at impact parameters close to zero. We then move

from the 2D infinite domain point vortex model in the strict sense in order to consider how

point vortex systems may capture behaviour of standard turbulent systems; by considering

large N periodic point vortex systems we realise the 2D turbulent phenomenon of the inverse
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energy cascade through additional forcing and dampening mechanisms. Finally, we give a study

on the effect of the interaction of sound waves with a vortex dipole. Investigating the notion

that sound will lead to an eventual vortex collapse, we find this is highly dependent upon the

initial conditions present, more specifically the initial sound distribution, as this behaviour

although realised in Gaussian distributed sound is not realised in Rayleigh-Jean distributed

sound. Therefore, it is speculated that the shrinkage and annihilation processes occur not due

to the presence of sound alone but instead through the out-of-equilibrium motion as the system

relaxes towards the eventual statistical equilibrium of vortex annihilation.
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Chapter 1

Introduction

1.1 Research questions and objectives

The problem of turbulence throughout its history from the initial investigation by Reynolds [6],

to the description of Kolmogorov [7], to the modern day is one of the greatest unsolved problems

in classical physics. Due to the computational complexity involved in direct simulations of

the fluid equations of motion, numerous approaches have thus been developed in trying to

investigate turbulence; primary among these are the simulations and analysis of the underlying

vortex motion which occurs. In this work we consider a subset of these; namely consideration

of turbulence through the point vortex model, where continuous vortices (i.e. a continuous

vorticity field) is replaced by discrete vortices at points of infinitesimal width. By themselves,

point vortices have been used extensively in numerous applications throughout fluid dynamics

and turbulence, most often in the analysis of quantum turbulence in particular, but with

applications in classical turbulence also. We find this lacking for several reasons however,

often the point vortex assemblies used to simplify greater problems are still considered complex

problems to solve in themselves, and often an alternative description of point vortices would

prove more useful than consideration of the “bare” point vortex model.

It is our hypothesis that a better alternative would be to consider the point vortex system

as a statistical model, with the main driving agent of evolution being vortex dipoles rather than

the evolution of singular point vortices, such that the entirety of the point vortex statistical

evolution can be described in terms of the effects of these dipoles. Such a model would greatly

simplify the analysis of point vortex dynamics, as complicated large point vortex evolutions
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could be reduced into fundamental interactions undergone by dipoles (whether with other

vortex structures or otherwise), certain dipole interactions will then have a higher probability of

occurring than others, and through categorisation of which interactions are to occur with higher

probability and the effects of such interactions we are thus left with a statistical description of

dipoles that is much simpler than the standard point vortex model, yet can powerfully predict

long-term statistical quantities.

The idea of point vortex statistics is not however a new one, it was Onsager [8] who first

developed a statistical theory of these point vortices, through this, Onsager sought to provide

explanation for the long-lived vortices at large length-scales found in quasi-2D turbulence. This

seminal work led to the ingenious realisation that point vortices at high enough energy result

in negative temperature states, causing large-scale vortices to form as smaller vortex clusters

coalesce into larger clusters. This example elucidates the viability of considering point vortices

in a statistical manner, and in considering the corollary of Onsager’s finding, that positive

temperature states result in a domination of point vortex dipoles in the fluid flow, presents the

possibility of accomplishing this in terms of vortex dipoles.

The idea of statistical description of point vortices is further examined in the work of

Campbell [9], whereupon vortex clustering in high energy states in the manner of Onsager is

studied via the average interaction energy between negative and positive vortices (i.e. dipoles)

and the addition of an annihilation mechanism of close vortex dipoles, with results observed to

be similar to that seen in late-time 2D Navier-Stokes equations. Another interesting example of

such statistical analysis is given by Chavanis [10], where under certain assumptions the general

kinetic equation for the vorticity profile of the flow is given as a kinetic equation for ∂ω/∂t, it

is then our hypothesis that a similar theory and eventually similar kinetic equations may be

derived for point vortex dipoles.

Another significant example showing the statistical possibilities in describing point vortex

dipoles is the kinetic theory developed by Carnevale et al. and extended to a theory of point

vortex dipoles by Marmanis [11, 12], where here a full kinetic theory of point vortex dipoles

is developed. Several assumptions are made in this work; first it is assumed that only direct

scattering collisions are observed, as well as dilute vortex dipoles (vortex dipoles have an ex-

tended time of flight without interaction vs. time within interactions), and also that dipoles
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can approach such that the distance between like-signed vortices are much less that the dipole

distance and this can be considered as a single dipole of vortex clusters (which are then ide-

alised as single vortices), resulting in a reduction of vortices in the system. From this the theory

of Bogolyubov [13] the BBGKY hierarchy is derived, and a kinetic equation of dipole-dipole

collisions using point vortices to model two-dimensional turbulence is formed as the eigenvalue

problem

[

1

2πr21

∂

∂θ1
+

1

v1

(

⟨u
(2)
r

r2
⟩+ ⟨u(1)⟩ · ∇

)]

g
(0)
1 = ξg

(0)
1 . (1.1)

Here ξ is a proposed parameter specifying all statistical properties of the system, that is related

to the number of vortices per area, and the probability of finding a dipole somewhere in the

plane as f1 = gt−ξ, where g is a function of ρ1, ϕ1, r1, and θ1. These are polar coordinates

specifying dipole position; ϕ1 gives the separation of one dipole vortex to the origin, r1 gives the

dipole separation, ϕ1 gives angle of a dipole vortex to the origin, and θ1 gives the orientation

of the dipole. Also, subscripts specify which dipole is referred to in the interaction. Note also

here ur gives radial velocity of dipole vortices, u is the velocity vector of the polar parameters

already mentioned, and superscripts are given to represent terms of expanded power series in

the following form

g1 = g
(0)
1 + g

(1)
1 δt+ g

(2)
1 δt2 . . . ,

where a collision take place in time δt. This in effect validates the construction of a statistical

system around dipoles, however this particular model is unattractive on account of the numerous

assumptions made; such as being based around only direct scattering collisions, dipoles being

dilute, the possibility of multiple dipoles coalescing, among others. Thus, we investigate the

possibility of developing a dipole statistical model, with the end goal a kinetic description of

dipoles similar to (1.1), without such restrictive assumptions.

These works on kinetic theory all have in common a starting point of the BBGKY hierarchy,

in effect a coupled system of equations describing the statistics of the system. Given a Hamil-

tonian system of N particles we have the Hamiltonian in terms of generalised position p and

momentum q coordinates as the sum of the energy of particles and pair interaction potentials
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Φi,j = Φ(|qi − qj|) as

H =
N
∑

s=1

Hs(p1, ..., ps, q1, ..., ps), Hs =
N
∑

i=1

T (pi) +
∑

1≤i<j≤s

Φi,j. (1.2)

Here T is the energy of the ith particle, usually the kinetic energy. Given the probability

density function of a quantity of interest D = D(t, p1, p2, ..., pN , q1, q1, ..., qN) there then exists

the s-particle functions F such that

Fs(t, q1, ..., qs, p1, ..., ps) =

∫

ΩV

D(t, p1, . . . , pN , q1, . . . , qN)dps+1 . . . dpNdqs+1 . . . dqN ,

where Fs is the s particle distribution function of D, and ΩV is the entire phase space of a single

particle. Through starting at the Liouville equation and this definition of the Fs functions the

BBGKY hierarchy is then formed [14]

∂Fs

∂t
= Hs, Fs + n

∫

Ω

dqs+1dps+1

{

s
∑

i=1

Ψi,s+1, Fs+1

}

,

with Hs defined as in (1.2) and {..., ...} is the Poisson bracket defined as

{f, g} =
N
∑

i=1

(

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

.

The above the results in a coupled chain of equations where the s-particle distribution is given

in terms of the s + 1-particle distribution until the N particle Liouville equation is reached.

The solution to such a problem is equivalent to solution of the original Liouville equation,

which can be approximated from the BBGKY by only considering a truncated chain of such F

distribution functions.

This truncation process provides the justification for how we may construct statistical model

based upon a chain of dipole interactions such that interactions with a lower probability of

occurring are neglected in favour of the more common interactions. The application of such

a model will be heavily dependent upon the effects of the particular dipole interactions that

are identified, and so a preliminary investigation into the basic dipole interactions and the

effects of these must be done. Firstly we must identify the basic interactions which we wish to

form such a model around, it is natural that the first considered must be effects between point
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vortex structures, of which three can be identified as primary; the interaction of a dipole with

a lone stationary vortex, the interaction of a dipole with another dipole, and the interaction

of a dipole with a rotating vortex cluster made up of many point vortices. It should be the

case that these three collisions on the whole can already be thought to describe the majority

of point vortex evolution, as we speculate that the collisions that are most likely to occur

are those that are the simplest in terms of the interaction constituents. For an example to

illustrate this, consider the interaction of two dipoles with a lone vortex; such a case relies

upon two dipoles forming and interacting simultaneously at the same point in time with a lone

vortex. Such an interaction is obviously very unlikely due to this, what is much more likely is a

two-step interaction process, where the first dipole interacts with the lone vortex first, followed

by a second interaction involving the second dipole. Thus, in this way complicated interactions

between vortex structures can be reduced to these basic collisions, with any interactions not

describable in terms of these collisions being so unlikely the effects of these are negligible in

the context of a larger statistical theory. The effects of these basic interactions must then be

considered, with special emphasis on those that will most affect the evolution of a larger point

vortex system.

The first important consideration is the structural effects of such interactions; we consider

a model in terms of vortex dipoles, so the resulting makeup of vortex dipoles after basic inter-

actions, and the size of such dipoles, is of prime importance as it is this that will decide the

agents of evolution at later time steps. We then must question what types of interaction are

possible, and after interaction do dipoles persist? And do dipoles after interaction contain the

same vortices post-interaction as in pre-interaction? We must also consider the scattering of

dipoles due to such collisions, as it is this scattering that promotes mixing of the system, and

which subsequent interactions will take place at later points in time. Specifically, it must be

considered what interactions result in most/least scattering, and what regimes of each interac-

tion result in most scattering also. These are all key quantities that a hypothesised statistical

model should be able to predict. Also in considering a more typical turbulent fluid flow (which

the proposed statistical point vortex model would hope to replicate), dipole phenomena exist

that it is not possible to replicate in the standard point vortex model. These include the effect

of sound on vortex dynamics in quantum turbulence that point vortices are typically used to
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model, also mechanisms for vortex annihilation do not exist in the point vortex model, which

are very important to the development of both classical and quantum turbulence. Additionally

the existence one of the most fundamental ideas in the theory of turbulent flows; that of the

direct and inverse energy cascade, is questionable in the point vortex model. It is then neces-

sary that these effects are considered in formulating our model. The effects due to sound on a

vortex dipole must be investigated as compared to no sound present. In particular, we consider

the annihilation mechanisms that sound allows, and how sound may or may not lead to this

process in systems where sound is present. Finally, large amounts of theory regarding turbulent

flow centre around the notion of the energy cascade, this process is central to many turbulent

flows, and is vastly important to the development of vortex structures in these systems. No

consensus on whether this process is achievable in the point vortex model is found, so it presents

an interesting case-study to consider how this may be possible through the dynamics of dipoles

in the system and of vortex structure statistics involved. The overall objective of the current

work is to provide an analysis of the basic dipole interactions in order to perhaps look towards

using this in a future kinetic equation for dipole motion, before considering this in detail we

first introduce the key concepts we develop upon in the remainder of this chapter.

1.2 Hydrodynamic turbulence

Even when discussing the phenomenon of turbulence it is often difficult to formulate a precise

definition of turbulent fluid flow, with this being another debated topic within the fluid dynam-

ics community. Rieutord gives a particularly useful description in forming what it means for

fluid to be considered turbulent [15]; given a certain turbulent fluid flow and two points in the

flow A and B, fluid velocities vA,vB at the two points are statistically independent if A and B

are separated by a distance greater than what is termed the correlation length; also at either

of these points we note statistical independence between the velocity at a time t and a later

time t+ Tc, i.e. v(t) and v(t+ Tc) are uncorrelated, with Tc called the correlation time. Given

a fluid flow evolution is considered for length scales larger than the correlation length and for

longer time than the correlation time we will observe both spatial and temporal randomness

known more commonly as turbulence.

The first serious study of turbulent fluid motion can be attributed to the previously men-
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tioned work of Reynolds [6], where the connection between “direct and sinuous” (in our parlance

laminar and turbulent) fluid flows are explored, Half a century later, Kolmogorov set out a sta-

tistical theory of turbulence from which the famed Kolmogorov-Obukhov power law for the

energy spectrum E(k) was found later by Obukhov [16] which will be explored later in the

current work. This with the other power laws developed as part of the famed Kolmogorov 1941

theory are some of the most developed theories regarding turbulent fluid flow that exist. An

excellent introduction to the Kolmogorov statistical theory of turbulence can be found in [17],

where the issues with the Kolmogorov formulation are also explored.

To this day the long-standing battle to understand turbulence wages on, continuing the

great problem experienced by fluid dynamicists throughout history, as turbulent phenomena are

fundamental to fluid motion and are frequently encountered in many fluid dynamics applications

showing the great importance to the science of fluids as a whole. For example turbulence

frequently occurs in the field of aerodynamics [18, 19] with turbulent effects found to influence

the performance of certain aerofoils, Bose-Einstein Condensates and superfluids [20, 21, 22] as

a peculiar form of turbulence is found in such phases of matter that is of particular interest

to the current work. Turbulence is also commonly found in geophysical fluid dynamics, for

example considering the Planetary Boundary Layer Reynolds numbers are typically very large,

ordinarily a sure sign of fully developed turbulence; in this sense turbulence even has been found

to have applications in the study of air pollution as air contaminant particles are dispersed

by geophysical turbulent flows. A great overview of this particular field is given in [23]. The

complexity and chaotic nature in turbulent systems is such that a deterministic solution cannot

be feasible, as such description of these systems requires the use of alternative approaches such

as statistical analysis [24, 25, 26] (where the long-term evolution of mean properties of the fluid

flow is examined) or the focus of the current work; vortex dynamics [5, 27, 28].

Among the defining features of this turbulent flow is the dominance of strongly non-linear

eddy currents and vortices throughout the flow. These vortices can informally be considered

as objects in the fluid that cause surrounding fluid particles to follow circle-like orbits about

them. Mathematically we can define vortices as elements in the fluid with vorticity, that is the
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quantity determined as the curl of velocity.

ω = ∇× u, (1.3)

where here ∇ represents the differential operator common throughout vector calculus:

∇ =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

,

and u ≡ u(x, y, z, t) ∈ R
3 is the velocity of the fluid at position (x, y, z) at time t. Here

ω ∈ R
3 gives in essence a measure of the local rotational movement of the surrounding fluid

at a point, mainly developed through fluid interaction with boundary layers, and it is this

vorticity that is responsible for the foundational structures of turbulence; eddy currents and

vortices. Turbulence being made up of these vortices and eddies can be demonstrated to be

observed even as early as the drawings of Da Vinci [29] and provides an alternative method

of analysing turbulence by investigating dynamics of vortex structures rather than of the fluid

motion directly. In turbulence, these vortices and eddy currents are known to decay into ever

smaller vortices and eddy currents in what is known as Richardson cascade, this flow of energy

to smaller length scales continues until the energy is dissipated by the viscous forces present [17].

These viscous forces, in other words the friction forces between layers of fluid within the flow,

are often critical in the evolution of fluid flow as a whole.

Indeed, if we consider the standard general equations describing incompressible (constant

density within a fluid parcel) fluid motion, and thus also turbulence, we have the incompressible

Navier-Stokes equations. Assuming an incompressible Newtonian fluid with constant density ρ

and constant viscosity µ, the velocity distribution of the flow u ≡ u(x, y, z, t) ∈ R
3 is given as

the solutions of

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ µ

ρ
∇2u+ g, (1.4)

∇ · u = 0, (1.5)

where (1.4) gives the Navier-Stokes momentum equations and (1.5) gives the usual incompress-

ibility condition of divergent-free velocity [30]. Note here g ≡ g(x, y, z) ∈ R
3 represents an
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external field acting on the fluid (for example a gravitational field), p ≡ p(x, y, z, t) is a scalar

function representing pressure, and similarly we define ∇2 as the Laplacian:

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

The chaotic, aperiodic motion, and highly unstable nature of turbulence means solving these

equations either analytically or numerically is extremely complicated, Nevertheless, turbulence

has been successfully investigated using Navier-Stokes simulations in various works [31, 32, 33].

Examining the Navier-Stokes term by term we see the standard convection derivative familiar

throughout fluid dynamics Du/dt = ∂u/∂t+ (u · ∇)u representing the change of the velocity

of a fluid particle as it “moves through the fluid”, this essentially describes the acceleration,

and thus shows the Navier-Stokes as the fluid dynamics equivalent of the Newton equation

F = ma. It is important to note the non-linear advection term (u · ∇)u, this causes great

computational cost in Navier-Stokes simulations, and emphasizes the struggle in finding exact

solutions to such an equation. On the right-hand side of the equality we have the inertial

terms contributing to the change in momentum, namely the pressure gradient −∇p/ρ and the

external body field g, also we observe the (µ/ρ)∇2u term representing the difference between

velocity of a point in the fluid compared to the velocity of a small surrounding volume, hence

this term corresponds to the diffusion of momentum created by the viscous forces present [30],

and we see fluid motion thus described as a momentum balance equation between two inertial

terms and one viscous term.

The first studies of turbulence by Reynolds [6] involved such velocities in the case of turbu-

lence, leading to the discovery of the Reynolds number that is now considered inseparable from

descriptions of turbulent flow. Given a characteristic fluid velocity U , a characteristic length L

and the kinematic viscosity defined as ν = µ/ρ where µ is the coefficient of viscosity particular

to the fluid in question and ρ is the density of the fluid (we again assume the fluid here is

incompressible) then we define the Reynolds number as the ratio Re = UL/ν. The numerator

UL can be shown to be of the order of the inertial forces in the fluid flow, and the same is true

regarding the ν term and the viscous forces respectively [34]; the Reynolds number can then be

thought of as giving an indication of the relative magnitudes of the inertial and viscous com-

ponents of a fluids motion. Dynamics of a fluid flow is dependent upon this Reynolds number,
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and a fluid expresses much different motion and general characteristics depending on the mag-

nitude of the Reynolds number [30]. For fluid flows where the Reynolds number is very small,

either due to small characteristic lengths/velocities or a high relative viscosity, viscous forces in

effect dominate the evolution of the fluid, and the resulting dynamics can be described through

the “slow fluid equations” resulting in characteristically well-ordered fluid flow. In contrast,

for high Reynolds number flows, inertial forces dominate the evolution and fluid flows become

frequently unstable; in this regime the chaotic velocity and pressure fluctuations that make

up turbulence are observed. Thus, the transition from well-ordered laminar flow to turbulent

flow is reflected in the increase from a small to a large Reynolds number. In fact there exists

a critical Reynolds number Rec particular to a given flow geometry such that if the Reynolds

number of the fluid flow exceeds this value, i.e. Re > Rec, this will result in turbulent dynamics.

Turbulence can then be explained as an exhibition of inertial fluid forces dominating viscous

fluid forces as predicted by a high Reynolds number.

This is similar to another dimensionless quantity in the analysis of fluid motion; the Péclet

number; defining the ratio of advective transport to diffusive transport. It is defined as Pe =

(Lu)/D where u is the fluid velocity, L is the characteristic length of the system, and D is the

diffusivity coefficient, defined as the amount of a substance that diffuses across a unit area under

a unit gradient, and provides a measure of how convective fluid motion conserves quantities as

compared to the fluctuations due to viscous effects. As can be expected; in a turbulent system

with high Reynolds number (thus less effective viscous effects compared to inertial effects) the

effects of viscous transport are negligible and so we can expect a high Péclet number. This can

also be recovered through the definition of the Péclet number as the product of the Reynolds

and Schmidt number Pe = ReSc, with the Schmidt number defined as the ratio of momentum

diffusivity and mass diffusivity Sc = ν/D. Thus, a high Reynolds number naturally implies a

high Péclet number, and scalars are transferred mainly through fluid convection in turbulent

flow [35].

With this characteristic velocity U and a characteristic length scale L, we can then introduce

the new variables û = u/U , t̂ = tU/L, p̂ = p/(ρU2), x̂ = x/L and ĝ = g/g0 (with g0

representing a characteristic value of g) we thus attain the non-dimensional incompressible
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Navier-Stokes equation.

∂û

∂t̂
+ (û · ∇̂)û = −∇̂p̂+ 1

Re
∇̂2û+

1

Fr2
ĝ, (1.6)

where Fr = U/
√
g0L is the Froude number, another dimensionless quantity similar to the

Reynolds number, except the Froude number gives a ratio of the inertial forces to the external

field forces. The Navier-Stokes equations in the form of equation (1.6) reveals more clearly the

role of viscous forces in the evolution of high Reynolds number fluid flows. As we allow the

Reynolds number to become very large such as would be found in fully developed turbulence, the

viscous term becomes negligible and the inertial terms dominate. Indeed, as we allow Re → ∞

the term responsible for diffusion by viscous forces (1/Re)∇̂2û→ 0 and the dimensionless Euler

equations of fluid motion are recovered:

∂û

∂t̂
+ (û · ∇̂)û = −∇̂p̂+ 1

Fr2
ĝ. (1.7)

These equations exhibit fluid motion in the absence of viscous dissipation, and hence are simpler

in nature than the aforementioned Navier-Stokes on account of the absent viscous forces, and

can easily be derived from first principles [30]. However, in the absence of the viscous forces

found in the Navier-Stokes equations the no-slip boundary conditions (u = 0 at flow bound-

aries) enforced by viscous forces are not present. These no-slip boundary conditions in viscous

flow create a shear layer at boundaries which then creates vorticity ω, and thus eddy currents

that contribute towards turbulent velocity fluctuations. In the absence of this boundary-layer

turbulence, the development of turbulent flow is due to the non-linear term in the Euler equa-

tions, and so whilst viscous forces may be considerably lessened in turbulence the presence of

these forces can still have a direct effect on turbulent flow itself. Despite this, under certain

circumstances convergence from Navier-Stokes solutions to Euler solutions has been shown [36].

Considering this discrepancy in Euler and Navier-Stokes dynamics, the complexity surround-

ing the Navier-Stokes equations, and the computational difficulty of modelling such systems

(especially when considering the non-linear effects) it is clear that there are several disad-

vantages of modelling turbulence using the fluid dynamics equations directly. We thus seek

an alternative method of analysis, which before being defined proper we first introduce some
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important concepts, first the so-called circulation

κ =

∮

C

u · ds =
∫

A

ω · ndS, (1.8)

where C is a closed curve moving with the fluid and ds is the vector differential representing a

small line element on the curve C, also A is the surface bounded by the curve C and dS is a small

surface element of A with outward unit normal n. From the second equality (attained through

application of Stokes’ theorem on the line integral) we see that the circulation defined on a curve

C can be thought of as the flux of vorticity through an open surface A bounded by the curve, or

alternatively vorticity can be considered as the circulation through an infinitesimally small curve

C [37]. Circulation is also related to another fundamental concept, namely the representation

of vorticity as vortex filaments. This comes from the idea of vortex lines, defined as lines in the

fluid flow tangent to the local vorticity vector; the collection of vortex lines on a closed curve

then gives what are known as vortex tubes. By taking the curve to be of infinitesimal dimension,

in other words located at a single point, we then realise the approximation to vorticity known

as vortex filaments. It was Helmholtz who first considered this approximation of vorticity to

describe fluid flow, and from this that his famed vortex theorems derive [38]. We reproduce

these theorems here

1. Strength of vortex filaments are constant.

2. Vortex lines move with the fluid, and must either form a closed loop, start and end at

solid boundaries in the fluid, or extend to −∞/∞.

3. Fluid elements that are initially irrotational (ω = 0) remain irrotational.

Hence, we have a description of vorticity as curves moving with the fluid with constant circu-

lation/strength, as such vortex filaments represent a discretisation of the continuous vorticity

field. The velocity imparted on the fluid as a result of a vortex filament can then be given by

the vorticity equation (1.3) from inversion of the curl operator by the Biot-Savart law, given

for a vortex filament of general shape as the line integral

u(x, y, z) =
κ

4π

∫

C

dℓ× r
|r|3 , (1.9)
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dsds
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κ =
∮

C u · ds

AdS

n

κ =
∫

Aω · ndS
Figure 1.1: Diagrams of circulation from the two identities given by (1.8), the diagram on the
left shows the original circulation definition, whereas the diagram on the right shows the result
of applying stokes theorem.

with the line of integration C depending upon the shape of the vortex filament, which according

to the second Helmholtz theorem must extend to either ±∞ or the region boundaries, or must

form a closed curve in the fluid. Here κ is the circulation of the vortex filament, a constant

according to the first Helmholtz vortex theorem, dℓ is a differential vector on the vortex filament

C pointing in the direction of positive vorticity, and r ∈ R
3 is the displacement vector from the

point being considered (x, y, z) to the line element dℓ. Notice this is the same Biot-Savart law

found in electrodynamics which gives the magnetic field generated by an electric line current

[39]; this is a natural consequence of inversion of the curl operator. The velocity of a point in the

fluid containing multiple vortex filaments consists of equation (1.9) summed over every vortex

filament in the system. This approximation allows for a basic model of turbulent vortices

where the distribution of vorticity is neglected in favour of tracking the centre point of the

vorticity region. Associated vortex filament methods have proved to be successful in modelling

turbulence in various situations [40, 41, 42].

It is also common in the study of turbulence to restrict study to only two dimensions. This

is largely a theoretical undertaking, as turbulence in nature obviously must manifest some

degree of three-dimensional dynamics; however the 2D approximation to turbulence is found to

accurately describe certain (quasi)-2D physical systems such as oceans and atmospheres, where

the ratio of lateral length to vertical length is very large [43]. Also in 2D turbulence we observe

new phenomena not normally present, for example the inverse cascade [44], which in a restricted

periodic domain can form a vortex condensate as analysed in [45]. This arises as a consequence
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of the new conservation laws required for 2D turbulence, and suggests 2D turbulence as an

interesting field of study not confined to a basic simplification of 3D turbulence. These energy

C

r
dℓP = (x, y, z)

u

Figure 1.2: Visualization of velocity imparted from a vortex filament C on a point in the flow
P ∈ R

3 from the Biot-Savart law (1.9).

cascades are central to turbulent theory. Commonly understood as a typical phenomenon in

turbulence according to the Kolmogorov 1941 theory [17], the standard direct cascade consists

of eddies of various sizes with energy “cascading” down from the larger eddies through to

smaller ones. Energy is introduced into the system through forcing at the length scale of the

largest eddies, and once the energy has been transferred to the smallest length scales it is then

dissipated by the viscous forces present in fluid. The intermediate range between the large

scales of injection and small scales of dissipation are known as the inertial subrange, and the

key result of the work of Kolmogorov is the power law defining the energy spectrum in this

region

E(k) = Cϵ
2

3k−
5

3 , (1.10)

where E(k) is the kinetic energy contained in the wave number k, C is some constant and ϵ is

the dissipation rate; the rate at which energy is transferred through length scales. The inverse

cascade however is the opposite of this effect; in 2D and quasi-2D turbulence energy is instead

transferred through to the largest length scales, and the same power law equation (1.10) instead

dictates the flow of energy from the length scale of energy injection through to the largest length

scales in the system. This inverse cascade is a key feature of 2D turbulence, and a model such
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as the one we are to develop should consider this, hence we look at this in more detail later,

now we examine another interesting form of turbulence.

1.3 Turbulence in quantum fluids

Now that the preliminaries of hydrodynamic turbulence have been explained we now move

to consider possibly the most interesting phenomenon considered in the current work, namely

the concept of quantum turbulence. We classify turbulence into two distinct types, that of

the standard classical turbulence described in section 1.2, and of quantum turbulence. Whilst

classical turbulence is a common occurrence that can be observed readily in nature (for example

in a flowing river or stream) quantum turbulence is much rarer, only occurring in carefully

designed experiment [22] or in neutron stars [46]. By quantum turbulence we refer to the

turbulent flow found in a superfluid, that is, a carefully prepared fluid such that fluid flow

occurs with zero viscosity. Such fluids only exist at extremely low temperature very close to

absolute zero [47].

This superfluidity is thought to occur as a result of many atoms in the fluid occupying the

same quantum state, and therefore will be described by the same quantum mechanical wave

function and thus exhibit the same behaviour because of this. If a particle in such a state is

to be scattered by another object (e.g. a particle outside the state, or a wall) this particle

can not interact solely; each particle in the state must interact at once with this object as

they are described by the same quantum wave function. This is obviously very improbable,

and so the fluid in this quantum state flows without typical viscous forces that would cause

such interactions. This is a phenomenon first found in liquid 4He; as the temperature of the

system is lowered, once a transition temperature now known to be Tλ = 2.17K is reached,

a transition (known as the lambda transition on account of the sharp discontinuity of the

temperature graph [48]) occurs. Once this transition has occurred, the fluid has two states;

“Helium I” above Tλ and “Helium II” below this Tλ. This Helium II regime was found to

display unusual properties such as increased thermal conductivity [49] and ability to slip along

solid walls leading to creeping effects [50], finally leading to the description of the Helium II

state as superfluid [51]. Interestingly, superfluidity is also possible in 3He [47]. According to the

thermodynamic description, each particle occupies a so-called “quantum state” specified by a
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Figure 1.3: Phase diagram of 4HE against temperature and pressure, with phase boundaries
marked as solid lines and the λ transition temperature marked as a dashed line, showing solid
and gaseous regions as well as the two liquid phases, the ordinary Liquid Helium II and the
superfluid Liquid Helium II. Note the discontinuity between boundaries (no triple point).

certain energy value. Under the Pauli exclusion principle, more than one identical particles with

half-integer spins (Fermions) cannot occupy the same quantum state within a system, whereas

for particles with an integer spin (Bosons) this is possible [52]. These 3He particles possess 1/2

and thus are considered Fermions, and occupation of a quantum state by a multitude of them

should thus be impossible. However, through the work of Bardeen, Cooper and Schrieffer into

superconductivity, it has been shown that a pair of electrons of opposite momenta move towards

a state known as a Cooper pair (or BCS pair), where the electrons are considered bound due to

having a lower energy than the Fermi energy. These Cooper pairs are said to condense into the

lowest quantum state whereupon superconductivity, or the property of electrical conduction

without energy loss, is observed [53]. It is these Cooper pairs which are thought to condense

to the ground state thus resulting in superfluidity, or conversely, superconductivity can be

viewed as the superfluidity of Cooper pairs in a crystal lattice [54]. The degrees of freedom

present due to the multitude of Cooper pair states that in a zero magnetic field there are in fact

two superfluid regimes that exist in 3He, known as the a-phase and b-phase [55], with much

more complicated effects than those found in superfluid 4He, and both exhibiting zero viscosity.

The superfluid phases of 3He are very interesting and possess many peculiar phenomena in

their own right, for example the continuous “half-quantum” vortex structures in the a-phase,
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or the unusually high viscosity near the b-phase transition (due to being governed by Fermi

statistics here) resulting in fluid hardly moving [54], a more detailed description into the phases

of superfluid 3He can be found in [56].

Most importantly, superfluids are then not subject to the previously explored viscous forces

applicable to classical turbulent flow; this implies that superfluids flow without loss of energy

due to the lack of these forces. Ordinarily in a classical fluid any turbulence will decay over

time in the absence of external forcing due to the dissipative viscous forces present, thus in the

absence of this it is then possible that the Richardson cascade that characterises turbulence

mentioned at the end of the previous section, wherein energy flows from larger scales to smaller

scales until they are dissipated by viscous effects, will then continue to the smallest quantum

scales, where dissipation will instead be accomplished through certain quantum effects involving

the radiation of sound [57]. Thus we have in effect a quantum regime for turbulence, commonly

referred to as quantum turbulence, which has been theorized as early as 1955 by Feynman [58],

and has been observed previously in the superfluid helium already mentioned [59]. Also, when

considering the Reynolds number as defined as the ratio of inertial forces to viscous forces,

this is challenging to define in the quantum domain due to the Reynolds number approaching

infinity in the limit of the viscous forces approaching zero. Despite this there have been several

attempts to define an effective Reynolds number and so identifying the onset of quantum

turbulence [60, 57].

Of this quantum turbulence, we note several possible regimes that can possibly be observed.

In the zero-temperature limit there are two types of quantum turbulence that may be observed,

that of Vinen-type turbulence and that of Kolmogorov-type turbulence. These two regimes

can be differentiated in the degree of quantum effects observed, with the Vinen-type being

considered strictly quantum whereas the Kolmogorov-type can be said to be semi-classical [54].

For Vinen-type turbulence, we have the seemingly random highly knotted tangle of vortex lines

as displayed in figure 1.5. These are the typical quantum vortices we have been considering thus

far, of extremely small width and quantized circulation, and with annihilation and reconnection

effects through phonon emission. A clear sign that this Vinen-type turbulence is present is

associated with the decay of the turbulence itself, with the density of vortex lines in this regime

decaying as according to the inverse time law L(t) ∼ 1/t at late times. This also results in the
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“typical” quantum turbulence we consider in this section, with a Richardson cascade not being

observed and fluid moving seemingly at random. Contrary to this, Kolmogorov-type quantum

turbulence consists of vortex lines forming in bundles in the flow resulting in quasi-classical

type vortices in quantum fluid. These quasi-classical vortices exceed the quantum length scale,

and thus undergo the typical classical turbulent effects of advection and stretching, where here

a Richardson cascade will be observed. Due to viscous dissipation being absent here however,

this Richardson cascade will continue to the smallest length scales of vortex cores, through to

Kelvin wave cascades along vortex lines until dissipation through acoustic effects [61]. This

type of quantum turbulence is characterised by the vortex line density decaying as according

to L(t) ∼ t−3/2 [54].

Of particular interest especially with regard to our model are the vortices found in such

quantum turbulent regimes. The presence of vortices in superfluid helium has been observed

and studied numerically in particular by Schwarz [62, 63, 64], and it is these vortices that

make up quantum turbulence. Before considering with these quantum vortices proper, we

segue to first discussing an important medium in which they can occur and has been very

important to their analysis, namely the Bose Einstein Condensate(BEC). This “Bose-Einstein

Condensation”, first predicted by Bose in 1915 but only produced experimentally in 1995, refers

to the phase transition that occurs in a dilute boson gas at ultra-low temperatures close to

absolute zero. Given a Bose gas, as the temperature is lowered we see increasing occupation of

the lowest energy states, until particles begin to occupy the lowest quantum state; the “ground

state” a rough explanation of this can be given by the Bose distribution function

f 0(ϵν) =
1

e(ϵν−µ)/kT − 1
, (1.11)

assuming non-interacting Bosons, where f 0 is the mean occupation number of the single-particle

state ν, ϵν denotes the energy of the state, µ is the chemical potential, k is the Boltzmann

constant and T is the temperature of the system. Note the chemical potential is defined as a

function of the total particles N and T under condition that total number of particles be equal

to the sum of the occupancies of states. As the temperature becomes low, chemical potential

rises and occupation numbers increase, yet the chemical potential cannot grow greater than

the energy of the lowest single-particle state ϵmin otherwise this results in a negative Bose
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distribution for the lowest energy state. Thus, the occupation number of any excited single-

particle state has the upper bound

f 0(ϵν) ≤
1

e(ϵν−ϵmin)/kT − 1
, (1.12)

note that this constraint does not apply to the ground state, the occupation number of which

may be arbitrarily large. Given the total number of particles in excited states is less than N ,

the remaining particles must then be accommodated in the ground state and Bose-Einstein

condensation occurs [65]. The highest temperature this condensation occurs is known as the

transition temperature Tc such that when T < Tc the condensation process begins as boson

molecules move to the lowest energy quantum state. The specific value this critical temperature

Tc takes is highly dependent upon any external potentials present, the mass of particles and

whether the particular gas is ideal or otherwise, and other factors [66, 67, 68]. A general form

of the critical temperature can be directly from the Bose statistics description of a gas, in

particular the ideal Bose gas state equation N/V = (1/λ3)
∑∞

n=1(f
n/n3/2) + f(1/V )/(1 − f)

where N is the number of particles present in the system, V is the volume considered, λ gives

the thermal wavelength λ =
√

2πℏ2/MkT where M is the particle mass, k is the Boltzmann

constant, and f the fugacity; a state function expressing the idealised partial pressure of a

gas in a non-ideal gaseous mixture. Note also the summation; a monotonically increasing

function of f converging only for fugacities f ∈ [0, 1]. Here, according to Bose statistics the

f/(1 − f) term expresses the average occupation of the lowest quantum state n0, therefore

the equation of state can be rewritten as λ3⟨n0⟩/V = Nλ3/V −∑∞
n=1(f

n/n3/2), and in order

for a physical solution the lowest energy state cannot have a negative occupation number, so

it must be that Nλ3/V >
∑∞

n=1(1/n
3/2) where the summation now gives the Riemann-zeta

function such that Nλ3/V > ζ(3/2). This defines two regions in f, V, T space, that of the

condensed and uncondensed phase, and the critical boundary defined as the two-dimensional

surface Nλ3c/V = ζ(3/2), through the definition of λ the critical temperature is then given as

Tc =

(

N

V ζ(3/2)

)2/3
2πℏ2

mk
,
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note that the Riemann-zeta function has a known value ζ(3/2) ≈ 2.6124 such that

Tc ≈
(

N

2.6124V

)2/3
2πℏ2

mk
.

This gives the value at which the macroscopic occupation of the ground state known as con-

densation occurs [69]. These particles in the ground state have the same velocity, and can be

described by the same quantum wave function. In figure 1.4 this process is displayed showing

the velocity distribution of Rubidium atoms as the temperature of the Bose-gas is decreased.

In the left-most frame we see the gas at a temperature slightly above the critical value Tc prior

to the formation of the condensate, in the middle frame we see the condensate beginning to

form, and in the right-most we see almost every atom occupying the ground-state, almost a

pure condensate is observed. Bosons in this ground state coalesce into a “super-atom” with

Figure 1.4: The momentum distribution of a vapour of cooled 87Rb atoms. Three frames are
visualized for three different temperatures of the gas with a field of view of 200µm by 270µm.
Colour represents the density at each momentum, with red being the fewest and white the
most. Figure taken from [1] from the original 1995 experiment by Anderson et al. [2].

its own macroscopic properties and characteristics as a new phase of matter; the Bose-Einstein

Condensate (BEC) is formed [70]. These BECs are of great interest by their own characteristics,

and despite the fragility of the systems considered, have proven useful in answering questions

on matters of condensed matter physics and quantum mechanics [71, 72]. Of distinct interest
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for our purposes is the ability of BECs to exhibit quantum turbulence.

It is clear that this peculiarity is of considerable interest, as understanding of the behaviours

of BECs is then deeply tied to an understanding of quantum turbulence and thus of turbulence

as a whole. Particularly interesting is the vortices that are formed in the event of quantum

turbulence. By stirring or rotating a BEC for example one observes the formation of vortex

lattices once a certain critical angular velocity is reached [73]. According to the Onsager-

Feynmann theory, such vortices possess quantized circulation; in other words the circulations

of such vortices must be an integer multiple of the quantum value κ = h/m [74]. Also, rotational

motion is only sustained through these vortices, i.e. fluid is irrotational, ω = 0 at all points

other than the vortices in question. Hence, we find the Helmholtz laws of vortex motion to

be satisfied in the case of quantum vortices, and as vortex widths are incredibly small (of

the order of a few angstroms in 4He for example [75]) we find that quantum vortices are then

analogous to the vortex filaments found in the last section. Quantum turbulence can be thought

of as a tangle of identical quantized vortex filaments as shown in figure 1.5; here instead of a

loose approximation vortex filaments now represent the regions of vorticity completely. This is

remarkably demonstrated by Bustamante and Nazarenko [76], where it is shown explicitly that

vortices in quantum fluid can be described as vortex filaments; starting at the Hamiltonian

form of the non-linear Schrödinger equation(NLS) i(∂ψ/∂t) = ∂H/∂ψ∗, with ψ the complex

wave function of the fluid such that |ψ|2 = ρ, and the Hamiltonian giving the total energy as

H =

∫ [

|∇ψ(x, t)|2 + 1

2
(|ψ(x, t)|2 − 1)2

]

dx,

by considering the NLS in its hydrodynamic form (to be discussed later), and then finding the

Hamiltonian in terms of vortex lines, given some extra manipulation and the assumptions of

large vortex curvature and spacing when compared to vortex size we have the following result

H =
κ2

16π

∫

|s−s′|>ξ∗

ds · ds′
|s− s′| ,

which is the Biot-Savart equation as seen in the previous section defined in Hamiltonian form,

describing the motion of vortex filaments. Thus, the approximation of quantum vortices by the

aforementioned vortex filaments can be rigorously justified as the description of slow motions
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considering the many body Hamiltonian in addition to the Schrödinger equation, one can

attain the time-dependent Gross-Pitaevskii equation(GPE) here given in dimensionless form

iψ̇ = −∇2ψ + |ψ|2ψ + µψ, (1.14)

with the scalar differential operator Laplacian∇2 = (∂/∂x)2+(∂/∂y)2, where here ψ = ψ(r, t) ∈

C is a complex field that represents the ground state wave function, with |ψ(r, t)|2 giving the

density of the condensate at a particular point in space r and time t. The parameter µ is the

chemical potential of the system, the change of energy of the system per additional particle

introduced with a fixed volume.

This equation of motion describes the dynamics of the ground state of a bosonic gas, so

effectively models the motion of the condensate itself. The GPE is also known as the “Non-

linear Schrödinger equation” on account of the resemblance to the position-space Schrödinger

equation governing the wave function of a quantum mechanical system, with the addition of

the non-linear |ψ|2ψ term, the contribution from particle pair interactions as the BEC evolves.

Usually also in the GPE the external potential term V (r)ψ is included to model the traps

used to confine the condensate such that the extremely low temperatures required can be

reached, these frequently are harmonic traps in order to model the magnetic trapping frequently

used [77] (although different trapping forms of potential have been used, for example the uniform

potential optical box trap [78] or random potentials [79]) however due to the periodic boundary

conditions we use this term can be neglected in this case.

What is perhaps one of the most interesting properties of the BEC is the hydrodynamic

representation; under certain transforms the dynamics of BECs can be shown to approximate

fluid motion. If the wave function in this case is represented in terms of its amplitude and

phase such that ψ =
√
ρeiϕ, the so-called “Madelung transform” [80]; by comparing real and

imaginary parts of the resulting equation we recover the equations of motion for the condensate

in a familiar hydrodynamic form

ρ̇+∇ · (ρv) = 0, (1.15)

v̇ + (v · ∇)v = −∇2ρ

ρ
+∇

(

2
∇2√ρ
ρ

)

, (1.16)
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this represents the familiar Euler equations of motion for a fluid of zero viscosity, with the

addition of a quantum pressure term, describing the forces due to spatial variations in magnitude

of the wave function [65]. Importantly, the velocity of the system is given in terms of the gradient

of the scalar phase v = 2∇ϕ, and so the standard physical velocity of the condensate can be

attained from the wave function

v = i
ψ∇ψ∗ − ψ∗∇ψ

|ψ|2 , (1.17)

due to the gradient definition of the velocity now this implies that for such a fluid ω = ∇×v =

∇× (2∇ϕ) = 0 thus the flow in general is irrotational, except where the velocity is singular i.e.

points where ψ = 0 =⇒ ρ = 0, around these points the circulation can be given as a multiple

of 2π

κ =

∮

v.dl = 2πl, (1.18)

with l ∈ Z. Noting that we are still in units of ℏ/m, this then demonstrates the appearance of

quantized vortices with circulations in units of 2πℏ/m when the Madelung transformation is

considered. The GPE then allows for the formation and propagation of sound waves as already

discussed and in the formation of quantized vortices similar to the point vortices considered

elsewhere in the current work, said vortices can interact both with each other and with the

propagating sound waves in the condensate. Integral to the definition of vortices in BECs using

this description is the notion of the healing length

ξ =
1√
8πna

, (1.19)

this length represents the minimum distance at which the condensate can heal, i.e. the distance

at which the condensate grows from a density of 0 to n, where a is the s-wave scattering length.

Essentially this represents a minimum length scale of the system, and thus a “resolution” of the

BEC. This quantity is relevant for turbulence in particular, providing the size of vortex cores, as

it gives the distance from the zero density vortex centre to the density of the surrounding fluid.

Vortices coming within range of the healing length typically annihilate, a process that is common

throughout quantum turbulence and is key to the development of a coherent condensate.
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Corresponding to the equivalency of quantum turbulence to the intriguing quantum-hydrodynamic

Euler equations in (1.16), the quantum vortices found in the Hamiltonian formulation of quan-

tum turbulence (using the non-linear Schrödinger equation) from equation (1.18) is found to

have a velocity profile

u(x, y, z) =
2

r
θ̂(x, y, z), (1.20)

where r is the separation from the vortex to point (x, y, z) and θ̂ is the azimuthal unit vector [81],

also the density according to quantum vortices are found to have the profile

d2R

dr2
+

1

r

dR

dr
− 1

r2
R + (1−R2)R = 0, (1.21)

with boundary conditions R(0) = 0 and R(r) → 1 as r → ∞ and R(r) =
√

ρ(r).

Under the assumptions of well-separated initial vortices, and equal numbers of positive

vortices to identical negative vortices, it has been found that from these profiles (1.20-1.21) the

point vortex model can be derived [81], which directly occurs as a consequence of the point

vortex model as weak solutions of the 2D Euler equations such as the quantum hydrodynamic

equations (1.16); we now consider the point vortex model proper.

1.4 Point vortex analogy

We now move to the foundation of the current work, namely the “point vortex” model (PVM).

The PVM is a particular model of 2D turbulent plane flow, wherein perfectly straight infinitely

thin vortex line filaments are perpendicular to the plane in question, thus vortices in such

2D turbulent flow are represented by an assembly of discrete points, and through the Kelvin

circulation theorem each point has a constant circulation which can informally be thought

to describe the “strength” of a given point vortex. In this way we move from a continuous

ever-shifting vorticity distribution which hence implies continuous vortices to a simpler model

of vorticity where vortices are represented as simple interacting particles. Hypothetically, the

PVM can informally be thought of as a combination of the previously mentioned turbulence

approximation methods, with parallel straight vortex filaments being “sliced” perpendicularly
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by the plane, hence resulting in a 2D turbulent flow described by the point vortex particles

already mentioned. We can thus formulate the motion of such point vortices directly by consid-

ering the 3D analogue. As circulation around vortex filaments is constant, it must be the case

that circulation around point vortices is constant (a direct consequence of both the Helmholtz

theorems and Kelvin’s theorem). The velocity field imparted by such point vortices are then

also as a result of these vortex filaments, and is thus recoverable by the Biot-Savart law (1.9)

by considering a point whose position vector from the vortex filament is perpendicular to the

vortex filament itself, this gives the velocity field of an isolated point vortex from th Biot-Savart

law as

uθ =
Γ

2πr
, ur = 0, uz = 0. (1.22)

This is expressed in cylindrical coordinates, i.e. in terms of the radius from the vortex filament

r =
√

x2 + y2, some angle around the vortex filament θ = tan−1(y/x), and position along the

vortex filament z equivalent to the z coordinate in Cartesian case. With the cylindrical velocities

then defined as uθ = dθ/dt, uz = dz/dt and uz = dz/dt, and Γ some constant considered the

strength of the vortex filament (this will be examined later). As uz = 0 this means motion

of the particle is constrained to the same plane as result of the vortex filament. If it happens

that uz is not zero such that uz = c, symmetry in z is broken, and point vortex motion in the

plane now becomes uniformly translating 3D fluid motion. Here the constant c velocity in the

z direction can be thought as a timescale of 2D point vortex motion, and the resulting fluid

trajectories around vortex filaments now replicate the Poynting vector of Laguerre-Gaussian

modes commonly used in the modelling of optical vortices [82, 83].

From equation (1.22), we also note the angular velocity having finite value at every point

in the plane, except for the limiting case where r → 0 and the angular velocity becomes a

singularity. Hence, a fluid particle on the 2D follows a circular orbit about the point vortex

maintaining the same separation of r. Using (1.3) and the cylindrical coordinate form for ∇,

we can then find the vorticity distribution as the curl of the above:

ω =

[(

1

r

∂uz
∂θ

− ∂uθ
∂z

)

,

(

∂ur
∂z

− ∂uz
∂r

)

,
1

r

(

∂

∂r
(ruθ)−

∂ur
∂θ

)]

= (0, 0, 0) for r ̸= 0. (1.23)

Hence fluid is irrotational as ω = 0 at all points except for where r = 0, which is of zero
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Figure 1.8: Diagram showing the fundamental vortex separations which the equations of motion
are defined in terms of, expressed with arbitrary vortices i, j and k. Vortices are coloured to
show difference in the sign of circulation possessed by each vortex, and inter-vortex separations
are annotated and marked by dashed lines.

ẋi represents the x velocity of vortex i and ẏi represents the y velocity of vortex i as such:

ẋi =
d

dt
xi(t),

where here (xi, yi) are the Cartesian x and y coordinates of vortex i and so on for other vortices

i = 1, 2, . . . , N in the system. Note that from here we will use the shorthand [xi(t), yi(t)] =

(xi, yi). First, according to the Helmholtz-Hodge decomposition the fluid velocity of the flow

in R can always be decomposed into two terms, an irrotational scalar velocity potential and a

solenoidal vector potential ψ as

u = ∇ϕ+∇×ψ, (1.26)

taking the curl of this gives

ω = ∇(∇ ·ψ)−∇2ψ = −∇2ψ, (1.27)

where the final equality is a result of the solenoidal (i.e. divergence-free) vector potential.

Equation (1.27) gives a Poisson equation, which through standard techniques [88] can be solved

in terms of the Green’s function ψ =
∫

G(x − r)ω(r)dr, with G(x) = −1/(2π) ln |x| and r a

point in the plane. Given we now consider a point vortex, we have vorticity defined as discrete

singularities in the flow, with a single vortex i at xi having vorticity distribution ω(x) = κiδ(xi)

where here κi is the scalar circulation of vortex i. This is often considered the “strength” of

the point vortex. According to the definition of circulation (1.18) considered around a single
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vortex filament perpendicular to a plane of otherwise irrotational fluid any closed curve in the

plane around the vortex filament can be deformed to a circle without changing the value of

circulation. Hence, using the velocities defined in (1.22)

κ =

∮

C

u · ds =
∮

C∗

u · ds =
∫ 2π

0

Γ

2πr
rdθ = Γ,

where C∗ is the circle of radius r containing the vortex from deformation of the initial curve

(thus velocity tangent to this curve then is given by uθ), which is possible without loss of

generality as
∮

C−C∗
u · ds =

∫

A
ω · ndS = 0 due to the area A not containing the vortex and

thus vorticity in this region is zero everywhere. Note the above integral of the circulation is

independent of the radius of the deformed circle, even as r → 0, thus the vorticity flux due

to a point vortex is intrinsic to the vortex itself and does not change based on the curve C

considered, and κ is considered the strength of the vortex.

The solution of equation (1.27) as a result of vortex i can then be given

ψi(x) = − 1

2π

∫

κi ln |x− r|δ(xi − r)dr = − κi
2π

ln |x− xi|. (1.28)

As fluid motion in the point vortex model is purely due to velocity imparted by vortices (in

other words the solenoidal potential in equation (1.26)), we have velocity due to this single

vortex u = ∇× ψi(x), and therefore since the velocity-vorticity relation is linear the velocity

imparted by a system of N point vortices is given as u =
∑N

i=1 ∇×ψi(x), and finally by taking

the curl and examining separate components of u we have the equations of motion found by

Kirchoff [87, 34, 37]

ẋi = − 1

2π

N
∑′

j

κjyi,j
ℓ2i,j

, ẏi =
1

2π

N
∑′

j

κjxi,j
ℓ2i,j

, (1.29)

with xi,j = xi − xj, yi,j = yi − yj, and with ℓi,j representing the length of the line segment

spanning vortex i and vortex j, therefore:

ℓ2i,j = x2i,j + y2i,j. (1.30)

These quantities are displayed in figure 1.8. The above equations of motion (1.29) fit Hamilton’s
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canonical equations [5]:

κiẋi =
∂H

∂yi
, κiẏi = −∂H

∂xi
. (1.31)

With the Hamiltonian H given by:

H = − 1

4π

N
∑′

i,j

κiκj ln(ℓi,j), (1.32)

where κi represents the circulation of vortex i. Note that here and throughout the remainder

of this work we will use the shorthand sum notation given:

N
∑

j=1
i ̸=j

N
∑

j=1

=

N
∑′

i,j

.

It is clear that the above equations of motion are consistent with the Hamiltonian and canonical

equations. This then forms the point vortex system in full, so in order to solve the point vortex

system we must solve the above equations of motion. It can be observed that the relative

dynamics of a particular set up of vortices is the same irrespective of how they are oriented on

the plane, i.e. we observe the same relative behaviour regardless of translation or rotation of the

system. We use Noether’s theorem which states that symmetric properties of the Hamiltonian

imply the existence of conserved quantities, where here we refer to Hamiltonian invariance

under a transform as a symmetry. Hence, according to Noether’s theorem there exists three

constants of motion in our system, linear momentum (in the x and y direction) and angular

momentum are conserved [89]. These quantities are given as:

P =
N
∑

i=1

κixi, Q =
N
∑

i=1

κiyi, M =
N
∑

i=1

κi(x
2
i + y2i ). (1.33)

We can combine these to form a conservation law that is only dependent upon the relative

lengths between vortices as such:

R =
1

2

N
∑′

i,j

κiκjℓ
2
i,j ≡

(

N
∑

i=1

κi

)

M − P 2 −Q2. (1.34)

Note also we can define a point that is constant in the fluid, here referred to as the centre of
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vorticity xΓ = (xΓ, yΓ), which can be thought of as the unique point in the flow that is the

average of vortex positions weighted by the individual vortex circulations. It is easy to make

analogies from this to the centre of mass found in classical mechanics, as this is essentially the

point vortex equivalent. We define the centre of vorticity mathematically as such:

(xΓ, yΓ) =
1

∑N
i=1 κi

(P,Q), (1.35)

note that as both P , Q, and
∑N

i=1 κi are invariant with respect to time, the centre of vorticity

remains as a fixed point with respect to time.

Summarising, the N ≥ 1 point vortex dynamics is defined as a 2N dynamical system with

four conserved quantities, the Hamiltonian and the integrals of motion above. This gives 2N−4

degrees of freedom. Alternatively, it is possible to define the system in terms of relative motion

of vortices, where we examine the vortex separations rather than absolute vortex positions. In

the relative length description the system is defined as an N(N − 1)/2 dynamical system with

two constants of motion, the Hamiltonian H and the combined integral of motion R. Such

a system of relative lengths has N(N − 1)/2 − 2 degrees of freedom, hence whilst a system

of N = 3 vortices has one degree of freedom when considering the previous coordinate length

description and so is integrable, whereas an assembly of vortices with N > 3 generally is not

[27], making the case N = 3 of particular significance.

1.6 Thesis outline

Throughout the current thesis we then will consider the point vortex model against a backdrop

of the aforementioned systems of classical and quantum turbulence, in the hopes of developing

the preliminary foundation for a larger statistical theory of point vortex motion and of how

it may relate to turbulence as a whole. We first speculate that an encompassing theory of

arbitrary point vortex motion will be grounded in the fundamental interactions between point

vortices and more specifically the interactions of vortex dipoles, Thus in chapter 2 we analyse

the effects of these interactions between the fundamental point vortex structures of vortices

and dipoles. We first examine the scattering angles and periapsis separations of the dipole-

vortex collision; we also extend this by considering the extremum values of dipole separation.
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Also analysed here are the dipole-dipole collisions in both integrable and non-integrable cases,

including the possibility of larger or smaller dipoles being created through these interactions.

We seek to form a complete description of the effects of such interactions such that they may

potentially be used to describe the statistical evolution of larger systems in a future work.

In chapter 3 this study is extended into the interactions of vortex clusters, and seek to show

why this is important to standard turbulent systems and how the point vortex model relates to

them. Beginning with checking the interactions of vortex dipoles with different sizes of rotating

vortex clusters, solving for key quantities such as the scattering angles and regimes of dipole

creation, we also consider the possibility of approximating large vortex cluster by single point

vortices of an equivalent circulation. Later in this chapter the 2D turbulent phenomenon of the

inverse energy cascade is considered with respect to the point vortex model, namely how the

inverse energy cascade may be realised through the point vortex model.

Lastly, in chapter 4 compressible effects are finally considered. With the dynamics of quan-

tum turbulent systems in mind in particular, the dynamics of a dipole with respect to sound

are considered here. Specifically we seek to find evidence for the common notion that a dipole

in the presence of sound gradually decreases in size until the quantum phenomenon of vortex

“annihilation” is observed (more on this later), and we seek an explanation for why this may

occur and under what particular conditions.
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Chapter 2

Fundamental collisions of vortex

dipoles

2.1 Introduction: dipoles as the agents of point vortex

evolution

First we consider the evolution of point vortex systems as a result of the interaction of the

fundamental point vortex structures. As discussed, it is often useful to model a continuous

vorticity field as a point vortex cloud, especially in the case of BECs, as the point vortex

assembly is a very close approximation to quantum vortices in this case. Also point vortex

systems constitute weak solutions of the 2D Euler equations [90], another demonstration of

the close relationship between 2D classical turbulence and point vortices [43]. The model’s

usefulness to describe ideal 2D flows arises from the fact that vortices in 2D behave like point-

like objects advected by the resulting velocity field. Fundamentally, it is our hypothesis that

the vortex gas dynamics of the point vortex system can be characterised as a series of scattering

collisions between vortex structures. Indeed, the evolution of a large assembly of point vortices

will consist of many smaller interactions but only a few interactions have an actual high/

probability of occurring, and so the effects of these collisions will have the largest degree of

importance to dynamics of larger systems, and regarding these we will focus our attention.

Here it is argued that of all vortex structures it is the vortex dipole that is most paramount to

this picture of basic collisions, and so to the evolution of a large system as a whole.

K.Lydon, PhD Thesis, Aston University 2023 34



This relies upon a statistical description of turbulence reduced to the fundamental collisions

between vortex structures; as such this could only hold in certain regimes. Firstly it must be

assumed in such a system that the width of vortex cores are considerably smaller than the

distance between vortices. Whilst in the point vortex model this assumption is easily fulfilled

due to infinitesimally small vortex widths, in real physical systems vortices have finite width,

so this condition must hold in order that true dipoles and other vortex structures can form.

As corollary to this the vortices in the system must be dilute; i.e. the number of vortices in

the system should not be too high, again in order that vortex structures can form and interact

instead of a many-vortex interaction being observed. Also, through our investigation we will

only consider vortices of identical circulation, therefore in order to faithfully replicate the effects

of real systems with our model it must be that this holds as much as is possible (an example

of this would be the quantized vortices in quantum turbulence).

We then consider vortex dipoles interacting with other vortex structures within the funda-

mental interactions in this chapter. In section 2.2 we begin investigating the scattering of a

dipole via a third isolated vortex and consider the dipole periapsis during the scattering pro-

cess. We extend this study to the four vortex system of two interacting dipoles in section 2.3 in

both the integrable and non-integrable cases to examine the non-trivial properties of the dipole

dynamics during evolution.

2.2 Three vortex system: dipole-vortex collisions

The most basic interaction of a dipole with another vortex structure that can occur in the

point vortex model is that of a dipole with a single isolated point vortex, the interaction

of the two simplest vortex structures other than the trivial N = 2 cases of a vortex-vortex

and vortex-anti-vortex (i.e. a dipole). Although this in theory represents the simplest vortex

structure interaction, especially compared to the interactions considered later in this chapter,

when considering turbulent flows composed of a dilute system of point vortices, it can be

speculated that this should be the most common interaction due to comprising the simplest

interaction constituents possible (a dipole and a vortex) and so this is the most important in

terms of evolution of larger point vortex systems. In theory this interaction is then the most

likely to occur and so the dynamics of this interaction is of prime importance to the evolution
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of larger systems.

Hence we here consider the interaction of a vortex dipole with a lone vortex with circulation

of the same magnitude of the constituent dipole vortices. This is a specific case of the more

general three vortex motion that has been shown to be integrable, and has been characterised

in both the cases of identical circulations by Novikov [28] and arbitrary circulations by Aref [5].

Both gave a phase space analysis of said three vortex interactions and examined certain possible

interactions in such systems. Aref in particular conducts a basic study into this three vortex

assembly, wherein the scattering angles for the dipole-vortex collision are given and a region

of periodic motion is briefly mentioned and investigated. Our interest is in the examination of

the particular three vortex interaction of a vortex dipole interacting with third isolated point

vortex that has thus far not been developed in great detail. We will briefly review and follow

their mathematical analysis, with a full derivation of the scattering angle of the dipole (with

an unseen mistake corrected) to be given. Also, new results on the evolution of the dipole size

during interaction will be given in terms of the Aref formalism.

2

1

3

L

d

ρ

d

(x3, y3)

(x1, y1)

(x2, y2)

xΓ = (0, 0)

Figure 2.1: The initial setup of the dipole-vortex interaction. The red circles indicate positions
of the positive circulation κ point vortices, while the blue circle indicates the negative circulation
−κ point vortex, and the particular numbering of vortices chosen is marked on each vortex.
The parameters defining the system d, ρ, L are annotated and marked as solid lines, with vortex
positions and the centre of vorticity xΓ also being annotated.

We consider an initial vortex dipole propagating towards a lone point vortex situated in an

infinite 2D domain, i.e. (xi, yi) ∈ R
2 represents the position of vortex i with i = 1, 2, 3. The

dipole-vortex arrangement can then be fully characterised by the setup depicted in figure 2.1.

Vortices 1 and 2 are oppositely signed vortices of equal strength forming the dipole with circu-
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lations κ1 = −κ2 = κ > 0, this dipole is situated a horizontal distance L ∈ R away from the

isolated point vortex 3 with circulation κ3 = κ. We limit ourselves to vortices with circulations

of equal magnitude to keep our analogy with quantum vortices in Bose-Einstein condensates.

Vortices 1 and 2 of the vortex dipole are a vertical distance d ∈ R from each other, and we

define the impact parameter ρ ∈ R quantifying the vertical distance from the midpoint of the

vortex dipole to the centre of circulation which we set as the origin of our coordinate frame

xΓ = (0, 0). As the initial position of each vortex in the system can be described in terms of

these initial parameters, the conserved quantities are fixed in terms of these parameters, so the

Hamiltonian H gives

H = −κ2

2π
ln

(

l13
l12l23

)

= −κ2

4π
ln







L2 +
(

ρ+ 3d
2

)2

d2
[

L2 +
(

ρ+ d
2

)2
]







→
L→∞

κ2

4π
ln
(

d2
)

.

If vortices are initialised too close together, the three vortices will interact immediately, and

we will observe an effective three vortex interaction that does not correspond to proper dipole-

vortex dynamics. Therefore, to ensure a proper propagation of the initial dipole we must

consider the interaction in the limits of d, ρ≪ L to ensure that initially the dipole is unaffected

by the presence of the third isolated vortex, and so the dipole can propagate for some time until

interaction takes place and a true collision is observed, rather than a full three vortex interaction

when t = 0. We take the limit as L→ ∞ which gives the final equality here. At this limit the

initial position of the dipole is infinitely isolated from the stationary vortex, thus the dipole-

vortex interaction makes no contribution to the Hamiltonian, the value of the Hamiltonian will

solely be due to the isolated dipole (as a stationary vortex has no energy contribution) and thus

the Hamiltonian of the dipole-vortex collision converges to the Hamiltonian of a propagating

dipole as L→ ∞ as L becomes very large.

The linear and angular momentum are also given in terms of these initial parameters

P = (0, 0) , M = κ(d2 + 2ρd),

leading to the conserved value of R given by

R = κ2(d2 + 2ρd), (2.1)
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where we have used the total circulation
∑

i κi = κ. It is important to note that as the three

lengths between the vortices form a triangle, we must also have the inter-vortex separations

satisfying the following triangle inequalities

l12 ≤ l13 + l23, l13 ≤ l12 + l23, l23 ≤ l12 + l13. (2.2)

According to the analysis of Aref there are two types of interaction possible in this case,

depending upon the magnitude of the impact parameter relative to the dipole separation d.

Given ρ is sufficiently large compared to the initial separation d, the dipole propagates past

vortex 3 at a large enough separation such that the initial dipole persists once interaction is

complete and will only acquire a slight deflection in the direction of propagation due to the

far field effects of the isolated vortex, this phenomenon will hence from here be referred to as

direct scattering. Alternatively given that ρ is small comparable to d, the dipole approaches

sufficiently close to the lone vortex 3 such that an exchange in vortices takes place between

the positive vortices 1 and 3, leading to a new dipole being formed between vortices 2 and 3

and propagating off to infinity with vortex 1 remaining as the final stationary vortex. This

process will hence be titled exchange scattering. The two distinct interaction types are then

concretely differentiated by the particular vortices forming the final dipole as t→ ∞. Through

the dynamics there are two key points in time which we consider important. The exchange

point is the moment in time in which the two positive vortices have exactly equal separations

from the anti-vortex and we have l12 = l23 at this point. At this point the initial positive dipole-

vortex becomes the isolated vortex and vice versa. We also define the important critical point

as the point in time during the evolution in which the minimum separation between positive

vortices is reached.

This point is of particular interest as this can be considered the point during the interaction

during which the dipole is closest to the isolated vortex, and so it is the point during the

interaction at which the strongest effects will occur. By definition, we can then determine the

critical point exactly by computing the critical values of the differential equation (1.29). The

other inter-vortex separations are also of particular interest at this point, as this may provide

clues towards when more interesting interactions occur in more complicated interactions, for

example annihilation in quantum turbulence. We represent these lengths as l∗ij. Because of
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the simple nature of the dipole-vortex collision, the exchange point and the critical point occur

simultaneously, but in more complicated collisions involving more than three point vortices this

may not be the case. In the case of direct scattering, the critical point of the interaction arises

when all three point vortices become collinear with the value of the area of the triangle spanned

by the three vortices A123 vanishing, as either l13 = l12 + l23 when ρ > 0 or l23 = l12 + l13 when

ρ < 0. At the interface between the boundaries of direct and exchange scattering we expect

that the three vortices will be trapped in a bounded state of constant rotation as shown by

Aref [5], this corresponds to the negative vortex being trapped between the two regimes of

direct and exchange scattering; the impulse imparted by each positive vortex is exactly equal

and so the anti-vortex remains locked in interaction with both, with all three vortices rotating

about the center of circulation in an equilateral triangle configuration.

Here we will extend the mathematical formalism using dimensionless variables found in

works of Aref and Novikov [28, 5], we use variables defined as the ratio of squares of the inter-

vortex lengths with the newly defined parameter C, defined by Aref as the timescale of relative

vortex motion [5]. This is derived from the previous conserved quantity R (2.1),

R = κ2l213 − κ2l212 − κ2l223 = −3κ3C, (2.3)

such that C = −R/(3κ3). Thus, we rescale the inter-vortex lengths resulting in variables bi for

i = 1, 2, 3 representing dimensionless vortex separations. This then results in

b1 =
l223
κC

, b2 = − l213
κC

, b3 =
l212
κC

, (2.4)

also from the geometric constraints in 2.2 the variables bi must satisfy the constraint b21 + b22 +

b23 ≤ 2(b1b3 − b1b2 − b2b3). The bi variables defined in this way constitute a set of generalized

coordinates that must satisfy the geometric constraint b1 + b2 + b3 = 3. Similarly, we can

define the non-negative quantity θ in terms of the dimensionless variables bi, this represents

the dimensionless Hamiltonian as the l variables in the original definition are shifted into

dimensionless b space, and so constant quantities of θ

|b2|
b1b3

= κ|C| exp
(

−4πH

κ2

)

= θ, (2.5)
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then represent trajectories in phase space; varying θ thus gives different dynamics in real space.

To examine the motion of the three vortex collision we express the vortex separation equation

of motion (1.29) in terms of these dimensionless variables. In particular the equation of motion

of the variable b2 is of interest, as it is this variable that expresses the dimensionless separation

of the two positive vortices. As these vortices can never be a part of the same dipole one must

always remain as the stationary vortex once the interaction is complete (which positive vortex

in particular is left over depends upon whether we have direct or exchange scattering). Hence,

the equation of motion of the dimensionless b2 variable can be used to encapsulate the dynamics

of the interaction as a whole.

Using the evolution equation for the relative vortex motion (1.29), the definition of the

dimensionless variables b1, b2, b3 (2.4), and the conservation laws of the point vortex interaction,

one can show that

ḃ2 =

(

− 1

C

)

2

π
κ2ϵijkA123

(

1

l223
− 1

l213

)

= ± 2

C2π
A123

(

b3 − b1
b1b3

)

, (2.6)

where A123 is the area of the triangle spanned by the three vortices and ϵ123 is the Levi-

Civita symbol that indicates the orientation of the labelling of the triangle vertices. The area

A123 can also be expressed in terms of the vortex separations l12, l13, l23 by Heron’s formula

A123 =
√

r(r − l12)(r − l23)(r − l13) where r = (1/2)(l12 + l13 + l23). This reduces to A123 =

(1/4)
√

4l212l
2
23 − (l212 − l213 + l223)

2
. By replacing with the dimensionless b1, b2, b3 variables and

using the constraints b1 + b2 + b3 = 3 and (2.5) the area A123 can be expressed in terms of

variable b2 only:

A123 =
1

4

√

4C2b1b3 − (Cb3 + Cb2 + Cb1)2 =
C

2
√
θ

√

|b2| −
9

4
θ.

In the same manner, the (b3 − b1)/b1b3 term appearing in equation (2.6) can be expressed as

b3 − b1
b1b3

=
θ

|b2|
√

(b3 − b1)2 =
θ

|b2|

√

(b1 + b2 + b3)2 − b22 − 4b1b3 − 2b1b2 − 2b2b3,

=
θ

|b2|

√

(3− b2)2 − 4
|b2|
θ
.

Combining these results together gives us the dynamical equation for b2 in terms of the variable
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b2 alone

ḃ2 = ± 2

C2π
A123

(

b3 − b1
b1b3

)

= ±
√
θ

Cπb2

√

(|b2| −
9

4
θ)

[

(3− b2)2 − 4
|b2|
θ

]

. (2.7)

Note the expression under the radical is a cubic in b2, if b2 is equal to the roots of this cubic

we have that ḃ2 = 0 =⇒ ˙l213 = 0 and thus if b2 ever reaches these values we have reached the

critical point in the dynamics and so will observe the most interesting dynamics. These roots

have an important correspondence to real space point vortex dynamics, thus we label them as

such; for the case of C > 0 we give

α(θ) = −9

4
θ, β(θ) = −1

θ

(

1−
√
1− 3θ

)2

, γ(θ) = −1

θ

(

1 +
√
1− 3θ

)2

, (2.8)

and for the case that C < 0 roots are given as ᾱ(θ) = α(−θ) and so on, i.e.

ᾱ(θ) =
9

4
θ, β̄(θ) =

1

θ

(

1−
√
1 + 3θ

)2

, γ̄(θ) =
1

θ

(

1 +
√
1 + 3θ

)2

. (2.9)

Then we can re-express the b2 equation of motion in terms of these roots.

ḃ2 =



























±
√
θ

Cπb2

√

(α− b2) (β − b2) (γ − b2) for C > 0,

±
√
θ

Cπb2

√

(b2 − ᾱ)
(

b2 − β̄
)

(b2 − γ̄) for C < 0.

(2.10)

The functional relationships of the above roots (2.8) and (2.9) are plotted verses θ in figure 2.2.

One should interpret the roots of (2.10) as follows: as t → −∞ the initial setup in real space

is of an isolated dipole infinitely far away from a third isolated point vortex, the dipole and

the vortex are not interacting here, and we have in effect a vortex dipole completely isolated

from the stationary point vortex. In the case of C > 0, b2(−∞) = −∞, while for C < 0,

b2(−∞) = ∞ where the value of C depends on the initial configuration (and hence value of the

conserved quantity θ or in real space the impact parameter ρ). As the system evolves, the value

of b2 reduces continuously in magnitude (representing the dipole approaching the stationary

vortex), this continues until it reaches the first root of (2.10) at which point it undergoes the

corresponding scattering process as dictated by the initial condition. As can be determined
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off to infinity before this root is reached. The roots β, β̄ correspond to a region of bounded

periodic motion achievable by initialising the vortices in proximity, thus these dynamics can

not generally be reached when considering a dipole-vortex setup, except in the special cases

where θ = 1/3, C > 0 and θ = 8/3, C < 0 where β = γ and β̄ = γ̄ respectively. In these cases

the point vortices form a quasi-stable equilateral triangle or collinear structure that exhibits

rigid-body rotation about the center of circulation (confirmed by our numerical computations).

Table 2.1: Parameter ranges of both ρ, d and θ corresponding to scattering types of the three
regions of the three vortex interaction defined in figure 2.1. Region II has been split into two
subregions defined by the sign of C, although the same scattering type is observed in these
regions.

Region C Range θ Range Impact Parameter Range Scattering Type

I C > 0 1/3 < θ <∞ −∞ < ρ/d < −1 Direct

IIa C > 0 0 < θ < 1/3 −1 < ρ/d < −1/2 Exchange

IIb C < 0 0 < θ < 8/3 −1/2 < ρ/d < 7/2 Exchange

III C < 0 8/3 < θ <∞ 7/2 < ρ/d <∞ Direct

2.2.1 Dipole-vortex scattering

Aref [5] used the formalism presented above to determine analytical results for the dipole

scattering angle after interaction with the third isolated point vortex in the case of circulations

κ1 = κ2 = −κ3 = 1. We derive the scattering angle in appendix A.1 including correcting

some previous errors in Aref’s calculations. The integrals in question are not reducible to

elementary functions but instead will take the form
∫

R(x, y)dx, where y2 is a cubic in x and

R(x, y) is a rational function. This is what is known as an elliptic integral, a full treatment

and explanation of which is given by Abramowitz [91]. These integrals in question can not be

expressed in terms of elementary functions, and must instead be reduced to simpler forms to

make for easier computation. Briefly we can summarise this process as such; first consider the

polar angles of the vortices ϕi for i = 1, 2, 3 defined as the angle spanned from the horizontal to

the line segment joining the center of circulation and the vortex i, then we define the scattering
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angle of vortex 2 as

∆ϕ2 = lim
t→∞

ϕ2(t)− lim
t→−∞

ϕ2(t) =

∫ ∞

−∞
ϕ̇2dt =

∫ L2

L1

ϕ̇2

(

1

ḃ2

)

db2,

here the last equality arises from the transformation from physical space to our phase space

description, where the limits L1, L2 depend upon the particular dynamics of the interaction,

in other words what region of table 2.1 we are considering will change the dynamics of the

variable b2 and thus provide different values for L1, L2. The equation of motion for the polar

vortex angle can be found simply through cosine laws for vortex separations

ϕ̇2 =
θ

4πC

9− 3b2 +
4
θ
|b2|

(6− b2)|b2|
, (2.11)

see Appendix A or the original derivation by Novikov for details [28]. By substituting the equa-

tions of motion for ϕ2 (2.11) and b2 (2.10) into the above scattering angle integral we then attain

the scattering angles in each case in the form of ∆ϕ2 =
∫ L2

L1

[χ(b2)/y]db2, where χ(b2) is a rational

function of b2 and y =
√

(b2 − α)(b2 − β)(b2 − γ) if C > 0 or y =
√

(b2 − ᾱ)
(

b2 − β̄
)

(b2 − γ̄)

if C < 0, thus by the definition given above we have recovered the scattering angles as elliptic

integrals. Through established theory of elliptic integrals [91], these can be reduced to some

linear combination of the basic forms

∫ L2

L1

db2
y
,

∫ L2

L1

b2
y
db2,

∫ L2

L1

(b2)
2

y
db2,

∫ L2

L1

db2
(b2 − c)y

,

with c some constant. Through simple substitutions such as those found in Labahn and

Mutrie [92] we finally reduce the scattering angles into linear combinations of Legendre’s com-

plete normal forms of the first and third kind

K(k) =

∫ π/2

0

dϕ
√

1− k2 sin2 ϕ
, Π(n, k) =

∫ π/2

0

dϕ

(1− n sin2 ϕ)
√

1− k2 sin2 ϕ
.

The above Legendre integrals are often considered obsolete compared to the more modern

Carlson symmetric forms [93]. However, to be consistent with the work of Aref and due to

availability in numerical libraries, we use the Legendre normal forms here. The above procedure

is repeated in each case such that four expressions for the scattering angle in each region is
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given (A.4) and are plotted in 2.3 and compared with angles computed using direct numerical

simulation of the point vortex model. Our definition of the scattering angle is only defined for

modulo 2π, however in figure 2.3 we have unravelled the scattering angle to better display the

meaning of the asymptotes. Positive values of ∆ϕ2 indicate an anti-clockwise deflection. We

observe excellent agreement between the theoretical results given by (A.4) (black dashed curve)

and the numerical data (red circles).

For large values of the normalized impact parameter ρ/d we observe minimal deflection of

the dipole as expected. As the impact parameter shrinks, corresponding towards a more direct

propagation of the dipole towards the isolated vortex we observe two clear asymptotes, one

between regions I and IIa and another between regions IIb and III indicating the boundaries

between the direct and exchange scattering regions. The asymptotes correspond to locking of

the three vortices into either an equilateral triangle or a quasi-stable collinear structure that

undergoes continual rotation - hence the tendency towards an infinite scattering angle. Nu-

merical instabilities in our simulations lead to the locked configurations eventually becoming

unstable and so the numerical results become extremely sensitive in regions close to the asymp-

totes; as the locked rotating configurations are unstable equilibria, the slightest perturbation

can result in the breakdown on the usual rotating dynamics, and as the vortex 2 continues

to rotate in these regions we find the numerical error compounding in these regions, thus the

numerical error in our simulations as compared to theory is the greatest approaching these

rotating asymptotic regions (it is still very small however). Region IIa and IIb correspond to

exchange scattering where we observe an almost − sinh like behaviour. We note that figure 2.3

slightly differs from what was originally presented in [5] (figure 11) due to a sign error made in

that paper. These calculations have been corrected and can be found in appendix A.1.

2.2.2 Dipole size and the periapsis

As well as quantifying the angle of deflection of a dipole with a third vortex, it is also important

to examine the dipole size during its propagation. Over the course of a dipole interaction the

distance from the dipole-vortex to the dipole anti-vortex may either shrink or grow due to the

effects of interacting with the third vortex. We are then interested in finding the degree to which

the dipole may grow or shrink due to the effect of the third vortex. This is an essential piece of
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of the dipole to the isolated vortex. As stated before the distance from the dipole to vortex 3

can fully be encapsulated by the dimensionless variable b2, therefore the periapsis is equivalent

to the roots of (2.10), and from this we can determine the inter-vortex lengths at the periapsis,

as these correspond to critical points of the differential equation for l̇2ij for all the inter-vortex

distances. Due to the simplicity of the dipole-vortex interaction the minimum/maximum of the

dipole will occur at this periapsis, depending on the interaction region we can then compute

the local minimum or maximum inter-vortex lengths of the formed dipole.

When considering region I, as this is a direct scattering region the vortices will become

collinear at the periapsis. A simple calculation shows that the collinearity condition in this

region l23 = l12+ l13 is equivalent to when the variable b2 = α, although this is slightly trivial as

α is the only real root in this case, so it is obvious that the collinearity condition occurs at this

root. Regions IIa and IIb are regions of exchange scattering so at the periapsis the distances

between the negative point vortex and the two positive vortices are equal, i.e. l12 = l23. It can

then be shown this is equivalent to either of the roots γ or β for C > 0, and as γ is the most

negative it is this root that corresponds to the exchange condition in dipole-vortex scattering (as

b2 will reach this value first). The same reasoning applies when C < 0 only here the exchange

scattering occurs when b2 = γ̄ instead. Finally, for region III, the scattering process is direct

scattering and the first root reached by b2 is b∗2 = ᾱ (the largest of three real roots) and this is

indeed equivalent to the collinearity condition applied by this region l13 = l12 + l23.

Given this b2 value at the periapsis and the relations between the b variables (and therefore

the real space l vortex separations) it is then possible to find the inter-vortex lengths at the

periapsis. It is necessary also to give careful consideration to the sign of the resulting square

roots, but once this is done each length at the periapsis can be expressed in terms of the

parameter ρ/d and are given in the limit ρ ≪ L and d ≪ L in table 2.2. The analytical

result is then compared to direct numerical simulations of the point vortex model. Results

are displayed in figure 2.4 where excellent agreement is observed partly due to the analytical

results given in table 2.2 being O(ρ2/L2) and O (d2/L2) accurate in the limit ρ, d ≪ L. The

values of the periapsis can be interpreted to give the minimum or maximum size of the vortex

dipole. In figure 2.5 we plot the global minimum and maximum lengths of the vortex dipole

pre- and post-interaction defined at the critical point t∗. The blue and red dashed lines are
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ure 2.3, that the exchange scattering type can be considered most disruptive in larger point

vortex assemblies (in other words exchange scattering will be more responsible for mixing due

to dipole-vortex collisions in larger systems) with this behaviour being most extreme near the

asymptotes ρ/d = −1 and ρ/d = 7/2. Additionally, through figure 2.4 we attain the clos-

est approach between vortices at the critical point, demonstrating that it is only possible for

vortices to come within the initial d separation in the first case of direct scattering near the

asymptote, this indicates that if annihilation is to occur in vortex systems where this is possible

it is most likely to occur in this region of direct scattering. This is further supported by the

minimum/maximum plots of the pre- and post-interaction dipole separations figure 2.5. When

considering vortex systems statistically, this region of direct scattering should thus take special

importance in view of how the number of dipoles in the system changes over time.

2.3 Four vortex system: dipole-dipole collisions

Here we will consider the second basic point vortex collision, the interaction of a dipole with

another dipole of the same size. As the dipole-vortex collision was a specific case of the more

general three vortex interaction, the dipole-dipole collision is a specific case of more general four

vortex dynamics. The point vortex model in general is not integrable for N > 3, therefore the

general dipole-dipole collision is not integrable and cannot be solved by analytical methods such

as those in the previous system. Despite this, the dipole-dipole collision has been extensively

studied by both Aref and Eckhardt [95, 4, 96] where special regimes of integrable motion have

been identified and theoretical expressions for the dipole scattering angles computed [95, 4].

There are then two specific types of interaction of a dipole with another dipole; that where

the system is integrable and non-integrable, which we refer to as the integrable and non-

integrable dipole-dipole collisions respectively. The integrable cases can be shown to occur

when linear momentum in x and y and the total circulation mutually vanish, resulting in a

parallelogram configuration in dipole-dipole collisions, and giving a three-body problem similar

to that discussed in section 2.2. In the following two subsections we will discuss both the

integrable and non-integrable dipole-dipole interactions.
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2.3.1 Integrable dipole-dipole scattering

The idea of integrable four vortex motion was first examined by Eckhardt [95]. Following the

Hamiltonian description of the point vortex model, a system with 2N degrees of freedom can

be considered integrable if it has N independent integrals of motion Hi that pairwise commute

under the Poisson bracket, in other words given a Poisson bracket {f, g} for each pair of integrals

Hi, Hj we have {Hi, Hj} = 0. Here Eckhardt defines the Poisson bracket

{f, g} =
∑

i

1

κi

(

∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)

. (2.12)

Here equation (2.12) defines the commutation relations of the point vortex model, which upon

quantization deforms to quantum commutators [97, 98]. In the case of four vortices the inte-

grals of motion do not in general pairwise commute under this Poisson bracket, instead we have

that {Q,P} =
∑

i κi, {P,M} = −2Q, {Q,M} = 2P , this Poisson bracket has the advantage

of giving a clear physical basis for the above commutation relations; if there is a translation

generated by linear momentums P or Q then rotation will thus mix it with a translation in Q

or P respectively, the sum of circulations also then gives the average rotation and thus gives

the mixing of linear momentums P and Q. Therefore, when considering the four vortex case

we have 8 degrees of freedom with 4 integrals of motion H,Q, P,M . In order for this to be

considered integrable we must then have that Q = P =
∑

i κi = 0. The total circulation van-

ishing is trivially satisfied when considering two identical dipoles. By considering the vanishing

momentum we attain the equalities (x1+x3)/2 = (x2+x4)/2, (y1+ y3)/2 = (y2+ y4)/2. These

equalities imply a parallelogram configuration of the four vortices in the integrable case, and

as this is due to the momentum this parallelogram will hold for all t, leading to and extra ge-

ometrical constraint and thus enabling a mathematical reduction of the system to an effective

three body interaction. The setup we consider is then shown in figure 2.6. This consists of two

identical direct facing point vortex dipoles each of size d, and strengths ±κ. We have several

parameters defined as in the three vortex case; we have an impact parameter ρ characterising

the vertical displacement between the midpoints of the initial dipole positions, the parameter

L again quantifies the horizontal distance between the dipole initial positions. It is in the limit

of ρ ≪ L and d ≪ l in which we consider the interaction. The parallelogram geometry lets us
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2

3

4

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

d

d

ρ

L

Figure 2.6: Initial setup of the integrable four vortex interaction, with each vortex marked as a
circle coloured by the sign of its circulation, and with our chosen numbering marked. The initial
dipole separations defined as d, and impact parameter between dipole midpoints represented
as ρ, and horizontal separation between dipoles L are annotated and marked by solid lines.

exclude the fourth vortex from the equations of motion using the standard relations defining a

parallelogram l34 = l12, l14 = l23, and l
2
24 = 2l212 + 2l223 − l213 to arrive at a three body scattering

problem, albeit with a much more complicated Hamiltonian taking the form

H = −κ2

2π
ln

(

l13
√

2l212 + 2l223 − l213
l212l

2
23

)

= −κ2

2π
ln

(

√

(ρ+ d)2 + L2
√

(ρ− d2)2 + L2

d2(ρ2 + L2)

)

→
L→∞

κ2

2π
ln
(

d2
)

,

The final limit of the Hamiltonian gives the energy of two isolated vortex dipoles with circu-

lations ±κ, giving twice the value of the Hamiltonian in the three vortex scattering problem

discussed in section 2.2 in the L → ∞ limit, i.e. the Hamiltonian of a single point vortex

dipole, due to the isolated vortex not contributing any energy to the system. The momentum

for this interaction then vanishes as it is required that P = (0, 0),M = 0, Note that due to this

R = 0 when considering all four vortices (this can then be considered an alternative form of

the integrability condition). We can use the three vortex R as an effective relative momentum

Reff by considering vortices 1, 2, and 3 (the three vortices that we reduce analysis to) as the

position of vortex 4 is dependent on the position of the other vortices.

Reff = 2κ2ρd.

We then follow the same strategy as in the three vortex interaction. Given two interacting point

vortex dipoles, there then are two pairs of vortices of identical circulations (in other words two

vortices with circulations κ and two vortices with circulations −κ) these pairs cannot propagate
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off as part of the same vortex structure, so as t → −∞ and t → ∞ these lengths will tend to

infinity. The dynamics of the dipole-dipole scattering can then be encapsulated by following

the relative distance between the like-signed pairs. As we are excluding the fourth vortex from

the interaction it makes sense to consider the length of the pair comprised of vortex 1 and 3

through the dimensionless variable b2 = −l213/κC, with C defined as in the three vortex case.

To express the equation of motion for the integrable four-vortex case we again use (1.29),

which is a general equation for any number of point vortices, we have

dl213
dt

=
2

π
κ2ϵ132A132

(

1

l223
− 1

l212

)

+
2

π
κ4ϵ134A134

(

1

l234
− 1

l214

)

, (2.13)

= ±2κ

π

[

A132

(

1

l223
− 1

l212

)

− A134

(

1

l234
− 1

l214

)]

,

= ±4κ

π
A123

(

1

l223
− 1

l212

)

, (2.14)

where we have used κ2 = κ4 = −κ, the fact that ϵ132 and ϵ134 will always be of opposite sign

and the geometry of the parallelogram that implies that A132 and A134 are congruent triangles.

The particular positive or negative term from the last equality will be decided by the phase of

the evolution we are in, in other words are the dipoles propagating towards or away from each

other. Similarly to the dipole-vortex collision, critical points of (2.13) for variable l13 occur

when the vortex separations l12 = l23 or if the three vortices 1, 2, 3 leading to the area A123 = 0.

Following the same strategy that we outlined for the three vortex interaction, it is possible to

form an analogous conserved quantity θ with a slightly different formula on account of the more

complicated Hamiltonian

√

b2(b2 − 6)

b1b3
= κ|C| exp

(

−2πH

κ2

)

= θ, (2.15)

we also define C from the three vortex R as is given in (2.3). Using the conserved quantities C
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and θ and rewriting (2.13) in terms of the dimensionless variable b2 gives

db2
dt

=
2
√
θ

Cπ
√

b2(b2 − 6)

√

[

√

b2(b2 − 6)− 9

4
θ

] [

(b2 − 3)2 − 4

θ

√

b2(b2 − 6)

]

,

=















2
√
θ

Cπ
√

b2(b2−6)

√

(b2 − α)(b2 − β)(b2 − γ) if C > 0,

2
√
θ

Cπ
√

b2(b2−6)

√

(ᾱ− b2)
(

β̄ − b2
)

(γ̄ − b2) if C < 0.

(2.16)

As in the dipole-vortex interaction we have three sets of roots for ḃ2, either α, β, γ or ᾱ, β̄, γ̄

depending on what sign the quantity C takes. Note that these are not the same roots as found

in the dipole-vortex case, and are on the whole more complicated due to the more complicated

Hamiltonian.

We have defined the roots of (2.16) as the following: for the case when C > 0

α = 3

(

1−
√

1 +
9

16
θ2

)

, β = 3



1− 2
√
2

3θ

√

1−
√

1− 9

4
θ2



 , (2.17)

γ = 3



1− 2
√
2

3θ

√

1 +

√

1− 9

4
θ2



 ,

and when C < 0 the roots are given by

ᾱ = 3

(

1 +

√

1 +
9

16
θ2

)

, β̄ = 3



1 +
2
√
2

3θ

√

1−
√

1− 9

4
θ2



 , (2.18)

γ̄ = 3



1 +
2
√
2

3θ

√

1 +

√

1− 9

4
θ2



 .

The boundaries between different scattering regimes (direct and exchange) in the dipole-dipole

interaction can be determined as in the case of the vortex-dipole collision and are dictated by

the roots of (2.16) explicitly given by (2.17) and (2.18) and plotted in figure 2.7. The symmetry

of the two sets of roots around b2 = 3 for either sign of C is due to the parallelogram symmetry

of the problem and is confirmed in the phase diagrams of Aref [99]. For θ < 2/3 we have three

real roots in each case (dependent on the sign of C). Given the initial conditions where we

assume L → ∞ we have that the first roots reached by the variable b2 during its evolution

are γ and γ̄ for C > 0 and C < 0 respectively. These roots correspond to exchange scattering
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collision in particular this corresponds to a bounded state whereupon vortices span a rhombus

shape at interaction which continuously rotates about the center point.

The exact configuration of the rhombus can be found by the values at the periapsis, hence

we find that separations between vortices of the same sign will form diagonals of the rhombus

with the smaller diagonal of length d
√

2
√
2− 1 and larger diagonal d

√

2
√
2 + 1. According to

the analysis of Havelock each vortex pair will rotate with the same angular velocity (and hence

the rhombus will be preserved) if the following condition holds

(n− 1)κ− 2npn

1 + pn
κ′ =

2np2

1 + pn
κ− (n− 1)p2κ′,

where here n is the number of vortices contained in a vortex ring, κ is the strength of the vortices

in inner ring, κ′ is the strength of vortices in the outer ring, and p is the ratio of the inner

ring radius to the outer ring radius. Given the values of the integrable dipole-dipole collision

κ = −κ′, n = 2 and p defined through the diagonals given above this equation holds, thus each

vortex rotates about the center the same constant angular velocity ϕ̇ = ±(κ/2πd2)(3+
√
2). In

real space, this parameter choice corresponds to vortices of the same sign colliding on exactly

opposite trajectories, and is the result of the system being trapped between exchange and direct

scattering in each case. When C > 0 at the limit case we have the positive signed vortices

colliding along opposite trajectories, it is these vortices that then form the smaller diagonal,

and we then have anti-clockwise rotation of the rhombus, thus vortices take the negative value

of angular velocity. Conversely, in the case that C < 0 it is the negative vortices that collide

on opposite trajectories, which then form the smaller diagonal, and then clockwise rotation is

observed.

For both cases of C we see the exchange scattering roots γ and γ̄ tending to −∞ and ∞

respectively as θ → 0. This represents the root in the limit of infinite initial dipole separation;

i.e. L → ∞ with L defined as according to figure 2.15, and so we have for the exchange

scattering root |b2| → ∞ and so this root is non-physical. By the definition of θ (2.15), if

θ = C = 0 we must have that either b2 = 0, b2 = 6, or b1b3 → ∞. The latter possibility

b1b3 → ∞ implies that |b1| → ∞ (as |b3| → ∞ would imply the dipole separation is tending

to infinity and thus dipole-dipole dynamics is not maintained) and thus corresponds to the

previously mentioned non-physical solutions of γ → −∞ and γ̄ → ∞. Also, the case of b2 = 0
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implies the dipoles occupy the same point in space and so is also a non-physical solution,

hence the only physically relevant solution to the limiting case θ = C = 0 is when b2 = 6,

corresponding to the β̄ root at θ = 0. In this case we find the vortex dipoles undergoing a

completely “head on” collision, with vortices of opposite signs colliding along exactly opposite

trajectories. These vortex/anti-vortex pairs form new dipoles and propagate off at right angles

to the original dipole alignments. This interaction is analogous to a vortex ring colliding with

a wall through the technique of images.

In the previously mentioned work of Eckhardt and Aref the scattering angle in the integrable

dipole-dipole collision was (correctly) given and hence will not be repeated here. In figure 2.8 we

plot the resulting theoretically derived scattering angle against our numerical simulation data

for the scattering angle [4]. Note that Eckhardt and Aref only gave results for the case when

C < 0, although as we have symmetry of the configuration around C = 0 we can extend this

to include C > 0 by reflection about the C = 0 point and ∆ϕ = 0. For the exchange scattering

cases, the results are translated by −π/2, to account for the rotation of the parallelogram

configuration as a result of the exchange process. Excellent agreement is observed between

both sets of results, confirming the validity of Eckhardt and Aref’s derivation. We notice the

asymptotes located at ρ/d = ±1 which correspond to an infinite scattering angle due to the

rotating rhombus configuration already discussed. At the extremes of the impact parameter

range we observe negligible scattering due to the dipoles passing at large distances from each

other. We note also the scattering angle going to zero over a much smaller range than in the

dipole-vortex case (figure 2.3), here the scattering angle is already at 0 for parameters |ρ/d| > 2.

This is a consequence of interaction strength (velocity) of a dipole decaying as ∝ 1/r2, while

for a single vortex the decay is ∝ 1/r, leading to a much smaller degree of scattering for most

of the parameter range.

Now to examine the evolution of the dipole size over the course of the integrable dipole-dipole

collision. This is important for the same reasons as in the dipole-vortex collision, as in quantum

turbulence, vortices that come close over the course of an interaction the separation may shrink

to less than the healing length of the system and thus annihilation will occur, fundamentally

changing the structures present in the evolution of a larger system. As before, we can consider

the previously computed roots of the dynamics of b2 in (2.17) and (2.18) as corresponding to
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Table 2.4: Critical vortex separations of the reduced three vortex system in the integrable
dipole-dipole collision categorized by the regions defined in table 2.3.

Region l∗12 l∗13 l∗23

I d

√

−ρ
d

√

1 + 1
4
ρ2

d2
− 1

2
ρ2

d2
d

√

−ρ
d

[

√

4 + ρ2

d2
− 2

]

d

√

−ρ
d

√

1 + 1
4
ρ2

d2
+ 1

2
ρ2

d2

IIa d
4

√

2 + 2
√

1− ρ2

d2
d

√

2ρ
d
+ 2

√
2

√

1 +
√

1− ρ2

d2
d

4

√

2 + 2
√

1− ρ2

d2

IIb d
4

√

2 + 2
√

1− ρ2

d2
d

√

2ρ
d
+ 2

√
2

√

1 +
√

1− ρ2

d2
d

4

√

2 + 2
√

1− ρ2

d2

III d

√

ρ
d

√

1 + 1
4
ρ2

d2
− 1

2
ρ2

d2
d

√

ρ
d

[

√

4 + ρ2

d2
+ 2

]

d

√

ρ
d

√

1 + 1
4
ρ2

d2
+ 1

2
ρ2

d2

contrast to the dipole-vortex collision which only had shrinking in region I, with the closest

critical distance being attained when the impact parameter ρ/d = −1. The minimum dipole

size across the parameter space is larger than what can be produced in the dipole-vortex

interaction at a distance of l12 = 0.79d as opposed to d/2. At the same value of the impact

parameter ρ/d = −1 the two positive point vortices 1 and 3 approach even closer at a distance

of l13 = 0.49d at the points where the vortices enter the tight rotating rhombus configuration.

In regions IIa and IIb, we observe exchange scattering (l12 = l23) and where the two dipoles

come together and exchange vortices creating two new sets of dipoles that then propagate away

with both new dipoles relaxing back to their initial sizes of d as ensured by the conservation

of energy. Indeed, the long-time dynamics of the system after scattering (for both direct and

exchange) is that of two oppositely propagating dipoles of equal size d due to the conservation

laws and the geometric constraint of the parallelogram (which we have confirmed numerically).

In general, this behaviour does not occur in the non-integrable dipole-dipole collision that we

will investigate in the next subsection. In figure 2.10 we show the minimum and maximum

distances of the vortex dipole involving vortex 2. We observe qualitatively similar behaviour

to the integrable dipole-vortex collision with the dipole shrinking during direct scattering, but

growing during exchange scattering. The pre- and post-interaction symmetry arises due to the

critical points occurring at the moment of collinearity or exchange (see in the next subsection

that this is not necessarily the case in general).
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as considered here is displayed in figure 2.11. This represents the general non-integrable dipole-

dipole collision between two equally sized, equal circulation dipoles. The first dipole comprising

vortices 1 and 2 is of separation d and is initialised from the origin by separation L1, the second

dipole of vortices 3 and 4 is also of size d and is situated from the origin by distance L2. The two

dipoles are aligned such that they propagate towards the origin, with the precise trajectory of

the second dipole specified by the incidence angle ψ ∈ [0, 2π). These three parameters L1, L2, ψ

fully define the general non-integrable dipole-dipole collision. We will consider the interaction

in the limit of L1, L2 → ∞, and as such we consider the ratio δL = L1/L2 as this limit is taken.

Also, due to symmetry of the problem, we find that the transformation of ψ → 2π − ψ leads

to the original configuration if vortices are relabelled such that 1 ↔ 3 and 2 ↔ 4.

As shown by analysis found in 2.3.1 and [96, 4], this system is non-integrable for the violation

of the reflection symmetry ψ ̸= π and as such we cannot use the analytical techniques found

in the previous sections. The investigation in this case is then purely restricted to a numerical

basis. In [96], Eckhardt highlighted the rich dynamics of two interacting dipoles in the non-

integrable case for both direct and exchange scattering scenarios. We will extend this numerical

study and examine other aspects of the dipole dynamics, such as the dipole scattering angle

and the evolution of the dipole size during and after the interaction. Considering the initial

1

2

3

4

ψ

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

L1

L2

d

d

Figure 2.11: Initial setup of the non-integrable four vortex dipole-dipole collision, with each
vortex coloured according to the sign of its circulation and marked according to our chosen
numbering. The incidence angle and initial dipole separations (ψ and d) are marked as solid
lines whereas the distance from dipole centres to the origin L1 and L2 are marked as dashed
grey lines. The four vortices are arranged as two dipoles of size d with both orientated such
that trajectories intersect at the origin.
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vortex configuration as given in figure 2.11 gives the following conserved quantities in the limit

L1, L2 → ∞:

H = −κ2

2π



ln





2
√

[

L1 − L2 cos(ψ) +
d
2
sin(ψ)

]2
+ 1

4
[d cos(ψ)− d+ 2L2 sin(ψ)]2

d2
√

d2 + 2(L2
1 + L2

2) + (d2 − 4L1L2) cos(ψ)− 2d(L1 + L2) sin(ψ)





+ ln





√

[

L1 − L2 cos(ψ)− d
2
sin(ψ)

]2
+ 1

4
[d− d cos(ψ) + 2L2 sin(ψ)]2

√

d2 + 2(L2
1 + L2

2) + (d2 − 4L1L2) cos(ψ) + 2d(L1 + L2) sin(ψ)









→
L1,L2→∞

κ2

2π
ln
(

d2
)

,

which in the limit of L1, L2 → ∞ leads to the usual value of the Hamiltonian of two dipoles of

size d infinitely separated. The linear momentum in this setup is given as

P = {−κd sin(ψ),−κd [1 + cos(ψ)]} ,

note that for the parameter ψ = π we have = (0, 0) and so the integrability condition is

recovered for this value of ψ (in fact this corresponds to the C = 0 vortex ring collision as

described in section 2.3.1). Also, for this setup we have the angular momentum M = 0 and

these momentum expressions can be combined to give

R = −2κ2d2 [1 + cos(ψ)] .

The conserved quantities of the system are then completely dependent upon the orientation of

the right-hand dipole in the upper half plane, and can be varied by a simple translation of ψ.

We perform a series of numerical simulations of the point vortex model with initial conditions as

presented in figure 2.11 for several values in the parameter space of ψ and δL with L1, L2 ≫ d.

Due to the non-integrability of the system, we cannot identify the type of scattering observed

analytically; instead this must be done numerically. We first track the motion each dipole and

monitor what vortices the final dipoles consist of at the final long-time limit. Typically, the

two dipole will approach each other, interact, and then eventually propagate away remaining

as two coherent dipoles. Through this we present a map of the interaction types observed in

figure 2.12. We observe a majority of exchange scattering occurring in the central star shaped

region (yellow) centred on ψ = π and δL = 1. This is consistent, as the value ψ = π corresponds
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to the integrable C = 0 case (i.e. exchange scattering) regardless of the value of δL, whereas the

value of δL = 1 implies L1 = L2 (dipoles are separated from the origin by the same distance)

and so will engage in a very close interaction for any value of ψ. The exchange scattering “star”

can then be thought of as perturbations from these parameter values, in other words exchange

scattering is likely wherever either or both δL ≈ 1, ψ ≈ π. Outside this internal star region

we observe direct scattering (light blue) where dipole propagation paths are such that extreme

collisions are very unlikely. Hence, a direct scattering process occurs with slight deflection of

propagation paths without destabilizing the initial dipole structures. Interestingly, there are

regions of exchange scattering close to ψ = 0 and ψ = 2π that swoop out towards the center.

These “shark-fin” regions of exchange scattering begin at the boundaries of our considered

interaction and reach towards the central “star” through very thin tails, seemingly of smaller

width than the resolution of our simulations. These regions are an artefact of simulating over

the entire parameter range, including parameter regions where the two dipoles happen to be

initialised very close to each other, these artefacts are not representative of true dipole-dipole

collisions but nevertheless present novel dynamics such as dipole chasing and dipoles phasing

through the centre of the ahead dipole.

In figure 2.12 we identify six specific interactions (a-f) in the parameter space to demonstrate

the interactions that occur in these regions. In figure 2.13 we plot the evolutions of each vortex

over the course of the interaction given these parameter sets. Figure 2.13(a) shows a typical

direct scattering process, with the two dipoles missing each other with very little deflection due

to the small value of δL ≈ 0.7.

Figures 2.13(b-c) are two types of exchange scattering where a pair of vortices are exchanged

between the dipoles. For figure 2.13(b) we have the typical exchange scattering as may have

been observed in the previous section 2.3.1 with dipole vortices simply exchanging and dipoles

propagating off to infinity. However, we notice a much more complicated exchange process in

figure 2.13(c) (which is situated close to the boundary between direct and exchange scattering)

displaying a complicated rotation between the two dipoles close to the moment of exchange,

reminiscent of the Havelock ring rotation identified at the exchange/direct boundary in the

integrable case. This then gives an idea of the boundary dynamics between direct and exchange

scattering, and given a hypothetical interaction occurring at the exact boundary between direct
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and exchange scattering (with no numerical error) this rotating Havelock ring formation will

rotate indefinitely as the system is trapped between direct and exchange scattering regimes.

Interestingly, if we take another point close to the direct and exchange boundary fig-

ure 2.13(d) we observe similar but more prolonged four vortex dynamics composed of a ro-

tational dance before the two dipoles propagate away. We see three vortices (vortices 1, 2 and

3) forming their own rotating vortex structure, which will possess its own mean circulation of κ,

which when paired with the remaining anti-vortex 4 produces in effect a “pseudo-dipole” which

shortly propagated before this rotating structure breaks down and dipoles propagate away as

expected. It is this swirling motion that leads to extremely large values of scattering angle for

the interaction. This then should represent another boundary case, and given parameters at the

exact interface between direct and exchange scattering this rotation will continue indefinitely

as the vortices are trapped in this configuration between direct and exchange scattering. It is

interesting why this new boundary behaviour occurs here and not the rotating Havelock rings

as seen in figure 2.13(c), but is more than likely due to which “leg” of the star the parameters

are located; boundary cases along the ψ ≈ π legs give the Havelock ring configuration and

boundary cases along the δL ≈ 1 branches will result in the pseudo-dipole boundary config-

uration (this explanation also answers why this behaviour was not observed in the integrable

dipole-dipole collision). The points in parameter space on the boundary lines at which a fig-

ure 2.13(c) type interaction becomes a figure 2.13(d) type interaction (and the dynamics exactly

at these points) is an interesting open question. Moreover, notice in the figure 2.13(d) case that

the relative sizes of the two dipole have changed after undergoing the direct scattering which

was something banned in the integrable cases. In figures 2.13(e) and (f) we take two sets pa-

rameters close to the ψ = 0 and ψ = 2π boundaries. This means that both dipoles in both

realisations are close to propagating along the same axis. We observe in figure 2.12 that both

(e) and (f) border the swooping exchange regions that meaning that the type of orientation is

sensitive to the scattering process, as (e) can be described as exchange scattering whereas (f)

is clearly direct scattering. In both (e) and (f) the second dipole actually starts behind the

initial dipole at a very small incidence angle, i.e. each dipole is almost propagating along the

same path. Here we observe an interesting “slipstream” effect where the dipole behind, despite

being identical to the dipole in front, propagates faster than the front dipole to the point where
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method, we track the direction of propagation of vortex 2 and determine the corresponding

deflection angle ∆ϕ2 = limt→∞ ϕ2(t) − limt→−∞ ϕ2(t) measured only after sufficient time has

elapsed post-interaction to ensure that the vortex dipole is isolated and is propagating only via

self-interaction. The scattering angle results are then presented in figure 2.14. We notice in the

direct scattering regions there is very little deflection of the dipole propagation direction when

compared to the dipole-vortex collision. The far-field interaction of two dipoles is then weaker

than that of a dipole-vortex, and so significant deflection is seen to only occur when dipoles

undergo a very close interaction. Consequently, we observe the most significant dipole scatter-

ing mainly in or close to the central exchange scattering star. The inner exchange scattering

region is predominantly blue meaning that after an exchange of vortices, the vortex dipole con-

taining vortex 2 exhibits a negative angle deflection, i.e. a clockwise deflection. Interestingly

this result holds for the previous cases also, with the majority of exchange scattering giving a

negative deflection angle. There is however a small band of positive angle deflection along the

direct-exchange border region as displayed in figure 2.13(d). A small red patch is observed in

the upper left quadrant of the exchange scattering region, with a sharp transition from red to

dark blue due to the 2π winding of the deflection angle, indicating the initial dipole has been

scattered to a trajectory opposite its initial trajectory, and that the most consistently extreme

scattering through the whole parameter space occurs here. Overall the scattering between two

identical dipoles is much more regular than what is observed for a general dipole-dipole collision

with dipoles of varying strengths κ1 = −κ2 ̸= κ3 = −κ4. Analysis by Aref and Pomphrey [101]

into these more general interactions shows various complex chaotic scattering dynamics that

we do not observe here, although we do observe significant jumps in the scattering angle for

particular parameter sets, most notable close to the direct/exchange boundary in the upper

left quadrant. The dynamics of the interaction in these cases involve a longer four vortex

interaction that includes repeated rotation of the vortex system, e.g. the cases presented in

figure 2.13(c) and (d), and are similar in style to the integrable four-vortex case where these

boundaries regions correspond to Havelock’s double alternating rings [100]. Finally, we observe

in the dipole-dipole collision that the direct scattering process is less effective compared to the

dipole-vortex collision, and also that the exchange scattering process can be far more disruptive

to the initial state, with various complicated four vortex interactions shown.
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This additional complex behaviour can be seen as due to the added complexity of the equation

of motion for l13, as in previous cases ˙l213 = 0 implied a single exchange or point of collinearity,

whereas in the non-integrable four vortex case

˙l213 = 0 =⇒ A123

(

1

l223
− 1

l212

)

= A134

(

1

l234
− 1

l214

)

,

then it is no longer the case that the inter-vortex minimums/maximums will occur at the

critical point, so it becomes crucial to analyse the minimums/maximums over the course of the

interaction.

Hence in figure 2.16 we plot the minimum and maximum dipole sizes before and after the

critical point t∗, with pre-interaction defined as the phase of interaction when t < t∗ and

post-interaction defined as the phase when t∗ < t. As was the case in the dipole-vortex colli-

sion, we observe dipole l12 reducing in magnitude in the pre-interaction stage during a direct

scattering process, again with extremes found near the direct-exchange scattering boundary.

In the exchange scattering region, we observe that the minimal distance remains l12/d = 1

which indicate that the dipole grows, as indicated by the red colouring in the maximal distance

pre-interaction (figure 2.16 top right). Interestingly, we find post-interaction in the exchange

scattering case the new dipole shrinking (ψ ≳ π) or enlarging (ψ ≲ π), highlighting the possi-

bility of dipoles of different sizes being created as a result of the non-integrable dipole-dipole

collision. In figure 2.17 the final dipole sizes once interaction is complete are plotted. Numer-

ically this is accomplished by measuring the final dipole size in the long-time limit, to ensure

the interaction between dipoles is negligible and so the interaction can be considered complete.

Across the entire parameter range the final vortex state is always composed of two isolated

dipoles. Also, due to conservation of the Hamiltonian, and by comparing the final Hamiltonian

value at t→ ∞ to the initial value at t→ −∞, the final dipole sizes must be such that

H =
κ2

2π
ln(d2) =

κ2

2π
[ln(d1) + ln(d2)] =⇒ d2 = d1d2, (2.19)

where d1, d2 are the final dipole sizes once interaction is complete. Thus, if a dipole has

increased in size due to the interaction it must be true that the alternate dipole has decreased

proportionally to maintain equality to d and hence conserve the Hamiltonian. This can be
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Chapter 3

Large N point vortex statistics

3.1 The dipole-cluster collisions

Now the final collisions that are fundamental to the evolution of larger point vortex clouds

yet to be considered are the dipole-cluster collisions. Here we will consider the collision of a

vortex dipole with a coherent rotating vortex structure composed of two or more same-signed

vortices. We will henceforth refer to these structures as vortex clusters of size m, where m is

the number of point vortices forming the vortex cluster. The most simple possible cluster is

the m = 2 case, which when considered interacting with a vortex dipole results in a four vortex

collision. By the analysis in section 2.3.1 this four vortex system cannot be integrable; the

condition
∑4

i=1 κi = 0 can never be fulfilled assuming ±κ vortex circulations due to clusters

being comprised of vortices of the same sign, and so we must restrict ourselves to a numerical

analysis of these more complicated m ≥ 2 cluster collisions. Also, we will restrict investigation

to symmetric clusters of m = 2, 3, 4 vortices, each of circulation κ; we label these clusters as

Cm. These interactions are then much more complicated than those already considered, so

questions arise that it was not necessary to answer in previous cases. For example what new

interactions may be possible? How does the introduction of clusters affect the stability of the

dipole? And is the dipole changing size persistent with the addition of a cluster and if so how

does this relate to the previous persistent dipole growth/shrinking in the non-integrable dipole-

dipole interaction? Also, the stability of the cluster is of interest, there may be interactions

that do not result in the coherent cluster persisting once interaction is complete, as due to the

additional degrees of freedom present the Hamiltonian is thus more easily conserved.

K.Lydon, PhD Thesis, Aston University 2023 73



There is also the possibility of approximation of these collisions as a dipole-vortex interaction

similar to that found in section 2.2 (except here the isolated vortex will be of circulation mκ to

match the mean strength of the cluster). If this is possible it may greatly simplify larger point

vortex systems, as these vortex-cluster collisions lead to far more complex dynamics than those

examined so far, and are more relevant in larger vortex configurations that more appropriately

resemble turbulent flows. Our analysis will be useful as we try to examine turbulent vortex

interactions as a series of fundamental vortex collisions.

3.1.1 Dipole-cluster scattering

As is now standard we present a schematic of the initial configuration used in analysing the

collision of a dipole with a Cm cluster in figure 3.1. Also, the initial configurations for the

symmetric structures are given for the m = 2, 3, 4 cases. Similar to previous cases, the dipole is

initially separated a distance d, with the dipole and Cm cluster horizontally separated a much

larger distance of L. The dipole is set up to propagate towards the rotating cluster, with ρ

representing the vertical distance from the center of the cluster and the dipole, with negative ρ

implying the dipole center y position is lesser than the cluster y position at the initial position

in time. Each Cm cluster is initialised as a regular convex m-sided polygon, appropriately

sized such that the cluster rotation circumscribes a circle of diameter d. Also introduced is an

additional variable ξ that represents the rotational phase of the cluster, with ξ = 0 taken to be

the standard orientation of the cluster as displayed in figure 3.1, and hence, each cluster will

have rotational symmetry isomorphic to the cyclic order of group m.

First we investigate the possibility of approximating the dipole-m-cluster collision by the

appropriate dipole-m-vortex collision. To do this we perform direct numerical simulations of the

dipole-m-cluster collisions using the initial setup as described in figure 3.1 using the numerical

method as described in appendix A.2 and compare these to the dipole-m-vortex collisions set

up similarly to figure 3.1 but with the m-cluster replaced with a single vortex of circulation mκ.

This represents a generalised case of the three-vortex interaction as described in section 2.2.

For large values of the impact parameter ρ it is expected that the two setups will result in

similar dynamics due to the mean-field interactions of the cluster being closely approximated

by an m-vortex. For more extreme collisions at lower impact parameters it is unclear how
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Figure 3.1: Initial setup of the dipole-cluster collision. Vortices 1 and 2 form a dipole of size
d situated a distance L from the cluster C. The quantity ρ acts as an impact parameter,
measuring the vertical distance from the centre of the vortex dipole to the centre of circulation.
Vortices are displayed as circles with each vortex coloured according to the sign of its circulation,
with each vortex marked according to our chosen numbering. The cluster is marked as a grey
circle marked C. The cluster structures C2, C3, C4 we use are presented on the right.

well the analogy will hold. The cluster will permit vortex stretching in the sense that cluster

vortices are free to rearrange themselves, either by compression or expansion, and may in

some cases separate altogether. This behaviour, dependent upon the fine internal structure of

the rotating cluster, cannot be replicated by a structure as simple as a lone isolated vortex.

Sample trajectories of the complex interactions observed in the vortex-cluster simulations of

C3 are presented in figure 3.2, where we observe the familiar behaviours of direct and exchange

scattering in the top row, with the dipole being deflected with only minimum deflection in the

case of direct scattering, and the dipole structure breaking apart and reforming with an alternate

positive vortex from the cluster then propagating off in the case of exchange scattering. The

bottom two trajectories demonstrate more complex interactions not previously encountered;

and that are directly a result of the increased degrees of freedom due to the addition of the

cluster allowing conservation of the Hamiltonian within these complex interactions. On the

bottom left we see interaction of the dipole with a cluster, leading to the break-up of the vortex

cluster into two distinct structures: two positively signed C2 structures, rotating in a continual

expanding spiral in long-range interaction with the isolated anti-vortex. This of course is

not possible in the dipole-mκ-vortex collisions, as this “cluster disintegration” depends upon
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the internal structure. This never-ending spiral expansion is reminiscent of a time-reversed

trajectory of a self-similar vortex collapse such as those described in [102]. Here we see self-

similar solutions of vortices spiralling logarithmically towards a center point. When considering

the time-reversed trajectory of our “cluster disintegration”, we see vortices (if we allow a C2

cluster to represent a 2κ vortex) spiralling towards the center of vorticity – a potential vortex

collapse – however a vortex dipole is then formed which then propagates off to infinity, possibly

due to the vortex collapse being unstable, a small perturbation may disturb the vortex collapse

spiral and lead to the dipole and cluster formation.

In the bottom right we have an example of what we refer to as a pseudo-exchange interac-

tion: where the dipole undergoes a series of vortex exchanges with vortices of the cluster, but

ultimately leaves the cluster as a coherent dipole composed of the same initial two vortices.

We often see as part of such interactions an initial exchange interaction with the entire clus-

ter, leading to an isolated vortex (the initial positive vortex of the dipole) and the anti-vortex

propagating with the Cm in a structure similar to a dipole. However, due to the circulation

disparity between the anti-vortex of strength −κ and the Cm cluster of mean strength mκ this

structure inevitably spirals back towards the lone vortex, whereupon another exchange takes

place and the original dipole is recovered. This is reminiscent of the slingshot effect found in

Price [103].

In summary when considering the sample interactions presented in figure 3.2, it is only

possible to replicate the direct scattering and pseudo-exchange interactions in the dipole-mκ-

vortex collision, as it is these interactions that the internal structure of the cluster does not

influence evolution of the system. A true exchange scattering process can never occur in the

dipole-mκ-vortex interaction, due to the stronger mκ circulation of the initially isolate vortex,

any exchange must always spiral back towards the κ vortex, and so after an exchange the initial

dipole is recovered in a pseudo-exchange interaction. Interestingly, the generalised dipole-mκ-

vortex collision remains an integrable system, giving hope for new analytical results that are

applicable for vortex-cluster collisions for large impact parameters.

In order to classify regions of scattering, in figure 3.3 we plot a colourmap indicating the

parameters where the various types of vortex dynamics occur in the dipole-cluster interaction

with respect to the impact parameter ρ and the cluster phase ξ. We see the majority of
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results for different cluster phases ξ are plotted and labelled Cξ
m, with each set of ξ selected

such that the three phases are equally distributed across the period of rotation; for m = 2

the three phases are uniformly distributed over ξ ∈ [0, π), for m = 3, we plot three phases

uniformly distributed over ξ ∈ [0, 2π/3), and for m = 4, we plot three phases uniformly

distributed over ξ ∈ [0, π/2). Additionally, in each case of m the phase averaged scattering

angle results ⟨Cξ
m⟩ are plotted. In all data considered a coherent dipole and Cm cluster remains

once interaction is complete (all cluster disintegration dynamics are excluded). Also in figure 3.4

we plot the scattering angles found in the respective dipole-m-vortex collisions as blue curves.

The background colours are used to indicate regions of direct scattering (Regions I and III)

and pseudo-exchange scattering (Region II) found in the dipole-mκ-vortex simulations.

Agreement between the dipole-mκ-vortex and dipole-m-cluster scattering angles is observed

across virtually the entire range of impact parameters, highlighting that the approximation may

be even better than first thought. Indeed, only minor discrepancies are observed in a small

band of impact parameter values around the asymptotic region close to ρ/d = 0 of width

approximately d. It is somewhat surprising how well the approximation holds even close to

this band near ρ/d = 0, as we would expect the extra degrees of freedom enabled by the

cluster vortices would allow for more exotic dynamics here. Even in the somewhat complicated

pseudo-exchange interactions we observe agreement between the dipole-cluster collisions and

the corresponding approximations. In the extremes of the parameter range we observe what we

would expect, as here we see total agreement between results as expected with any deviations

completely indistinguishable. This confirms out hypothesis that for large parameters the three

vortex description is an appropriate approximation.

Summarising, we can conclude that the mκ vortex can approximate the m-cluster even

better than first thought. The only seemingly significant discrepancies between the cluster

collisions and our approximations occur in a small region corresponding to a “head-on” collision

of the dipole with the vortex cluster, this is perhaps explained with reference to figure 3.3, for it

is only in this impact parameter range that the exchange scattering process is possible, and as

this is not possible in the dipole-m-vortex collision we must indeed observe different dynamics

here.
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are found once interaction is complete. This is testament to the close approximation to the

dipole-mκ-vortex, as in the case of the dipole-mκ-vortex persistent change of dipole separation

is not possible due to energy conservation (due to being a three vortex interaction) so persistent

growth in the dipole-cluster cases can only occur in the region of width approximately d about

the origin ρ/d = 0 where the approximation breaks down. This then implies the growth or

shrinking of a dipole once the interaction is completely is due to direct interaction of the dipole

with the cluster core. Also, we can see through direct comparison with figure 3.3 the dipole

changes size in precisely the same banding regions of interaction, and we see direct scattering

correlated to a shrinking of the dipole size, and we see the dipole growing in regions of exchange

scattering. This is interesting, as we observe in previous cases e.g. figures 2.4 and 2.9 the dipole

also has a propensity at the critical point to become closer for direct scattering and becoming

larger for exchange scattering before relaxing back to the initial d value. This is the same

behaviour we then observe in the dipole-cluster scattering, except here due to the additional

degrees of freedom introduced by the cluster the dipole now is not required to relax back to d

once interaction is complete. Also, similar to previous cases we see that in direct scattering we

only have a change in dipole size in parameter regions close to the interface between direct and

exchange scattering.

When considering the interaction of the three-cluster C3 we are faced with the cluster

disintegration phenomena; an example of which has already been given in figure 3.2 (bottom

left), leading to a large and expanding multi-vortex structure. There is hence no coherent dipole

once interaction is complete and a concept of “final dipole size” will hence be meaningless here,

hence we colour these regions black in figure 3.5. As can perhaps be expected by this point,

cluster disintegration only occurs in the small parameter range about ρ/d = 0 where the dipole-

mκ-vortex approximation breaks down, and we only observe this phenomenon in the C3 case.

We can speculate that this may be the result of the odd number of vortices present in the cluster,

as the disintegration of the C3 into two expanding C2 cluster can be considered approximate

to the time-reversed vortex collapse solution of three vortices with circulations (−2,−2, 1) as

found in [102]. It may be that similar collapse solutions do not necessarily exist for the C2 and

C4, as these cannot break up into an even distribution of clusters that may be required for such

cluster disintegration phenomena.
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Our final dipole sizes here can be considered analogous to the critical point separation of the

dipole (as there is no need for the dipole to relax here back to d it is only necessary to consider

these values). Thus, the final dipole sizes can act as proxy for the dipole minimums/maximums

and can show whether annihilation may be possible or not here. In our simulations, we observe

that in the C2 case we have a maximum final dipole size of 6.18d and minimum of 0.35d, in the

C3 case a maximum of 4.82d and a minimum of 0.15d, and in the C4 case a maximum of 4.16d

and a minimum of 0.11d. This indicates that the larger the cluster the more the dipole-vortex

can shrink in size. Any change in the final dipole size must be compensated by a corresponding

change in the cluster configuration in order to conserve the total energy of the system. In

principle, an increase of the final dipole will result in the expanding of the vortex cluster and

vice-versa.

We note that with regard to the scattering angles in figure 3.4 we have significant dipole

scattering through a large portion of the parameter range, for parameter values much larger

than we observe the dipole growing or shrinking in size, the expansion or contraction of the

dipole occurs only in a small subsection of this region. Moreover, it appears that the size of

the region in which the dipole may change size after interaction decreases as the number of

vortices in the cluster increases. For example, in the C2 case the effective range for change in

the dipole size is between −1.5 < ρ/d < 0.6 whereas in the 4-cluster case this is reduced to

−0.6 < ρ/d < 0.2, reducing almost a third in size. This is perhaps due to the increased impulse

on the dipole by the cluster reducing the ability of the internal structure of the cluster to

have an effect. This is in direct contrast to the earlier phenomena observe of the dipole-dipole

interaction, in which dipole creation was possible for a decently large portion of the parameter

space. Hence, we can conclude that the non-integrable dipole-dipole collision is much more

effective at producing a smaller or larger dipole once interaction is complete than the dipole-

cluster collisions, and increasing the strength (i.e. number of vortices m) of the cluster only

exacerbates this effect. Additionally, we have observed that in certain dipole-cluster collisions

there may not exist a coherent dipole whatsoever once interaction is complete.

We can also check the final cluster size in the case of dipole-cluster interactions. In figure 3.6

we plot a measure of the final cluster size (3.1), across the same parameter range as figure 3.5.

The cluster size lCm
is defined by first computing the center of circulation (or the center of
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increase proportionally to an increase in the size of the dipole, this means that as the final dipole

size increases/decreases, each individual length between cluster vortices will increase/decrease

to a lesser extent as the number of vortices in the cluster m increases. This behaviour is

a characteristic of a dual cascade turbulent system. The vortex interaction can lead to a

tightening of a vortex dipole which is an analogy of creating finer scale fluctuations (direct

cascade of enstrophy) in a fluid flow. This is compensated by a more coherent vortex cluster at

the largest scales (inverse cascade of energy). We speculate that these two processes occurring

simultaneously is a principle outlined by Fjörtoft [105] for the development of a dual cascade

between enstrophy and energy in 2D turbulence, although the extension from the current work

to the Fjörtoft argument is not mathematically rigorous and is more speculative, developing

this more formally may be an interesting area of future study.

Additionally, we can check the distribution of the final dipole sizes of the dipole-cluster

collisions over the parameter range. Here, we use the technique of kernel density estimation,

using a grid size of 1000 and a Gaussian kernel function to estimate the distribution from

the final dipole values in figure 3.5. In figure 3.7 we present the results of this kernel density

estimation to approximate the probability distributions of the final dipole sizes for each size

cluster we are considering. Note that in the C3 case we exclude interaction regimes where there

is no coherent dipole after interaction. We must also restrict the interval of impact parameters

considered, as this removes a delta-function peak situated at size d as a result of infinite states

in which the dipole will propagate past the vortex cluster at far distances with no change.

Thus, we restrict the impact parameter as −1.5 < ρ < 2 in the C2 case, −1.2 < ρ < 0.5 for C3,

−0.8 < ρ < 0.3 in the C4 case we get the sense of the likelihood of increase or decreasing the

dipole size. We compute the expected dipole size post-interaction, the variance and skewness of

Table 3.1: Basic statistical measures of the probability distributions found in 3.7; the expected
value, variance and skewness are calculated for each case of Ci.

C2 C3 C4

E[(final dipole size/d)] 1.07 1.12 1.19

Var[(final dipole size)/d] 0.0498 0.0767 0.104

Skew[(final dipole size)/d] 4.01 2.42 1.85

the finale dipole sizes from our kernel density estimates in table 3.1 to provide a better picture
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preliminary study into large N point vortex systems to consider how they relate to turbulence

as a whole. Of particular interest are how large point vortex systems relate to classical features

of turbulence, and under what circumstances these features may form in the point vortex model

and how they may continue to persist in the flow. Such an investigation may be invaluable for

creating a greater understanding of large scale point vortex statistics as a whole.

Turbulence by and large is a certain fluid motion whereupon the idea of providing a theory

precisely describing the velocity and fields (i.e. the solutions to the Navier-Stokes (1.4-1.5))

is hopeless. Hence, any theory regarding turbulence is rendered statistical in nature as an

inevitability. The specific statistical theories regarding turbulence have taken many forms

throughout history, such that they are beyond the scope of the current work; we hence leave

description of these to such works as that by Sreenivasan [106], and instead focus upon a

statistical theory now considered fundamental to turbulence, the energy cascade. We first

introduce some fundamental statistical quantities of the fluid flow as given in [43].

Given the Navier-Stokes momentum equation (1.4) with the addition of a linear frictional

damping term, we have:

∂u

∂t
+ u · ∇u = −∇p+ µ∇2u− αu+ g, (3.2)

where the velocity field u = u(x, y, t) ∈ R
2, the pressure term p = p(x, y, t), the derivative

∇ = (∂/∂x, ∂/∂y) and the forcing term g = g(x, y, t) ∈ R
2 and viscosity µ ∈ R are similar

to the previous equation (1.4), here we also have the linear damping term −αu where α ∈ R

representing friction at large length scales. Note also it is taken that ρ = 1 which automatically

satisfies the incompressibility condition. The stream function is then introduced ψ(x, t) so that

u = (∂ψ/∂y,−∂ψ/∂x). The scalar vorticity field can then be written instead as ω = ∇× u =

−∇2ψ and the previous Navier-Stokes (3.2) becomes

∂ψ

∂t
+ u · ∇ω = µ∇2ω − αω + g, (3.3)

where the forcing term has become g = ∇×g. Considering the invariants of the system of equa-

tion (3.3); we first have the kinetic energy E = (1/2)⟨u2⟩ = (1/2)⟨ψω⟩ = (1/2)
∑

k
|ω̂(k)|2/k2,

where ω̂(k) is the Fourier space representation of vorticity defined at wave vector k = [kx, ky],
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defined through the usual 2D discrete Fourier transform

ω̂(k) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

ω(x, y) exp

[

−i2π
(

kx
M
x+

ky
N
y

)]

,

here k =
√

k2x + k2y and ⟨...⟩ gives the spatial average. The Fourier space representation is

advantageous to use when considering turbulent dynamics, as energy transfer amongst length

scales can be considered through the energy spectrum

E(k) = πk⟨|u(k)|2⟩, (3.4)

this is the scalar energy per unit mass possessed by the particular wave number k which then

gives a picture of how energy is distributed from smaller length scales (high k) to larger length

scales (small k) and from this the kinetic energy can be recovered through E =
∫

E(k)dk. The

second invariant of motion is the enstrophy defined as Ω = (1/2)⟨ω2⟩ = (1/2)
∑

k
|ω̂|2, this

can be informally thought of as a sort of kinetic energy equation but applied instead to the

curl of velocity rather than velocity itself, and thus represents both a sort of kinetic energy of

rotational movement (i.e. movement due to vorticity) and the fluid dynamics analogue of the

electrodynamic Yang-Mills action [107]. The enstrophy can be recovered through the energy

spectrum through Ω =
∫

k2E(k)dk.

Both invariants of motion and the energy spectrum are directly connected to the dissipative

effects of the fluid, we can obtain the dissipation rate of each, given the case of finite viscosity,

zero friction and no external forcing, we have

dE

dt
= −2µ

∫

k2E(k)dk = −2µΩ = −εµ(t),
dΩ

dt
= −2µ

∫

k4E(k)dk = −ηµ(t), (3.5)

where εµ and ηµ(t) are the scalar dissipation rate of the energy and enstrophy respectively.

The enstrophy then continually dissipates with time (i.e. it has an upper bound), and so as

µ → 0 it must be that ϵµ(t) → 0. This is not however the case in 3D turbulence as noted by

Boffetta and Ecke [43], due to other vortex stretching effects found in 3D turbulence. It is this

in particular that causes the distinct differences in 2D vs 3D turbulent dynamics, and leads to

the fundamental process we consider here, the direct/inverse energy cascade.
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Turbulence in general can be defined through the famed energy cascade process. Alter-

natively termed a “Richardson cascade”, this consists of the transfer of energy from larger

length scales of the system through to smaller lengths of the system, in effect considering only

neighbouring length scales to be interacting and the flow of energy occurring towards smaller

length scales ever more rapidly without dissipation between each length scale energy transfer.

This process continues until the energy of the system is dissipated through the viscous forces

of the fluid motion. Energy is dispersed to smaller scales at the dissipation rate (ε) until at

the smallest scales energy is dissipated by viscosity, again at the rate of ε[17]. This process

of injection, energy cascade and eventual viscous dissipation is visualized in figure 3.8 again

log(k)

log[E(k)] Large scale
energy injection

Viscous dissipation

Figure 3.8: The energy cascade fundamental to turbulence. The wavenumber k is plotted log-
log against the energy spectrum E(k). Grey dashed lines display energy transfer due to energy
injection and viscous dissipation.

with k is the wave number, the magnitude of the wavevector k ∈ (2π/L)Z3 defined by the

transform from physical space to Fourier space (with L the width of the periodic box assumed

in such a transform). A smaller wavenumber implies a larger scale eddy in physical space.

The range of k between the smaller wavenumbers corresponding to energy production and the

larger wavenumbers corresponding to dissipation (neither of which pictured here) is termed the

“inertial subrange” and is where the energy cascade is seen to take place. The energy spectrum

in the inertial subrange when plotted log-log shows a straight line, implied by the 5/3 power

law by Kolmogorov, a famed result in turbulence theory[17]:

E(k) ∼ ε2/3k−5/3.
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This energy cascade through the length scales can be considered fundamental to turbulence in

the three-dimensional case. From the standpoint of statistical mechanics, this cascade process

represents the decay of the turbulent state towards an equilibrium state of the system through

two mechanisms of energy transfer; the transfer of the mechanic energy of the system to thermal

energy by viscosity at higher wavenumbers, and the non-linear transfer of energy from smaller

wavenumbers to higher wavenumbers.

In contrast to the case of three-dimensional turbulence, two-dimensional turbulence can

be thought of not as a simplification but as an alternative special case altogether due to the

behaviour implied by the dissipation equations (3.5). The reduction in dimensionality instead of

simply reducing the complexity of the system rather introduces new phenomena to the system

entirely, and despite the apparent idealisation of the 2D turbulent system, 2D turbulence has

some relevance to actual physical systems found in nature. Two-dimensional turbulence is

distinct from the normal case of turbulence, as 2D turbulence instead of holding the ubiquity

in nature of 3D turbulence, instead exists as the limit of quasi-2D turbulence. Two-dimensional

turbulence provides a good approximation for modelling various quasi-2D phenomena, to the

point where introduction of 3D perturbation effects to the 2D turbulent picture (in other

words quasi-2D dynamics) maintains the statistical properties of 2D turbulence [43], proving

the applicability of the study of an otherwise idealised system. The theory of 2D turbulence

in fact has many proven applications in the literature; these flows are ideal applications of

two-dimensional turbulent theory due to the large discrepancy in size from the z dimension

compared to the much larger x, y dimensions, hence turbulence found in these flows can be

considered approximately two-dimensional. Probably the most notable and relevant examples

of this are the geophysical flows of atmospheres and oceans [108, 109] where the statistical

behaviour of geophysical flows are found to greatly imitate that of 2D turbulence. Also niche

cases such as soap film flows exist [110], where again the z dimension of the system is highly

restricted compared to that of the x and y dimensions, again showing very similar statistical

effects as would be predicted by the idealised 2D turbulent theory

As noted already, the 2D turbulent case has distinctly different behaviour from that of

the 3D case. Most notably, in the case of 2D turbulence we have energy transfer to smaller

wavenumbers, as opposed to the transfer to larger wave numbers in 3D turbulence. This
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phenomenon is known as the inverse energy cascade, where we also have a transfer of vorticity

from small wavenumbers to large wavenumbers until the viscous dissipation limit is reached, this

is known as an “enstrophy cascade” and was first predicted by Batchelor [111]. Together, the

enstrophy cascade and the inverse energy cascade are the distinguishing features separating 2D

and 3D turbulence, ensuring not only a reduced system in the 2D case but alternative statistical

phenomena entirely. This specifically occurs due to the energy dissipation equations (3.5), in

fully developed 2D turbulence energy instead of being dissipated by viscosity is transferred

to larger and larger scales, in effect the opposite of the direct cascade, as vortices and eddy

currents will continually form larger vortices and eddy currents.

Interestingly the inverse energy cascade has also been observed in 2D quantum turbulence.

For example in the work of Reeves [112], where using the standard Gross-Pitaevskii equation

with the addition of stationary object potentials to act as forcing and a stationary thermal

cloud to act as damping in the system, there exists a regime where clusters grow ever larger as

energy is transferred to higher length scales. Thus, this particular Gross-Pitaevskii equation

admits an inverse cascade solution, and what has traditionally been thought of as a theory of

classical turbulence has been shown to exist in quantum turbulence also, demonstrating turbu-

lence possesses statistical features that may be found in both the classical and quantum cases.

There also exists evidence of the enstrophy cascade appearing in quantum turbulence simu-

lated by large scale point vortex simulations with the addition of dissipation and compressive

effects [113]. It is then natural to ask whether the inverse cascade method is achievable in the

standard point vortex model. The first description of the inverse energy cascade proper is from

the work of Onsager, the famed result of large vortex cluster dominating the flow for negative

values of temperature [114], with the standard Hamiltonian changed to represent the confined

boundaries. This inspired the work of Kraichnan in formulating the original inverse energy cas-

cade theories [115]. In the present day, general theories of the 2D inverse energy cascade have

been found for specific point vortex systems, for example the work of Dritschel [116] in finding

spectral cascades in the case of point vortices on a sphere, or in the work of [117] where an

inverse cascade was found for generalised “rotor vortices” derived from the point vortex model.

Here we will seek to capture the inverse energy cascade in a minimal point vortex model, and

investigate the necessity of forcing and dampening in achieving this.
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3.3 Numerical approach for simulation and analysis of

large N point vortex statistics

We seek to analyse the cluster size statistics found in larger point vortex systems over long

periods of time under certain forcing conditions such that the inverse cascade can be observed.

Under these forcing conditions it is hoped that the inverse cascade is realised and that the

energy can be seen propagating to lower wave numbers.

In order to do this we now consider point vortices not in the infinite domain but under

periodic boundary conditions. The resulting large N point vortex evolution then forms a closed

system where it is impossible for vortex dipoles to propagate off to infinity, thus the number of

vortices in a closed box remains constant such that a “true” large N evolution can be observed

without dissipation of the system due to dipoles propagating off from the remaining vortices.

In order to do this we utilise a different set of equations for periodic point vortex motion

than in the standard infinite domain case, found by summing over the infinite image vortices

of the system produced by the periodicity of the region boundaries.

We utilise the equations produced in [118], where the periodic equations of motion are recov-

ered from the infinite domain equations of point vortex motion (1.29), by choosing appropriate

limits for the periodic boundaries (scaled such that the box is of height and width 2π) the

equations of motion for point vortex i in the system are recovered as an infinite sum







ẋi

ẏi






=

1

2π

N
∑

j=1

κj







−S(yij, xij)

S(xij, yij)






, (3.6)

where the infinite sum function S in 3.6 is given by

S(x, y) =
∞
∑

m,n=−∞

x− 2πn

(x− 2πn)2 + (y − 2πm)2
,

where n are the periodic images in the x dimension and m the periodic images in the y dimen-

sion. Noting that the sum in m is absolutely convergent whilst the sum in n is conditionally

convergent, by using Laplace transforms and treating the remaining integrals asymptotically

and taking the limit to infinity of the partial sums that are independent of the order of the
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limit gives for the M and Nth partial sum

SM,N =
1

2

M
∑

m=−∞

sin(x)

cosh(y − 2πm)− cos(x)
+

x

2π
− x

π2
tan−1

(

N

M

)

, (3.7)

all that is left is to decide the physically consistent definition of the limit M,N → ∞. By

imposing the condition then that it is necessary for equidistant image vortices to cancel, thus

it is necessary that the y velocity on vortex i from vortex j with xij is 0, and so it must be that

S(π, y) = 0. This implies that the final infinite sum must be chosen such that SM,N(π, y) =

1/2− (1/π) tan−1(N/M) = 0, therefore

S(x, y) = lim
M→∞

[

lim
N→∞

SM,N(x, y)
]

=
1

2

∞
∑

m=−∞

sin(x)

cosh(y − 2πm)− cos(x)
. (3.8)

By choosing units of time to absorb constants from (1.29) and (3.8) and to rescale κ to unity,

we retrieve the following equations of motion

ẋi =
N
∑

j=1
j ̸=i

κj

∞
∑

m=−∞

− sin(yij)

cosh(xij − 2πm)− cos(yij)
, ẏi =

N
∑

j=1
j ̸=i

κj

∞
∑

m=−∞

sin(xij)

cosh(yij − 2πm)− cos(xij)
,

(3.9)

This is useful due to the speed at which the infinite sum in (3.9) converges, due to how rapidly

terms in the sum become small at large |m| in our numerical simulations we are able to truncate

the sum to allow calculation without compromising accuracy. This confines the vortices to a

2π periodic box in the x and y directions such that each vortex will have coordinates xi, yi ∈

[−π, π), here we also assume identical circulations such that κi = ±1. We consider N point

vortices, where vortices have random positions uniformly distributed in the x and y directions.

N/2 vortices are initialised possessing circulations of 1 and the other N/2 vortices are initialised

possessing circulations of −1. This generates the initial condition for the large N simulations,

with the system then solved according to the numerical code in section A.2, applied to the

periodic equations of motion (3.9).

We evolve the system in each case alone according to these equations, as well as with

an additional forcing through the use of a vortex annihilation and reinjection mechanism. If

this annihilation and reinjection is included, then at each calculated time step in the system
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the data is checked for any vortex dipole within a critical annihilation distance, this dipole

is then removed from the system and the dipole vortices are reinjected at random positions

under the constraint that the reinjected vortices are separated by the inter-vortex separation

ℓ =
√

4π2/N . This results in forcing at a wave-number of kf = 2π/ℓ =
√
N/2π, and a

dissipative effect dependent upon the tolerance at which the dipole annihilation is considered

at; though these simulations we annihilate dipoles at a separation of l/4, meaning dissipation

occurs at wavenumber kd = (2π)/(ℓ/4) = 2
√
N/π.

Once the subsequent time step is calculated we employ a simple cluster finding algorithm.

This is defined in terms of two key parameters; the dipole tolerance told and the cluster tolerance

tolc, both of which we set to half the intervortex separation ℓ/2. Any opposite-signed circulation

vortices with a separation within told will be considered a dipole, and any like-signed circulation

vortices within tolc will be considered a cluster. The algorithm is then based on a simple process.

Firstly, opposite-signed circulation vortex separations are compared with told such that dipoles

are identified. These dipoles are then removed from consideration, i.e. these dipole vortices can

never be a constituent of a vortex cluster. We then compare the remaining vortices like-signed

circulations with the cluster tolerance tolc, such that any within the assigned tolerance are

considered as clusters, with any remaining vortices not found to be part of either a dipole or a

cluster marked as a C1 structure (in other words a cluster of size 1). Finally, the clusters found

are examined, and any two vortices that are not considered part of the same cluster but share

cluster vortices are joined into the same cluster. For an example to illustrate this; if like-signed

vortices 1 and 3 are not within tolc of each other but are both within tolc of vortex 2 (resulting

in vortex clusters 1,2 and 2,3) these three vortices are then considered as one cluster on account

of both forming clusters with vortex 2. We are then left with the full vortex assembly classified

into dipoles and clusters.

Given the time step is calculated, we also calculate the energy spectrum of the point vortex

assembly by taking fluid velocity on a mesh grid of 256×256 points as according to equation (3.9)

with (xi, yi) here corresponding to the grid point coordinates, and then through the Fourier

transform of these velocities the energy spectrum can be calculated as E(k) = |ˆ̇x(kx, ky)|2 +

|ˆ̇y(kx, ky)|2 with k =
√

k2x + k2y.

As a side note we also utilise both time and ensemble averaging in solving for the quantities

K.Lydon, PhD Thesis, Aston University 2023 93























Chapter 4

Effects of sound on point vortex

dynamics

4.1 Vortices in the presence of sound

Here we move to considering an important aspect of how point vortex dipoles interact in

turbulent systems, namely the dynamic effects of added sound on point vortex dipoles. This

is especially an important area when considering point vortices in the presence of compressible

effects, in particular when considering point vortices used to model 2D quantum turbulence,

as it is these turbulent flows where the idealised point vortices most reflect the dilute quantum

vortex dynamics found in mediums such as Bose-Einstein condensates, and also where there

are also propagating sound waves through such systems that will interact with such quantum

vortices.

The evolution of a turbulent flow where the point vortex model may be applied can be con-

sidered as a culmination of the various fundamental vortex-to-vortex interactions such as those

found in chapters 2 and 3.1, and the effects due to density fluctuations in the underlying medium

(i.e. sound waves). The sound waves present in mediums such as Bose Einstein condensates

have been shown to be crucial to the dynamical evolution of the underlying flow, especially in

the context of interactions with vortices, and the addition of sound and compressibility allows

vortices to undergo more complex behaviours than can normally be seen.

An example of such complex behaviours is the phenomenon of annihilation found in turbu-

lent flow. Given a vortex dipole composed of quantum vortices of width of the healing length ξ,
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if the separation value of a vortex dipole becomes close to the healing length ξ, “annihilation”

may occur where the vortex profiles are destroyed and propagation continues as a single dark

soliton wave, whereupon it then bursts creating a shock [94, 119]. This process is so important

it has been found to be crucial in the development of a coherent Bose Einstein condensate [120].

This process has also been found to be related to the reconnection to vortex filaments in three

dimensions [121], whereupon the quantum vortex filaments approach locally, twist until they

are antiparallel, then change topology instantly at a point and propagate off; this behavior is

also followed by a sound emission. Such reconnections and annihilations should be common in

a large 3D vortex tangle due to the large amount of vortices in the system resulting in many

vortex pair interactions.

The sound waves present in such systems can also interact and scatter by these quantum

vortices directly [122], with sound even being emitted in such cases as a rotating cluster of

two vortices [123]. Of particular interest is recent work by Reeves et al. into a “noisy” point

vortex model to investigate the relaxation of quantum turbulent states towards equilibrium;

where the emergence of microcanonical equilibrium states in two-dimensional vortex gas is

demonstrated. A point vortex model is then implemented with additional noise and damping

added that faithfully reproduce these results [124]. Clearly the effects of sound are key to

the development of turbulent systems where these compressible effects are possible, and these

effects are absolutely linked to the dynamics of the vortices turbulence are comprised of. Thus,

in considering the evolution of vortex systems regarding vortex dipoles, the effect of sound on

vortex dipoles must be considered. Specifically the main area of interest when considering larger

statistical systems is how sound may affect the underlying dipole structure, in particular, can

sound create newly sized dipoles and can the annihilation mechanisms be observed under such

regimes? It is this that we consider in this chapter. We first consider the numerical method

used to implement such a compressible system in section 4.2, we then consider the results of

such simulations in 4.3.
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4.2 Numerical method

4.2.1 Padé approximants

In order to model the effects of sound on a vortex dipole, we first initialise a vortex anti-vortex

pair in a 2D periodic box with coordinates x ∈ [0, 2π), y ∈ [0, 2π), this is common in numerical

simulations of the GPE and in effect ensures trapping of the “condensate” and thus the trapping

forces which ordinarily necessitate the use of the trap potential V (x) are no longer required

(and also allows us to neglect any potentially complicated phenomena at the boundary of a

condensate), this equates to solving equation (1.14) for the value of the wave function ψ. The

vortex dipole is initialised with x coordinates x1 = x2 = π, with y coordinates y1 = 7π/8 and

y2 = 9π/8, giving an initial dipole separation of d = π/4. An initial condition for this is first

formed within the condensate using the technique of Padé approximants.

Given a function to be approximated, the Padé approximant gives an approximation to this

function in terms of a rational function derived as the ratio of two power series. This approach

is often superior to an approximation by Taylor series when functions contain poles, due to

the representation as a rational function, thus suiting approximation of the dipole vortices.

Formally, a [N,M ] Padé approximant is then an approximation to our function by a polynomial

of P (z) of degree M divided by a polynomial Q(z) of degree N with z ∈ C. Coefficients in

such polynomials can be attained thus; given a function f(z) with z ∈ C that we wish to

approximate about z = 0 we have that f(z)Q(z) − P (z) = AzM+N+1 + BzM+N+2 + · · · , and

Q(0) = 1. Solving these equations yields the Padé approximant of f so required [125]. The

application of Padé approximants in the case of the GPE was first found by Berloff [126]. Here

Berloff begins by finding the approximant of a single vortex in a uniform condensate, this is

found by solution of the steady GPE equation first found by Pitaevskii [127], given the single

vortex solution written in the form ψ = R(r)einθ where r is the separation from the vortex to

the point (x, y) and θ is from the horizontal to the line spanned from the point to the vortex

and is n = 1, 2, 3... the winding number. The steady GPE equation given as

d2R(r)

dr2
+

1

r

dR(r)

dr
− n2

r2
R(r) + [1−R2(r)]R(r) = 0,

has a solution of which can be approximated by a Padé approximant the density profile of
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which can be recovered by ρ ≈ R(r)2. Once this has been done the wave function of a more

complicated vortex assembly can be calculated through the superposition (i.e. the product) of

these single vortex solutions, so the initial condition of an N vortex system in the GPE can be

approximated by

ψ(x, y, t = 0) =
N
∏

j=1

Rj(x, y)e
injθj(x,y),

where Rj is the amplitude of the jth single vortex wave function, ϕj the phase and nj the

winding number of the jth vortex. With this in mind, given a vortex dipole with initial

positions (π, 7π/8) and (π, 9π/8), and single vortex Padé approximants R0 and R1 respectively,

the density at a point (x, y) at separations r0, r1 from each vortex can be approximated as

√

ρ(x, y) ≈ R0(r0)R1(r1) = R





√

(x− π)2 +

(

y − 7π

8

)2


R





√

(x− π)2 +

(

y − 9π

8

)2


 ,

(4.1)

with the function R given as the fourth order Padé approximant of the single vortex density

function from [128]

R(r) =

√

a1r2 + a2r4 + a3r6 + a4r8

1 + b1r2 + b2r4 + b3r6 + a4r8
, (4.2)

with the ai and bi coefficients found in the appendix of [128]. The initial phase of the system

is also then given as ϕ = θ1 + θ2, therefore

ϕ(x, y) = arctan

(

y − 9π
8

x− π

)

− arctan

(

y − π + π
8

x− π

)

, (4.3)

= arctan

(

π − x
4
π
[(x− π)2 + (y − π)2]− π

16

)

,

then the initial condition for the wave function of the condensate can be fully expressed

through (4.1-4.3) as ψ(x, y, t = 0) =
√
ρeiϕ.
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4.2.2 Imaginary time propagation

The main drawback of the above generation of the initial condition by Padé approximants is the

lack of “true” solution of the GPE equation, in effect the Padé approximant is an idealisation

of the density field and phase fields which may lead to certain unwanted dynamics if we allow

the GPE to propagate on the Padé approximate “as is”. In other words what is attained from

the Padé approximant is a numerical approximation of the associated density field, which when

used with the GPE as it is not a proper solution results in the violent emission of sound waves

and vortex stretching. Additionally, the phase field (4.3) in the current form is not 2π periodic,

and so also cannot be considered a proper starting point for the GPE simulations. To combat

this, a common approach is the use of imaginary time propagation. Here the substitution t→ it

is used, transforming the GPE into the dissipative Gross-Pitaevskii equation (DGPE) as such

ψ̇ = ∇2ψ − |ψ|2ψ − µψ, this DGPE does not conserve energy of the system, instead as t→ ∞

in the DGPE ψ minimizes the total energy and corresponds to a stationary solution of the

GPE, thus a particular wave function profile can be applied in the DGPE in order to find a

fixed point of the GPE. This is of great interest, as then the Padé approximant can be applied

in the DGPE to dissipate to the “true” GPE solution. However, obviously the propagation of

the vortex/anti-vortex pair does not correspond to a stationary solution of the GPE, and so

if the Padé approximant profile is applied in the DGPE in this form then the wave function

will converge to a flat, uniform distribution where |ψ|2 = 1 everywhere. In order to attain the

dipole solution as a stationary solution of the GPE, we translate the DGPE into the co-moving

reference frame using the Galilean transform ψ(x, y, t) → ψ̄(x− ct, y, t) where c is the speed of

the propagating dipole, which we take from the point vortex analogue as c = κ/2πd = 2/π2,

where here we let κ = 1. This gives ˙̄ψ = (∂ψ̄)/(∂t)−(2/π2)(∂ψ̄)(∂x̄), where the new coordinate

x̄ = x− (2/π2)t. Finally, the DGPE in the moving reference frame is then given

∂ψ̄

∂t
= ∇2ψ̄ − |ψ̄|2ψ̄ − µψ̄ +

2

π2

∂ψ̄

∂x̄
, (4.4)

where the propagating vortex dipole now minimizes the total energy, and thus is a stationary

solution of the GPE in this reference frame. The numerical process for generating the initial

condition can thus be summarised. First the initial density field for the dipole is approximated
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using the superposition of Padé approximants for the vortices using (4.1-4.2), coupled with the

phase (4.3) this leads to an approximation of the wave function as ψ =
√
ρeiϕ. This approximate

wave function is then evolved in the DGPE in the moving reference frame, equation (4.4),

which then relaxes the unrealistic approximant to a true stationary solution of the GPE in

the moving reference frame. This can then be utilised as the initial condition of the original

GPE equation (1.14), where now the violent sound wave emission and stretching at the start of

simulation does not occur. The heatmap of the resulting initial condition is shown in figure 4.1.
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Figure 4.1: Amplitude of the wave function initial condition plotted as a heatmap in the case
of no sound over the x, y coordinate space, showing the vortex dipole located at x = π with
midpoint y = π as defects in the condensate with |ψ|2 = 0.

4.2.3 Inputting sound into the system

Once the appropriate dipole solution in the GPE is found all that is left is to inject the par-

ticular sound distribution and then allow the system to evolve. Given ψdipole, the particular

dipole solution already found in previous sections, we then impose a sound distribution through

superposition as ψ = ψdipole(1 +ψsound). The particular form of the sound solution to the GPE

ψsound depends upon the sound distribution chosen. We consider three primary choices for

the sound distribution; the simplest case of no sound waves present in the system, the case of
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Rayleigh-Jeans distributed sound, and the case of sound concentrated at a specific mode. The

most basic that could be considered is the case of no sound waves, whereupon the superposition

of the sound distribution solution onto the dipole solution simply reduces to the dipole density

field found by evolving the Padé approximated solution in imaginary time, i.e. the initial con-

dition is given as ψ = ψdipole. Whilst somewhat trivial the no sound case presents an important

reference of the effects of the system before sound is added in order to compare effects of the

following sound distributions. The second type of sound we consider is the Rayleigh-Jeans

distributed sound distribution where sound is equipartitioned across modes. In order to find

a particular distribution, first we assume sound is in thermodynamic equilibrium, then the

level of sound will be appropriately equipartitioned across all wavenumbers k. Given the total

number of particles and the Hamiltonian, the two conserved quantities of the GPE, given as

N =

∫

|ψ|2dxdy, H =

∫

1

2
|∇ψ|2 − µ

2
|ψ|2 + g

4
|ψ|4dxdy, (4.5)

by only considering the linear contribution of H and applying Parseval’s theorem we then have

N =
∑

k

|ψ̂k|2, H =
1

2

∑

k

k2|ψ̂k|2. (4.6)

Thus, in order for equipartitioned N it must hold that for low wave numbers |ψ̂k|2 ∼ C with

C some constant and for equipartitioned sound on H it must hold that for large wavenumbers

|ψ̂k|2 ∼ 1/k2. These conditions are appropriately satisfied by the Rayleigh-Jeans distribution

|ψ̂k|2 = T/(µ+ k2), (4.7)

describing waves in thermodynamic equilibrium. Here µ and k are the chemical potential

and the wavenumber as before, and T is the temperature of the system, acting as a param-

eter through which we can produce differing sound intensities. This gives an amplitude of

|ψ̂k|2 ∼ T/µ for small wavenumbers k, and |ψ̂k|2 ∼ T/k2 when wavenumbers become very

large, thus satisfying the equipartition conditions, and giving a sound wave distribution in

total thermodynamic equilibrium. An additional type of sound distribution that may be con-

sidered is that of an out-of-equilibrium distribution, or in other words a sound distribution
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Figure 4.2: Amplitude of the wave function initial condition plotted as a heatmap with Rayleigh-
Jeans distributed sound with T = 1 × 10−4 injected into the system over the x, y coordinate
space. The vortex dipole at x = π about y = π is visible, as well as the sound profile created
by the superposition of the sound solution.

where the energy is not equipartitioned across wave numbers. This is important in order to

analyse the effect of equilibrium sound against non-equilibrium sound on such a system. A sim-

ple regime that we will consider is that of Gaussian distributed sound, with sound concentrated

at a certain wavenumber kf rather than equipartitioned. Specifically we employ the formula

|ψ̂k|2 =
T 2
G

2π
exp

[

−(k2 − kf )
2

σ2

]

, (4.8)

where here TG is “temperature”, a parameter we adjust to alter intensity of the sound (sub-

scripted as G to distinguish from the Rayleigh-Jeans temperatures T ), here k is the wavenumber

as before and kf is the wavenumber the sound is concentrated at, in other words the mean of

the Gaussian distribution we consider, in this sense we have σ as the standard deviation of the

Gaussian distribution.
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4.2.4 The psuedo-spectral method

In order to propagate the system the equation to be solved is a non-linear partial differential

equation with periodic conditions ψ(x, t) = ψ(x+ 2π, t). To solve this we employ the pseudo-

spectral method, common to many fluid dynamics applications. Specifically we consider the

discrete inverse Fourier transform (IFT) of the ground state wave function

ψ(x, t) =

N
2
−1
∑

k=−N
2

ψ̂k(t)e
ikx, (4.9)

where here N is the number of grid points in our discretization of the physical space, k is

the wavenumber in Fourier space defined as kj = 2πj/L for j ∈ {−N/2,−N/2 + 1, ..., N/2 −

2, N/2− 1} and with L the length of the periodic physical space (in our case 2π) and ψ̂k is the

kth Fourier space representation of ψ, which may be a function of t. From substitution of the

IFT (4.9) into the linear terms of the above equation to solve the dimensionless GPE (1.14) we

have

i
∑

k

˙̂
ψke

ikx =
∑

k

k2ψ̂ke
ikx + µ

∑

k

ψ̂ke
ikx + |ψ|2ψ, (4.10)

the dimensionless GPE has then been written in terms of the k-space Fourier representations

of ψ instead of ψ directly. Employing the same method to the final non-linear term however

represents a problem, as this will be a triple sum convolution in Fourier space

|ψ|2ψ =

(

∑

k1

ψ̂k1e
ik1x
∑

k1

ψ̂∗
k2e

ik2x

)

∑

k3

ψ̂k3e
ik3x =

∑

k1

∑

k2

∑

k3

ψ̂k1ψ̂
∗
k2ψ̂k3e

i(k1+k2+k3)x,

=
∑

k1

∑

k2

ψ̂k1ψ̂
∗
k2ψ̂K−k1−k2e

iKx,

with K = k1 + k2 + k3. This term is very computationally expensive to evaluate directly,

and so instead we follow as is typical in the pseudo-spectral method by first calculating this

term directly through the initial conditions and then transforming to Fourier space. The above

equation (4.10) then becomes

i
∑

k

˙̂
ψke

ikx =
∑

k

k2ψ̂ke
ikx + µ

∑

k

ψ̂ke
ikx +

∑

k

ˆ(|ψ|2ψ)keikx, (4.11)
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then by matching coefficients in (4.11) we have that the kth time derivative is given as

i
˙̂
ψk = (µ+ k2)ψ̂k + ˆ(|ψ|2ψ)k, (4.12)

thus, the original GPE has been reduced from a partial differential equation to a system of N

ordinary differential equations, which may be solved through standard numerical methods such

as the Runge-Kutta family methods. Once the system of equations has been solved all that

remains is to utilise the IFT (4.9) to attain the original values for the wave function ψ at the

grid points.

In considering the Fourier transforms we must give attention to the alias errors bound to be

produced, whereupon Fourier modes outside the size range we consider due to the periodicity

of the problem (and as assumed by a discrete Fourier transform). This is a common error when

utilising Fourier transforms of non-linear terms, such as the ˆ(|ψ|2ψ) term in equation (4.12).

As a simple example we can write the ˆ|ψ|2 term in Fourier space to show this, given Fourier

modes represented as {ψ̂}N/2−1
−N/2 we have the convolution

ˆ|ψ|2k =
1

N

∑

n+m=k

ψ̂nψ̂
∗
m =

1

N

∑

n

ψ̂nψ̂
∗
k−n,

=
1

N









∑

−N/2<n,k−n<N/2−1

ψ̂nψ̂∗
k−n +

∑

−N/2<n<N/2−1
k−n<−N/2

ψ̂nψ̂∗
k−n +

∑

−N/2<n<N/2−1
N/2−1<k−n

ψ̂nψ̂∗
k−n









,

(4.13)

The two final terms in equation (4.13) represent the aliasing error described, as due to period-

icity in wave space modes with wave numbers N/2−1 < k−n are aliased to k−m−N modes,

and vice versa as k−n < −N/2 are aliased to k−n+N − 1 modes. The additional ψ product

in the equation we are to solve only compounds this error.

Numerous methods exist for combating alias errors such as this; such as undersampling,

where the outer k − n < −N/2 and N/2 − 1 < k − n modes where aliasing occurs are not

considered, or the complimentary technique of zero-padding which we implement. Here, to

make the Fourier modes in the convolution free of aliasing, we extend the space to be sampled

on each side by zeros, and then once convolution is complete we restrict to the original domain.
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Specifically, we first compute the Fourier transform of ψ and ψ∗, which then are padded by zeros

through the commonly used Orszag 2/3 rule [129], padding by N/2 zeros around the central

region. Once this is done, we compute the inverse Fourier transform to calculate ψ and ψ∗ on

the extended mesh, only then do we calculate the product and take the Fourier transform of

the product, finally discarding the outer values added earlier to recover the Fourier transform

of the product which is now free of aliasing errors [130].

Once the wave function has been evaluated, the GPE can be considered solved. Despite this,

still more work is to be done before vortex positions can be ascertained from the wave function.

Vortices can be thought of as topological defects in the condensate, i.e. points where ψ = 0,

however these points can also correspond to soliton solutions to the condensate, so instead of

solving for the roots of the wave function a more sophisticated vortex tracking algorithm is

required. We then utilise the “pseudo-vorticity” of the flow, defined as ω̄ = ∇ × (ρv), where

ρ is the density field and v is the hydrodynamic velocity of the flow, which can be found

through the Madelung transform [80] that transforms the system to its hydrodynamic form.

As already discussed the ordinarily defined vorticity is zero everywhere other than vortices,

which are singularities in the vorticity distribution. In contrast, vortices represent minima

and maxima of the pseudo-vorticity field and as such are easily recovered from the pseudo-

vorticity distribution. Finding minimum or maximum values of this pseudo-vorticity field gives

a good approximation of the vortex position. However, due to the discretization of the position

space it is likely the real vortex position is not exactly located at the exact grid point of the

maximum/minimum pseudo-vorticity; hence we take an average of the positions surrounding

the max/min pseudo-vorticity with each position weighted by the pseudo-vorticity field of the

corresponding grid points in order to get a closer approximation to the vortex position in

continuous flow.

We also examine the energy over time of each particular simulation as another method to

confirm results found. In particular, we consider the kinetic energy of the system, defined

in [131] as Ek = (1/A)
∫

(
√
ρv)2/2dxdy, where A is the area of the bounding box. According to

the theory of hydrodynamic flow, we can decompose the hydrodynamic form of the velocity v

into compressible and incompressible parts using the Helmholtz decomposition [132], which de-

composes the flow into an irrotational part and a solenoidal part; i.e. a part where curl/vorticity
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is zero and part which is divergence-free.

Thus the velocity field can be decomposed as
√
ρv = (

√
ρv)i+(

√
ρv)c where ∇·(√ρv)i = 0,

so here (
√
ρv)i is the divergence-free part of the velocity field corresponding to incompressible

motion and (
√
ρv)c the irrotational part corresponding to compressible motion [133]. Further,

we can decompose the kinetic energy into subsequent compressible and incompressible parts as

Ei
k =

1

A

∫

[(
√
ρv)i]2

2
dxdy, Ec

k =
1

A

∫

[(
√
ρv)c]2

2
dxdy, (4.14)

such that Ek = Ei
k +Ec

k. Note that E
i
k corresponds to the kinetic energy of the incompressible

part of the flow, in other words the point vortices we impose, whilst Ec
k will then correspond

to the kinetic energy of the sound waves in the system. By doing this we can observe how

interactions occur between sound and vortices by the behaviour of Ei
k and Ec

k over time.

4.3 Results of sound on dipole evolution

We initialise vortices in several sound distributions, first we consider Rayleigh-Jeans distributed

sound of several temperature values T which define the initial sound distribution Fourier space

ψ̂ representations according to (4.7). With the parameter of the chemical potential given as

µ = 2000 the Fourier space representations (ψ̂k)sound are given for each value of kj = 2πj/L for

j ∈ {−N/2,−N/2 + 1, ..., N/2− 2, N/2− 1} with L = 2π, the initial condition ψsound can then

be recovered by the IFT of the Fourier space representations for each value of the temperature

parameter T . We then initialise the distribution for a dipole with starting separation d0 = π/4

according to the procedures in sections 4.2.1-4.2.2, input the ψsound distribution as according to

section 4.2.3, and then continue to use the pseudo-spectral method as described in section 4.2.4

with a time step dt = 10−6 for several temperature values T to compare how the intensity of

sound affects the dynamics. We plot and compare the results of this in figure 4.3. Firstly, we

notice the dipole in the case of no sound does not show any change from the original dipole size.

This is to be expected, as in the case of no sound a lone propagating dipole has no mechanism

for increasing or decreasing and will continue to propagate at the original dipole separation for

all t. The motion of the pseudo-vorticity maximums/minimums representing quantum vortices

in this case directly corresponds to the equivalent periodic point vortex motion.
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values and thus higher values of sound. We summarise by noting three important values in

each case, scaled by the initial dipole separation. The minimum dipole separation over the

interaction, the maximum, and the mean over time. For the case of no sound this identically

gives mint(d)/d0 = maxt(d)/d0 = ⟨d⟩ = 1. The minimum, maximum and mean values are

provided in table 4.1 with values from the following simulations. From this it is explicit that the

mean for every T value here gives a mean≈ 1 indicating no persistent trend, increasing the value

of T only serves to increase the size of fluctuation thus giving greater minimums and maximums

despite the mean not increasing or decreasing significantly We continue by separating the

kinetic energy component of the flow into compressible and incompressible components as

discussed for the sound distributions shown in figure 4.3. There are shown in figure 4.4, here

we plot the total kinetic energy, and its compressible and incompressible components over

time. A dipole decreasing in size as it approaches annihilation will thus have a greater energy.

Due to this if the dipole were to decrease in size we would observe the incompressible kinetic

energy increasing and the compressible decreasing. With this in mind, we examine the energy

decompositions of the sound distributions also plotted in figure 4.3. In each case for each sound

distribution we see energy being shown as a solid straight line, with minor fluctuations due

to the noise imparted from the sound. In each case here we see the incompressible kinetic

energy remaining largely horizontal throughout the entirety of the evolution. This then implies

that the vortex dipole is not substantially decreasing in size over time as the incompressible

kinetic energy is not increasing in any meaningful way over the time frame of evolution. This

is what we would expect when considering the previous results in figure 4.3, as here we also

see no noticeable consistent trend regarding the separation between dipoles. Also in each case

we see the compressible kinetic energy and the total kinetic energy actually decreasing despite

no corresponding increase in the incompressible kinetic part. This anomalous behavior is likely

due to some kind of dissipation of the system due to numerical error compounded with the

Fourier transform procedures needed to decompose the energy in this manner. Nevertheless,

the data is consistent enough such that when also considering the dipole separation results we

can exclude the possibility in the cases considered of dipoles becoming closer due to sound.

What is perhaps unclear is why when the dipole separation encounters a fluctuation due to

the sound waves, the dipole relaxes back to the original dipole size in particular, as opposed
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before, to confirm this we examine the kinetic energy decomposition of the above T = 1×10−4,

d0 = π/4 and T = 1 × 10−4, d0 = π/8 cases. This is plotted in figure 4.6, where again we

give the kinetic energy along with the compressible and incompressible parts. We see much

the same results as in the previous figure 4.4, and here we see the energy is not decreasing

as in the previous decomposition, highlighting indeed the numerical dissipation at work. In

terms of results achieved, they are consistent with what we would anticipate given the lack of

persistently decreasing dipole separation in figure 4.5, that is no transfer from incompressible to

compressible energy in either case, with the only deviations of energies from their initial values

being made up of the noise-like fluctuations from the sound present in the system interacting

with the dipole.

Indeed, the only difference that can noticeably be observed between the two initial separation

evolutions is the slightly increased incompressible kinetic energy value in the case of dipole

vortices being initialised closer together. This again is to be expected as a closer dipole implies

a dipole with higher velocity and thus a higher kinetic energy, this however has no bearing on

the dipole increasing or decreasing in separation. Certainly if dipole shrinkage is possible due

to the effect of sound it cannot be due to the simulations considered here.

Hence, if it is possible for the interaction of sound waves to permanently decrease the dipole

separation and force vortices closer, it is likely not to be Rayleigh-Jeans distributed sound

which causes this to occur, and thus it is necessary to consider the dipole in the presence of

alternative sound distributions. As stated, the Rayleigh-Jeans method of sound distribution is

a specific case of sound waves in equilibrium propagating, there are alternative distributions

with sound out of equilibrium. It may be the case that it is the out of equilibrium motion of

sound waves which may cause dipole shrinkage as they move towards equilibrium, rather than

the motion of sound waves in equilibrium as already investigated. Hence, here we will consider

alternatively distributed sound with sound waves focused at a particular wave number, and as

before track the separation of dipoles as they evolve through this system.

The alternative to considering the sound distributed in an equipartitioned manner across

wavenumbers is to examine the qualities of a system where sound is initially concentrated

around a particular wavenumber. We consider a Gaussian distributed noise as defined in (4.8)

around a particular wavenumber kf , for all further simulations we choose kf = 32 and the
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equally across wave numbers the effects in this case are much weaker than the equivalent

Rayleigh-Jeans distribution. Thus, the sound in this case is so weak the interaction with the

vortex dipole has no noticeable effect on the dipole separation, and so is completely negligible.

By examining the data directly we attain the minimum and maximum dipole sizes over the

course of the interaction as mint(d)/d0 = 0.98438 and max(d)/d0 = 1.0001, and with an average

dipole separation of ⟨d⟩ = 0.99037. Clearly the sound distribution has some effect on the dipole

separation, although extremely small.

The effects of sound are however markedly different for the larger temperature values we

consider here. We consider larger temperature values than in the previous Rayleigh-Jeans

distributions, as already discussed these would be much weaker than the equivalent temperature

in the Rayleigh-Jeans case. These higher temperatures result in large fluctuations in the dipole

size as we would expect to see and as before observed in the Rayleigh-Jeans simulations. For

the TG = 2 × 10−4 case we observe a similar random walk type pattern localized about the

initial dipole separation d0, with extremely large fluctuations when compared to the seemingly

constant dipole separation in the TG = 1×10−4 case. This further reinforces the TG = 1×10−4

case being too weak to observe the corresponding fluctuations, as for a larger temperature

value the fluctuations are visibly much larger. For this particular temperature value we have

a minimum dipole separation over the interaction of mint(d)/d0 = 0.56223. The largest dipole

separation over the interaction is maxt(d)/d0 = 1.1314 with a mean separation over the time

considered as ⟨d⟩/d0 = 0.83425. Here it is observed that over the course of the interaction the

dipole reduces to nearly half of the initial dipole separation (π/8), the effect of the sound in

this case is much stronger than has been observed previously in the current work, and from

comparison to the maximum dipole size we see that the fluctuations present in the current

simulation tend to produce greater shrinkage rather than growth in the separation, suggested

by the relatively small maximum value compared to minimum and notably decreased mean.

Most interestingly, the average dipole separation value is noticeably lesser than the initial dipole

separation, suggesting that over time the mean value of the dipole separation will decrease. It

is possible that over a longer time period we would observe an even lower mean value, and

perhaps over a long enough time frame vortex annihilation may be observed. Hence, a longer

time frame simulation of the evolution would be a particularly interesting area of future study.
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The TG = 5 × 10−4 case finally presents the most interesting of the results thus far in the

Gaussian distributed sound distributions. Here the same random walk type fluctuations as in

the previous TG = 2×10−4 case can be observed here, although fluctuations appear much larger

than we would expect (just as the fluctuation size difference between the TG = 2 × 10−4 and

TG = 1×10−4 cases demonstrated). It is possible to observe values of 0 for the dipole separation

distance, these are specific points in the system evolution where no vortices have been detected

by the numerical method we employ. This implies fluctuations are so great that it is sometimes

uncertain where the actual maximum of vorticity can be found, a more sophisticated numerical

method may be required to determine vortex positions for these simulations. Nevertheless, the

results we find for the dipole show interesting phenomena. Namely, this is the first case we

have examined where a clear downward trend is visible, with the dipole separation decreasing

continually until eventually converging to a value of 0. This 0 value then persists through the

remaining simulation time, indicating the numerical method has not found any vortices for

the remainder of the simulation. This behavior cannot be explained by the limitations of the

numerical method as explained previously, and taken with the downward trend observed we

must conclude that the results we observe is due to the phenomena of vortex annihilation that

we have been anticipating.

As shown by the data the dipole must continually decrease in size due to the strong sound

fluctuations. Then over the continued dipole size decrease the dipole sizes reaches below the

critical annihilation value, whereupon dipole annihilation must occur. This results in a system

with no dipoles remaining for the rest of the simulation, giving a zero dipole separation as the

evolution continues.

We include the extremum values for this particular case for completeness. For the minimum

value in this case before annihilation occurs we have mint(d)/d0 = 0.033315, suggesting the

critical length for annihilation to occur is ≈ 0.03 unit of the original dipole separation.

For the maximum dipole separation over the course of the interaction we have that maxt(d)/d0 =

1.0994, another low maximum value compared to the harsh shrinkage occurring in this case.

Also, the mean value of the separations whilst the dipole still exists ⟨d⟩/d0 = 0.1509272. All

results of the min/max separations over the course of this investigation is given in table 4.1.

The mean value is substantially lower than the initial value, and is lower than that of the
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due to the dipole interacting with the sound surrounding it and thus the incompressible and

compressible energies are being passed from each other due to these interactions. During the

remainder of the evolution however, we see these fluctuations relax and a relatively horizontal

energy follows. It is hard to see whether this occurs in the TG = 2 × 10−4 case, probably due

to the increased y-axis scale these relatively small fluctuations are hard to observe. However,

in the TG = 5 × 10−4 case even at the large y-axis scale we see very violent fluctuations near

the point in time when dipole separation d→ 0 was seen to occur in figure 4.7, whereupon the

fluctuations stop, and it seems that after this point in time we have that Ei
k = 0 and Ek = Ec

k,

in other words vortices have annihilation. The fact that this behavior was not observed in the

cases of Rayleigh-Jeans sound is significant, as it highlights the possibility that this relaxation

(and thus the mechanism of annihilation) is due to the movement from an out-of-equilibrium

state to an equilibrium state such as those Rayleigh-Jeans distributed simulations. This implies

that the annihilation of vortices represent a particular equilibrium of such as system, and we

can speculate that the out-of-equilibrium states examined here must either experience vortex

annihilation or relax to an equilibrium including the vortex dipole such as the Rayleigh-Jeans

states studied previously, and the particular equilibrium the system finds must be on account of

the initial condition, i.e. the values of T, d0 and the particular sound distribution chosen. Thus

Table 4.1: Min/Max, and average separation lengths over the course of each evolution in both
the Rayleigh-Jeans and exponentially distributed sound cases in units of the original dipole
separation in each case.

T mint(d)/d0 maxt(d)/d0 ⟨d⟩/d0
(no sound) 1 1 1

5× 10−6 0.95251 1.0477 1.0005

1× 10−5 0.93651 1.064 1.0041

5× 10−5 0.90625 1.0791 0.98106

1× 10−4, d0 = π/4 0.90372 1.1684 1.0398

1× 10−4, d0 = π/8 0.82091 1.2854 1.0453

TG mint(d)/d0 maxt(d)/d0 ⟨d⟩/d0
1× 10−4 0.98438 1.0001 0.99037

2× 10−4 0.56223 1.1314 0.83425

5× 10−4 0.033315 1.0994 0.63799

we have established the fundamental relation between the sound distribution chosen and the
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effects observed upon the vortex dipole, in other words the choice of particular distribution of

energy across wave numbers can significantly influence the dynamics of the system. We realise

this in several ways, firstly the size of vortex fluctuations is specifically due to the intensity of

sound upon the system (notably this may be due also to the numerical method being unsure of

where the actual vorticity maximums are due to the high amount of noise present due to the

intense sound), second we have shown the particular behaviour of the vortex dipole separation

is due to the particular distribution of sound energy across wavenumbers, with the Rayleigh-

Jeans distributed sound not producing any noticeable trend over time other than the random

walk like dipole size fluctuations already mentioned. However, in Gaussian sound distributed

with a focus on a particular wave number, we notice a persistent decrease in dipole size over the

course of the interaction, with the most intense sound distributions resulting in the more rapid

dipole separation decrease. This in particular highlights that it is not the effect of sound alone

that induces a persistent change in dipole size, as in even the most intense of Rayleigh-Jeans

sound no downward trend in dipole separation can be observed with any certainty. Yet in the

Gaussian distributed case this downward trend is obvious, with the most intense of sound even

leading to vortex annihilation. Thus, it is not the sound waves causing the dipole size decrease

but the out of equilibrium movement of sound towards an equilibrium solution, that of either

vortex annihilation or relaxation towards a Rayleigh-Jeans like state. This also echoes the pre-

viously mentioned work of Reeves et al. where instead of the realisation of equilibrium states by

the near-equilibrium motion of noisy point vortices we establish this through the initialisation

of point vortex like dipoles explicitly [124].

The results thus far convincingly demonstrate the effect on a vortex dipole due to sound in

both the Rayleigh-Jeans equilibrium and the Gaussian distributed cases. However, there are

various areas here which could be developed. Longer time simulations in each case would be

useful in reinforcing results on the behaviour of each state, for example the TG = 2×10−4 case to

ensure significant shrinkage or annihilation does not occur. Given a larger array of simulations

for longer times more detailed Gaussian sound results could be extracted, for example how the

time to annihilation depends upon the initial dipole separation and the temperature TG. Such

results are critical to forming a kinetic theory where these sound interactions may be taken

into account. In addition to this it may be prudent to more systematically vary the initial
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dipole separations for each sound intensity/distribution for comparison purposes, as it is clear

from figure 4.5 a change in initial dipole size has a noticeable effect on the level of fluctuations,

although it is arguable if such simulations would be worth the high computational cost as the

results attained in the cases already examined seem to reinforce the conclusions enough. In

particular what is required in furthering this investigation is longer-time simulations and more

varied sound intensities in the out of equilibrium cases, to ensure an equilibrium (either the

Rayleigh-Jeans or annihilation) is actually being reached and persisting over time, assuming this

is what occurs. Also, longer time evolutions in these cases would be useful in considering what

occurs in the Gaussian simulations for lower sound intensities in figure 4.7, to conclusively show

if the behavior seen here persists for longer times. Additionally, in examining the conclusions

here, it is an open question how alternative distributions of sound may affect the dynamics, for

example, do there exist more complicated out of equilibrium solutions that do not relax towards

either the Rayleigh-Jeans sound or annihilation? If the conclusions we speculate are correct

this should not be possible, unless there may be some other equilibrium sound distributions

that may be reached. Finally, assuming the conclusions we have here are correct it must be

asked, is it possible to determine a priori whether an out of equilibrium solution relaxes to

a Rayleigh-Jeans/equilibrium sound or whether it annihilates? Given the preliminary results

in figure 4.7, this seems to depend on both the sound intensity TG and the initial separation

d0, but we also note the mean wavenumber kf that we have taken as constant through these

simulations. Regimes of motion leading to Rayleigh-Jeans relaxation or annihilation could then

be mapped to regions of the (TG, d0, kf ) parameter space.
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Chapter 5

Conclusion

5.1 Results and findings regarding Aref, Novikov, and

Eckhardt

Through the current work we have presented a full exploration of the fundamental dipole

interactions in point vortex and point vortex adjacent systems, in part inspired by the seminal

works of Aref and Novikov into three body point vortex dynamics [5, 28], where we follow a

similar formalism in order to fully explore the basic point vortex collisions. The work of Novikov

in particular is responsible for the approach of the dimensionless bi variables found in chapter 2,

although the work of Novikov is restricted to three point vortices of identical circulation, so

for an analysis of dipole interactions the remainder of this work is not strictly relevant. The

appendix of the work of Aref however contains a basic analysis of the first fundamental dipole

collision we consider; the dipole-vortex collision. To be more specific, Aref gives and analysis

of three point vortices with circulations κ1 = κ2 = −κ3, including a regime of periodic motion

that is not reachable in a true dipole collision (see chapter 2 section 2.2 regarding the β root for

more details), again not relevant compared to our work of focused around dipoles. However,

Aref then continues to examine the scattering angles of the dipole-vortex collision, including

reduction into the elliptic integrals. However, Aref does not provide the forms of the elliptic

integrals in full, and through derivation and numerical analysis of these scattering angles we

prove a sign error is present within the results of Aref, this is displayed in the comparison of

our results to Aref’s in figure 5.1, clearly demonstrating the error in the ρ/d > 7/2 region in
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dynamics of identical dipoles where we provide a numerical analysis of the regions of interac-

tion, scattering angles, minimums/maximum dipole separations over the interaction, and dipole

lengths post-interaction. Again, none of this has been accomplished previous to the current

work.

5.2 Final Thoughts

In chapter 1, we first introduced the phenomenon of turbulence, that is central to much research

into fluid dynamics. We give a historical basis for turbulence, detailing the work of past

dynamicists such as Reynolds and Kolmogorov, including their theories of early turbulence

as it was first introduced by Reynolds and furthered by Kolmogorov’s famous power laws.

Continuing, we also introduce the basic notions that this work (and fluid dynamics as a whole)

relies on in vorticity and the equations of motion, and introduce the Helmholtz vorticity laws

that have a great bearing on vortex motion as a whole.

Also in this chapter we review the interesting phenomenon of quantum turbulence. We

summarise the idea of turbulence in a fluid with zero viscosity, providing explanations for

several mediums through which we can observe quantum turbulence, namely that of superfluid

helium and Bose-Einstein condensates. Through this we examine turbulent flow in non-viscous

fluid i.e. quantum turbulence. We then visit the Gross-Pitaevskii equation as a model of the

fully-developed condensate, and hence can be used to model quantum turbulence. Of notable

interest in quantum turbulence are the quantum vortices we see within these simulations, these

vortices are identical, of very small core size and have quantized circulations. These vortices

are of great interest, as they are the closest realisation of the idealised point vortices which we

then introduce in the remainder of the introduction. This model of turbulent flow is integral to

the work as a whole, we thus continue to describe in great detail the point vortex system. The

theory of the point vortex system as a Hamiltonian system is visited, as well as the natural

idea of the point vortex as the limit of the Rankine vortex. Also through Noether’s theorem

the conserved quantities of the point vortex system are given.

In chapter 2 we consider the point vortex system in more detail, here we examine the

fundamental interactions of point vortex structures, noting their importance to large scale flow

as a whole in both point vortex and non-point vortex systems, including the quantum Bose-
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Einstein turbulent flow and standard hydrodynamic turbulence. An overview is provided of

previous works on these fundamental interactions such as those by Aref and Novikov. We

begin by introducing the most fundamental of vortex structure interactions, that of a dipole

with a stationary vortex. The idea of the dipole periapsis is here reproduced, and the inter-

vortex separations at the dipole periapsis are found. This is important in the phenomenon

of vortex annihilation, and we find that the dipole separation only becomes significantly less

than the initial separation during the first region of direct scattering, highlighting that perhaps

annihilation is most likely in the first region in the limit of the impact parameter ρ → −1

in systems where annihilation is possible. Here also given are the minimum and maximum

dipole sizes of the point vortex dipole, as this has an important bearing on the statistical

evolution of larger systems. Results attained are not dissimilar from the periapsis lengths, with

a dipole minimums/maximum separations frequently occurring at the dipole periapsis. We

again see the smaller dipole sizes occurring in region I, the first direct scattering region. We

also give the scattering angles of the three vortex collision both numerically and theoretically in

terms of elliptic integrals, with excellent agreement. The scattering angles in this case are very

important, as it is the scattering angles that are responsible for the mixing of larger turbulent

systems, in other words it is the scattering angle which determine which future interactions

are going to occur, and with the dipole-vortex collision being the most likely to occur this

importance is two-fold.

Also in this chapter we give a full analysis of the dipole-dipole collisions as we investigate

the effects of a dipole colliding with an identical sized vortex dipole, starting with the integrable

collision. The dipole-dipole collision is found to be non-integrable except in the specific case

where linear momenta vanish, that is: P = Q = 0, and the total circulation of the system is

zero:
∑4

i=1 κi = 0 reducing the problem to a three body interaction. This in effect is impossible

to observe in larger systems due to the linear momentum requirements requiring the dipoles

to collide on exactly opposite trajectories, which is unlikely to ever occur. Nevertheless, the

integrable case gives an insight into the more complicated non-integrable case, so it is here that

we started our investigation. Here the scattering angles given by Aref and Eckhardt [4] are

numerically found to be completely accurate in this case as opposed to the erroneous three-

vortex scattering angles, hence we omit the derivation of the scattering angles in this case and
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refer the reader to [4] regarding these. We again find the separations at the dipole periapsis in

this case also. As is to be expected, this gives a similar picture to the dipole-vortex periapsis

lengths found previously, within the exception that here we achieve vortex separations smaller

than the initial dipole size in both regions of direct scattering here. In addition the amount

of dipole shrinkage is much less here, possibly due to the impulse of the fourth vortex in the

system ensuring dipoles do not attain such proximity at the periapsis. Also, we examine the

dipole minimum/maximum separations of the dipole containing vortex 2 over the course of the

interaction, In particular noting the symmetry about ρ/d = 0 in this case. We again see the

dipole reaching minimum/maximum primarily at the periapsis.

The next section exploring the non-integrable dipole-dipole collision is the first time in the

current work where we examine a non-integrable vortex interaction. The non-integrable dipole-

dipole collision, defined as any identical dipole-dipole collision where the conditions P = Q = 0

and
∑4

i=1 κi = 0 do not hold, can be thought of as the simplest case of non-integrable motion,

and thus plays an important part in the larger systems. This interaction is considered with

both dipoles propagating towards a fixed target point with separations L1, L2 spanning from

the target point to each dipole midpoint, with each spanning line being separated by an angle of

incidence of ϕ. Here due to the non-integrablility of the problem the regions of exchange/direct

scattering are not so clearly defined as in the previous interactions. Hence, first a numerical

study is undertaken to identify the different regions, where we find direct and exchange scatter-

ing arranged in a star-shape, with exchange scattering occupying the central region where the

most intense scattering effects should be observed, as we would expect. Through this we also

identify several dynamics which we do not observe in previous cases, such as the “leap-frogging”

of one dipole from behind another and the propagation of a vortex with a spinning three-vortex

configuration. Once again in this case we solve for the scattering angles of the interaction,

finding the majority of scattering once again occurring during exchange scattering, and most

acutely occurring in regions of exchange scattering approaching the boundary between direct

and exchange scattering. We find even in the direct scattering regions the deflection is much

less than previously seen, it is concluded that this is due to the far-field interaction being weaker

in this case as the velocity decays as ∼ 1/r2 in this case as opposed to ∼ 1/r as in previous

cases. We also see the majority of the scattering being negative in this case with a small region
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of positive scattering in the upper left quadrant. Here we again plot the minimal and maximal

dipole separations with respect to the dipole containing vortex 2. As is congruent to previous

cases, we find in the pre-periapsis t < t∗ stage of interaction the dipole becoming smaller than

its initial separation t0, with the minimum in the exchange scattering case being equal to the

initial dipole separation showing as in previous cases that the dipole only grows in size dur-

ing the pre-periapsis stage. Interestingly we also find post-interaction the new dipole growing

or shrinking, highlighting the possibility of a persistent change in dipole size post-interaction.

Hence, we investigate this possibility of persistent dipole change, plotting the final dipole size

for each dipole at large enough t that the interaction can be considered completed and the

effect of dipoles upon one another can be considered negligible. It is easily observed that these

final plots contain dipole sizes that are much greater/smaller than the initial size, making the

non-integrable dipole-dipole collision the first interaction we have observed in which persistent

growth/shrinkage is possible. Moreover, the change in each dipole has a direct relation with

one another where if one dipole is to expand the other is then to contract, and through the

integrals of motion the final dipole sizes can be found to obey the relation d = d1d2 where d is

the original dipole separation and d1, d2 the separation of dipoles 1 and 2 respectively. Overall,

this dipole growth/shrinkage is of great importance in terms of statistical dynamics, as it is

thought this shrinkage/growth that different sized dipoles can be created, thus the statistical

make-up of a system at some point in the future is in part dependent upon how dipoles are

created in such systems, and we find the non-integrable dipole-dipole case the most simple

interaction in which this is possible. In chapter 4 we momentarily move away from the “vortex

against vortex” interactions to consider another fundamental type of interaction that occurs

upon dipoles in turbulent systems. Specifically we considered the effect of sound on a vortex

dipole, in particular how the outer impulse of the sound can affect (or not affect) the separation

of dipoles. So we inject dipoles into the Gross-Pitaevskii equation in order to measure how the

separation changes as the system evolves. This is done for a variety of different sound distribu-

tions, sound intensities, and initial dipole separations. We first examine the effects of varying

intensities in the case of Rayleigh-Jeans distributed sound. This in effect represents the sound

in thermodynamics equilibrium, with energy equi-partitioned across wave numbers. Through

numerous simulations we find the Rayleigh-Jeans distributed sound causes marked fluctuations
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in the dipole-size, resembling a kind of random walk as the sound waves cause increases or

decreases the dipole size. However, we see there is no general trend in this case, and on av-

erage the dipole remains around the initial dipole separation at t = 0. It is speculated that

through initialising the dipole vortices closer together, the fluctuations observed may be able

to push dipole vortices towards becoming closer than the healing length and thus annihilating,

although when considering the case of T = 1 × 10−4 at initial dipole separations d0 = π/4

and π/8 we do not observe this. Finally, we consider the case of Gaussian distributed sound

for several temperature values, and finally we observe the dipole shrinkage and annihilation

phenomena for the largest temperature value in this case. This suggests that it is in fact the

out-of-equilibrium nature of the sound present that causes this dipole shrinkage and annihila-

tion to occur, suggesting that the regime after annihilation can be considered an equilibrium of

the system that the system relaxes to, and hence underlining why this process was not observed

in the Rayleigh-Jeans sound cases.

The current work has served to be a thorough investigation into the fundamental dynamics

of vortex dipoles. The dynamics of vortex dipoles are of critical importance to the dynamics

of larger systems as a whole, through this we theorize that a preliminary understanding of the

most basic of vortex dipole interactions can be used in future to formulate a theoretical statistic

formulation of the larger systems of vortex motion, one in which the statistical agents are not

simple point vortices but instead are the vortex dipoles formed through the mutual interaction of

a vortex and anti-vortex. With this in mind we have considered the interactions of the simplest

vortex structures, as it is these that are most likely to occur in larger systems (one potential

avenue of future study is to formally consider the prevalence of certain interactions over others)

with this aim we consider the dipole-vortex and dipole-dipole interactions, in theory the two

collisions that have the highest probability of occurring. We have studied key quantities such as

the possible mixing of systems through the scattering angles as a result of these interactions, as

well as the possibility of larger or smaller sized dipoles being created through these interactions

as it is through this that dipoles may be created in larger N vortex systems. This study is

then extended into the more complicated vortex structures as we consider the interactions of

vortex clusters, we note the accuracy in dynamics of approximating the vortex cluster with

an equivalent strength point vortex, whilst continuing to investigate the crucial phenomena of
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dipole creation and the scattering of the system. Also, here we begin to consider the relevance of

the point vortex model to more classical turbulent systems, finding the possibility of an inverse

cascade in the point vortex model given certain forcing and dampening mechanisms. Finally, we

consider point vortices in the case of compressible effects, i.e. dipoles in the presence of sound.

In standard turbulence these kinds of interactions are likely to occur and so an understanding

of dynamics is crucial to forming a larger theory of turbulent motion through point vortices.

We then see under what sound distributions annihilation may occur and finally speculate of

the annihilation solution as a final statistical equilibrium of the system, no doubt an important

result when considering how an over-arching theory of turbulence due to vortex dipoles may be

implemented.

Through this study we thus develop the beginnings of a potential future statistical model of

dipole dynamics in the point vortex model, and prove the viability of capturing the dynamics

of larger turbulent systems through this. To recap; a natural requirement of such a model is

the presence of dipole dynamics in the turbulent system implying dilute vortices are present;

the distance between vortices is much greater than the core size of the vortices themselves.

Typical examples of systems fulfilling this requirement would be quantum turbulent regimes,

and quasi-2D classical regimes (the reduction to 2D dynamics is also a necessary requirement

for use of such a model, as could be expected of a model based around point vortex dynamics).

If this is fulfilled the system can then be thought of as a series of interactions between vortex

structures rather than a many body interaction of the numerous vortices in the system, and

we hypothesise that it is advantageous to model the development of such a system in terms

of the effects of vortex dipoles in such systems. This could be used to predict the various

quantities involved in the evolution of turbulent flow; for example the evolution of vorticity

by a kinetic equation as according to Chavanis [26], and various statistical quantities such

as the number of dipoles/clusters in the system over time. Additionally, in chapter 3 we

appear to capture the inverse cascade through the dipole effects we introduce, an extension

of this study could potentially model the development of the inverse cascade according to the

interactions undergone by dipoles. If development of such a model is accomplished, we are

provided with a much more computationally efficient method of modelling turbulent dynamics,

as the necessary computations are reduced from solving for every point vortex in a given system

K.Lydon, PhD Thesis, Aston University 2023 136



to only modelling relevant quantities regarding the most common of dipole interactions, and

large-scale point vortex clusters can also be approximated by point vortices of appropriate

strength, greatly simplifying the computations required. This computational advantage will be

most noticeable as the number of point vortices in the flow to be modelled becomes very large.
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Appendix A

Appendix

A.1 Dipole-vortex scattering angles

In the appendix of [5] Aref computed the dipole-vortex scattering angles in the three vortex

system. In this appendix, we will derive the scattering angles in this case due to is importance

and relevance in the current work, and in doing so, we will correct a mistake in the original

derivation. We follow as in [5]: consider the dipole-vortex collision as depicted in figure 2.1,

we will utilise the evolution equation for b2 (2.10), (note that Aref used the labelling b3) to

determine the scattering angle of the vortex dipole, or specifically the negatively signed point

vortex labelled as vortex 2. The reason for tracking vortex 2 is that this point vortex will always

be part of the final vortex dipole pair being the only negatively signed point vortex. Therefore,

we will use its direction of propagation as a proxy for the dipole scattering angle. Following Aref,

we express the point vortex model in terms of polar coordinates (ri, ϕi), emanating from the

origin (or center of circulation), defined by xi = ri cos(ϕi), yi = ri sin(ϕi), where ri presents

the distance of vortex i from the centre of circulation xΓ, and ϕi is the azimuthal angle. Then

the Hamiltonian equation of motion of the point vortex system can be transformed into polar

coordinates leading to

κiriṙi =
∂H

∂ϕi

, κiriϕ̇i = −∂H
∂ri

. (A.1)

Following the initial strategy outlined by Novikov [28], we can transform our system from

Cartesian coordinates to polar coordinates using the conservation laws (1.32) and (1.34), and
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simple cosine laws for computing vortex separation around the centre of circulation, with the

result for the dynamics of b2, the equations (2.10). This leads to an evolution equation for ϕ̇2

in terms of the variable b2 giving

ϕ̇2 =
θ

4πC

9− 3b2 +
4
θ
|b2|

(6− b2)|b2|
.

The scattering angle from the three vortex interaction can be subsequently defined by

∆ϕ2 = lim
t→∞

ϕ2(t)− lim
t→−∞

ϕ2(t) =

∫ ∞

−∞
ϕ̇2(t) dt.

Using (2.11) for ϕ̇2 and (2.10) enables us to define the scattering angle in terms of elliptic

integrals with respect to b2:

∆ϕ2 =

∫ ∞

−∞
ϕ̇2(t) dt =

∫ ∞

−∞
ϕ̇2(t)

1

ḃ2(t)
db2, (A.2)

= ±
√
θ

4

∫ L2

L1

b2(9− 3b2 +
4
θ
|b2|)

|b2|(6− b2)
√

(|b2| − 9
4
θ)
[

(3− b2)2 − 4
θ
|b2|
]

db2,

=



















∓
√
θ

4

∫ L2

L1

9− (3 + 4
θ
)b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2 if C > 0,

±
√
θ

4

∫ L2

L1

9− (3− 4
θ
)b2

(6− b2)
√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)
db2 if C < 0.

(A.3)

Here L1 = b2(t → −∞), and L2 = b2(t → ∞) which will depend upon the parameter C and

θ. The sign of the integrals will be determined by the sign of ḃ2 during the evolution of b2.

We find that we have to consider the approach of the dipole pre-scattering separately from

the evolution post-scattering. What we find is that the path taken by b2 during the scattering

process continuously evolves from the value of L1 towards the first real root of the equation

for ḃ2 (2.10). This root corresponds to the periapsis of b2 in which we can formally define as

the critical point. After which we must consider separately the evolution of b2 towards L2 (we

shall see that this corresponds to a change of sign of ḃ2). We can simplify the above result by

considering the dipole-vortex setup in each of the scattering regions (I, II, III) separately. In

each case this will specify the sign of C and the integral limits L1 and L2 and enable us to

perform the integral leading to an explicit formula for the scattering angle in terms of Legendre

forms of elliptic integrals.
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A.1.1 Region I (C > 0, 1/3 < θ)

In region I, the impact parameter ρ is large and positive and the scattering process will be

of direct scattering type. For the values of the parameters L1 = limt→−∞ b2 = −∞. As the

evolution progresses, the value of b2 will increase until the first real root of ḃ2 is reached. For

the values of C and θ in region I implies that roots β and γ are both complex meaning, so as

b2 must be real by definition, b2 must increase from −∞ until it reaches the physical boundary

α, whereupon it again rebounds back to −∞. This implies that the scattering angle is given

by the value of the integral:

∆ϕ2 =

√
θ

4

∫ α

−∞

9− (3 + 4
θ
)b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2

−
√
θ

4

∫ −∞

α

9− (3 + 4
θ
)b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2,

=

√
θ

2

∫ α

−∞

9− (3 + 4
θ
)b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2,

db2 =

√
θ

2

[(

3 +
4

θ

)∫ α

−∞

1

y
db2 +

(

9 +
24

θ

)∫ α

−∞

1

(b2 − 6)y
db2

]

,

where y =
√

(α− b2)(β − b2)(γ − b2). Note that coefficients for the first expression are deter-

mined by whether each particular integral is regarding the stage of the interaction before or

after scattering, e.g. in the first integral corresponds to b2 from −∞ to α, and so we expect

ḃ2 > 0 hence this fixes the sign (+ in this case) arise in the ḃ2 equation. The above integrals

can be reduced to their Legendre Normal forms by simple substitutions found in Labahn and

Mutrie [92]. The Legendre forms for the first and third complete elliptic integrals are given by

(note we are using the characteristic n, given with an inverse sign than the usual third complete

elliptic integral):

K(k) =

∫ π/2

0

1
√

1− k2 sin2 (µ)
dµ, Π(n, k) =

∫ π/2

0

1

(n sin2 (µ) + 1)
√

1− k2 sin2 (µ)
dµ.

To show this reduction, define a parameter A =
√

(β − α)(γ − α) and split the first integral in

the scattering angle expression into two with b2 ranging from −∞ to α−A and then α−A to
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α,

∫ α

−∞

1

y
db3 =

∫ α−A

−∞

1

y
db2 +

∫ α

α−A

1

y
db2,

and now consider the first integral on the right-hand side. Using the following substitutions

sin2 (µ) =
8A(α− b2)

(α + A− b2)2
, k2 =

2A+ 2α− β − γ

4A
,

this substitution gives a quadratic equation in b2, the correct root depends upon whether the

integral is from −∞ → α − A or α − A → α, using the positive root we can reduce the first

integral to the following elliptic integral

∫ α−A

−∞

1

y
db2 =

∫ π/2

0

1√
A
√

1− k2 sin2 (µ)
dµ =

1√
A
K(k).

The same is done for the second part from α−A to α, using the same expressions for A, k and

sin (µ) and the negative root for b2 leading to the second integral reducing to

∫ α

α−A

db2
y

=

∫ 0

π/2

−1√
A
√

1− k2 sin2 (µ)
dµ =

1√
A
K(k).

The final expression for the first integral becomes

∫ α

−∞

1

y
db2 =

∫ α−A

−∞

1

y
db2 +

∫ α

α−A

1

y
db2 =

2√
A
K(k).

The second integral can be similarly reduced by splitting the integral into two parts: one with

limits from −∞ to α− A and a second with limits from α− A to α

∫ α

−∞

1

(b2 − 6)y
db2 =

∫ α−A

−∞

1

(b2 − 6)y
db2 +

∫ α

α−A

1

(b2 − 6)y
db2
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using the same substitutions as before with n = −(α + A− 6)2/[4A(α− 6)] gives

=
1√
A

∫ π/2

0

sin2 (µ)
[

(α + A− 6) sin2 (µ) + 2A+ 2A cos (µ)
]
√

1− k2 sin2 (µ)
dµ

+
1√
A

∫ π/2

0

sin2 (µ)
[

(α + A− 6) sin2 (µ) + 2A− 2A cos (µ)
]
√

1− k2 sin2 (µ)
dµ,

=
2√

A(α + A− 6)

∫ π/2

0

(α + A− 6)2 sin2 (µ)− 2A(α + A− 6)
[

sin2 (µ) (α + A− 6)2 − 4A(α− 6)
]
√

1− k2 sin2 (µ)
dµ,

=
2√

A(α + A− 6)

[

K(k) +
1

2

(

A

α− 6
− 1

)

Π(n, k)

]

.

Subsequently, the full expression for the region I scattering angle can be simplified to

∆ϕ3 =

√

θ

A

[(

3 +
4A

θ(α + A− 6)

)

K(k) +
(α− A− 6)

θ (α + A− 6)
Π(n, k)

]

.

A.1.2 Region IIa (C > 0, 0 < θ < 1/3)

Region IIa corresponds the case where C > 0 and 0 < θ < 1/3 leading to exchange scattering

and as such the evolution of the variable b2 will evolve from the t → −∞ limit −∞ until it

reaches its periapsis at the root b2 = γ where the vortex interaction reaches the configuration

with b1 = b3. At this point, an exchange interaction occurs and b2 decreases towards −∞ again

(see phase point diagrams in [5] for clarification of this). Therefore, the scattering angle for

vortex 2 becomes

∆ϕ2 =

√
θ

4

∫ γ

−∞

9− (3 + 4
θ
)b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2

−
√
θ

4

∫ −∞

γ

9− (3 + 4
θ
)b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2,

=

√
θ

2

∫ γ

−∞

9− (3 + 4
θ
)b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2

=

√
θ

2

[(

3 +
4

θ

)∫ γ

−∞

1

y
db2 +

(

9 +
24

θ

)∫ γ

−∞

1

(b2 − 6)y
db2

]

.
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Again where we have defined the variable y =
√

(α− b2)(β − b2)(γ − b2). To reduce the above

formula into normal form, we begin by applying the substitution

sin2 (µ) =
α− γ

α− b2
, k2 =

α− β

α− γ
,

to both integrals. Then the first integral becomes

∫ γ

−∞

1

y
db2 =

2√
α− γ

K(k),

while the second integral becomes

∫ γ

−∞

1

(b2 − 6)y
db2 =

2√
α− γ

∫ π/2

0

sin2 (µ)

[(α− 6) sin2 (µ)− (α− γ)]
√

1− k2 sin2 (µ)
dµ,

=
2

(α− 6)
√
α− γ

[

K(k)−
∫ π/2

0

1
[

n sin2 (µ) + 1
]
√

1− k2 sin2 (µ)
dµ

]

=
2

(α− 6)
√
α− γ

[K(k)− Π(n, k)] ,

where the parameter n = (α − 6)/(γ − α). Finally, returning to the full expression for the

scattering angle for region IIa, we have

∆ϕ2 =

√

θ

α− γ

[(

3α + 4α
θ
− 9

α− 6

)

K(k)−
(

9 + 24
θ

α− 6

)

Π(n, k)

]

=

√

θ

α− γ

[

3K(k) +
4

θ
Π(n, k)

]

.

A.1.3 Region IIb (C < 0, 0 < θ < 8/3)

For region IIb, C < 0 with 0 < θ < 8/3 and therefore at the initial condition when the dipole is

far from the isolated point vortex, the variable tends towards b2 → ∞ as t→ ∞. As the vortex

system evolves, then b2 reduces until it reaches it periapsis at the largest root of the ḃ2 equation

for this parameter region, i.e. b2 = γ̄. Once at the periapsis point, the positive vortices exchange

in the dipole and the dipole propagates away with the variable b2 increasing back towards ∞.

Therefore, initially b2 is decreasing (hence ḃ2 < 0) pre-scattering, while post-scattering we have
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ḃ2 > 0. This defines the signs to take in the scattering angle formula:

∆ϕ2 = −
√
θ

4

∫ γ̄

∞

9− (3− 4
θ
)b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2

+

√
θ

4

∫ ∞

γ̄

9− (3− 4
θ
)b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2

=

√
θ

2

∫ ∞

γ̄

9− (3− 4
θ
)b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2

=

√
θ

2

[(

3− 4

θ

)∫ ∞

γ̄

db2
y

+

(

9− 24

θ

)∫ ∞

γ̄

db2
(b2 − 6)y

]

,

where again we have defined a variable y =
√

(b2 − ᾱ)
(

b2 − β̄
)

(b2 − γ̄). We reduce both

integrals in the same way as before, using the substitutions

sin2 (µ) =
b2 − γ̄

b2 − ᾱ
, k2 =

ᾱ− β̄

γ̄ − β̄
,

The first integral subsequently becomes

∫ ∞

γ̄

1

y
db2 =

2
√

γ̄ − β̄

K(k),

and the second integral becomes

∫ ∞

γ̄

1

(b2 − 6)y
db2 =

2
√

γ̄ − β̄

∫ π/2

0

sin2 (µ)− 1
[

(ᾱ− 6) sin2 (µ) + 6− γ̄
]
√

1− k2 sin2 (µ)
dµ

=
2

(6− γ̄)

√

γ̄ − β̄

∫ π/2

0

sin2 (µ)− 1

[n sin2 (µ) + 1]
√

1− k2 sin2 (µ)
dµ,

=
2

(ᾱ− 6)

√

γ̄ − β̄

[

K(k)− ᾱ− γ̄

6− γ̄
Π(n, k)

]

,
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where we have introduced a new parameter n = (ᾱ− 6)/(6− γ̄). Then the final full expression

for the scattering angle in region IIb is

∆ϕ2 =

√

θ

γ̄ − β̄

[

(

3ᾱ− 4ᾱ
θ
− 9

ᾱ− 6

)

K(k)−
(

(

9− 24
θ

)

(ᾱ− γ̄)

(ᾱ− 6)(6− γ̄)

)

Π(n, k)

]

=

√

θ

γ̄ − β̄

[

3K(k)− 4

θ

(ᾱ− γ̄)

(6− γ̄)
Π(n, k)

]

.

A.1.4 Region III (C < 0, 8/3 < θ)

For region III, the final case corresponding to direct scattering with C < 0 and 8/3 < θ, we have

that in the limit of t→ −∞, b2 → ∞, with b2 initially decreasing until it reaches the periapsis

point of b2 = ᾱ, where the sign of ḃ2 changes post-scattering and increases back up towards

∞. Therefore, the scattering angle integral (A.2) becomes (here the sign of each integral is

determined by the sign of ḃ2 pre- and post-scattering)

∆ϕ2 = −
√
θ

4

∫ ᾱ

∞

9− (3− 4
θ
)b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2

+

√
θ

4

∫ ∞

ᾱ

9− (3− 4
θ
)b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2,

=

√
θ

2

∫ ∞

ᾱ

9− (3− 4
θ
)b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2

=

√
θ

2

[(

3− 4

θ

)∫ ∞

ᾱ

db2
y

+

(

9− 24

θ

)∫ ∞

ᾱ

db2
(b2 − 6)y

]

,

with y =

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄). The substitution in this case is given as:

sin2 (µ) =
b3 − ᾱ

b3 − γ̄
, k2 =

γ̄ − β̄

ᾱ− β̄
,

which leads to the integrals simplifying to

∫ ∞

ᾱ

1

y
db2 =

2
√

ᾱ− β̄

∫ π/2

0

1
√

1− k2 sin2 (µ)
dµ =

2
√

ᾱ− β̄

K(k),
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and

∫ ∞

ᾱ

1

(b3 − 6)y
db3 =

2
√

ᾱ− β̄

∫ π/2

0

sin2 (µ)− 1
[

(γ̄ − 6) sin2 (µ) + 6− ᾱ
]
√

1− k2 sin2 (µ)
dµ,

=
2

(γ̄ − 6)

√

ᾱ− β̄

[

K(k)− γ̄ − ᾱ

6− ᾱ
Π(n, k)

]

.

Where we have defined the parameter n = (γ̄ − 6)/(6 − ᾱ). Subsequently, the final scattering

angle expression in Legendre normal form is given as

∆ϕ2 =

√
θ

(γ̄ − 6)

√

ᾱ− β̄

{[(

3− 4

θ

)

γ̄ − 9

]

K(k) +
4 (γ̄ − ᾱ)

θ
Π(n, k)

}

.

A.1.5 Summary of the dipole-vortex scatting angle normal form re-

duction

In summary, the dipole-vortex scattering angle calculation is given by the solution to (A.2),

where the path along which the integral is taken is defined by the values of variable L1 = b2(t→

−∞) and L2 = b2(t → ∞) via the periapsis of b2. This means in (A.2), we must consider the

approach and departure of the dipole separately. For the approach, we must use 2.10 with

the appropriate sign corresponding to the sign ḃ2 for our region, while after scattering the

angle will be determined by (A.2) using the other sign of (2.10) as in all cases the value of

b2(t → −∞) = b2(t → ∞). For each case we have shown that the scattering angle formulae

correspond to the following integrals:

∆ϕ2 =











































































√
θ

2

∫ α

−∞

9−
(

3 + 4
θ

)

b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2 in region I,

√
θ

2

∫ γ

−∞

9−
(

3 + 4
θ

)

b2

(6− b2)
√

(α− b2)(β − b2)(γ − b2)
db2 in region IIa,

√
θ

2

∫ ∞

γ̄

9−
(

3− 4
θ

)

b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2 in region IIb,

√
θ

2

∫ ∞

ᾱ

9−
(

3− 4
θ

)

b2

(6− b2)

√

(b2 − ᾱ)(b2 − β̄)(b2 − γ̄)

db2 in region III.

(A.4)
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These can then be further simplified in the form of linear combinations of the Legendre complete

forms of elliptic integrals.

∆ϕ2 =
√
a1 [a2K(k) + a3Π(n, k)] , (A.5)

where each constant coefficient a1, a2, a3 and parameters k and n are given in table A1.

Table A1: Coefficients a1, a2, a3 and parameters k and n for the dipole-vortex scattering angle
are presented by region of interaction. The full scattering angle of the integrable case is deter-
mined from the Legendre normal form equation (A.5). Note that in region IIa we have defined
an auxiliary parameter A2 = (γ − α)(β − α).

Region a1 a2 a3 k2 n

I
θ

α− γ
3

4

θ

α− β

α− γ

6− α

α− γ

IIa
θ

A
3 +

4

θ
+

9 + (24/θ)

α + A− 6

[A/(α− 6)− 1] [9 + (24/θ)]

2(α + A− 6)

A− (β + γ)/2 + α

2A
−(α + A− 6)2

4A(α− 6)

IIb
θ

γ̄ − β̄
3 − [9− (24/θ)] [ᾱ− γ̄]

(ᾱ− 6)(6− γ̄)

ᾱ− β̄

γ̄ − β̄

ᾱ− 6

6− γ̄

III
θ

ᾱ− β̄

3γ̄ − (4γ̄/θ)− 9

γ̄ − 6
− [9− (24/θ)] [γ̄ − ᾱ]

(γ̄ − 6)(6− ᾱ)

γ̄ − β̄

ᾱ− β̄

γ̄ − 6

6− ᾱ

A.2 Numerical code

In this section we detail the numerical methods used to solve the point vortex system. The

importance of solving the system numerically is two-fold; firstly it allows us to cross-examine

our theoretical results to ensure reliability, second it gives a framework for solving systems

comprising more than three vortices, which is in general not possible to solve analytically as

already stated. Technically, the point vortex model as described previously consists of a system

of differential equations based on Hamilton’s canonical equations and the conserved Hamiltonian

H. This is essentially an initial value problem with the initial vortex coordinates as the initial

conditions. It is then natural to assume that any standard algorithm for solving this kind of

problem, such as a standard Runge-Kutta method of order 4, will suffice here. When running

basic simulations on the point vortex equations using this method however we quickly find that

the supposed conserved quantities actually do not remain constant with respect to time in the

numerics. This is due to the phenomenon where dipole vortices being close together leads to
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faster dipole travel and so over a fixed time step gives a greater error. Clearly we are in need

of a more sophisticated method for solving the system.

In order to determine where the error lies we must first examine the Runge-Kutta family of

algorithms in detail. To begin we briefly examine the widely known fourth order Runge-Kutta,

or “RK4”, method. The RK4 method and following theory is reproduced from Burden and

Faires [134]. Given an ordinary differential equation and also initial value, beginning at time

t = a and ending at t = b:

ẏ = f(t, y), y(a) = y0, a ≤ t ≤ b.

Note that in this case our f refers to the original equations of motion for the point vortex

system, whereas the y in our case would be the original vortex positions. Here yi = y(ti) is the

unknown we wish to find. Using a step size 0 < h < 1 such that ti+1 = ti + h we approximate

yi+1 as:

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4),

with :

k1 = f(ti, yi),

k2 = f(ti +
h

2
, yi +

k1
2
),

k3 = f(ti +
h

2
, yi +

k2
2
),

k4 = f(ti + h, yi + k3).

Hence, this basic Runge-Kutta method approximates yi+1 as the previous approximation yi

plus a weighted average of the increments k. We note the number of function calls involved in

this process, i.e. the number of times it is necessary to evaluate function f at each point in

time. Also, this particular Runge-Kutta method gives a local truncation error of O(h4). The

truncation error can be reduced by using a higher order Runge-Kutta method; however this

has the effect of increasing the number of function calls required per time point whilst having

little effect on conservation laws. We can also generalize the Runge-Kutta method to give order
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approximations. We give the arbitrary Runge-Kutta method of s stages as:

yn+1 = yn + h

s
∑

i=1

biki, (A.6)

where

k1 = f(tn, yn),

k2 = f(tn + c2h, yn + h(a21k1)),

k3 = f(tn + c3h, yn + h(a31k1 + a32k2)),

...

ks = f(tn + csh, yn + h(as1k1 + as2k2 + · · ·+ as,s−1ks−1)).

(A.7)

In order to specify the particular Runge-Kutta method to be used one must provide the number

of stages s, as well as the coefficients aij known as the Runge-Kutta matrix, the coefficients bi

known as the weights, and the coefficients ci known as the nodes.

In general, we note that approximations become more accurate as a higher order Runge-

Kutta, and so a higher number of function calls, is used. This effect however becomes increas-

ingly less prominent as s > 5, whereas the function calls continually increase resulting in a

longer runtime as order increases. It is clear that in order to achieve a more accurate simu-

lation we must either use a higher order system or reduce the step size to achieve a smaller

error. However, if h is reduced then we will then have an increased number of time points,

in other words it will take longer to reach our endpoint t = b and as such this will result in

more iterations of the approximation step and so more function calls overall. Also as already

discussed, by increasing the order of the system increases the amount of functions calls and

so is also not an attractive option. We then need a procedure that will reduce error as much

as possible such that integrals of motion are conserved, whilst at the same time not reducing

the time step h, or considering Runge-Kutta methods of too high an order, unless absolutely

necessary.

To solve this problem, we will introduce an adaptive time stepping scheme. Essentially we

will first execute a Runge-Kutta method of order 4 to attain a first approximation we will denote

zi+1, we will then apply a more accurate Runge-Kutta method of order 5 also. We will then allow
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this fifth order solution to be our approximation of the next time point i.e. yi+1. The purpose

of calculating both fourth and fifth order approximations is that it allows us to calculate an

error term |yi+1−zi+1|, this represents the error of the fourth order approximation with respect

to the next time point approximation yi+1. Now using this error term we can adjust the step

size h such that the error is below a certain threshold, such that error is kept as low as possible

and that invariants are hopefully conserved. Specifically we are employing coefficients from

the so called “Dormand-Prince” or “RK5(4)7M” method, introduced previously by Dormand

and Prince [135]. The coefficients in this method are chosen especially to ensure the highest

accuracy in the fifth order approximation. Next we must decide how to adjust our time step

according to the error. We will implement the commonly used local elementary controller [136]:

hi+1 = hi

(

ϵ

|yi+1 − zi+1|

) 1

5

, (A.8)

where ϵ is a user defined error tolerance; the larger the value of ϵ, the larger the new step size

hi+1 will be. It is also important in such an algorithm for reasons of computational stability is

to limit how much h can increase or decrease over a given time step adaption, specifically we

apply a lower limit to the possible time step of hmin = 10−7, an upper limit of hmax
0.5.

We now have a complete method for solving the system of point vortices numerically, where

error is as small as possible. Through simulations in the current work we consistently use

an error tolerance of 10−12. We give the coefficients to the Dormand-Prince method in the

form of a Butcher tableau, a commonly used method for displaying the coefficients used in a

Runge-Kutta family method. The Butcher tableau expresses the coefficients for a Runge-Kutta

method with s stages as such:

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 . . . as,s−1

b11 b12 . . . b1,s−1 b1,s
b21 b22 . . . b2,s−1 b2,s

Table A2: Basic Butcher tableau showing a Runge-Kutta method of arbitrary order.

With aij, bi, ci corresponding to the coefficients already shown in (A.6) and (A.7). We then
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express our Dormand-Prince method as:

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

35
384

0 500
1113

125
192

−2187
6784

11
84

0 4th order
5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

5th order

Table A3: Butcher tableau showing the coefficients of the Dormand-Prince method.

The absolute difference between approximations gives the error of the fourth order approx-

imation as discussed previously.

To briefly summarise our numerical method, we express the coordinates of a particular

vortex system in terms of the position vector xi = (xi, yi). In order to solve a given system we

apply the Dormand-Prince adaptive time step method to each ẋi and ẏi, to then approximate

both xi and yi values at the next time point until the time end point t = b is reached. Note here

we use the arbitrary formulation ẋ = f(t,x) with a ≤ t ≤ b and initial condition y(t = a) = α.

Coefficients are as given in the Butcher tableau in the previous section. The pseudocode for

the Dormand-Prince method is given:

set a, b

set h

set hmin

set hmax

set ϵ

set vector x

set vector t

t0 = a

y0 = α

function f(t,x)

return ẋ(t,x)

end function
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function Controller(i, E)

h = h
(

ϵ
E

) 1

5

if h < hmin then

h = hmin

end if

if h > hmax then

h = hmax

end if

end function

function Approximate(i)

k1 = hf(ti,xi)

k2 = hf(ti + c2h,xi + a21k1)

k3 = hf(ti + c3h,xi + a31k1 + a32k2)

...

k7 = hf(ti + h,xi + a71k1 + a73k3 + a74k4 − a75k5 + a76k6)

RK4 = xi + b11k1 + b13k3 + b14k4 − b15k5 + b16k6

xi+1 = xi + b21k1 + b23k3 + b24k4 − b25k5 + b26k6 + b27k7

Controller(i, |xi+1 −RK4|)

end function

i = 0

while ti < b do

Approximate(i)

ti+1 = ti + h

i = i+ 1

end while

This forms the complete numerical method we will use to solve the system. We will consider

the most basic non-trivial cases of vortex motion both theoretically and numerically in order

to determine the reliability of our numerical method. We examine the case of two identical

vortices in proximity and the case of vortex and anti-vortex in proximity.
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A.2.1 Identical vortex evolution

First we examine the case of identical vortices in proximity. By basic calculation we can

determine velocity of each vortex in the identical vortex case. We start with two point vortices

with Cartesian coordinates of vortex 1 at (0, 0.4) and vortex 2 at (0,−0.4) and with circulations

κ1 = κ2 = 1. We calculate the velocity of each directly using (1.31) as:

ẋ1 = − 1

2π

κy1,2
ℓ2i,j

= −0.19894,

ẋ2 = − 1

2π

κy2,1
ℓ21,2

= 0.19894,

ẏ1 =
1

2π

κx1,2
ℓ21,2

= 0,

ẏ2 =
1

2π

κx2,1
ℓ21,2

= 0.

Each vortex in the system exerts an initial impulse upon the other giving each vortex a certain

x velocity but with zero velocity in the y direction, due to starting the system with x1 = x2 = 0,

however once we pass the initial time point vortex separation in the x direction xij ̸= 0, implying

each vortex will now have velocity in the y direction due to (1.31). Also it is clear from these

basic calculations that ẋ1 = −ẋ2 and ẏ1 = −ẏ2 throughout the entire system. Using the length

formula (1.30) we can say that:

ℓ21,2 = (x1 − x2)
2 + (y1 − y2)

2,

=⇒ d

dt
ℓ21,2 = 2(x1 − x2)(ẋ1 − ẋ2) + 2(y1 − y2)(ẏ1 − ẏ2),

=
κ

πℓ21,2
(−2x1,2y1,2 + 2y1,2x1,2) = 0,

=⇒ ℓ21,2 = 0 =⇒ ℓ1,2 = 0.

The length between vortices hence remains constant, noting the individual vortex velocities this

implies that vortices in such a formation rotate counter-clockwise around the center of vorticity

(0, 0) with constant radius ℓ1,2 = 0.8. We can also deduce the angular velocity of the system
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