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BACKGROUND Myocardial fibrosis (MF) forms part of the arrhythmic substrate for ventricular arrhythmias (VAs).

OBJECTIVES This study sought to determine whether total myocardial fibrosis (TF) and gray zone fibrosis (GZF),

assessed using cardiovascular magnetic resonance, are better than left ventricular ejection fraction (LVEF) in predicting

ventricular arrhythmias in patients with nonischemic cardiomyopathy (NICM).

METHODS Patients with NICM in a derivation cohort (n ¼ 866) and a validation cohort (n ¼ 848) underwent quanti-

fication of TF and GZF. The primary composite endpoint was sudden cardiac death or VAs (ventricular fibrillation or

ventricular tachycardia).

RESULTS The primary endpoint was met by 52 of 866 (6.0%) patients in the derivation cohort (median follow-up: 7.5

years; Q1-Q3: 5.2-9.3 years). In competing-risks analyses, MF on visual assessment (MFVA) predicted the primary endpoint

(HR: 5.83; 95% CI: 3.15-10.8). Quantified MFmeasures permitted categorization into 3 risk groups: a TF of>0 g and#10 g

was associated with an intermediate risk (HR: 4.03; 95% CI: 1.99-8.16), and a TF of >10 g was associated with the highest

risk (HR: 9.17; 95% CI: 4.64-18.1) compared to patients with no MFVA (lowest risk). Similar trends were observed in the

validation cohort. Categorization into these 3 risk groups was achievable using TF or GZF in combination or in isolation. In

contrast, LVEF of <35% was a poor predictor of the primary endpoint (validation cohort HR: 1.99; 95% CI: 0.99-4.01).

CONCLUSIONS MFVA is a strong predictor of sudden cardiac death and VAs in NICM. TF and GZF mass added incre-

mental value to MFVA. In contrast, LVEF was a poor discriminator of arrhythmic risk. (J Am Coll Cardiol 2024;-:-–-)
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ABBR EV I A T I ON S

AND ACRONYMS

3SD = calculated by the 3-SD

method

5SD = calculated by the 5-SD

method

CMR = cardiovascular magnetic

resonance

FWHM = calculated by the full-

width half-maximum method

GZF = gray zone fibrosis

ICD = implantable

cardioverter-defibrillator

ICM = ischemic cardiomyopathy

LV = left ventricular

LVEF = left ventricular ejection

fraction

MF = myocardial fibrosis

MFVA = myocardial fibrosis on

visual assessment

NICM = nonischemic

cardiomyopathy

NRI = net reclassification

improvement

SCD = sudden cardiac death

TF = total fibrosis

VA = ventricular arrhythmia
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N onischemic cardiomyopathy
(NICM) is a common cause of heart
failure. After presentation, the

5-year mortality approaches 38%.1 Although
pump failure is the most frequent cause of
death, sudden cardiac death (SCD) caused
by ventricular arrhythmias (VAs) accounts
for up to one-third of all deaths.2

As in ischemic cardiomyopathy (ICM),
current guidelines recommend implantable
cardioverter-defibrillators (ICDs) for the pri-
mary prevention of SCD in patients with
NICM and a left ventricular ejection fraction
(LVEF) of <35%.3-5 The use of LVEF in these
guidelines stems from its adoption among
the inclusion criteria in randomized
controlled ICD trials. However, LVEF has
never been shown to be a reliable predictor of
VAs in either ICM or NICM.6 Accordingly,
most patients with an LVEF of <35% who
receive ICDs for primary prevention do not
receive ICD shocks.7 In addition, most pa-
tients who succumb to SCD would not have
fulfilled indications for ICD implantation.8-10

DANISH (Defibrillator Implantation in Pa-
tients With Nonischemic Systolic
Heart Failure) showed no survival benefit
from ICDs in patients with NICM who are selected
according to LVEF.11 The limitations of LVEF as a
predictor of VAs have been recognized by the Na-
tional Heart, Lung, and Blood Institute; the Heart
Rhythm Society12; and international clinical guideline
groups.4,5

It is now well established that myocardial fibrosis
(MF) forms part of the arrhythmic substrate for
VAs.13-15 Numerous studies have shown that MF,
assessed using cardiovascular magnetic resonance
(CMR), is useful in arrhythmic risk stratification.16-23

In this context, areas of maximal signal intensity on
late gadolinium enhancement correspond to dense
MF, whereas areas of intermediate signal intensity
correspond to so-called gray zone fibrosis (GZF). In
clinical outcome CMR studies, both total fibrosis
(TF)18,19 and GZF24-27 have emerged as risk factors for
VAs. In this study, we explore whether TF and GZF
predict SCD or VAs in patients with NICM across a
wide range of LVEFs. We also explore whether
quantification of these MF measures adds to visual
assessment in arrhythmic risk stratification.

METHODS

STUDY POPULATION. This is an observational study
of patients with NICM from 2 large UK tertiary referral
hospitals. The derivation cohort consisted of pro-
spectively enrolled, consecutive patients from the
Royal Brompton Hospital, London, United Kingdom.
The validation cohort included retrospectively
enrolled patients from University Hospitals Birming-
ham, Queen Elizabeth, Birmingham, United Kingdom.
Some of the patients in the derivation cohort were
included in previous publications,28,29 but the pre-
sent study involves a longer follow-up and de novo
quantification of TF and GZF. Recruitment to the
prospective derivation cohort began in September
2009, and the first patient in the retrospective vali-
dation cohort was scanned in July 2010. The present
study was conceived in 2022 after the senior in-
vestigators (F.L. and S.K.P.) agreed that the same data
had been collected prospectively in the derivation
cohort and retrospectively in the validation cohort. In
light of the similarity of these cohorts, after agree-
ment on the scope of the study and a strategy for data
analysis, raw data from both centers were submitted
to a statistician (T.Q.). Ethics Committee approval for
the derivation cohort was obtained from the South
Central Hampshire Research Ethics Committee
(reference: 19/SC/0257). Approval from the Clinical
Audit Department for the validation cohort was ob-
tained from University Hospitals Birmingham (refer-
ence: CARMS 14153).

ELIGIBILITY. Inclusion criteria for both cohorts were
the following: dilated cardiomyopathy; hypokinetic,
nondilated left ventricular (LV) cardiomyopathy;
isolated LV dilatation; and/or late gadolinium
enhancement consistent with NICM.1 Exclusion
criteria were the following: history of ischemic heart
disease or coronary revascularization, coronary
angiography showing at least 1 >50% stenosis in a
major epicardial coronary artery, inducible ischemia
on functional testing, subendocardial or transmural
pattern of late gadolinium enhancement consistent
with a myocardial infarction, uncontrolled hyper-
tension, primary valve disease, congenital heart dis-
ease, active myocarditis, active or quiescent cardiac
sarcoidosis, infiltrative cardiomyopathy, channelo-
pathies, and athletic remodeling. Genetic testing was
not uniformly or widely applied during the study
period, so we cannot quantify the proportion of pa-
tients with genetic cardiomyopathies (eg, titin, lamin
a/c, and so on).

CARDIOVASCULAR MAGNETIC RESONANCE. All pa-
tients underwent a CMR scan on a 1.5-T scanner
(derivation cohort: Sonata and Avanto, Siemens;
validation cohort: Magnetom Symphony and Avanto,
Siemens). Long- and short-axis cine images were ob-
tained using breath-hold, steady-state free precession



FIGURE 1 Cardiac Magnetic Resonance in Nonischemic Cardiomyopathy
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(A) Late gadolinium enhancement cardiovascular magnetic resonance images were visually assessed to determine whether myocardial fibrosis (MF) was present or

absent. If MF was present (appears white on late gadolinium enhancement), quantification was undertaken. (B) To this end, epicardial and endocardial contours (green

and red, respectively) were semiautomatically delineated. Total fibrosis and gray zone mass were quantified using various signal thresholding methods. In this example,

the basal segments showed extensive, heterogeneous MF (yellow arrows) in a noncoronary distribution over the left ventricular free wall, with a distinct epicardial and

midmyocardial distribution toward the midventricular and apical segments. (C) The polar maps show the distribution of MF according to the American Heart As-

sociation 16-segment model and to smaller segments (100 segments over 8 short-axis slices, starting from the junction of the right ventricular wall and the inter-

ventricular septum [white line]). The scale range is from 0 (green, no MF) to 100% (black, entire segment is 100% MF).
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sequences. Gadopentetate dimeglumine or gadobu-
trol (0.1 mmol/kg) was injected intravenously, and an
inversion recovery gradient echo sequence was un-
dertaken to acquire the late gadolinium enhancement
images at 10 minutes. These images were acquired in
long- and short-axis slices (8-mm slice thickness with
a 2-mm gap) covering the LV from base to apex.
Inversion times were optimized to null normal
myocardium. Myocardial fibrosis on visual assess-
ment (MFVA) was regarded as present when seen in
both long- and short-axis images, in 2 orthogonal
views, extending beyond the right ventricular inser-
tion points, according to the reporting investigator
and independently verified by a blinded observer.
CVI42 software (Circle Cardiovascular Imaging Inc)
was used to quantify TF and GZF mass. This was un-
dertaken by 2 independent investigators (E.A. for the
derivation cohort and A.Z. for validation cohort) who
were blinded to clinical outcomes. Endocardial and
epicardial contours were semiautomatically drawn on
short-axis CMR images and manually optimized,
excluding the blood pool and epicardial fat. Two re-
gions of interest were defined using a semiautomated
detection algorithm with manual adjustment: remote
myocardium, defined as regions with no enhance-
ment, and the region of hyperintense myocardium. TF
mass was derived by signal threshold vs reference
myocardium methods using the mean � SD of the



FIGURE 2 Study Flow Chart

939 patients with NICM
(September 2009 to May 2017)

Derivation Cohort

Validation Cohort

38 excluded: ICM on CMR

901 eligible patients with NICM

886 patients with NICM and adequate
LGE-CMR

866 patients with NICM, a diagnostic CMR and
complete follow-up

15 excluded: LGE-CMR of insufficient quality

16 lost at follow-up
4 withdrew consent

20 excluded

7,679 patients with LGE-CMR
(July 2010 to September 2017)

1,161 eligible patients with NICM

1,104 patients with NICM and adequate
LGE-CMR

57 excluded: LGE-CMR of insufficient quality

1,682 normal
1,449 ICM
3,387 other diagnoses

6,518 excluded: diagnoses other than NICM

256 excluded: lost at follow-up

848 patients with NICM, a diagnostic CMR and
complete follow-up

Flow chart illustrating the assembly of the derivation and validation cohorts. CMR ¼ cardiovascular magnetic resonance; ICM ¼ ischemic

cardiomyopathy; LGE ¼ late gadolinium enhancement; NICM ¼ nonischemic cardiomyopathy.
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TABLE 1 Baseline Characteristics

Derivation Cohort
(n ¼ 866)

Validation Cohort
(n ¼ 848) P Value

Age, y 53.1 � 14.9 53.5 � 16.9 0.567

Male 561 (64.8) 540 (63.7) 0.634

Diabetes mellitus 93 (10.8) 47 (5.54) <0.001

Hypertension 256 (29.6) 147 (17.3) <0.001

CMR volumes

Absolute

LVEDV, mL 241.9 � 74.6 187.1 � 78.2 <0.001

LVESV, mL 146.3 � 73.8 110.4 � 76.0 <0.001

LV mass, g 173.4 � 56.0 154.9 � 54.8 <0.001

LVEF, % 41.8 � 13.5 45.3 � 17.9 <0.001

LVEF <35% 272 (31.4) 253 (29.8) 0.480

LVEF >35% 594 (68.6) 595 (70.2)

Indexed

LVEDVi, mL/m2 121.5 � 35.2 96.1 � 39.5 <0.001

LVESVi, mL/m2 73.4 � 36.0 56.8 � 39.0 <0.001

LV mass index, g/m2 86.5 � 24.5 79.5 � 25.9 <0.001

MFVA 292 (33.7) 480 (56.6) <0.001

MF pattern

No MF 574 (66.3) 368 (43.4) <0.001

Midwall 235 (27.1) 366 (43.2)

Other 57 (6.58) 114 (13.4)

Subgroup with MFVA 292 (33.7) 480 (56.6|) <0.001

TF2SD mass, g 8.51 (5.19-14.0) 4.07 (1.66-9.57) <0.001

GZF3SD mass, g 2.84 (1.67-4.24) 1.79 (0.79-3.58) <0.001

Values are mean � SD, n (%), or median (Q1-Q3).

CMR ¼ cardiovascular magnetic resonance; GZF3SD ¼ gray zone fibrosis according to the 3-SD method;
LV ¼ left ventricular; LVEDV ¼ left ventricular end-diastolic volume; LVEDVi ¼ left ventricular end-diastolic
volume index; LVEF ¼ left ventricular ejection fraction; LVESV ¼ left ventricular end-systolic volume;
LVESVi ¼ left ventricular end-systolic volume index; MF ¼ myocardial fibrosis; MFVA ¼ myocardial fibrosis on
visual assessment; TF2SD ¼ total fibrosis according to the 2-SD method.
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remote myocardial signal intensity at 2-SD, 3-SD, and
5-SD thresholds. TF mass was also calculated using
the full-width half-maximum method (Figure 1). GZF
mass was calculated as the difference between the MF
mass using the 2-SD method and the 3-SD, 5-SD, and
full-width half-maximum methods, termed GZF3SD,
GZF5SD, and GZFFWHM, respectively, as previously
described.30 In cases where no fibrosis was detected
by visual assessment, all TF and GZF measures were
imputed as 0. Total TF and GZF volumes were calcu-
lated by multiplying the enhanced area by slice
thickness. Myocardial mass was calculated by multi-
plying volume in milliliters by the myocardial density
(1.055 g/mL).

FOLLOW-UP AND ENDPOINTS. Patients were fol-
lowed up using primary care and hospital records and
from postal questionnaires sent to patients. Follow-
up duration was measured from the date of CMR
and truncated after 10 years. All clinical events were
adjudicated by an independent panel of cardiologists
for both cohorts using medical records; and, where
available, death certificates, autopsy reports, coro-
ners’ reports, and cardiac implantable device inter-
rogation reports. Survival status was checked with
the National Health Service Spine system, which links
with the Office of National Statistics. Remote moni-
toring was not systematically used during the study
period. All device interrogations were undertaken
according to each center’s protocol. All potential
arrhythmic events and cardiac device downloads
were reviewed by an implantable cardiac devices
expert (derivation cohort: K.G.; validation cohort:
F.L.). Adjudicators were blinded to CMR
data throughout.

The primary composite arrhythmic endpoint was
SCD, ventricular fibrillation, or sustained ventricular
tachycardia. SCD was defined as per American Heart
Association criteria (a death that occurred unexpect-
edly, occurring within #60 minutes of symptom
onset, following an unsuccessful resuscitation, or
occurring when the patient was seen alive and was
clinically stable #24 hours before death and without
another identifiable cause of death). Ventricular
fibrillation was defined as rapid—>300 beats/min
(cycle length: #180ms)—irregular ventricular rhythm
with marked variability in QRS complex cycle length,
morphology, and amplitude. Sustained ventricular
tachycardia was defined as a ventricular rhythm
faster than 100 beats/min lasting at least 30 seconds
or requiring termination because of hemodynamic
instability or by antitachycardia pacing or shocks.
Only appropriate shocks following sustained ven-
tricular fibrillation or sustained ventricular
tachycardia were considered in the arrhythmic
endpoint. The secondary endpoint was the combined
endpoint of total mortality, cardiac transplantation,
or left ventricular assist device implantation. This
endpoint was included to allow competing-risks
analyses.

STATISTICAL ANALYSIS. Four broad questions were
considered in statistical analyses. 1) Are MF measures
superior to LVEF in arrhythmic risk stratification? 2) If
so, are quantified measures of TF and GZF superior to
MFVA alone? 3) Which measure of TF and GZF should
be used? 4) Should they be used alone or
in combination?

Continuous variables are expressed as mean � SD.
Nonnormally distributed variables are expressed as
median (Q1-Q3). Cumulative incidence curves and the
log-rank test were used to assess cumulative survival.
The proportionality assumption was tested by
assessing Schoenfeld residuals and slopes in log-log
plots. Fine and Gray proportional subdistribution
hazard models and the cumulative incidence function



TABLE 2 Events

Derivation
Cohort

(n ¼ 866)

Validation
Cohort

(n ¼ 848)

Sudden cardiac death, ventricular tachycardia,
or ventricular fibrillationa

52 (6.00) 32 (3.77)

Sudden cardiac death 12 (1.39) 9 (1.30)

Ventricular tachycardia 31 (3.58) 17 (2.0)

Ventricular fibrillation 9 (1.04) 6 (0.71)

Total mortality, cardiac transplantation,
or LVAD implantation

147 (16.97) 155 (18.3)

Total mortality 128 (14.78) 140 (16.5)

Cardiac transplantation 15 (1.73) 10 (1.18)

LVAD implantation 11 (1.27) 5 (0.59)

Unknown cause 6 (0.69) 10 (1.18)

Cardiac implantable electronic
device implantationb

All devices 241 (27.8) 207 (24.2)

Pacemaker 9 (1.04) 3 (0.35)

CRT-P 34 (3.92) 77 (9.08)

CRT-D 122 (14.09) 62 (7.31)

ICD 76 (8.78) 65 (7.67)

Values are n (%). aRefers to patients meeting the primary endpoint of sudden cardiac death or
ventricular tachycardia/ventricular fibrillation, whichever occurred first. bRefers to devices
implanted after the cardiovascular magnetic resonance scan.

CRT-D ¼ cardiac resynchronization therapy with defibrillation; CRT-P ¼ cardiac resynchroni-
zation therapy–pacing; ICD ¼ implantable cardioverter-defibrillator; LVAD ¼ left ventricular assist
device.
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were used to assess relative risks in competing-risks
analyses. Death attributable to a cause other than a
primary major arrhythmic event and without prior VF
or sustained VT was used as the competing risk. Pa-
tients were censored at the time of the first event.
Absolute TF and GZF mass were considered as both
continuous and dichotomous variables. Thresholds
for TF and GZF in the subgroup with MFVA in the
derivation cohort were derived using log-rank maxi-
mization and bootstrapped (1,000 replications) to
estimate CIs. An LVEF cutoff of <35% was selected
given that current guidelines use this cutoff in pri-
mary prevention ICD recommendations.3-5

In reclassification analyses, the incremental value
of MFVA over an LVEF of <35% and of quantified TF
and GZF over MFVA alone was assessed using
category-free net reclassification improvement (NRI)
(bootstrapped using 1,000 replications). Harrell
C-statistics were obtained from cause-specific Cox
regression models. Uno C-statistics were also derived
to account for uncensored events. Decision curve
analysis was used to evaluate the net benefit of an
MFVA and quantified MF measures in comparison to
LVEF. A 2-sided P value of <0.05 was considered
significant. Statistical analyses were undertaken us-
ing Stata version 15 (StataCorp) (“incrisk” package for
reclassification indices, “stcrreg” for competing-risks
analyses using Fine and Gray distributions, and
“stdca” for decision curve analysis). The PROC
PHREG procedure in the SAS statistical package (SAS
Institute) was used to derive the Uno statistics. Dif-
ferences between C-statistics were assessed using the
“roccomp” command.

RESULTS

BASELINE CHARACTERISTICS. The derivation cohort
included 866 patients, prospectively enrolled from
2009 to 2017 (mean age 53.1 � 14.9 years; 561 of 866
[64.8%] male; LVEF 41.8% � 13.5%) and followed up
for 7.60 years (Q1-Q3: 5.43-9.44 years) (Figure 2). The
validation cohort included 848 patients, retrospec-
tively enrolled from 2010 to 2017 (mean age 53.5 �
16.9 years; 540 of 848 [63.7%] male; LVEF 45.3% �
17.9%) and followed up for 6.81 years (Q1-Q3: 5.23-
8.36 years) (Figure 2). In the derivation cohort, which
mainly comprised patients who were not local to the
hospital, postal questionnaire responses were
returned by 590 of 865 (68%) patients. Complete
follow-up data from either primary care records,
hospital records, or postal questionnaires was avail-
able for most patients in the derivation cohort except
the 16 who were excluded (Figure 2). In the validation
cohort, which mainly comprised local patients, com-
plete follow-up was available in all patients without
the need for postal questionnaires.

As shown in Table 1, the derivation cohort had a
higher proportion of patients with diabetes mellitus
and hypertension and a lower proportion of patients
with MFVA (33.7% vs 56.6%; P < 0.001). Patients in the
subgroup with MFVA in the derivation cohort had a
higher TF2SD and GZF3SD mass than those with MFVA

in the validation cohort (both P < 0.001) (Table 1).
Further TF and GZF characteristics are shown in
Supplemental Table 1.

In the derivation cohort, 52 of 866 (6.00%) patients
met the primary endpoint over a median of 7.60 years
(Q1-Q3: 5.43-9.44 years). Clinical events are listed in
Table 2.

MF ON VISUAL ASSESSMENT. In the derivation
cohort, both MFVA (log-rank P < 0.001) and LVEF
of <35% (log-rank P ¼ 0.009) were associated with a
higher cumulative incidence of the primary endpoint
(Figure 3). MFVA was associated with a C-statistic of
0.71 (95% CI: 0.65-0.77) (Table 3, Supplemental
Table 2), a Harrell C-statistic of 0.72, and an Uno
C-statistic of 0.68 (Supplemental Table 3). In
competing-risks univariate analyses, MFVA predicted
the primary endpoint (HR: 5.83; 95% CI: 3.15-10.8;
P < 0.001) (Table 4). A similar trend was observed in

https://doi.org/10.1016/j.jacc.2024.06.046
https://doi.org/10.1016/j.jacc.2024.06.046
https://doi.org/10.1016/j.jacc.2024.06.046
https://doi.org/10.1016/j.jacc.2024.06.046


FIGURE 3 MFVA and LVEF in Relation to the Primary Endpoint
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TABLE 3 Receiver-Operator Characteristic Analyses

C-Statistic Sensitivity, % Specificity, % PPV, % NPV, % PLR NLR

Derivation cohort

LVEF, % 0.63 (0.55-0.71) 46.2 (32.2-60.5) 69.5 (66.2-72.7) 8.82 (5.74-12.8) 95.3 (93.3-96.8) 1.51 (1.11-2.07) 0.77 (0.60-1.00)

LVEF <35% 0.58 (0.51-0.65) 46.2 (32.2-60.5) 69.5 (66.2-72.7) 8.82 (5.74-12.8) 95.3 (93.3-96.8) 1.51 (1.11-2.07) 0.77 (0.60-1.00)

MFVA 0.71 (0.65-0.77) 73.1 (59.0-84.4) 68.8 (65.5-72.0) 13.0 (9.38-17.4) 97.6 (95.9-98.7) 2.34 (1.93-2.84) 0.39 (0.25-0.61)

TF2SD, g 0.73 (0.66-0.80) 40.4 (27.0-54.9) 88.8 (86.5-90.9) 18.8 (12.0-27.2) 95.9 (94.2-97.2) 3.61 (2.46-5.30) 0.67 (0.54-0.84)

GZF3SD, g 0.73 (0.66-0.80) 48.1 (34.0-62.4) 86.5 (83.9-88.8) 18.5 (12.4-26.1) 96.3 (94.7-97.6) 3.56 (2.55-4.96) 0.60 (0.46-0.78)

Validation cohort

LVEF, % 0.61 (0.51-0.72) 46.9 (29.1-65.3) 70.8 (67.6-73.9) 5.93 (3.40-9.60) 97.1 (95.5-98.3) 1.61 (1.09-2.36) 0.75 (0.54-1.04)

LVEF <35% 0.59 (0.50-0.68) 46.9 (29.1-65.3) 70.8 (67.6-73.9) 5.93 (3.40-9.60) 97.1 (95.5-98.3) 1.61 (1.09-2.36) 0.75 (0.54-1.04)

MFVA 0.63 (0.56-0.70) 81.3 (63.6-92.8) 44.4 (40.9-47.8) 5.42 (3.60-7.80) 98.4 (96.5-99.4) 1.46 (1.22-1.74) 0.42 (0.21-0.87)

TF2SD, g 0.67 (0.58-0.77) 25.0 (11.5-43.4) 87.6 (85.2-89.8) 7.34 (3.20-14.0) 96.8 (95.2-97.9) 2.02 (1.08-3.78) 0.86 (0.70-1.05)

GZF3SD, g 0.66 (0.57-0.75) 31.3 (16.1-50.0) 82.7 (79.9-85.3) 6.62 (3.20-11.8) 96.8 (95.3-98.0) 1.81 (1.06-3.09) 0.83 (0.66-1.05)

Values are area under the curve (95% CI). Shown are the results of receiver-operator characteristic analyses in the derivation cohort. For analysis of differences between C-statistics, please see Supplemental
Table 2.

NLR ¼ negative likelihood ratio; NPV ¼ negative predictive value; PLR ¼ positive likelihood ratio; PPV ¼ positive predictive value; other abbreviations as in Table 1.

TABLE 4 Univariate

LVEF

Per %

$35%

<35%b

MFVA

No MFVA

MFVA present

TF2SD
c

Per gram

>0 to #10 g

>10 g

GZ3SD
c

Per gram

>0 to #3 g

>3 g

Shown are results from com
rates for the primary endp
LVEF of $35%. cCategorie

Abbreviations as in Tabl
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the validation cohort (Supplemental Table 4). In
multivariable analyses, MFVA predicted the primary
endpoint after adjusting for LVEF of <35% (derivation
cohort: HR: 5.52; 95% CI: 2.97-10.2; P < 0.001; vali-
dation cohort: HR: 3.87; 95% CI: 1.58-9.49;
P ¼ 0.003) (Table 5).

In risk category net reclassification analyses of the
derivation sample, the addition of MFVA to a predic-
tive model containing LVEF of <35% alone resulted in
a continuous NRI of 0.84 (95% CI: 0.58-1.06)
(Supplemental Table 5).
Analysis

Subdistribution
HR (95% CI)

Annual Event
Rate, % P Value

Harrell
C-Statistica

0.97 (0.95-0.99) — 0.002 0.63

Reference 0.66 — —

1.91 (1.11-3.29) 1.33 0.02 0.58

Reference 0.34 — —

5.83 (3.15-10.8) 2.01 <0.001 0.72

1.05 (1.04-1.07) — <0.001 0.75

4.03 (1.99-8.16) 1.38 <0.001 —

9.17 (4.64-18.1) 3.15 <0.001 0.74

1.16 (1.11-1.22) — <0.001 0.75

3.53 (7.50-1.21) 1.21 0.001 —

8.84 (4.59-17.0) 3.05 <0.001 0.75

peting-risks analyses for the derivation cohort. The event rates refer to annual event
oint. aHarrell C-statistics were derived from Cox regression analyses. bCompared to
s are compared to no MFVA.

e 1.
TF AND GZF MASS. Having explored the utility of
MFVA, further analyses focused on the predictive
value of quantified TF and GZF mass. On the basis of
univariate analyses (Supplemental Table 6), TF2SD

and GZF3SD emerged as the most consistent predictors
of the primary endpoint across the derivation and
validation cohorts.

As shown in Table 3 and Supplemental Table 2,
C-statistics were 0.73 (95% CI: 0.66-0.80) for both
TF2SD and GZF3SD. The Harrell (0.75) and Uno (0.70)
C-statistics were identical (Supplemental Table 3).
Optimal cutoffs, derived from the derivation cohort
subgroup with MFVA, were 9.99 g and 3.16 g for TF2SD

and for GZF3SD, respectively. As shown in Table 4,
TF2SD and GZF3SD mass, according to these cutoffs,
permitted categorization into 3 risk groups. In the
derivation cohort, a TF2SD of >0 g and #10 g was
associated with an intermediate risk of the primary
TABLE 5 Multivariable Analyses

Subdistribution
HR (95% CI) P Value

Harrell
C-Statistica

Model 1 0.74

MFVA 5.52 (2.97-10.2) <0.001

LVEF <35% 1.52 (0.88-2.64) 0.132

Model 2 0.73

TF2SD, g 1.05 (1.03-1.07) <0.001

LVEF, % 0.97 (0.95-0.99) 0.018

Model 3 0.72

GZ3SD, g 1.14 (1.08-1.20) <0.001

LVEF, % 0.97 (0.95-0.99) 0.019

Shown are results from competing-risks analyses for the derivation cohort. aHar-
rell C-statistics were derived from Cox regression analyses.

Abbreviations as in Table 1.
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FIGURE 4 Quantified TF and GZF in Relation to the Primary Endpoint
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Cumulative hazard estimates of the primary arrhythmic endpoint in the derivation sample, stratified according to (A) total fibrosis mass

according to the 2-SD method (low: >0 and #10 g; high: >10 g) and (B) gray zone fibrosis mass according to the 3-SD method (low:

>0 and #3 g; high: >3 g). GZF ¼ gray zone fibrosis; MFVA ¼ myocardial fibrosis on visual assessment; TF ¼ total fibrosis.
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FIGURE 5 Decision Curve Analysis
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The graphs show decision curves in the derivation cohort, comparing the net benefit of MF (y-axis) across different threshold probabilities of the primary

endpoint (x-axis). The decision curve reflects the tradeoff between true positive predictions and false positive predictions for a given strategy. The area

under the decision curve quantifies the overall clinical utility of the predictive model. The dotted horizontal gray line indicates the net benefit of not testing

any patient (“test none”), whereas the solid diagonal line shows the net benefit of testing all patients (“test all”). The dashed colored decision curves

indicate the net benefit of using LVEF or MF measures in prediction models. See Supplemental Figure 1 for analysis of the validation cohort. GZF ¼ gray

zone fibrosis; GZF3SD ¼ gray zone fibrosis according to the 3-SD method; LVEF ¼ left ventricular ejection fraction; MFVA ¼ myocardial fibrosis on visual

assessment; TF ¼ total fibrosis; TF2SD ¼ total fibrosis according to the 2-SD method.
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endpoint (HR: 4.03; 95% CI: 1.99-8.16), and a TF2SD of
>10 g was associated with the highest risk (HR: 9.17;
95% CI: 4.64-18.1) compared to patients with no
MFVA. Similarly, a GZF3SD of >0 and #3 g was asso-
ciated with a medium risk of the primary endpoint
(HR: 3.53; 95% CI: 1.66-7.50), and a GZF3SD of >3 g was
associated with the highest risk (HR: 8.84; 95% CI:
4.59-17.0). A similar trend was observed in the vali-
dation cohort (Supplemental Table 6).

As shown in Figure 4, categorization into low-, in-
termediate-, and high-risk groups was achievable
using either TF2SD or GZF3SD mass. In the derivation
sample, annual event rates for the primary endpoint
were 1.38% for TF2SD of >0 and #10 g and 3.15% for
TF2SD of >10 g (Table 3). Corresponding event rates for
GZF3SD were 1.21% for GZF3SD of >0 and #3 g and
3.05% for GZF3SD of >3 g). The lowest event rates were
observed in patients with no MFVA (0.34%). The
combination of both TF2SD or GZF3SD also permitted
categorization into 3 risk groups (Supplemental
Figure 1).

In net reclassification analyses of the derivation
sample, the addition of quantified TF2SD to MFVA

resulted in a category-free NRI of 0.17 (95% CI: –0.22
to 0.42) (Supplemental Table 7). The addition of
GZF3SD to MFVA was associated with an NRI of 0.27
(95% CI: 0.05-0.51) (Supplemental Table 8).

LV EJECTION FRACTION. In the derivation cohort,
LVEF of <35% was associated with the primary
endpoint on univariate analysis (HR: 1.91; 95% CI:
1.11-3.29) but failed to reach significance in a multi-
variable model when MFVA was added as a covariable
(HR: 1.52; 95% CI: 0.88-2.64). The C-statistic for LVEF
of <35% was 0.58 (95% CI: 0.51-0.65) in the derivation
cohort. In the validation cohort, LVEF of <35% was
not associated with the primary endpoint on univar-
iate analysis (HR: 1.99; 95% CI: 0.99-4.01; P ¼ 0.053)
but was only associated with the primary endpoint in
a multivariable model that included MFVA (HR: 2.32;
95% CI: 1.14-4.73; P ¼ 0.021). In decision curve ana-
lyses (Figure 5, Supplemental Figure 2), MFVA as well
as quantified MF measures were superior to LVEF in
predicting the primary endpoint.

DISCUSSION

This is the largest study of CMR-derived measures of
MF in relation to SCD and VAs in patients with NICM.
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CENTRAL ILLUSTRATION Risk Stratification in Nonischemic Cardiomyopathy Using Cardiovascular
Magnetic Resonance

Hammersley DJ, et al. J Am Coll Cardiol. 2024;-(-):-–-.

A total of 1,714 patients with (NICM) were enrolled independently in 2 centers: a derivation cohort and a validation cohort. Late gadolinium enhancement cardio-

vascular magnetic resonance was used to determine the presence of MFVA. If MFVA was present, TF and gray zone fibrosis was quantified. To this end, areas of MF,

which appear white on late gadolinium enhancement, were semiautomatically delineated on short-axis images, using signal thresholding techniques. As shown at the

upper right, LVEF of <35% was associated with a higher risk of the primary endpoint on competing-risks analyses (HR: 1.91; 95% CI: 1.11-3.29) of the derivation

cohort. MFVA was a powerful predictor of the primary endpoint (HR: 5.83; 95% CI: 3.15-10.8) (middle right). Quantification of TF permitted categorization into low-,

intermediate- (HR: 4.03; 95% CI: 1.99-8.16), and high-risk (HR: 9.17; 95% CI: 4.64-18.1) groups (bottom right). TF mass was quantified according to the 2-SD method

and expressed as low (>0 to #10 g) or high (>10 g). LGE ¼ late gadolinium enhancement; LVEF ¼ left ventricular ejection fraction; MF ¼ myocardial fibrosis;

MFVA ¼ myocardial fibrosis on visual assessment; NICM ¼ nonischemic cardiomyopathy; SCD ¼ sudden cardiac death; TF ¼ total fibrosis; VF ¼ ventricular fibrillation;

VT ¼ ventricular tachycardia.
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Unique aspects are external validation and the in-
clusion of patients with any LVEF. Several findings
have emerged (Central Illustration). First, MFVA was a
powerful predictor of the primary endpoint of SCD
and VAs. Second, quantification of TF2SD and GZF3SD

mass were of incremental value to using MFVA alone,
permitting further risk stratification into low-, inter-
mediate-, and high-risk categories. Third, this risk
categorization was achievable using TF2SD and GZF3SD

mass in isolation or in combination. Last, LVEF was a
poor predictor of SCD and VAs.

MF ON VISUAL ASSESSMENT. We, as others,16-23 have
found that MFVA is associated with a high risk of
arrhythmic events compared with no MFVA. The level
of risk was 5.83-fold higher, which is similar to that
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reported by 4 large meta-analyses using a similar
endpoint (ORs of 3.99 in Theerasuwipakorn et al,19

3.99 in Di Marco et al,18 4.52 in Becker et al,21 and
5.62 in Disertori et al23). In our derivation cohort, this
risk equates to annualized event rates of 2.01% for
MFVA and 0.34% for no MFVA. The C-statistic for MFVA

of 0.71 was associated with a low positive predictive
value of 13% but a high negative predictive value of
98%. In other words, absence of MFVA virtually
excluded SCD and VAs in the long term, regardless of
LVEF. Remarkably, the category-free NRI for MFVA

compared with LVEF of <35% was 84%.

TF AND GZF MASS. Because dense MF and GZF form
part of the arrhythmogenic substrate in both ICM and
NICM,15 one would expect a higher TF and GZF mass
to carry a higher arrhythmic risk. In this regard, few
CMR studies in the field of arrhythmic risk stratifica-
tion in NICM have used formal quantification of MF.
Semiquantitative assessment, however, has been
undertaken by several large multicenter studies. In
the DERIVATE (Cardiac Magnetic Resonance for Pro-
phylactic Implantable-Cardioverter Defibrillator
Therapy in Non-Ischaemic Dilated Cardiomyopathy)
registry of 1,508 patients with NICM, LV midwall
fibrosis in >3 myocardial segments emerged as a
predictor of major adverse arrhythmic events.31 Using
a similar semiquantitative approach in 1,615 patients
with dilated cardiomyopathy and an LVEF of <45%,
Di Marco et al18 found that combining MF and 3 LVEF
strata was superior to LVEF of <35% in risk stratifi-
cation (SCD and VAs; Harrell C-statistic: 0.80 vs 0.69,
respectively).18 Similar findings were reported by
Klem et al6 in a prospective registry of 1,020
NICM patients.

We found that TF2SD and GZF3SD mass permitted
stratification of arrhythmic risk into low-, intermedi-
ate- and high-risk categories, corresponding to
annualized event rates of 0.34%, 1.38%, and 3.15%,
respectively (using TF2SD in the derivation cohort).
The NRI for TF2SD and GZF3SD mass over MFVA were
17% and 27%, respectively, indicating that quantifi-
cation of TF2SD and GZF3SD mass has incremental
value in arrhythmic risk stratification, albeit modest.
Importantly, using the combination of TF2SD and
GZF3SD mass had no incremental value over TF2SD or
GZF3SD in isolation. In the interest of simplicity,
therefore, only TF2SD or GZF3SD mass, but not both,
need to be quantified.

LV EJECTION FRACTION. We found that LVEF was
not associated with the primary endpoint on univar-
iate analysis in the validation cohort. In the deriva-
tion cohort, it failed to reach significance as a
predictor of the primary endpoint when MFVA was
added as a covariable, suggesting that LVEF is
perhaps a surrogate of myocardial scar. In essence,
LVEF was not a reliable predictor of the primary
endpoint on external validation across both cohorts.
These findings are consistent with those of Klem
et al,6 who found no association between LVEF
of #35% and SCD in 1,020 NICM patients. Overall, it is
not surprising that LVEF is a poor predictor of VAs.
After all, it is a measure of cardiac contraction rather
than the arrhythmic substrate.

CLINICAL APPLICATION. Our findings indicate that
arrhythmic risk stratification should be based on
characterization of the arrhythmic substrate rather
than on LVEF. They are broadly consistent with pre-
vious CMR studies showing that in patients with
ICM26,27 and with cardiac implantable electronic de-
vices,30 MF is better than LVEF at predicting
arrhythmic events. We have shown that not all NICMs
have the same arrhythmogenic potential: some pa-
tients with MFVA are at a high risk of SCD and VAs
(>3% per year, or >15% in 5 years), whereas those
with no MFVA are at low risk (0.34% per year),
regardless of LVEF. Although the present study does
not address the benefits of ICD therapy, our findings
support the use of MF measures rather than LVEF in
making decisions on ICD implantation for primary
prevention. The strongest suggestion is that the low
annual event rate in NICM patients with no MFVA may
not justify the use of primary prevention ICDs.
Ongoing randomized controlled trials are addressing
these issues.32,33

STUDY LIMITATIONS. Although the inclusion of a
retrospective cohort may be considered a limitation,
it is arguably a strength insofar as the validation ex-
ercise focuses on real-world practice. By this token,
there are differences in baseline characteristics.
Importantly, this study focuses on a single CMR scan.
In this regard, we should consider that NICM (as
opposed to ICM) involves a chronic inflammatory
process34,35 and that patients who did not have MFVA

at the outset may have developed it thereafter. The
role of serial risk stratification using CMR requires
further scrutiny. Although we have excluded
asymptomatic and nonsustained VAs, we should
consider that arrhythmias are more likely to be
detected in patients with implanted cardiac devices
and that not all VAs detected by cardiac implantable
electronic devices are clinically meaningful.

CONCLUSIONS

In this large study of patients NICM, MFVA was a
powerful predictor of the primary arrhythmic



PERSPECTIVES

COMPETENCY IN PATIENT CARE AND PROCEDURAL

SKILLS: MF visually assessed from CMR imaging is a powerful

predictor of ventricular arrhythmias and sudden cardiac death in

patients with NICM, whereas LVEF was a relatively poor predictor

of these events.

TRANSLATIONAL OUTLOOK: Prospective studies are needed

to determine how best to incorporate estimates of MF severity

based on CMR in the selection of patients for primary prevention

implanted cardiac defibrillators.
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endpoint of SCD and VAs. Quantification of both
TF2SD and GZF3SD mass added value to using MFVA

alone, permitting classification into low-, intermedi-
ate-, and high-risk groups. In contrast, LVEF was a
poor predictor. These findings support the approach
of using MFVA and quantifying either TF2SD or GZF3SD

for the arrhythmic risk stratification of patients with
NICM. Randomized controlled trials are required to
address whether such measures should be used in
preference to LVEF in selecting patients for primary
prevention ICDs.
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