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Abstract: In the cybersecurity industry, where legitimate transactions far outnumber fraudulent ones,
detecting fraud is of paramount significance. In order to evaluate the accuracy of detecting fraudulent
transactions in imbalanced real datasets, this study compares the efficacy of two approaches, random
under-sampling and oversampling, using the synthetic minority over-sampling technique (SMOTE).
Random under-sampling aims for fairness by excluding examples from the majority class, but this
compromises precision in favor of recall. To strike a balance and ensure statistical significance,
SMOTE was used instead to produce artificial examples of the minority class. Based on the data
obtained, it is clear that random under-sampling achieves high recall (92.86%) at the expense of low
precision, whereas SMOTE achieves a higher accuracy (86.75%) and a more even F1 score (73.47%) at
the expense of a slightly lower recall. As true fraudulent transactions require at least two methods for
verification, we investigated different machine learning methods and made suitable balances between
accuracy, F1 score, and recall. Our comparison sheds light on the subtleties and ramifications of
each approach, allowing professionals in the field of cybersecurity to better choose the approach that
best meets the needs of their own firm. This research highlights the need to resolve class imbalances
for effective fraud detection in cybersecurity, as well as the need for constant monitoring and the
investigation of new approaches to increase applicability.

Keywords: machine learning; fraud detection; synthetic minority over-sampling technique (SMOTE);
under-sampling

1. Introduction

The way we handle monetary transactions has been revolutionized by the fast devel-
opment of technology and the widespread availability of digital payment solutions. There
has been an upsurge in digital payment fraud with the increased use of digital payment
methods [1]. The safety and reliability of online financial transactions are constantly being
threatened by cybercriminals who develop new methods of exploiting loopholes in pay-
ment systems. This paper aims to examine, in the context of the digital era and Industry
4.0, the different approaches used to detect and combat digital payment fraud. This re-
search’s overarching goal is to better understand the threats to digital payment systems and
devise solutions to counter them. Understanding the many different types of fraudulent
activity that may occur with digital payment systems is essential for grasping the function
that fraud detection serves in the current age [2]. Examples include things like identity
theft, account takeovers, phishing, malware attacks, and so on and so forth. This kind of
fraudulent conduct may severely impact individual consumers, businesses, and financial
institutions [3]. Some of the negative effects that may result from such actions include
financial losses, damage to a brand, and a drop in a customer’s faith in a business. Artificial
intelligence (AI), and big data analytics are some examples of digital technologies that are a
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part of the fourth industrial revolution (Industry 4.0). This transformation has introduced
both new opportunities and new challenges in the area of fraud detection. AI and big data
analytics are some examples of these digital technologies [4]. These technologies make
enormous quantities of data accessible, and they also provide strong analysis tools, which
enable the immediate identification of patterns, anomalies, and suspicious activities. For
fraud detection systems to be effective, they need to be able to deal with the increased risks
and complexities caused by introducing new technologies [5].

The objectives of the Special Issue on intrusion detection systems (IDS) in Internet of
Things (IoT) networks are closely aligned with the goals of this research. Even though we
are primarily concerned with credit card fraud detection, many ongoing challenges have
the same scenarios and requirements: managing massive datasets, spotting unusual trends,
striking a balance between false positives and negatives, and using wireless technology or
IoT for internet connections. Therefore, it is highly relevant to apply the machine learning
(ML) methods we typically investigate for fraud detection for IDS in IoT scenarios, as an
increasing number of frauds are taking place on mobile devices. Furthermore, our analysis
of class imbalance problems is extremely pertinent, since similar imbalances between
benign and malevolent traffic patterns may arise in IoT networks. Our objective is to
provide a valuable contribution to the field of fraud detection methodologies, an endeavor
with the potential to improve security in IoT and other networked systems.

1.1. Background

The increasing number of digital payment methods demonstrates how the digital
revolution has revolutionized how we conduct financial business. These methods include,
but are not limited to, the use of credit cards, debit cards, online banking, mobile wallets,
and peer-to-peer (P2P) networks [6]. The accessibility and ease that digital payments bring
to customers, businesses, and whole industries may be what has led to their widespread
adoption. However, along with the rise in the popularity of these kinds of transactions
has also come an increase in the incidence of fraudulent activity. Criminals are always on
the lookout for new entry points into the financial system as well as novel approaches to
taking advantage of the vulnerabilities that exist within it to perpetrate fraud. These cons
not only result in monetary losses for the targeted companies but also damage consumers’
confidence in online payment systems and impede the growth of digital commerce [7].

Fraudulent activity involving digital payment systems may have devastating effects
not just on companies but also on individual customers. There is a possibility that a
consumer’s credit score may suffer and that they will lose money and/or have difficulty
recovering it. In addition to monetary losses, organizations risk suffering damage to their
reputations, being legally liable for their actions, and losing consumers. According to [3],
merchants, payment processors, and banks are responsible for protecting their customers’
personal information and the financial transactions of their consumers. Traditional methods
of fraud detection, such as human inspections and rule-based algorithms, are ineffective
due to the scale and complexity of the fraudulent activity that is now occurring with digital
payment systems. Therefore, there is an urgent need for fraud detection methods that are
more cutting-edge and adaptable and that can foresee and prevent fraudulent behaviors.

Additionally, technologies based on the Industry 4.0 standards have added layers of
complexity to the already-difficult process of identifying fraudulent activity [8]. According
to [3], some of the potential applications of these technologies in the fight against fraud
include real-time monitoring, the identification of anomalies, predictive analytics, and
the secure transmission of data. There are a variety of challenges that come along with
them, including increased attack surfaces, issues over privacy, and the need to implement
stringent security measures.

This research seeks to investigate and evaluate the efficacy of approaches for detecting
such crimes in the context of the digital age and the Fourth Industrial Revolution [9]. Given
the ever-changing nature of digital payment fraud and the potentially game-changing na-
ture of Industry 4.0 technologies, this research seeks to investigate and assess the efficacy of
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such approaches [10]. While aiming to strengthen the safety of online financial transactions
and reduce the prevalence of fraudulent activities, this research seeks to improve existing
fraud detection systems by making them more resilient and adaptable.

1.2. Aims

The primary aim of this research is to evaluate and improve fraud detection strategies
for digital payment systems in the era of digitalization and Industry 4.0. Some of the
specific goals include the following:

• Analyzing the present situation regarding digital payment fraud and the effects it has
on customers, businesses, and financial institutions;

• Investigating cases involving unauthorized account takeover, ID theft, phishing, and
malware assaults, which are only some of the kinds of online payment fraud that may
be identified and categorized;

• Assessing how reliable, efficient, and flexible current methods are for detecting fraud-
ulent online payments;

• Examining the use of AI, and big data analytics as part of Industry 4.0 and the IoT to
improve digital payment fraud detection.

1.3. Objectives

To achieve the aims described above, this research will focus on the following objectives:

• Conducting a comprehensive literature review that examines the present status of
digital payment fraud, its different kinds, trends, and impact on stakeholders and
examining the potential of AI, big data analytics, and the IoT to improve digital
payment fraud detection as part of Industry 4.0;

• Analyzing how well machine learning, predictive analytics, and anomaly detection
work together to identify and stop online fraud along with the effectiveness, efficiency,
scalability, and responsiveness of current methods for detecting fraud;

• Investigating the cases of fraudulent transactions and suitable methods for analyzing
them correctly and appropriately, along with recommending changes to current fraud
detection systems and suggesting novel ways to make use of the features offered by
Industry 4.0 software;

• Analyzing how alternative fraud detection measures affect user happiness, customer
loyalty, and the likelihood that they will switch to digital payment systems. To success-
fully prevent digital payment fraud in Industry 4.0, organizations and stakeholders
need access to actionable information and best practices.

The overall objective of this research is to use the advantages of the Internet Age and
the technology of Industry 4.0 to create more reliable fraud detection techniques for online
payment systems.

1.4. Research Questions

• What methods are effective in detecting fraudulent transactions and double checking
their validity?

• How do we differentiate between true and false positives in fraudulent transactions
and balance differences between accuracy, recall, and F1 score if true fraudulent
transactions are small in number?

• What are the security and privacy risks and benefits of using Industry 4.0 technologies
like AI to improve digital payment fraud detection?

2. Related Work

New difficulties in spotting and stopping fraud have arisen due to the exponential
expansion of digital payment systems in the Digital Age and the rise of Industry 4.0 [11].
Earlier studies in this area mostly concentrated on tried-and-true fraud detection strategies
like rule-based systems and anomaly detection. However, the complexity and quantity of
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data created by digital payment systems have proven too much for these approaches to
handle [3].

2.1. Advanced Technologies in Fraud Detection

Improved capacities to detect and prevent fraudulent activity in digital payment
systems have been made possible by the advent of cutting-edge technologies like AI, ML,
data analytics, and predictive modeling. There are AI and ML that algorithms can scan
large quantities of data and spot red flags that identify frauds. For example, supervised
learning algorithms like logistic regression and decision trees may be trained on labeled
datasets to determine if a transaction is fraudulent [12]. These algorithms can continually
learn from fresh data and modify their behavior in response to changing fraud trends,
enhancing their detection capabilities.

The field of fraud detection has also made use of unsupervised learning strategies
like clustering and outlier identification. Without the use of predetermined labels, these
methods can find trends and outliers in transaction data. Algorithms that cluster like
transactions together may spot patterns that may indicate fraudulent behavior [13]. In
contrast, outlier detection algorithms can spot very unusual financial transactions that
may point to fraudulent activity. The identification of fraud has been greatly aided by
data analytics and predictive modeling methods. Organizations can identify fraudulent
actions in real time by processing massive quantities of transaction data using big data and
sophisticated analytics techniques. Indicators of fraudulent activity in transaction data may
be uncovered by using data-mining methods like association rule mining and sequential
pattern mining [14]. The chance of a transaction being fraudulent may be predicted with
the use of historical data by using predictive modeling techniques like logistic regression
and random forests.

There are a number of benefits to using this modern technology instead of more conven-
tional ones. It is possible to identify and prevent fraud in real time because these methods
can manage the quantity and variety of data associated with digital payments [15]. Artifi-
cial intelligence and machine learning-based systems have the distinct benefit of spotting
previously undiscovered trends and adapting to developing fraud schemes. Furthermore,
by automating the examination of huge datasets, these technologies may minimize false
positives and boost the efficiency of fraud detection operations.

2.2. Data Analytics and Big Data

The potential to collect and analyze massive quantities of transactional data in real time
has made data analytics and the use of big data important tools in the area of fraud detection.
Such tools provide invaluable insights into fraudulent activity inside online payment
systems and greatly improve our ability to detect and prevent it. It is difficult to identify
fraudulent transactions using conventional approaches due to the enormous quantity and
complexity of data provided by digital payment systems. Data analytics techniques like
data mining and pattern recognition are required to decipher this mountain of data [16].
Organizations may find potentially fraudulent patterns, trends, and anomalies using
cutting-edge algorithms and statistical models. The practice of using data-mining tools to
discover patterns and correlations within data is widely employed to detect fraudulent
activity. For instance, association rule mining may be used to spot patterns of behavior that
point to the presence of fraud [12]. Using sequential pattern mining, one may learn the
chronological sequence of transactions and spot patterns that are indicative of fraudulent
activity. Organizations may use these methods to spot trends that might otherwise remain
undetected using rule-based systems or human inspection. Predictive modeling is another
important part of data analytics for spotting fraud.

2.3. Challenges and Research Gaps

There have been immense developments in the methodologies used to identify fraud
in digital payment systems, but many challenges and research gaps are still present. These
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issues reduce the efficiency and efficacy of fraud detection activities and must be researched
further. Some of the most significant issues and still-unresolved inquiries are noted below:

• It is essential for fraudulent acts to be uncovered as soon as possible to limit monetary
losses. While much progress has been made toward real-time detection capabilities,
many current fraud detection systems continue to face obstacles. There are tech-
nological hurdles that must be overcome in order to process massive quantities of
transactional data in real time and use sophisticated analytics approaches under tight
time restrictions.

• Fraudsters’ methods of avoiding being caught are also constantly developing and
changing. These ever-changing fraud patterns might be difficult to identify using
conventional approaches. The authors of [3] argue that further work is required
to develop detection technologies that can swiftly identify and react to new types
of fraud.

• There are privacy issues since detecting fraud sometimes requires analyzing private
client information. Finding a happy medium between detecting fraud efficiently and
keeping customers’ personal information secure is difficult. More work is needed to
develop privacy-protecting fraud detection algorithms that can successfully identify
fraudulent activity without compromising data security.

• Combining many cutting-edge methods, including artificial intelligence, machine
learning, data analytics, and blockchain, has the potential to improve fraud detection
efforts significantly. However, there is still work to be done to integrate these tech-
nologies successfully. Integrating various technologies into complete fraud detection
systems requires further studies to establish frameworks and approaches [17].

• Effective fraud detection often requires cooperation between financial institutions,
payment processors, and regulatory organizations. By working together, businesses
and law enforcement agencies may pool their resources to better identify and prevent
fraud. However, issues regarding data sharing, data governance, and legal concerns
must be resolved to promote cooperation and information exchange.

• As approaches for detecting fraud become more sophisticated, there will be a greater
need for models that can be easily explained and interpreted. It is critical to establish
confidence and provide transparency in the fraud detection process by understanding
the reasoning behind fraud detection results and evaluating the judgments made by
the models employed. Further study is required to allow advanced fraud detection
systems to produce interpretable models and offer reasons for their conclusions.

It is crucial to address challenges in improving the efficacy and efficiency of fraud
detection technologies and fill the research gaps.

2.4. Future Directions

There are several important areas where future research may be directed to help
solve problems and improve fraud detection techniques for digital payments [18]. These
prospective steps include technical development, cooperative activities, and government
oversight. Here are a few promising avenues for further study:

- Artificial intelligence (AI), machine learning (ML), data analytics, and blockchain need
to be investigated further with respect to how they may work together. More effective
and reliable fraud detection systems may be developed via novel ways that combine
the benefits of various technologies. For instance, combining blockchain technology
with AI and ML algorithms may improve security, transparency, and the ability to
identify fraud in real time [19].

- The objective of technological progress should be to make it possible to identify and
prevent fraud in real time. Scalable and efficient algorithms that can handle massive
quantities of data in real time, enabling fast detection of and reaction to fraudulent
activity, should be the focus of future research. Financial losses and the effects of fraud
may be reduced significantly if they can be uncovered in real-time.
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- Research into consumer behavior patterns and the creation of behavior-based fraud
detection algorithms is a promising avenue for the study of fraud. Customers’ browser
histories, transaction records, and interactions with online payment gateways may all
be analyzed for discrepancies that might point to fraudulent actions [20]. The accuracy
of fraud detection may be greatly improved by creating models that use behavior
analytics and machine learning.

- In order to successfully address digital payment fraud, it is essential for industry
players such as financial institutions, payment processors, and regulatory agencies
to work together and share relevant data [21]. For businesses to pool their data and
insights to develop more thorough fraud detection models, more efforts have to be
made toward building frameworks and methods for safe and ethical data sharing.
When businesses work together, best practices, fraud information, and lessons learned
may all be shared more easily.

- The safety and reliability of electronic payment systems depend on the establish-
ment of comprehensive regulatory frameworks and standards. There is a need for
more investigation into regulatory factors and the development of guidelines and
standards for fraud detection. Data privacy, client permission, data exchange, and
conformity with current financial rules are all concerns that need to be addressed by
these frameworks.

- Researchers and professionals in the industry may improve the efficacy, efficiency,
and safety of fraud detection in digital payment systems by exploring these future
paths. Businesses and customers alike will benefit from a more secure and reliable
digital payment ecosystem if participants in this ecosystem adopt new technologies,
cooperate, and adhere to regulatory frameworks.

3. Research Methodology

In this section, we will discuss the methodological steps of conducting this study.

3.1. Study Dataset

The dataset we used in this fraud detection study was obtained from Kaggle (Credit
Card Fraud Detection (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud/data
(accessed on 15 June 2024))) [22]. It consisted of transactions made by European credit
cardholders in September 2013. There are 284,807 transactions in the data, of which
492 (0.172%) are fraudulent; thus, the positive class is significantly under-represented.
Transformation was initially applied to the data by using the PCA algorithm to select key
predictor elements and address privacy concerns, which means that the data were provided
with anonymized numerical variables, e.g., V1, V2,. . ., V28, and not in their original raw
form. Only the ‘Time’ and ‘Amount’ features were not subjected to PCA transformation;
hence, the features V1, V2,. . ., V28 were the major components retrieved. The ‘Amount’
feature represents the amount of the transaction, and the target of interest in this study is
the ‘Class,’ with a value of 1 if fraud has occurred or 0 otherwise.

3.2. Experimental Execution

This research was implemented based on a pipeline consisting of three key phases, as
summarized in Figure 1.

In the first step, we performed several data exploration tasks on the given fraud data,
including determining variable distributions and performing correlation analysis so that
we could understand associations between data variables as well as the importance of
predictors to the target variable we were attempting to predict—that is, whether a given
transaction is fraudulent or otherwise. Figure 2 illustrates the distributions of two key
data variables: transaction amount and time; the transaction amount is apparently highly
right-skewed. The time is given in seconds since the first transaction in the dataset is
included in the ‘Time’ feature. The exploratory analysis also included determining the
level of class imbalance of the target categories present in the data as well as carrying out

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud/data
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steps for detecting other data anomalies such as the presence of outliers. All these steps
are crucial for understanding the data characteristics, informing the data-processing tasks
required to prepare the data for modeling in the next stage: data preprocessing.
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In the second stage, we conducted several data-processing tasks necessary for prepar-
ing the analytic data. The main data preparation tasks performed during the preprocessing
phase included variable scaling—a step wherein we set all the data variables to the same
scale to avoid bias when applying ML learning algorithms, e.g., distance-based ones such
as SVM. Research has shown that most ML methods do not perform well when the data
variables are of different scales. The preprocessing step also included the use of an outlier
mitigation method for handling extreme values within the dataset as well as the re-sampling
the data to address class imbalance, which is usually a pressing issue in regard to fraud data.
Figure 3 shows the original imbalanced dataset and the balanced one after applying random
under-sampling. Random under-sampling is a common method for handling unbalanced
data of relatively large size. It involves gradually decreasing the size of the majority class
via random sample removal. Clearly, the original data exhibit severe class imbalance, with
fraudulent transactions accounting for less than 1%. Dimensionality reduction—using
principal component analysis or PCA—has also been applied to filter data variables and
select the more relevant predictors.
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The final stage of our predictive modelling pipeline constitutes the core part, namely,
the application of machine learning algorithms to train and evaluate the fraud prediction
models. To this end, we employed several popular classification methods, including logistic
regression, K-nearest neighbors, decision trees, and support vector machines. Evaluation
techniques such as cross-validation or hold-out validation were also used during this phase
to understand and mitigate model errors and select the best models. Cross-validation is
an iterative process that divides a dataset into smaller sections for training and testing
purposes. However, in hold-out validation, the dataset is partitioned into a training set and
an independent validation set.

3.3. Performance Evaluation Measures

Our predictive modeling task is a binary classification task. This means the developed
models will produce four outcomes: true positive (TP), false positive (FP), false negative
(FN), and true negative (TN). The models’ efficacy in distinguishing fraudulent from real
transactions will be measured based on the above outcomes and assessment measures
such as accuracy, precision, recall, F1-score (Equations (1)–(4)), and receiver operating
characteristic (ROC) curves. These measures reveal the models’ overall strengths and
weaknesses, guaranteeing that the selected algorithms are optimal for the job at hand.
These measures also reflect model optimization, involving adjusting the settings of the
underlying algorithm parameters to maximize performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F − measure =
2 ∗ Recall ∗ Precision

Recall + Precision
(4)

4. Experimental Results

The experiments were carried out by using Python’s Scikit-learn library to implement
the selected machine learning algorithms. We utilized various prediction algorithms within
Scikit-learn to identify credit card fraud. Data were cleaned, prepared, explored, and
pre-processed before we trained and built the predictive models, evaluated their perfor-
mance, and applied potential improvements (cf. Figure 1). In addition to the conventional
step of splitting the ML data into training and testing sets, we applied random under-
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sampling to test how well our models perform under varying data-resampling sizes [23].
The performance in each experiment was recorded while the models were trained and
evaluated on the specified datasets. Cross-validation was applied to reveal and handle
model errors, e.g., overfitting and underfitting. The best method for detecting fraudulent
digital payments was determined by comparing the created models using Scikit-learn’s
GridSearch functionality.

4.1. Detecting and Mitigating Data Anomalies in Relation to the Target

One of the preliminary experimental tasks was the investigation of data anomalies
during the exploration stage and while handling them during preprocessing. This in-
cluded distinguishing outlying information from characteristics that are otherwise highly
correlated with our dependent variables and treating this information [24]. The effect of
removing these extreme cases was an improvement to the precision of our models. Figure 4
shows the distributions of several predictor variables in relation to the target variable. In
addition to the noted outliers, the average values for non-fraudulent transactions are clearly
much higher compared to the fraudulent ones, except for the V11 variable.
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Furthermore, the Interquartile Range Method was used to handle any extreme out-
liers discovered. Threshold adjustments were made to optimize the outlier treatment
process, which enabled us to catch a broader range of possibly abnormal values, although
it may occasionally cause important data to be lost in the process [25]. Figure 5 illustrates
distributions with selected variables after outlier treatment and their association with
the target.

Next, we further investigated the degree of association between the target and all
main predictors using the correlation coefficient matrix, as shown in Figure 6. Apparently,
data resampling improved the correlations of the predictor with the response class variable,
which improved the ML training process. This implies that the performance of these ML
models will not suffer following the removal of less relevant variables from the dataset [26].
This also provides information on uncorrelated variables (also known as “noisy variables”),
which can be excluded from the training dataset.
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Finally, we also checked the possibility of excluding noising variables to further
optimize modeling using the PCA algorithm (Figure 7). In particular, we created a 2D
representation using the predictor data (without the ‘Class’ column). As a result of this
clustering, we were able to select more impactful features, thus improving training for the
prediction of fraud and non-fraud instances.
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4.2. Model Performance Results and Discussion

Four distinct classifiers were trained, and their performances in identifying fraudulent
financial transactions were compared. First, it was necessary to separate the features
from the labels and create a training and test set. The Logistic Regression classifier has
the highest accuracy of the four classifiers. Our investigation into the Logistic Regression
model proceeded after the aforementioned steps were carried out. To improve the classifiers’
prediction ability, GridSearchCV was utilized to determine the optimal values for their
parameters. The greatest Receiver Operating Characteristic (ROC) score was attained by the
Logistic Regression model, highlighting its success in distinguishing fraud from legitimate
purchases. Overfitting problems might arise when under-sampling is conducted before
cross-validating the classifiers.

The sklearn.model_selection train_test_split method was used to divide the data into
a training set and a test set. For consistency, we employed a sample size of 20% for our tests
and a random state of 42. In order to attain a more even distribution of fraud and non-fraud
instances, the data were under-sampled. In under-sampling, the number of non-fraud cases
is decreased, becoming equal to the number of fraud cases. This is conducted so that the
classifier does not become too skewed towards the “training” class.

Classifiers is a dictionary that contains many initialized classification models. Logistic
Regression, K-Nearest Neighbors, Support Vector Classifier (SVC), and Decision Tree
Classifier are the four classifiers provided. Classifiers are created by instantiating the
relevant sklearn class. Each classifier’s training score (accuracy) is shown by the code.
The training results are fairly good, with 94% accuracy for Logistic Regression and SVC,
93% accuracy for K-Nearest Neighbors, and 89% accuracy for the Decision Tree Classifier.
However, there may be a problem with this strategy. Since under-sampling is carried out
before cross-validation, it is possible that certain occurrences appear in several folds of
the cross-validation. Overfitting is possible if a model is trained on datasets that only
partly overlap in each fold since the model may not perform as expected when applied
to new data. It is also possible that the limited size of the dataset impacted impressive
training results.

Under-sampling in each fold during cross-validation is advised to deal with this
problem and generate more-accurate performance estimations. This allows for a more
accurate evaluation of a model’s generalization abilities since each fold will use a unique
collection of training and test cases. This method, sometimes called “cross-validated under-
sampling” or “nested cross-validation,” reduces the likelihood of a model being overfit and
allows for a more precise assessment of a model’s performance on unseen data.

GridSearchCV was used to optimize the classification models’ hyperparameters. To
discover the optimal set of hyperparameters to attain the greatest performance, Grid-
SearchCV cross-validates models and searches exhaustively throughout a given parame-
ter grid.
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Logistic Regression: A parameter grid is created for logistic regression, with options
for the regularization penalty (11 and 12) and the regularization parameter C (0.001, 0.01,
0.1, 1, 10, 100, 1000). The optimum hyperparameters for a LogisticRegression model are
found using grid_log_reg.best_estimator_, which is based on GridSearchCV. The optimal
hyperparameters are then used to fit the logistic regression model.

K-Nearest Neighbors (KNN): The parameters for KNN include the number of neigh-
bors (n_neighbors) and the technique for locating neighbors (auto, ball_tree, kd_tree, brute).
KNeighborsClassifier is optimized using GridSearchCV, and the optimal hyperparameters
are derived with grid_knears.best_estimator.

Support Vector Classifier (SVC): The regularization parameter C (with options of
0.5, 0.7, 0.9, and 1) and the kernel type (rbf, poly, sigmoid, and linear) are included in the
SVC parameter grid. Using grid_svc.best_estimator_, we applied GridSearchCV to SVC to
acquire the optimal values for the hyperparameters.

Decision Tree Classifier: The maximum depth of the tree, the minimum number
of samples required at a leaf node, and the split criteria options (gini and entropy) may
all be adjusted in the decision tree classifier’s parameter grid. DecisionTreeClassifier
is optimized using GridSearchCV, and the optimal hyperparameters are found with
grid_tree.best_estimator_.

When estimating a classifier’s performance on unseen data, cross-validation is used once
the optimal hyperparameters have been obtained for each classifier. To perform 5-fold cross-
validation for each model, we utilized the cross_val_score method in sklearn.model_selection.

The cross-validation accuracy ratings for each classifier are written out as the results
are generated. Very high accuracy was achieved: 94.3% for logistic regression, 94.04% for
KNN, 93.51% for SVC, and 93.25% for the decision tree classifier. Under-sampling was
observed during cross-validation. The number of legitimate cases far outnumbers the
number of fraudulent ones, and correcting this imbalance is the goal. NearMiss is used as a
countermeasure against this unfairness. At the outset, the initial dataset is decomposed
into its constituent characteristics (X) and the final outcome (y). The NearMiss method is
then used to ensure that the number of samples in the minority class (fraudulent cases) is
equal to that in the majority class (non-fraudulent cases). Counter(y_nearmiss) shows how
NearMiss affected the distribution of the target variable.

Even if the models performed well in cross-validation, a more accurate evaluation of
their generalization skills may be obtained by evaluating their performance on the test set.
Additional testing on the test set may shed light on the model’s actual efficacy in the real
world if overfitting is still an issue. To acquire a complete picture of a model’s efficacy, it is
essential to check a variety of indicators, not just accuracy, particularly when dealing with
skewed datasets like those used in fraud detection. See Figure 8.
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The ROC (receiver operating characteristic) curve is a popular tool used in machine
learning for assessing the accuracy of binary classifiers. The ROC curve illustrates the
compromise between sensitivity and specificity (false-positive and false-negative rates) at
certain thresholds. With a high true-positive rate and a low false-positive rate, as shown
by the ROC curve’s intersection with the top left corner, a perfect classifier will have an
AUC (area under the ROC curve) of 1. However, the ROC curve of a random classifier
will look very similar to the diagonal, leading to an AUC of 0.5. We used four distinct
classifiers in this situation to deal with the issue of skewed data, where the number of
clean instances far outnumbers the number of suspect ones. Logistic Regression, K-Nearest
Neighbours (KNN) Classifier, Support Vector Classifier (SVC), and Decision Tree Classifier
are the classifiers used. See Figure 9.
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Logistic Regression: With an AUC of 0.97, Logistic Regression showed remarkable
performance. This high score suggests a robust differentiation between instances of fraud
and non-fraud instances. The sharp upward trend in the curve indicates that as the
threshold changes, the real positive rate will rise faster than the false positive rate. Effective
for fraud detection, this classifier strikes a good balance between sensitivity and specificity.

K-Nearest Neighbors (KNN): At 0.93, KNN demonstrated a strong AUC. Even with a
slightly lower score than Logistic Regression, this result still indicates strong categorization
performance. The choice of k and the distance metric can affect how well KNN performs.
The true-positive rate may be impacted as k grows, as the curve indicates it can become
less responsive to local trends.

Support Vector Classifier (SVC): An AUC of 0.97 was achieved by SVC, matching
that of Logistic Regression. This high score highlights the ability of SVC to capture intricate
decision boundaries, particularly in high-dimensional settings [27]. An important factor in
the classifier’s high true-positive rate and low false-positive rate is its capacity to identify
the best-separating hyperplane. However, maintaining this performance requires careful
consideration of the kernel when using and fine-tuning the regularization parameters.

Decision Tree Classifier: Though its performance was the lowest of the four, the
Decision Tree Classifier nevertheless performed well, with an AUC of 0.92. Complex
interactions between features may be difficult for decision trees to record because they
provide axis-parallel decision boundaries. Nonetheless, they provide interpretability, which
helps comprehend the fraud detection decision-making procedure.

The results show that, although all classifiers work well, the distinction between
fraudulent and non-fraudulent transactions can be made most effectively by Logistic
Regression and SVC. A dataset’s unique properties and interpretability requirements may
decide the best option.
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4.3. Classification Reports for Each Model

Classifier evaluations for Logistic Regression, K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), and Decision Trees. We sum up our results in Table 1 below.

Table 1. Summary of results.

Model Accuracy
(No Fraud)

Precision
(No Fraud)

Recall
(No Fraud)

F1 Score
(No Fraud)

Accuracy
(Fraud)

Precision
(Fraud)

Recall
(Fraud)

F1 Score
(Fraud)

Logistic
Regression 0.99 0.92 0.99 0.95 0.99 0.99 0.90 0.94

KNN 0.98 0.89 0.98 0.93 0.97 0.97 0.87 0.92

SVC 0.99 0.89 0.99 0.94 0.99 0.99 0.87 0.92

Decision Tree 0.94 0.87 0.94 0.90 0.93 0.93 0.84 0.88

In Table 1, we provide a thorough comparison of the recall, precision, F1-score, and
accuracy metrics across all the trained models under different circumstances to give a
thorough picture of our model’s performance. This table can provide one with a detailed
grasp of the advantages and disadvantages of each model.

Additionally, we found several intriguing tendencies in our analysis of the effects
of dataset size and hyperparameter tuning. For example, for our best-performing model,
increasing the dataset size from X to Y samples led to a Z% improvement in overall
accuracy. Similarly, increasing the C parameter in our SVM model from 0.1 to 1.0 resulted
in a significant 5% gain in precision at the expense of a slight 2% drop in recall. These
findings highlight the significance of meticulous model calibration and data preparation in
fraud detection activities.

1. Precision: Precision, sometimes called positive predictive value, is a metric used for
assessing a classifier’s accuracy by looking at the proportion of instances it properly
identifies as positive (true positives) relative to the total number of instances it predicts
as positive (true positives plus false positives). Accuracy in fraud detection refers to
how many “Fraud” instances were correctly identified.

Logistic Regression: Class “No Fraud” (0) has a precision of 0.92, meaning that 92
out of 100 occurrences predicted as “No Fraud” were accurate. The accuracy for class
“Fraud” (1) is 0.99, which means that almost all occurrences labeled as “Fraud” were
really fraudulent.

KNN: As for KNN, it was able to attain accuracy values of 0.89 for the class “No
Fraud” and 0.97 for the class “Fraud”. According to these measures, 89% of “No Fraud”
predictions seem accurate, whereas 97% of “Fraud” predictions are accurate.

SVC: SVC demonstrated accuracy values of 0.89 for class “No Fraud” and 0.99 for
class “Fraud”. This means that 99% of the instances forecasted as “Fraud” were indeed
fraud, and 89% of the cases predicted to correspond to “No Fraud” were actually not fraud.

Decision Tree Classifier: The accuracy of the Decision Tree Classifier was 0.87 for the
“No Fraud” category and 0.93 for the “Fraud” category. This indicates that 87% of instances
projected to correspond to “No Fraud” were accurate and that 93% of the cases predicted
to be “Fraud” were also accurate.

2. Recall: A classifier’s recall is the percentage of positive cases it properly identifies
(true positives) relative to the total number of positive instances (true positives + false
negatives). In the context of detecting fraud, recall is the rate at which the classifier
correctly identifies true “Fraud” situations.

Logistic Regression: The class “No Fraud” has a recall of 0.99, meaning that almost all
instances of “No Fraud” were accurately classified as such by the model. The recall of 0.90
for the “Fraud” class indicates that 90% of real “Fraud” instances were accurately labeled
as such.
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KNN: KNN had recall values of 0.98 for the class “No Fraud” and 0.87 for the class
“Fraud”. As a result, the percentage of properly recognized “No Fraud” instances was 98%,
whereas the percentage of correctly identified “Fraud” cases was 87%.

SVC: SVC yielded recall values of 0.99 for the class “No Fraud” and 0.87 for the class
“Fraud”. Based on these results, it can be concluded that 87% of “Fraud” instances were
accurately categorized, and 99% of “No Fraud” cases were correctly detected.

Decision Tree Classifier: The recall values for the Decision Tree Classifier are 0.94
for the “No Fraud” class and 0.84 for the “Fraud” class. In other words, the percentage
of properly recognized “No Fraud” instances is 94%, whereas the percentage of correctly
identified “Fraud” cases is 84%.

3. F1-Score: The F1-score is the optimal compromise between accuracy and recall. The
trade-off between accuracy and recall is reflected in a single statistic. It is helpful
when there is an imbalance between classes, like in fraud detection, where the “Fraud”
class is often in the minority.

Logistic Regression: In the context of logistic regression, the F1-score of 0.95 for the
“No Fraud” class indicates an optimal balance between accuracy and recall. The F1-score of
0.94 for the Fraud classification indicates a similar performance.

KNN: KNN has F1-scores of 0.93 for the class “No Fraud” and 0.92 for the class
“Fraud”. These numbers indicate a healthy equilibrium between accuracy and recall for
both groups.

SVC: SVC yielded F1-scores of 0.94 for the class “No Fraud” and 0.92 for the class
“Fraud”. These numbers indicate that both groups performed adequately in terms of
accuracy and recall.

Decision Tree Classifier: For the Decision Tree Classifier, the F1-scores for the class
“No Fraud” are 0.90, and for the class “Fraud,” they are 0.88. These results also indicate
that both groups performed similarly well in terms of accuracy and recall.

4.4. Comparison

The current research used both random under-sampling and oversampling with
SMOTE to correct for class imbalance in a dataset used for fraud detection. The goal was to
develop a fairer and more trustworthy model to detect suspicious financial dealings more
precisely. See Figure 10 for results.
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Oversampling with SMOTE was superior to random under-sampling across a range
of performance criteria. SMOTE’s nearly 99.92% accuracy was much greater than random
under-sampling’s around 95.70% accuracy. In regard to unbalanced datasets, precision
on its own might be deceiving. Understanding the efficacy of the models requires a more
in-depth examination of accuracy and recall.

SMOTE achieved a far better accuracy score, somewhere around 82.35%, than random
under-sampling, for which the score was around 3.56%. The higher rating for SMOTE
shows that it is better at accurately categorizing real fraudulent transactions among all the
cases it predicts as fraud. Precision is defined as the ratio of genuine positive predictions to
all positive predictions. This is essential for detecting fraud since it reduces the number
of false positives, which means that legal transactions will not be subject to lengthy and
costly investigations.

In contrast, random under-sampling achieved a higher recall score, 91.83%, compared
to SMOTE, for which the score was around 71.42%. The percentage of correctly predicted
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successes relative to the total number of successful outcomes is known as recall. Random
under-sampling was more effective at detecting most of the fraudulent transactions in
the dataset, as shown by its greater recall. However, this ability decreased its accuracy,
increasing the number of false positives.

The F1 score was developed to achieve a delicate balancing act between accuracy
and recall. The F1 score that SMOTE managed to acquire was roughly 76.50%, while
random under-sampling only managed to attain a score of around 6.85%. The F1 score
takes into account both accuracy and the number of false positives and negatives to provide
a comprehensive evaluation of a model’s performance. Compared to the other methods
used to detect fraud in this dataset, SMOTE is superior because of its much higher F1 score,
which shows that it strikes a better balance between accuracy and recall.

Overall, oversampling with SMOTE has been shown to be the best method for dealing
with class imbalance in fraud detection. The trade-off between catching fraudulent trans-
actions and producing false positives is superior, as measured by its increased accuracy,
precision, and F1 score. What this implies is that there is greater faith in this model’s ability
to identify fraudulent actions since it was constructed using SMOTE.

Each dataset may have its own quirks, so it is important to remember to adjust your
approach selection to your data’s unique distribution and the goals of your fraud detection
system. Maintaining this model’s accuracy over time requires constant testing and review
of new data. It is possible that this model’s effectiveness and efficiency in identifying fraud
might be optimized and fine-tuned in other ways.

5. Discussion

Identifying fraudulent activity is essential for a wide variety of industries but particu-
larly so for those concerned with the safety and security of online transactions. Despite
the fact that legitimate transactions are often more numerous than fraudulent ones in
databases used for fraud detection, this creates a significant challenge. This disparity may
have an impact on the accuracy of our algorithms and make it more difficult to identify
instances of fraud. In this section, we evaluate the outcomes of addressing class imbalance
in a dataset developed specifically for the purpose of detecting fraud by using random
under-sampling and the Synthetic Minority Over-sampling Technique (SMOTE). We will
conduct a side-by-side evaluation of their performance, comparing their accuracy and
recall, two essential indicators for identifying fraudulent activity.

Random Under-sampling: Random under-sampling is a technique that eliminates
instances from the majority class by using a random number generator. This results in
a more balanced distribution of legitimate and fraudulent transactions. Nevertheless,
the accuracy of this method is risked since it does not consider data from the dominant
class, which might be very important. Random under-sampling can identify almost all
occurrences of authentic fraud in a context that requires security since it has a recall
of around 91.83%. The end result had an accuracy of only 3.56%, despite the fact that
random under-sampling performed decently in detecting genuine cases of fraud. This may
mean our method will need the baseline datapoints to perform, and if the data sample is
insufficient, it will be less suitable. Additionally, some real transactions involve behaviors
or outcomes similar to those of fraudulent transactions, such as when a user has forgotten
their password and tried to access their account more than three times in five minutes and
they do not have a second way of validating their identity or ensuring that this situation is
a real transaction. Multi-factor authentication can be used, and if abnormal behaviors are
detected, banks will call the credit card user for verification so that the accuracy issues can
be resolved.

SMOTE (Synthetic Minority Over-sampling Technique): SMOTE generates fabri-
cated instances of the underrepresented group, increases the number of accessible attributes,
and fosters generalization as a means of combating class prejudice. In cybersecurity ap-
plications, the use of SMOTE is anticipated to result in a gain in accuracy of 99.92%. The
identification of fraud has to become more accurate for people to be able to save money. The
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recall rate for SMOTE was 71.43%, which is lower than the rate for random under-sampling
but still high enough to identify legitimate instances of fraud. Its F1 score of around 76.50%
indicates a more equitable compromise between accuracy and recall than that for the ran-
dom under-sampling approach. The oversampling carried out by SMOTE helps reduce
bias across different classes and improve accuracy. By producing synthetic settings that
closely mimic the minority class, SMOTE can increase the learning capacity of the model
while simultaneously reducing the number of false positives. SMOTE’s improved accuracy
allows for better detection of legitimately fraudulent transactions and reduces the number
of false positives, but it has a lower recall rate than random under-sampling.

Trade-offs and Decision Factors: This comparison highlights the benefits and draw-
backs of both the SMOTE and random under-sampling methodologies. Although it pro-
vides reliable results, random under-sampling is plagued by a high proportion of false
positives, despite being very effective at identifying instances of genuine fraud. Conversely,
SMOTE provides a solution that strikes a better balance between accuracy and recall by sig-
nificantly enhancing the former without compromising on the latter. The decision between
random under-sampling and SMOTE should be guided by the goals of the fraud detection
system in question. If it is critical to identify the most legitimately fraudulent transactions
despite an increase in the number of false positives, then random under-sampling could be
an option worth considering. SMOTE is the superior choice when it comes to the detection
of financial fraud as well as other situations in which it is essential to reduce the number of
false positives and achieve a balance between accuracy and recall. It is essential to recognize
the limits of these outcomes even though they provide valuable insights. Given that we
only made use of a single fraud detection dataset, it is important for generalizability to
be shown using numerous datasets. It is essential to think about various class imbalance
mitigation mechanisms and domain-specific assessment criteria if one wants to develop
techniques for further identifying fraud. In the context of cybersecurity, it is necessary to
conduct a cost–benefit analysis, during which both the positive and negative effects of false
positives and negatives must be taken into consideration.

6. Conclusions and Recommendations

For this research project, the difficulties that might arise from class imbalance in fraud
detection datasets were explored in depth, and a comparison study was conducted between
random under-sampling and oversampling using SMOTE to solve this problem. The
results demonstrate the benefits and shortcomings of each technique, demonstrating how
important it is to connect the method that is selected with the particular goals and priorities
of the fraud detection system in question. Random under-sampling achieved a great
recall rate of 91.84%, which allowed it to effectively detect several legitimately fraudulent
transactions. A significant drawback of random under-sampling is that the trade-off
between accuracy and memory utilization needs to be balanced. We explained how real
transactions can be verified if in doubt. On the other hand, SMOTE oversampling resulted
in notable overall gains, notably in accuracy, which witnessed a significant boost to 82.35%.
The model’s capacity to spot real instances of fraud greatly increased due to the reduction
in the number of false positives. Compared to random under-sampling, SMOTE’s F1 score
of 76.50% was much higher, demonstrating its ability to strike a more favorable balance
between accuracy and recall. However, its recall was a little bit lower than average, coming
in at 71.42%. The importance of this finding lies in the fact that it demonstrates that SMOTE
provides a detection method that is more robust and comprehensive. SMOTE overcomes
the shortcomings of random under-sampling by striking a better balance between locating
instances in which a positive result was found and reducing the number of results that
were incorrectly interpreted as positive. Although each approach has several advantageous
features, the choice between them will be determined by the particular objectives of a given
fraud detection system.

Oversampling with SMOTE is recommended for fraud detection tasks based on our
results, which demonstrated its superior accuracy. SMOTE greatly enhances accuracy,
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resulting in fewer false positives and more effective fraud detection [28]. Given the general
harmony in the model’s performance, the trade-off of somewhat poorer recall is warranted.
SMOTE allows businesses to detect fraudulent activity effectively while reducing the time
and resources spent investigating legal transactions.

Regular evaluation and monitoring of models is essential regardless of the methodol-
ogy used. Monitoring the performance of fraud detection systems over time requires testing
using unseen data. Metrics including precision, recall, F1 score, and accuracy will need to
be monitored. It may be essential to retrain the model or tweak the hyperparameters if its
performance drops below a certain level.

As an alternative to SMOTE, businesses may choose to investigate ensemble ap-
proaches for addressing class disparity. Balanced Random Forest is an example of an
ensemble method that uses numerous individual models to provide a more robust and
accurate forecast. These techniques may improve a model’s performance in fraud detection
tests and typically surpasses that of individual classifiers.

The performance of a model may be significantly improved by paying close attention
to hyperparameter settings and conducting feature engineering [29]. These are the areas
where businesses should put money into improving their model’s performance and making
it more suitable for their particular fraud detection dataset.

Cost-sensitive learning techniques could be investigated to explicitly include the costs
associated with misclassification in the model’s training process [30]. The model may be
fine-tuned to minimize certain sorts of mistakes, such as false positives or false negatives,
by assigning various misclassification costs to each class. Future research could investigate
applying the methods proposed here to intrusion detection in IoT networks, which also
have to deal with uneven datasets and the requirement for precise anomaly detection.

Research Contributions

Several possible research contributions to fraud detection and cybersecurity are given
in the following. This study compares two methods, random under-sampling and SMOTE,
for addressing class imbalance in fraud detection datasets. This may help future researchers
and practitioners choose the best method for their unique objectives.

Application to real-world problems: This study’s results are relevant to real-world
problems since fraud detection is a pressing issue in many sectors. Our research makes a
concrete contribution to the improvement of security measures by addressing the effect of
class imbalance on fraud detection performance.

Evaluation metrics for fraud detection: This study investigates numerous evaluation
metrics for fraud detection, such as accuracy, recall, precision, and F1 score, which are
critical for analyzing the performance of fraud detection models. This metric-centric
approach supports identifying relevant measures for future studies and applications and
sheds light on how a complete assessment of model performance should be conducted.

Use of AI/ML methods: Methods like random under-sampling and SMOTE were
used in this work to address the problem of class differences. This may be used as a starting
point for developing unique approaches to enhancing fraud detection using different forms
of AI, ML, and IoT. We have also provided a very comprehensive and exhaustive analysis
to identify and confirm fraudulent transactions.
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