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Abstract. Robotic grasping and manipulation is a highly active research field. Typical
solutions are usually composed of several modules, e.g. object detection, grasp selection and
motion planning. However, from an industrial point of view, it is not clear which solutions
can be readily used and how individual components affect each other. Benchmarks used in
research are often designed with simplified settings in a very specific scenario, disregarding the
peculiarities of the industrial environment. Performance in real-world applications is therefore
likely to differ from benchmark results. In this paper, we present a concept for the design
of general Pick&Place benchmarks, which help practitioners to evaluate the system and its
components for an industrial scenario. The user specifies the workspace (obstacles, movable
objects), the robot (kinematics, etc.) and chooses from a set of methods to realize a desired
task. Our proposed framework executes the workflow in a physics simulation to determine a
range of system-level performance measures. Furthermore, it provides introspective insights for
the performance of individual components.

1. Introduction
There is a high demand for robotic solutions particularly for industrial applications such as
assembly, machine loading or unloading, and handling in general [1]. Yet, creating intelligent
robots that can handle objects at a similar level of dexterity as humans is still an unsolved
research problem [2]. The ongoing trend towards high-mix low-volume production makes this
even more challenging, because potential solutions must generalize well or quickly adapt to novel
manipulated objects. The Pick&Place task is one of the most studied problems especially as it
is needed in many industry applications. Generally, the task is to move an object from one place
to another. The main phases of Pick&Place are a) pre-grasping, where the end-effector moves
to a position suitable for grasping, b) grasping, where the end-effector attempts to grasp the
object and detach it from its initial position; c) transport, where the object is moved above the
target place, and d) placement, where the object is intentionally released at the target zone [3].
There is a large variety of approaches to tackle this task, from engineered solutions which are
specifically tailored towards certain objects, to learning-based solutions which might be more
general but hard to replicate [4]. From the perspective of industrial engineers, it is hard to assess
which methods or components will be suitable to implement a certain manipulation task.

Benchmarks and competitions are essential tools to make research progress measurable and
different approaches comparable. They usually define a certain protocol, which comprises
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scenario and task descriptions, and a set of metrics to measure the performance of the method
in question. Examples of such benchmarks for Pick&Place tasks are [3, 5]. By resorting to
a specific protocol, the benchmark results become repeatable, i.e. they should yield the same
results when the same method is tested again. However, the defined scenarios are often very
specific, considering e.g. picking of certain foods [3] or simple blocks [5]. The measurements
therefore have a poor validity for assessing the methods’ suitability for real-world manipulation
applications in the manufacturing environment, and the results of these benchmarks can be
at most vaguely indicative of the expected performance. Moreover, the ranking of particular
methods could even be reversed under different task and environment conditions.

We tackle this problem by proposing a benchmark that directly evaluates the applicability
of given methods to specific industrial Pick&Place tasks. Crucially, we allow the user to define
scenarios and therefore improve the validity of the measured performance indicators. The
benchmark provides a set of given methods and evaluates them on the user-defined scenario
in a simulation environment.

2. Components of a Pick&Place System
There are various approaches to tackle Pick&Place tasks, as indicated by Figure 1. All
approaches start with a perception of a given scene or scenario including the dynamic object to
be manipulated as well as other fixed objects considered as obstacles. One approach is to first
estimate the object’s pose with respect to the robot and then select feasible grasping points based
on pre-determined (e.g. annotated) grasps followed by motion planning for picking and placing
the object. The advantage is that the object’s pose is known during grasping which facilitates
precision placement, however, reliable object pose estimation is still difficult [6]. In contrast,
other approaches circumvent the need for object pose estimation and try to directly identify
suitable grasps based on the observed shape, e.g. by fitting shape primitives [7] or learning
affordance models [8]. The grasp prediction is often split up in two parts: a generative model
from which grasps are sampled and a discriminative model which ranks them w.r.t. success
probability [9, 10]. After a grasp has been selected, these methods plan a trajectory which is
then executed with open-loop control.

Figure 1. Different pipelines for Pick&Place tasks.

Closed-loop control can be achieved with methods such as vision-based reinforcement
learning [11], but these approaches typically require extensive training data (580.000 real world
grasp attempts in the case of [11]) and substantial computing resources. For more in-depth
reviews of robotic grasping and manipulation we refer the reader to [2, 12, 13].

In order to create a long-lasting, meaningful benchmark we need to support evaluation of all
the different approaches and their roughly four phases or components of object pose estimation,
path planning, grasping and placing.
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3. Existing Benchmarks and Metrics
The isolated performance of the individual components of Pick&Place tasks can be measured
using dedicated component-specific benchmarks. Such benchmarks are available for object
detection with pose estimation [6], and grasping [14, 15]. Evaluating motion planning is
more challenging as it strongly depends on the task being solved. General discussion about
benchmarking motion planners can be found in [16]. In [15], evaluation of motion planners for
grasping is proposed.

On the other hand, system-level benchmarks evaluate the full pipeline from perception and
planning to control during autonomous execution of a predefined task. Competitions which
evaluate at system level are e.g. the Amazon Picking Challenge [17], the IROS grasping and
manipulation challenge [18], and the assembly challenge at the World Robot Summit 2018 [19].
Yet, these competitions are rare events with a limited number of participants. It is not always
possible to re-stage the competition in the lab due to e.g. accessibility of involved objects.

Benchmarks particularly for Pick&Place tasks have been recently proposed by [3] and [5].
In [3], a supermarket logistics scenario is considered. Five different types of foods in three
difficulty levels have to be cleared with Pick&Place. Metrics are success rates on object and
task level, mean picks per hour, and average duration of successful Pick&Place cycles with some
introspection by phase.

In contrast, [5] consider a box-and-blocks test, in which simple wooden blocks have to be
handled. In one sub-task they must be placed at pre-defined positions which also puts an
emphasis on the placement accuracy. The benchmark evaluates grasping from very cluttered
boxes with up to 100 blocks, but using only simple blocks limits the validity for applications in
manufacturing environments. Besides the picking success rate as main metric, they also measure
the planning and execution times and the distance traveled by the end effector, which makes
the contribution of the motion planner more traceable.

4. Concept
A robotic scenario consists of four main parts: a) the environment including objects to be
grasped, b) robot, c) the work flow, d) performance measures. The environment consists of
static and dynamic objects that are described by shape, appearance, positions, including their
geometry for collision detection. The static objects define obstacles which always have to be
avoided by the robot. The dynamic objects are considered as movable and the robot can touch,
grasp, and move them. The objects are described using the SDFormat specification [20]. The
robot is described by its shape, kinematics and/or dynamics, position in the environment, etc.
We utilize the URDF format to define the robot [21]. The task is described by the user by
defining an initial state and a desired target state. The work flow defines what actions have to
be performed in which order by the robot to fulfill the desired task.

The work flow is described by a directed graph, where nodes are the actions and edges connect
preceding and following actions. The nodes can be considered as programs, e.g. standalone
applications, services, ROS services, etc. The preconditions of a node define input data and
state required for executing the given node. For example, the node ’Grasping’ requires the
positions of the object relatively to the robot end-effector (input data) and also requires the
robot to be near the object (state). Each node also defines a group of methods that are suitable
for realizing the node. For example, the node ”Motion planning” in Fig. 2 accepts all programs
from group ”MP”. The user can therefore prepare multiple motion planners (each will belong
to the group ”MP”) and test all of them to identify which planner performs best.

Based on the scenario and the given work flow, performance measures can be computed in
simulation. We use both system-level and introspective performance measures. Because some
components are stochastic, the task must be executed repeatedly to obtain statistics. System-
level metrics include: success rate of task (task completions over number of attempts), success
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Figure 2. Example of a work flow graph. The preconditions are blue, the red labels denote
group of methods.

rate of Pick&Place operation (successful operations over number of attempts), average duration
of successful task completions, average duration of a successful Pick&Place cycle. We further
evaluate the distance traveled by end-effector, times required for planning (robot stands still)
and execution (robot moves) in successful Pick&Place operations.

While these metrics give a good overview of the general performance, they do not reveal much
information on how to improve the control system. Therefore, we introduce further introspection
metrics/protocols. In case of system failure, the failure is mapped to a node of the work flow
graph, i.e. we can report the component-wise number of failures. Also, we can test multiple
algorithms of a certain group (e.g. different motion planners). The task is then executed
10 times for each variant while all other components remain the same. This way, we can identify
how one single component affects the overall scores and whether it works well in conjunction
with other components. It is even possible to include a ground-truth solver in the comparison,
e.g. for object pose estimation one ”algorithm” could cheat and access the actual object poses.
This gives insight into how much a better object pose estimation could improve the system
performance, or if we should rather focus on improving other components instead.

The calculation of metrics is organized in two stages, the planning stage and the execution
stage. In the planning stage, all parameters of object detection, grasping point selection and
path planning are calculated w.r.t. the already known performance indicators. After successful
planning (or using ground truth in case of failures) all the plans are executed in a physical
simulation environment evaluating other performance indicators like grasping accuracy, path
planning robustness in terms of collision-free manipulation of uncertain grasped objects.

The work flow graph can be organized in any complexity, mixing planning and execution
stages, e.g. repeating object pose estimation while grasped, for improvements of the overall
process.

5. Conclusions
We presented a concept for a scenario-driven benchmark system for industrial Pick&Place
applications where users can define arbitrary tasks in arbitrary environments evaluating arbitrary
planning methods, rather than e.g. evaluating only path planners in fixed settings. The methods
are used in a service-based manner, allowing easy integration of new algorithms and exchange
of individual components. Besides regular metrics for performance assessment, we specify
introspection metrics that allow investigation of the interplay between different components
(e.g. object detection and grasp synthesis) also while interacting with a physical simulation
environment, representing the real-world execution stage of existing system-level benchmarks
like picking challenges and competitions. This allows the practitioner not only to assess the
suitability of available methods for their specific use case, but also to introduce changes to the
scenario and observe the effect on the performance measurements.
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