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Discovering knowledge from social media becomes a trend in many domains such as tourism, 
where users’ feedback and rating are the basis of recommendation systems. In this context, cluster 
analysis has been a major tool to disclose user groups by which the process of collaborative 
filtering can better determine a personalised suggestion. Matching this to the curse of big data 
is a challenge with previous studies either implementing conventional techniques on a distributed 
system or making use of data sampling. Specific to ensemble clustering, only a few aim to 
obtain both scalability and privacy preserving that are significant to handling social data. This 
paper presents a new bi-level framework of ensemble clustering in which an instance-segment 
based analysis is adopted to ensure data privacy and reduce the complexity of clustering the 
whole dataset. Unlike existing studies, instead of drawing a single clustering from each segment, 
multiple clusterings are selected to better represent instances therein. Based on published tourism 
datasets and different experimental settings, the new approach usually outperforms its baselines 
whilst being competitive to related methods found in the literature. Additional case studies on 
simulated big datasets and noisy variations are reported and discussed in addition to the analysis 
of algorithmic parameters.

1. Introduction

Social media has played an important role in human interaction, group behaviour, and business operations. In the past years, 
more and more people catch up with this trend, thus raising over a billion new online users [1]. It is not surprised the amount of 
data generated among social platforms like Twitter, Facebook and YouTube is huge, with around 18 millions text messages being 
exchanged in a minute and 90% of data generated over the Internet being seen as images and videos [2]. Given this pool of big 
data, many studies investigate applications of machine learning to extract new knowledge for a variety of problems. These include, 
customer behavioural analysis, disaster management, and pandemics tracking. Specific to hospitality and tourism, social networks 
like TripAdvisor and Yelp happen to be the sources to harvest business insight using user review and sentimental analysis [3]. See 
[4] for further detail on implications of modern information, communication technologies and social media on the tourism industry.

Given the tendency that most travellers prefer to explore new destinations, a recommendation system has been introduced to 
deliver personalised responses. Traditional systems usually exploit collaborative filtering techniques to a pile of data available on 
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social media. This aims to project possible options based on previous patterns similar to a given preference [5]. Cluster analysis is one 
of machine learning models to support this task, especially for scaling up a collaborative filtering engine to big online data [6]. By 
restricting a system to clusters of the data collection under question, the overall complexity can be substantially reduced. In fact, the 
resulting recommendation may be more accurate and in line with those traits seen with actual traveller groups, disclosed from online 
reviews, feedbacks and blogs [7]. Apart from scalability, some of modern big data algorithms are also designed to facilitate a privacy-

preserving analytic, which becomes desirable in the context of online media [8]. Realising both through extending conventional 
methods has been a challenge, with only a few extending focusing on the methodology of ensemble clustering [9].

Background and assumption: A long list of extensions to classical clustering techniques for big data is seen. With the common 
goal of scalability, most are modelled around concepts of data sampling [10], dimensional reduction [11], multi-view analysis [12], 
parallel and distributed computing [13]. Only a handful of these such as [14–16] actually consider the conjunction between privacy 
preserving and scalability. Specific to ensemble clustering, a combination of multi-view clustering and tensor-based representation 
is put forward by [14]. The scalability is achieved by aggregating multiple clustering results, each of which is created using a subset 
of original features. An additional cost occurs from the need to map a given feature space to its intermediate form. Yet, it may 
not be straight forward to interpret or compare outputs across data segments or sources. In contrary, the multi-agent model of 
[15] and the multiple-batches processing [16] tackle the scalability problem through a division of data samples. It is assumed that 
non-overlapping subsets or segments of raw data can be handled and analysed separately, while their representatives (i.e., cluster 
centroids) are aggregated to derive a correct approximation of the whole data collection. This gives way to an efficient generation of 
a global clustering that is later propagated to those initial subsets for further inference at the instance level.

Problem and scope: In [15,16], one clustering with a specific number of clusters is produced from each segment using the 
k-means algorithm. Then, the corresponding cluster centroids are aligned to determine the consensus partition. By those segment-

specific cluster centroids, the global clustering process preserves data privacy. Despite this, having each segment represented by a 
single clustering may limit the level of information extracted from all the samples therein. There might be some sub-regions not well 
presented by a small set of centroids. Yet, exploiting different data partitions of the same number of clusters is usually less effective 
to promote diversity within an ensemble than a random-selection alternative [17]. The current work extends this line of research 
with an improved framework, which maintains data privacy through k-means based centroids and improves the quality of ensemble 
clustering by making use of multiple and diverse clusterings per instance segment. Putting this into the test, it is applied to identify 
user groups in tourism related data [18] and simulated big datasets. Similar to the empirical study of [15] and [16], the proposed 
experiments are implemented in a single machine to initially demonstrate the potential of a new framework.

Contributions: These are identified as follows.

• As an extension to the approaches of [15,16], this work introduces a new bi-level, multiple-clustering framework for analysing big 
data. Firstly at the segment level, representative clusterings of each segment are drawn from a pool of data partitions, initially 
created by k-means with different numbers of clusters and other parameter settings. This selection procedure is designed as 
an iterative greedy search that aims to maximise the diversity within the target set of clusterings [17]. A desired size of this 
collection serves as the termination condition for the forward search, which repeatedly selects one from the pool to obtain the 
highest group-wise diversity. This is an efficient implementation, for which a more complex optimisation or swarm intelligence 
techniques [19] can be exploited to avoid a sub-optimal solution. Provided this, the proposed framework better represents 
segment-level information than the previous methods using the optimised multiple-clustering concept. Then, at the dataset-wide 
level or global clustering, data privacy is ensured through the use of those segment-specific centroids. Of course, there is a tradeoff 
between improved quality of centroids and a higher complexity brought about by the exploitation of multiple clusterings.

• At the dataset-wide level, those centroids are considered as inputs to an ensemble clustering, for which benchmark graph- and 
similarity-based techniques like CSPA, HBGF and EAC-AL [9] are investigated. With a specified number of clusters, the resulting 
partition is then used to map segment-specific instances to one of the so-called global clusters. Compared to the previous studies 
that limit only to a direct approach to ensemble clustering (i.e., searching for the optimal alignment of clusters from different 
segments), the proposed framework allows other benchmark ensemble clustering methods to be used to deliver a dataset-wide 
partition. Since the direct approach is often less effective than others, the new framework may boost the quality of ensemble 
clustering in this context.

• This work also provides a comparative study between the proposed approach, baseline models and related techniques found in 
the literature. It is based on published datasets in the domain of tourism [18] and simulated big datasets. In addition to parameter 
analysis, a further case study on datasets with noisy feature values is also conducted to assess the robustness of both new and 
baseline methods. This provides an insight of applying these in a real-world setting where data can often be imperfect.

The rest of this paper is organised as follows. Detail of related works is provided in Section 2. This is followed by the description of 
the proposed method in Section 3. Then, Section 4 presents experiment design, evaluation results, discussion on parameter analysis 
and implications of the new model. The paper is concluded in Section 5 with perspectives of future research.

2. Related works

Within the domain of hospitality and tourism, the recent review of [20] has pointed out an exponential growth of published 
works on social media and big data analysis since 2010. Moreover, a number of major topics widely investigated by scholars include 
2

demand prediction, tourist experience and satisfaction. Online platforms and social networks such as Twitter and travel reviews on 
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TripAdvisor appear to be the common sources of data. Before 2017, simple analytical methods like regression and statistical text 
analysis have been a typical choice to disclose useful knowledge. Later, more sophisticated algorithms are introduced for sentimental 
analysis and topic modelling. Of course, machine learning techniques have also been extensively explored in this field, especially to 
support the development of a recommendation system [21]. To finalise destinations, points of interest and perhaps hotel choices, 
most tourists generally rely on this innovative approach to retrieve relevant information from a huge volume of data generated and 
shared regularly online. Among others, data clustering is often adopted to provide descriptive analysis on customer ratings and online 
reviews, which can be extended to finding user groups or representative profiles [22]. As such, traits identified from past records can 
be exploited as references for future recommendations, which are in par with actual users’ preference. Some systems make use of 
cluster analysis to divide users based on places they previously visited and present the same suggestion to members of each cluster 
[23].

Specific to collaborative filtering that is a branch of recommendation system, a prediction to user’s preference is achieved through 
comparisons between the input ratings and those memorised or modelled from historical data. Despite the flexibility to view a sug-

gestion along user- or item-based perspective, the underlying calculation suffers from two main drawbacks of sparsity and scalability. 
To alleviate the former, [24] introduces a clustering-based smoothing method to deal with unrated data. For the other, clustering 
techniques are included in a target system to reduce the space of user data such that calculations are constrained to small groups, 
not the entire population. For example, k-means has been an efficient tool to determine tourist segments with respect to ratings and 
demographic properties [25]. There are different modifications that aim to improve this baseline further using a domain-specific 
ontology [26] and the concept of fuzzy or soft clustering, respectively. In particular, the fuzzy c-means algorithm is picked up to 
provide user groups for the recommendation system called Personalised Sightseeing Information System or PSIS [27]. Even though 
the complexity of k-means and alike is usually linear to the number of data instances (𝑁), i.e., 𝑂(𝑁), it becomes clear that a constant 
update of tourist segments with new records can still be expensive. Yet, a hierarchically structure of those segments may lead to a 
more accurate response, but its implementation is strongly constrained by the magnitude of 𝑁 . Based on these, advance clustering 
methods developed within the umbrella of big data are candidates to deliver improvements on collaborative filtering [7]. In addition 
to scalability, the issue of privacy-preserving has also gained a great deal of attention, given that recommendations are normally 
distilled from social media data, owned partly by different parties [8]. With k-means and its variants being the common baseline, 
Table 1 summarises some of the scalable clustering methods that strive to address the issue of privacy preserving.

According to the review of [28], sampling-based clustering techniques like BIRCH, CURE, and CLARANS emerge as initial solutions 
to the curse of big data. The idea is to draw a subset of samples from the whole dataset for the actual clustering stage, with the 
resulting data partition being mapped to all instances later. Within this category, major factors motivating new investigations include 
size and quality of the sampling. In addition, the concept of subspace clustering has been introduced to determine a feature subset 
that is informative for each of the clusters [10]. Despite good results reported therein, these techniques do not pay attention to 
the protection of data privacy since large databases under investigations usually belong to a single institution. This issue has been 
handled partly by several projection-based algorithms included in Table 1, which aim to reduce the data dimension through a random 
projection [11,29] or a learning framework like AutoEncoder [30]. However, they seem appropriate for a high dimensional dataset, 
where the number of instances tends to be small or moderate. It is noteworthy that [29] is the pioneer of exploiting multiple projected 
feature sets to develop an accurate ensemble clustering. This practice is generalised by the approach of multi-view clustering, where 
multiple clusterings are produced from different feature subsets to present various possible results. As such, the process of cluster 
analysis becomes less expensive, with possible representation schemes of tensor [12] and graph [31] to partly preserve data privacy. 
Further this line of research, [32] implements a multi-view clustering framework on the cloud computing environment, in which 
tensor-based features are also encrypted.

Based on the famous Map-Reduce stack, several scalable clustering methods like Map-Reduce based CURE [34,36] have been put 
forward to both accommodate a big volume of data to be examined as well as protect its privacy. The latter is obtained through a 
native mechanism of distributed data management where a number of data blocks are stored and manipulated at local units called data 
nodes. This so-called distributed-computing approach is not only coupled with the classical k-means [13,37,38], but also extended 
to its soft clustering counterpart like the fuzzy c-means technique [35]. Apart from the families of clustering techniques presented 
thus far, another group of works consider the use of instance segments to resolve the difficulty with data volume. Table 2 compares 
techniques belonging to the family that are highly related to the current work on scaling up the ensemble clustering [17,9] to big 
and privacy-preserving data analysis.

As summarised in the previous table, initial models like that of [39] have managed to scale the determination of instance-to-

instance similarity measurement up to a big data collection. With each segment containing only a subset of all instances (𝑁), a 
pairwise similarity matrix 𝑁 ×𝑁 can be constructed, where measures between those not in the segment are simply regarded as 
zeros (i.e., unknown relations). A collection of partly overlapping segments are considered to allow the corresponding matrices to 
complement each other, especially for those unknown in some. Given this centralised aggregation framework, the method does not 
strongly support the privacy protection. A similar issue has also been observed with the study of [41]. In spite of facilitating a 
de-centralised system using non-overlapping segments, instance-related detail is made available for the final phase. To promote a 
more complete privacy preservation, both [15] and [16] similarly exploit k-means to create data partitions from non-overlapping 
segments, then only cluster-based representatives are forwarded or shared across segments to disclose the consensus clustering. 
However, a single clustering with a fixed number of clusters has been generated from each of the instance segments, thus limiting 
the solution space being covered. These motivate the present research that aims to implement multiple clusterings at each segment 
as a way to boost diversity among inputs in the stage of consensus cluster analysis. In addition, the resulting framework is generally 
3

applicable to different settings of virtually [16] and physically [15] distributed systems.
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Table 1

Summarisation of scalable clustering methods and their concepts of handling the privacy preserving issue. Abbreviations exploited herein 
to denote different approaches to scalable clustering, SP: sampling-based, PJ: projection-based, FS: feature-selection based, MV: multi-view 
analysis, and DC: distributed computing.

Methods Approach to Approach to privacy Brief description

scalability preserving

BIRCH, CURE SP n/a A set of samples are initially drawn from the target dataset

and CLARANS [28] for a cluster analysis, then the result is mapped to all data

instances in the original set

Scalable subspace SP n/a Samples drawn from a dataset is used to find an appropriate

clustering [10] feature subset (or subspace) for each cluster, then the result

is propagated to all data instances

Projection-based PJ Partly, with projected Clustering the whole set of instances, i.e., with no sampling

ensemble clustering [29] features or segmentation. This is repeated multiple times to create

inputs for the ensemble clustering

Random projections [11] PJ Partly, with projected Clustering the whole set of instances, i.e., with no sampling

features or segmentation

Structured PJ Partly, transformed Clustering the whole set of instances, i.e., with no sampling

AutoEncoder [30] features are created or segmentation. An optimal feature subspace is determined

using AutoEncoder for each of the resulting clusters

Parallel ensemble FS n/a A parallelism of base clustering generation and dimension

clustering [33] reduction using unsupervised feature selection methods.

Each clustering is produced from the whole dataset

Tensor constrained MV Partly, using a tensor Different views (feature spaces) of the whole dataset are

multi-view subspace based representation exploited to give different results that can be fused later. It

clustering [12] is similar to [14] with a focus on subspace determination.

Auto-weighted multiple MV Partly, using view- In the fusing stage, view-specific graphs are prioritised and

graph learning [31] specific graphs assigned with distinct weights

Privacy-preserving MV and DC Fully, data is presented Use a cloud-based framework to obtain multiple view-specific

tensor-based multiple in a tensor-based results, with an application in the IoT domain

clustering [32] space and encrypted

Map-Reduce based DC Fully, different instance Implemented on the Map-Reduce stack, allowing a clustering

CURE [34] segments are stored process to be distributed across data nodes

and analysed at nodes

Weighted-kernel DC Fully, different instance An implementation of soft clustering, with a new focus on

possibilistic segments are stored identifying and dropping noisy instances

c-means [35] and analysed at nodes

Knowledge-based DC Fully, different instance Similar to Map-Reduce based CURE, with a focus on text

document clustering [36] segments are stored document clustering using knowledge ontology

and analysed at nodes

Differential privacy DC Fully, with data nodes An implementation of distributed k-means, with an approach

protecting k-means [13] and noise injection to share boundary information among data nodes

Cloud-based DC Fully, cluster centres Another variation of distributed k-means, with a new focus

k-means [37] are encrypted/shared on exchanges of encrypted information

Fixed-width DC Fully, instances are Similar to cloud-based k-means w.r.t. encrypted information

clustering [38] encrypted/shared

3. Proposed method

This section provides an explanation of the proposed framework, which can be referred to as Scalable and Privacy-Preserving 
Ensemble Clustering or SPP-EC hereafter. It is hypothesised that multiple clusterings of each instance segment may promote the 
diversity amongst segment-specific inputs within the process of ensemble clustering. In order to acquire this, the new method has 
been designed with three processing stages of (i) preparing a pool of multiple clusterings for each of the segments; (ii) selecting a 
subset of those to establish a representative collection of cluster centroids, using a greedy forward-search; and (iii) aggregating cluster 
representatives to obtain the consensus clustering to which all original instances will be later mapped. Fig. 1 provides an overview of 
this bi-level framework in which those three processing stages are depicted in a logical order. In particular, those parts highlighted in 
blue colour are new in this context of segment-based analysis. These include the generation of multiple data partitions and optimised 
selection of representative clusterings, which have not been exploited by the existing methods. Likewise, through the provision of 
multiple clusterings with different cluster numbers, other well-known ensemble clustering algorithms like CSPA can be reused to 
deliver an accurate global clustering. The new framework opens up this opportunity that has not been feasible with a single data 
4

partition and a fixed number of clusters employed in the previous works.
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Table 2

A comparison of instance-segment based techniques and their approaches to handling data privacy.

Method Approach to privacy preserving Brief description

Spectral ensemble Partly, at the stage of clustering data in Instance segments are randomly generated and separately

clustering [39] each of the segments. But, instance-level clustered. Then, a segment-specific co-association matrix is

similarities are shared to create the produced using the concept of Incomplete Base Partition

summarisation across segments. (IBP). These are later merged to provide an input to the

consensus clustering.

Random sample Partly, at the stage of clustering data in Non-overlapping instance segments are created using the

partition-based each segment. But, detail of instance- method of [40]. Like other methods listed in this table, k-

ensemble clustering [41] cluster associations obtained from these means or its variants is used to produce a single data

segments are later aggregated to obtain partition from each segment (with the unified number of

a median partition. clusters).

Validated distributed Fully, both segment-level clustering and Non-overlapping instance segments are randomly generated

ensemble clustering [15] exchanges of only cluster representatives and separately clustered. Later, cluster representatives are

in the later stage of consensus clustering. used to align cluster labels across segments.

Multiple-batches Fully, an approach taken is similar to Non-overlapping instance segments are randomly created

k-means [16] that of [15] and separately clustered. Later, cluster representatives are

aggregated for the step of dataset-wide clustering. The

focus is to develop a model to handle big data in a single

machine.

Fig. 1. Overview of the proposed bi-level framework. Note that the propagation of results shown for the first instance segments (see the red arrow line) similarly takes 
place for all other segments.

3.1. Generating a pool of multiple clusterings

With the goal of setting up segment-based representatives for the following consensus analysis stage, this first phase exploits 
the concept of ensemble clustering [9] to create a pool of diverse results for each of the instance segments. Let 𝑋 ∈ [0, 1]𝑁×𝐷 be 
a big dataset under examination, where each of the 𝑁 instances or samples is represented by a vector of 𝐷 normalised feature 
values ∈ [0, 1]. There are 𝐻 non-overlapping subsets or segments 𝑋ℎ, ℎ = 1 … 𝐻 of 𝑋, each of which contains 𝑁ℎ instances, i.e., 
𝑁1 +𝑁2 +… +𝑁𝐻 =𝑁 . To achieve this, the random sampling approach used by [15,16] is adopted here with the ratio of each 
segment having less than or equal to 10% of the original number of instances. It is worth noting that segment-specific analysis can be 
more efficient with smaller segments but possibly adding up more work at the dataset-wide level if they are too small. This decision 
on the random approach is to reflect a common case of big data analysis, where the knowledge of dataset-wide distribution is rarely 
available. Please consult the report of [40] for another research direction that aims to discover the dataset property across blocks of 
instances, thus allowing a distribution-preserving sampling.

For a segment 𝑋ℎ, k-means is applied to generate a collection Πℎ of 𝐵 clusterings, i.e., Πℎ = {𝜋ℎ
1 , … , 𝜋ℎ

𝐵
}. This pool is achieved 

using a generation function 𝛼(𝑋ℎ, 𝐵), with the specific 𝛼 employed in this work being a combination of the following strategies.

∙ Random-k strategy: this is used in addition to the random initialisation of k-means. For each clustering, a number of clusters is √ √
5

arbitrarily picked up from the range of {2, … 𝑁ℎ} or {2, … 50} when 𝑁ℎ > 50.
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Fig. 2. Illustration of the first stage in SPP-EC framework: generation of a pool 𝐵 clusterings Πℎ for each data segment 𝑋ℎ of the whole dataset 𝑋, where ℎ = 1 … 𝐻 . 
To simplify the presentation, clustering results are shown against two dimensions of 𝑓𝑎 and 𝑓𝑏 , instead of 𝐷.

∙ Random-subspace strategy: a clustering 𝜋ℎ
𝑔
, 𝑔 = 1 … 𝐵 is produced from a subset of 𝑋ℎ, or a feature subspace. This is perceived 

as a random subset 𝑋∗
ℎ
∈ [0, 1]𝑁ℎ×𝐷∗

of the original feature space 𝑋ℎ, whose number of chosen features is estimated by the 
following.

𝐷∗ =𝐷∗
𝑚𝑖𝑛

+ ⌊𝜂(𝐷∗
𝑚𝑎𝑥

−𝐷∗
𝑚𝑖𝑛

)⌋, (1)

where 𝜂 ∈ [0, 1] is a uniform random number, 𝐷∗
𝑚𝑎𝑥

and 𝐷∗
𝑚𝑖𝑛

stand for upper and lower limits of a subspace 𝑋∗
ℎ
. Based on the 

report of [42], these are set to 0.85𝐷 and 0.75𝐷, without duplicated features appearing in 𝑋∗
ℎ
. Fig. 2 illustrates the processing 

steps in this first stage of SPP-EC.

3.2. Selecting the reference set of multiple clusterings from each segment

This is the stage in which the diversity-driven greedy search for a desired set of clusterings is explained. To be precise, it is divided 
into multiple steps whose procedural details and supporting information are presented below.

∙ Step 1: For each segment 𝑋ℎ, one of the clusterings in pool Πℎ is chosen as a seed of the target collection Πℎ′ = {𝜋ℎ′
1 , … , 𝜋ℎ′

𝑀
}, 

i.e., the first of its 𝑀 members. It is simply a clustering 𝜋ℎ
𝑠
∈Πℎ with the largest sum of difference to the rest in this pool.

𝜋ℎ
𝑠
= argmax

∀𝜋ℎ𝑔∈Πℎ

∑
∀𝜋ℎ𝑞 ∈Πℎ,𝜋ℎ𝑞 ≠𝜋

ℎ
𝑔

𝐷𝐴(𝜋ℎ
𝑔
, 𝜋ℎ

𝑞
), (2)

where 𝐷𝐴(𝜋ℎ
𝑎
, 𝜋ℎ

𝑎′
) ∈ [0, 1] denotes a measure of diversity or disagreement between a pair of partitions 𝜋ℎ

𝑎
, 𝜋ℎ

𝑎′
∈ 𝑃 𝑖ℎ. It can be 

calculated by the next question.

𝐷𝐴(𝜋ℎ
𝑎
, 𝜋ℎ

𝑎′
) = 1 −𝑀𝐼(𝜋ℎ

𝑎
, 𝜋ℎ

𝑎′
), (3)

provided that 𝑀𝐼(𝜋ℎ
𝑎
, 𝜋ℎ

𝑎′
) ∈ [0, 1] denotes the metric of mutual information [43] justifying a degree of agreement between two 

data partitions 𝜋ℎ
𝑎

and 𝜋ℎ

𝑎′
of the same set of instances 𝑋ℎ. At the end, 𝜋ℎ

𝑠
is excluded from the pool Πℎ as a preparation for the 

next step, i.e., Πℎ ←Πℎ − 𝜋ℎ
𝑠

.

∙ Step 2: Having initialised the reference collection Πℎ′ , this step repeatedly adds a new member until the size of Πℎ′ becomes 𝑀 . 
This iterative process is explained below.

(2.1) In each iteration, all clusterings left in the pool Πℎ are examined for their diversity measures against those current members 
in the reference collection Πℎ′. Again, a clustering 𝜋ℎ

𝑥
∈ Πℎ with the highest average of diversity is selected to join Πℎ′ , i.e., 

Πℎ′ ←Πℎ′ ∪ 𝜋ℎ
𝑥

.

𝜋ℎ
𝑥
= argmax

∀𝜋ℎ𝑣∈Πℎ

∑
∀𝜋ℎ′𝑤 ∈Πℎ′ 𝐷𝐴(𝜋ℎ

𝑣
, 𝜋ℎ′

𝑤
)

|Πℎ′| (4)

(2.2) This step terminates if |Πℎ′| = 𝑀 . Otherwise, update the pool using Πℎ ← Πℎ − 𝜋ℎ
𝑥

and repeat Step 2 for another new 
6

member of the target reference set Πℎ′ .
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Fig. 3. Illustration of the consensus clustering stage in SPP-EC framework, where centroids disclosed in the segment level are inputs to the next layer of dataset-wide 
clustering.

3.3. Generating the consensus clustering from segment-specific representatives

Having acquired the reference set Πℎ′ of 𝑀 clusterings from each segment 𝑋ℎ, the corresponding set of cluster centroids 𝐶ℎ is 
estimated, where a centroid 𝑐ℎ

𝑖
∈ 𝐶ℎ is presented by 𝐷 normalised feature values, i.e., 𝑐ℎ

𝑖
∈ [0, 1]1×𝐷 . By aggregating these across all 

𝐻 segments, the new dataset of representatives 𝐶 = 𝐶1 ∪𝐶2… ∪𝐶𝐻 is obtained as in input to the consensus clustering stage. Given a 
target number of clusters 𝐾 , it is possible to simply employ a conventional algorithm like k-means or hierarchical clustering methods 
to produce the consensus clustering 𝜋∗ = {𝑐∗1 , 𝑐

∗
2 , … , 𝑐∗

𝐾
}. This can be regarded as the universal or global partition to which all data 

instances in different segments are mapped. For an instance 𝑥 ∈ 𝑋ℎ, it is assigned to the cluster 𝑐∗ ∈ 𝜋∗ if most of centroids in the 
reference collection Πℎ′ that it belongs to have been members of 𝑐∗ . When there is a tie, distances between 𝑥 and centroids of those 
candidate clusters are calculated, with the minimum distance determine the final outcome. This stage can be depicted by Fig. 3 that 
includes both segment-level and dataset-wide processes.

Specific to this study, the process of consensus clustering mentioned above is carried out using one of the benchmark techniques 
found in the literature: CSPA, HBGF and EAC-AL, respectively. The former two belong to the graph-based category while the other 
is a similarity-based one. To generate an ensemble of base clusterings, k-means is chosen for its efficiency, with those two strategies 
highlighted in Section 3.1 being reused here, i.e., 𝛼(𝐶, 𝑀∗). Note that the ensemble size of is another user-defined variable 𝑀∗, 
which is normally set to the range between 30 to 50 in many works. With this, an ensemble at the dataset-wide level can be specified 
as Π𝐶 = {𝜋𝐶

1 , … , 𝜋𝐶
𝑀∗}. Specific to both CSPA and EAC-AL, a 𝑃 × 𝑃 pairwise similarity matrix 𝑆 is firstly summarised from Π𝐶 , 

where 𝑃 = |𝐶| or the total number of centroids considered at this level. The similarity between any two centroids 𝑦𝑖, 𝑦𝑗 ∈ 𝐶 can be 
initially estimated with respect to each clustering in the ensemble Π𝐶 , i.e., 𝑠𝑖𝑚𝑚(𝑦𝑖, 𝑦𝑗 ), 𝑚 = 1 … 𝑀∗. This is 1 if both centroids are 
assigned to the same cluster, 0 otherwise. Following that, the final similarity 𝑠𝑖𝑚(𝑦𝑖, 𝑦𝑗 ) that is based on all the clusterings in Π𝐶 can 
be calculated by the next equation.

𝑠𝑖𝑚(𝑦𝑖, 𝑦𝑗 ) =
∑

∀𝑚=1…𝑀∗ 𝑠𝑖𝑚𝑚(𝑦𝑖, 𝑦𝑗 )
𝑀∗ (5)

Having acquired 𝑆 , EAC-AL considers this as a data matrix representing 𝑃 instances by 𝑃 different features, row- and column-wise, 
respectively. It makes use of the agglomerative hierarchical clustering technique with average linkage metric to create the clustering 
𝜋∗ of 𝐾 global clusters. In contrast, CSPA represent this similarity matrix as a graph, in which nodes and links correspond to all 
𝑦𝑖 ∈ 𝐶 and non-zero similarity measures between any pairs of 𝑦𝑖, 𝑦𝑗 ∈ 𝐶 . Note that the weight of a link between nodes representing 
𝑦𝑖, 𝑦𝑗 ∈ 𝐶 is the similarity 𝑠𝑖𝑚(𝑦𝑖, 𝑦𝑗 ) specified in 𝑆 . Then, CSPA exploits a graph cut technique to divide this graph into 𝐾 parts, each 
of which becomes one of the global clusters. Without having to construct 𝑆 , HBGF directly translates the instance-cluster relations in 
Π𝐶 to a bipartite graph, with two node types being included to represent instances and clusters. A link occurs between two nodes of 
different types and only when that specific instance is assigned to the cluster. Again, HBGF obtains a set of global clusters by dividing 
this graph into 𝐾 parts with a graph cut technique. Please consult the review of [9] for further details of those ensemble clustering 
methods.

4. Performance evaluation

Having explained the proposed framework, this section presents its performance evaluation against several compared techniques, 
7

based on different experimental settings and published datasets.
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4.1. Experimental design

At first, this assessment is conducted on two datasets, which have been investigated in the comparative study of [18]. These 
sets that will be referred to as Data1 and Data2 hereafter, represent users’ rating averages collected through social media platforms 
of TripAdvisor.com and Google reviews, respectively. In particular, Data1 contains 980 user records (𝑁 = 980), each of which is 
represented by 10 feedback attributes (𝐷 = 10) and summarised from feedbacks on destinations in East Asia. For the other, Data2 is 
a collection of 5,456 user records and 24 types of attractions across Europe (𝑁 = 5, 456 and 𝐷 = 24). From the original work, optimal 
numbers of clusters (𝐾) for these two datasets are 8 and 3, which will be exploited in the stage of consensus clustering. Prior the 
evaluation, all features are normalised to the standard scale of [0, 1], and Euclidean is set to be the default distance measurement. 
In order to justify quality of the proposed model for big data analysis, the following procedure to simulate additional instances is 
applied to Data2. Given a dataset 𝑋, randomly select an instance 𝑥 ∈𝑋 and find its 𝑘 nearest neighbours, where 𝑘 is also arbitrarily 
chosen from {1, 2, 3, 4, 5}. A new instance 𝑥′ is a vector of averages between those identified neighbours along each of the 𝐷 features. 
It will be added to 𝑋 only when 𝑥 ∉𝑋, 𝑥′ is dropped otherwise. This process is repeated until the size of 𝑋 reaches the target, which 
is 10,000,000. The resulting set is named Data2-simulated for a future reference.

With these three sets, another preparation stage is required to obtain instance segments. The random sampling approach is adopted 
here with the investigated ratios being 10%, 5%, 2% and 1% of the original number of instances. In this work, it is also assumed that 
each segment should not be smaller than 100 to provide useful and diverse data partitions to the global stage. In other words, the 
lowest ratio for Data1 is 10% and 2% for Data2, while those four ratios are applicable to the simulated dataset. The new framework of 
SPP-EC has been designed to generalise to a rich collection of alternative techniques employed to create the global clustering. Specific 
to this paper, these include the classical algorithm of k-means (KM) and other consensus clustering techniques mentioned earlier. As 
such, the resulting models to be assessed are SPP-EC(KM), SPP-EC(CSPA), SPP-EC(HBGF) and SPP-EC(EAC-AL). Note that k-means 
with a random initialisation is the common method to produce ensemble of clusterings at both instance-segment and dataset-wide 
levels.

To achieve a rigorous evaluation, a number of compared techniques are considered to cover baseline models and those recent 
works found in the literature. To start with, 4 basic choices of KM, CSPA, HBGF and EAC-AL are examined on the whole dataset 
𝑋 to set the targets for their counterparts implemented on SPP-EC. In addition, two of those previous works indicated in Table 2

are explored here: Multi-Batches [16] and Validated Distributed Ensemble Clustering or V-DEC [15]. Again, k-means with the fixed 
number of clusters 𝐾 is used to create segment-specific results for these methods. Similar to SPP-EC, the corresponding set of cluster 
centroids is collected for the final clustering, for which k-means has also been employed by Multi-Batches. For V-DEC, those centroids 
are aligned across all segments using the segment-pairwise validation. Without a definite structure of distributed segment allocation, 
the underlying validation is implemented with a random pair of segments firstly. Then, one of these is further aligned with a new 
segmented arbitrarily chosen from the rest. To acquire the consensus clustering, this is repeated until all segments have been covered.

Other experimental settings are summarised below.

• For new models of SPP-EC(KM), SPP-EC(CSPA), SPP-EC(HBGF) and SPP-EC(EAC-AL), the size of initial pool 𝐵 is configured 
to 50 and the size of target reference set of multiple clusterings 𝑀 is 10. For those three ensemble clustering deployed at the 
dataset-wide level, the ensemble size 𝑀∗ is 30, which is similarly applied to the three baselines of CSPA, HBGF and EAC-AL.

• Following the original work on these datasets [18], internal validity indices of SC: Silhouette coefficient [9] and CH: Calinski-

Harabasz index [44] are employed to justify and compare the goodness of clustering results. Note that SC in the range of [−1, 1]
with a high positive value indicating a good clustering with compact and well-separated clusters, while a higher value of CH 
similarly suggests the better a result is.

• Adding to those previously clarified, each specific experiment setting is repeated for 30 runs to generalise the results. The 
proposed SPP-EC framework is implemented in a standard workstation: Intel(R) Core(TM) i7-4170HQ CPU@2.50 GHz, RAM 
128 GB, while those baseline models on the whole datasets are achieved using the cloud-based service with GPU processing units 
and RAM 512 GB. Given these different settings, a direct comparison of run times would not be appropriate, thus a complexity 
analysis being elaborated after the result report to demonstrate their scalability.

4.2. Experimental results

For the first part of this report, the results obtained from the proposed and related segment-based models are presented for original 
datasets of Data1 and Data2. In order to compare with baseline counterparts that analyse the whole set of instances 𝑋, the sampling 
ratio of 10% has been exploited as the default. Based on the SC metric, Fig. 4 illustrates method-specific measures that are averages 
across the two datasets and 30 trials for each setting. These results suggest that the proposed SPP-EC framework can usually sustain 
the clustering performance of both basic k-means and those ensemble clustering methods included in this evaluation. To be precise, 
SC scores of KM and SPP-EC(KM) are marginally different, i.e., 0.1457 and 0.1428, respectively. Likewise, a similar observation is 
obtained considering the pair of CSPA and SPP-EC(CSPA), with the measures of 0.1646 and 0.1627. Among segment-based techniques, 
SPP-EC(EAC-AL) provides the best result, with all variants of SPP-EC frequently outperform the two compared algorithms of Multi-

Batches and V-DEC. It is also noteworthy that the use of those ensemble clustering methods at the consensus clustering stage appear 
to be more effective than the more efficient choice of k-means. Moreover, Fig. 5 provides a similar comparison using the CH metric. 
Those trends previously pointed out appear again in this figure, where SPP-EC(CSPA) possesses the highest averaged score among 
8

segment-based alternatives. Besides these figures, detailed results are presented in Table 3.
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Fig. 4. Averaged SC scores obtained by investigated methods across two datasets and 30 trials, categorised into 2 groups of: baseline models that analyse a whole 
dataset (blue bars) and segment-based techniques using 10% sampling ratio (red bars).

Fig. 5. Averaged CH scores obtained by investigated methods across two datasets and 30 trials, categorised into 2 groups of: baseline models that analyse a whole 
dataset (blue bars) and segment-based techniques using 10% sampling ratio (red bars).

Besides the improvement in clustering quality made by the proposed models, privacy of the actual instances are preserved through 
the exploitation of only segment-specific centroids in the global clustering phase. Despite the concept is in line with those of Multi-

Batches and V-DEC, the number of centroids created per segment is undoubtedly larger than a fixed number employed by those 
compared techniques. Hence, it is interesting to see how many actual instances are highly similar to their nearest centroids, which 
have been generated and selected across segments. Ideally, the proportion of these cases in a dataset should be low to ensure the best 
possible data protection. Based on Data1 and Data2 with the 10% sampling rate, Fig. 6 presents the percentages of actual instances 
in each of these datasets that are similar to their closest centroids. There are two distance ratios illustrated therein, < 2% and < 5%, 
which correspond to the distance between an actual instance to its centroid as a percentage of the maximum distance between any 
pair of instances in the dataset. For ‘Single clustering’ that is the case for Multi-Batches and V-DEC, only around 5.13% of actual 
instances in Data1 are similar to one of the centroids at the similarity level of < 2%. It is slightly higher with SPP-EC at 6.04%. This 
trend is also observed in Data2 with the precise percentages of 3.51% and 4.66%, respectively. Bigger differences are reported at the 
level of < 5% for both datasets. With these results, the proposed framework is likely to be less effective for privacy preserving than 
Multi-Batches and V-DEC. However, all of them are far better than the use of actual instances at the global clustering stage, whose 
similar percentages are also provided in this figure for a reference.

As specified in the experimental design that the only sampling ratio of 10% is applicable to Data1, while two other smaller 
rates of 5% and 2% should be investigated on Data2. For this examination, Fig. 7 shows both averaged SC and CH scores from 30 
trials of a specific setting of a segment-based model and the sampling rate. In general, all techniques perform worse as the size of 
segments becomes smaller, i.e., each contains around 545, 272 and 109 instances for the ratios mentioned above. Nonetheless, SPP-EC 
based methods remain better than those two compared methods that make use of a single clustering to represent each segment, thus 
suggesting the benefit of introducing multiple clusterings to this problem context. In fact, even at the 2% ratio, some models like 
SPP-EC(EAC-AL) remains more effective than KM (i.e., clustering the whole dataset), with SC and CH scores of 0.1864 and 444.1287.

In the second part of this section, the same set of experiments is carried out with Data2-simulated containing a big collection of 
9

10,000,000 instances. This provides a testbed for the SPP-EC framework that has demonstrated a great potential given the results 
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Table 3

Dataset-specific results as averaged SC and CH scores obtained by 
investigated methods across 30 trials, with corresponding standard 
deviations being shown in parentheses. Note that the sampling ratio 
of 10% is employed to create segments for relevant methods.

Dataset/Method SC scores CH scores

Data1

KM 0.1231 (0.0212) 121.6769 (30.1335)

CSPA 0.1377 (0.0098) 129.6375 (9.2198)

HBGF 0.1564 (0.0113) 143.6900 (5.3157)

EAC-AL 0.1405 (0.0105) 139.7827 (8.1691)

Multi-Batches 0.0953 (0.0283) 118.1778 (7.0318)

V-DEC 0.1042 (0.0251) 123.1983 (8.0121)

SPP-EC (KM) 0.1164 (0.0284) 127.3215 (10.0824)

SPP-EC (CSPA) 0.1326 (0.0116) 128.1716 (8.0601)

SPP-EC (HBGF) 0.1517 (0.0182) 145.7285 (4.9127)

SPP-EC (EAC-AL) 0.1489 (0.0159) 138.1154 (6.3109)

Data2

KM 0.1683 (0.0141) 305.0397 (56.0359)

CSPA 0.1915 (0.0045) 630.7069 (30.0045)

HBGF 0.1867 (0.0134) 579.7803 (26.0021)

EAC-AL 0.2076 (0.0208) 484.5054 (34.4321)

Multi-Batches 0.1303 (0.0423) 280.2137 (29.7031)

V-DEC 0.1543 (0.0311) 320.1401 (22.3503)

SPP-EC (KM) 0.1691 (0.0218) 340.1905 (31.7012)

SPP-EC (CSPA) 0.1928 (0.0104) 613.9083 (26.1217)

SPP-EC (HBGF) 0.1797 (0.0197) 560.0706 (22.9073)

SPP-EC (EAC-AL) 0.2012 (0.0175) 471.0164 (25.1502)

Fig. 6. Percentages of actual instances in Data1 (left) and Data2 (right) that are similar to their nearest centroids. Two distance ratios are included, < 2% and < 5%, 
which correspond to the distance between an actual instance to its centroid as a percentage of the maximum distance between any two instances in the dataset.

presented so far. Similar to the previous table, Table 4 shows the average SC and CH scores that each of the examined methods 
achieves on this dataset. With the sampling ratio of 10%, SPP-EC driven models are able to produce clusterings of comparable quality 
to their baselines that become extremely expensive to implement. In addition, they usually outperform the direct competitors, i.e., 
Multi-Batches and V-DEC, thus reinforcing the previous finding of an advantage brought about by multiple clusterings. Note that SPP-

EC(EAC-AL) and SPP-EC(CSPA) manage to obtain high SC and CH scores of 0.1918 and 609.5232, which are significantly higher than 
those of KM (0.1411 and 288.1257). As such, it is worth applying SPP-EC to a dataset even when KM remains obtainable. An obvious 
question arises whether SPP-EC models can sustain good performance when segments get smaller. To answer that, Fig. 8 depicts 
average SC scores obtained by different segment-based techniques at decreasing ratios of instance sampling, from 10%, 5%, 2% and 
then 1%. Both Multi-Batches and V-DEC become gradually less effective as the ratio drops, while those SPP-EC based counterparts 
keep the quality of clustering results roughly at the same level. This observation is different from those results reported in Fig. 7, 
largely due to the size of a segment generated from Data2-simulated is much bigger than that of Data2. At the same sampling ratio 
of 2%, segments from the former contains 200,000 instances, with only 109 being members in the latter case. As a result, multiple 
clusterings created for each segment in Data2-simulated would be more informative and diverse, hence the goodness of the final 
clustering. A similar tendency has been revealed in Fig. 9 that presents additional assessment statistics based on the CH metric.

To consolidate the previous comparison based on average measures, the next part provides another comparative evaluation using 
the statistical test adopted the previous work [45]. The number of times that a method 𝑏 ∈ Ψ is ‘significantly better’ and ‘significantly 
worse’, at the 95% confidence level, than others ∀𝑐 ∈ Ψ, 𝑐 ≠ 𝑏 are examined, where Ψ denotes a set of seven methods (i.e., six 
segment-based models and KM). Let 𝜇𝑡

𝑏
(𝑑, 𝑚𝑠) be the average of validation scores 𝑡 ∈ {𝑆𝐶, 𝐶𝐻} obtained by the method 𝑏 ∈Ψ across 
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30 trials, on the dataset 𝑑 ∈ {Data1, Data2, Data2-simulated} with the sampling ratio of 𝑚𝑠 ∈ {1%, 2%, 5%, 10%}. In the previous 
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Fig. 7. Averaged SC and CH scores obtained by segment-based methods across 30 trials, using three sampling ratios of 10%, 5% and 2% on Data2.

Table 4

Averaged SC and CH scores obtained by investigated methods across 
30 trials on Data2-simulated, with corresponding standard devia-

tions being shown in parentheses. Top-3 scores of each metric are 
highlighted in bold font. Note that the sampling ratio of 10% is em-

ployed to create segments for relevant methods.

Method SC scores CH scores

KM 0.1411 (0.0382) 288.1257 (60.1204)

CSPA 0.1757 (0.0103) 615.0978 (32.3200)

HBGF 0.1672 (0.0122) 552.7721 (28.0170)

EAC-AL 0.1847 (0.0164) 481.6925 (31.6743)

Multi-Batches 0.1171 (0.0312) 272.1154 (27.1287)

V-DEC 0.1288 (0.0286) 309.3409 (23.8801)

SPP-EC (KM) 0.1502 (0.0201) 332.2218 (32.2110)

SPP-EC (CSPA) 0.1774 (0.0131) 609.5232 (27.3245)

SPP-EC (HBGF) 0.1626 (0.0202) 558.9614 (24.1086)

SPP-EC (EAC-AL) 0.1918 (0.0163) 468.0946 (27.7641)

Fig. 8. Averaged SC scores obtained by segment-based methods across 30 trials, using three sampling ratios of 10%, 5% 2% and 1% on Data2-simulated.

parts, only the average values 𝜇𝑡
𝑏1
(𝑑, 𝑚𝑠) and 𝜇𝑡

𝑏2
(𝑑, 𝑚𝑠) are considered to compare the two methods 𝑏1, 𝑏2 ∈ Ψ with respect to a 

specific experimental setting, i.e., 𝑡 = 𝑆𝐶 , 𝑑 =𝐷𝑎𝑡𝑎1 and 𝑚𝑠 = 1%. Given the methods examined herein are non-deterministic, both 
average and corresponding standard deviation values should be taken into account to statistically justify the underlying comparison. 
This is accomplished using the concept of confidence interval, where the average 𝜇𝑡

𝑏
(𝑑, 𝑚𝑠) can be presented by its lower and upper 

bounds, i.e., [𝐿(𝜇𝑡
𝑏
(𝑑, 𝑚𝑠)), 𝑈 (𝜇𝑡

𝑏
(𝑑, 𝑚𝑠))]. These can be defined by the following equations that are specific to the 95% confidence 

level. Note that 𝑆𝐷𝑡
𝑏
(𝑑, 𝑚𝑠) represents a standard deviation of 𝜇𝑡

𝑏
(𝑑, 𝑚𝑠) summarised across 30 trials.

𝐿(𝜇𝑡
𝑏
(𝑑,𝑚𝑠)) = 𝜇𝑡

𝑏
(𝑑,𝑚𝑠) − 1.96

𝑆𝐷𝑡
𝑏
(𝑑,𝑚𝑠)√
30

(6)

𝑡 𝑡
𝑆𝐷𝑡

𝑏
(𝑑,𝑚𝑠)
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𝑈 (𝜇
𝑏
(𝑑,𝑚𝑠)) = 𝜇

𝑏
(𝑑,𝑚𝑠) + 1.96 √

30
(7)
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Fig. 9. Averaged CH scores obtained by segment-based methods across 30 trials, using three sampling ratios of 10%, 5% 2% and 1% on Data2-simulated.

With these and the interpretation of both validity indices employed in this work (the higher the better), it is possible to conclude that 
𝜇𝑡
𝑏1
(𝑑, 𝑚𝑠) is higher than 𝜇𝑡

𝑏2
(𝑑, 𝑚𝑠), i.e., the method 𝑏1 performs significantly better than 𝑏2 w.r.t. the index 𝑡, on the dataset 𝑑 and 

sampling ratio 𝑚𝑠 only when the following holds. Otherwise, the two methods are comparable in this specific experimental setting.

𝐿(𝜇𝑡
𝑏1
(𝑑,𝑚𝑠)) >𝑈 (𝜇𝑡

𝑏2
(𝑑,𝑚𝑠)) (8)

On the other hand, 𝑏1 performs significantly worse than 𝑏2 only when the next condition is true.

𝑈 (𝜇𝑡
𝑏1
(𝑑,𝑚𝑠)) < 𝐿(𝜇𝑡

𝑏2
(𝑑,𝑚𝑠)) (9)

Formally, a function 𝑏𝑒𝑡𝑡𝑒𝑟(𝑏1, 𝑏2, 𝑑, 𝑚𝑠, 𝑡) returns 1 if 𝑏1 performs significantly better than 𝑏2 , and 0 otherwise. Another function 
𝑤𝑜𝑟𝑠𝑒(𝑏1, 𝑏2, 𝑑, 𝑚𝑠, 𝑡) = 1 only when 𝑏1 performs significantly worse than the other, and 0 if this is not true. Then, the number of 
times 𝐵(𝑏1) that a technique 𝑏1 ∈ Ψ is significantly better than others can be estimated as follows.

𝐵(𝑏1) = ∀𝑑,𝑚𝑠,𝑡∀𝑐∈Ψ,𝑐≠𝑏1
𝑏𝑒𝑡𝑡𝑒𝑟(𝑏1, 𝑐, 𝑑,𝑚𝑠, 𝑡) (10)

Likewise, the frequency 𝑊 (𝑏1) that 𝑏1 ∈ Ψ is significantly worse than others can be defined by

𝑊 (𝑏1) = ∀𝑑,𝑚𝑠,𝑡∀𝑐∈Ψ,𝑐≠𝑏1
𝑤𝑜𝑟𝑠𝑒(𝑏1, 𝑐, 𝑑,𝑚𝑠, 𝑡) (11)

Following that, Fig. 10 presents the results of this statistical test on those segment-based methods included in this paper, with KM 
being the baseline that projects a commonly expected level of quality without segments. On the left of this figure, the illustration 
shows method-specific frequencies of significantly better and worse that are summarised from both validity indices and the sampling 
rates between 2% to 10% (i.e., to cover more than one dataset). It is clear that the SPP-EC framework is able to support big data 
clustering, with its least effective model of SPP-EC(KM) performs better than the baseline KM and those two related techniques. This 
is also observed in the other graph on the right of Fig. 10, where better and worse counts are compiled from the lowest sampling 
rate of 1% (i.e., only Data2-simulated is included). In practice, SPP-EC(KM) is recommended to reduce the complexity of model 
implementation, whereas the other three SPP-EC variations are more appropriate if clustering quality is the major goal. This tradeoff 
will be further discussed in the next section, with respect to algorithmic variables and their relations to analytic performance. Despite 
the technique becoming more expensive, applying the concept of multiple clusterings to prepare segment-specific results should 
improve both Multi-Batches and V-DEC. However, it is expected to be more effective for the former where the number of clusters 
found in each of the segments is not fixed to 𝐾 .

4.3. Discussion and parameter analysis

Having reported those results and comparison, this section continues with the discussion on parameter analysis of SPP-EC as well 
as its complexity. Based on the general intuition behind ensemble clustering [9], clustering results to be aggregated should be both 
diverse and accurate, with the latter referring to the case that each partition partly agree to others in the ensemble. To realise this 
within the proposed framework, each of them is expected to contain a sufficient number of instances to exhibit common patterns 
shared across segments (of the same or different sources). Also, disagreement between multiple clusterings produced from a small 
collection of instances would not be significant, hence only a marginal improvement gained from the consensus clustering can be 
foreseen. Given these, another experiment on Data2-simulated is conducted to evaluate the effect of segment sizes to the quality 
of final clustering obtained by SPP-EC based models. In particular, three lower order-of-magnitude ratios are introduced, i.e. 0.1%, 
0.01% and 0.001%, where the resulting segment sizes are 10,000, 1,000 and 100, respectively. Fig. 11 shows the corresponding 
results specific to SPP-EC(KM) and SPP-EC(EAC-AL), where similar observations have been witnessed with the others. Specific to 
the former, the recommend ratio would be around 0.1% to 1%, i.e., each segment with about 10,000 instances from the dataset of 
more than a million. Of course, smaller segments would be more efficient with a tradeoff of being less accurate. On the other hand, 
12

SPP-EC(EAC-AL) remains competitive at the lower rate of 0.01% or a segment of 1,000 samples. However, this is achieved by paying 
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Fig. 10. Summarisation of better and worse performance statistics obtained by six segment-based models and KM as the baseline, categorised by two levels of sampling 
ratios: 2-10% (left, summarised from results on more than one datasets) and 1% (right, obtained from Data2-simulated only).

Fig. 11. Averaged SC and CH scores obtained by SPP-EC(KM) and SPP-EC(EAC-AL) across 30 trials on Data2-simulated, categorised by low sampling ratios of 1%, 
0.1%, 0.01% and 0.001%.

an additional cost to ensemble clustering at the dataset-wide level. These provide an ideal setting that is sometimes not feasible for 
a real system, in which segments of uneven sizes hosted by different owners. Nonetheless, a median of segments under question can 
be logically matched to the guideline given here.

The previous investigation relates to two of algorithmic parameters of SPP-EC, 𝐻 as the number of segments and 𝑁𝐻 for the 
average number of instances in each segment. Note that 𝐻 gets higher as 𝑁𝐻 becomes small, given that 𝑁𝐻 = 𝑁

𝐻
and 𝑁 denotes 

the number of all instances in a dataset. In general, one may prefer 𝑁𝐻 to be minimal so that the stage of segment-specific clustering 
can be facilitated in a standard machine, with the complexity being 𝑂(𝐵𝑁𝐻 ) for the generation stage and 𝑂(𝑀𝐵) for the selection 
of representatives. Given the results in Fig. 11, the memory requirement posted by SPP-EC(EAC-AL) is much less demanding than the 
conventional EAC-AL, i.e., a minimal space to accommodate 1,000 instances against 10 millions at any time. Before moving on to 
discuss the complexity of ensemble clustering on segment-based centroids, both variables 𝐵 and 𝑀 mentioned above will be analysed 
next. Firstly, 𝐵 denotes the size of segment-specific pool (the default value of 50 has been exploited for experiments reported thus 
far) from which its 𝑀 representative clusterings are selected and fed to the next level of SPP-EC. To examine its relation to the 
quality of final clustering, the previous experiment on Data2-simulated with the sampling ratio of 1% and default values for other 
parameters (𝑀 = 10 and 𝑀∗ = 30) is conducted again using a range of 𝐵 ∈ {50, 100, 150}. Fig. 12 gives the corresponding results, 
which suggest that the quality of clusterings produced by SPP-EC(EAC-AL) and SPP-EC(KM) can be improved from the default setting 
if 𝐵 is enlarged to 100. Slight increases are still seen when 𝐵 = 150, but with further computational cost. Given these findings that 
are also witnessed with other SPP-EC models, the size of initial pool should not be too small since it might constrain the goodness of 
those 𝑀 clusterings selected for the next analysis phase.

Another similar experiment has also been carried out to investigate 𝑀 , using the same setting, the original 𝐵 of 50 and 𝑀 ∈
{10, 20, 30}. Fig. 13 reports averaged SC and CH scores acquired by SPP-EC(EAC-AL) and SPP-EC(KM), where the incline of both 
measures has been recorded as 𝑀 grows from 10 to 30. To be concise, SPP-EC(EAC-AL) reaches the highest SC and CH rates of 
0.2242 and 462.1137 when 𝑀 = 30. These are substantially increases from the default setting (𝑀 = 10), with which the scores 
are 0.1885 and 450.1179, respectively. Henceforth, a bigger number of centroids put forward by each segment may better support 
the process of consensus clustering. Again, raising 𝑀 beyond 30 may bring about an improved score, but with addition demand on 
computing resources. At this point, it is appropriate to emphasise the complexity of selecting 𝑀 clustering from a pool of 𝐵 candidates. 
With a simple greedy forward search, it iteratively adds one from this pool to the target set until reaching the size of 𝑀 . This is simple 
compared to other swarm intelligence counterparts with the complexity around 𝑂(𝑀𝐵), for 𝑀 rounds of 𝐵 comparisons (i.e., adding 
each of the candidates in the pool to the target collection, then identify the best choice). Despite the chance of getting a sub-optimal 
13

solution, it can be more efficient than an optimisation method like artificial bee colony or ABC [46], which repeatedly refine the set 
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Fig. 12. Averaged SC and CH scores obtained by SPP-EC(KM) and SPP-EC(EAC-AL) across 30 trials on Data2-simulated (sampling rate of 1%, 𝑀 = 10 and 𝑀∗ = 30), 
categorised by different 𝐵 ∈ {50, 100, 150}.

Fig. 13. Averaged SC and CH scores obtained by SPP-EC(KM) and SPP-EC(EAC-AL) across 30 trials on Data2-simulated (sampling rate of 1%, 𝐵 = 50 and 𝑀∗ = 30), 
categorised by different 𝑀 ∈ {10, 20, 30}.

possible solutions of food sources (𝐹 ) up to the maximum number of iteration (𝐼). In each of these 𝐼 iterations, each of the all food 
sources has gone through three processing stages with different bee types, thus resulting the complexity of around 𝑂(3𝐹𝐼). Assumed 
that 𝐹 is the same as 𝑀 , it is possible to suggest that the greedy search can be less complex, with 𝐼 in the order of hundreds is 
common in the literature.

After disclosing an optimal configuration of parameters at the level of segment-based analysis, the same experiment is executed 
once more on Data2-simulated (sampling rate of 1%) using 𝐵 = 100 and 𝑀 = 30. Then, Fig. 14 compares the results of this fine-

tuned setting to the best scores provided in the last figure, i.e., SPP-EC(KM) and SPP-EC(EAC-AL) with 𝐵 = 50 and 𝑀 = 30. This 
shows enhanced scores for both models using a larger pool of size 100. For instance, SPP-EC(KM) achieves the highest SC score of 
0.1734, which is used to be 0.1626 using a smaller pool of 𝐵 = 50. This trend has been similarly obtained for other SPP-EC driven 
methods, but not included here due to the space constraint. Assuming that accurate and diverse 𝑀 clusterings are made available 
for each segment, the corresponding set of centroids is combined with those obtained from other segments to form the dataset of 
representatives. Its size is approximated by the multiplication between 𝑀 , 𝐻 and 𝛽, with the last being an average number of clusters 
(i.e., a constant between [2, 50]). Provided this, the complexity of SPP-EC(KM) for the consensus clustering stage is simply 𝑂(𝑀𝐻𝛽), 
which is greatly reduced from 𝑂(𝑁) with a big dataset. It is more expensive with SPP-EC(CSPA) and SPP-EC(EAC-AL) that construct 
a pairwise similarity matrix among those centroids, from which the final clustering is determined. As a result, their complexity can be 
expressed as 𝑂(𝑀2𝐻2𝛽2) that is far better than 𝑂(𝑁2) of the conventional baselines. Actually, it seems impractical to manage this 
sort of data matrix as 𝑁 increases beyond a million. SPP-EC(HBGF) provides a less resource-demanding alternative to SPP-EC(CSPA) 
and SPP-EC(EAC-AL), with its core data matrix representing a binary relation between centroids and clusters they are assigned to. 
Therefore, its complexity is 𝑂(𝑀𝐻𝛽2), where the number of clusters generated at this level can also be modelled by 𝛽 (the same set 
of generation strategies is employed at both segment and this higher levels). Based on the results and issues discussed in this section, 
the new framework of SPP-EC has proven effective to create clustering results of quality comparable to baseline processes on the 
whole big dataset. This can be useful for case studies with social media data, including the tourism subject examined in this work. 
Also, a rich collection of working models are introduced with tradeoffs between accuracy and complexity. This can be tailored to 
match requirements and supporting resources, which are different from one to another task.

4.4. A case study of noisy data clustering: robustness vs. possible information hiding

In addition to the report of experimental results and discussion presented thus far, this final part embarks on another issue of 
applying the proposed framework to a real-world problem. The datasets investigated in the previous sections are assumed to be 
perfect without any flaws to possibly deteriorate the quality of ensemble clustering. However, real data, especially those involving 
human responses, often exhibits problems of missing values and various input errors. Hence, this section aims to investigate the 
robustness of SPP-EC models and related methods on noisy data. Variants of Data1, Data2 and Data2-simulated are created by 
14

randomly injecting missing values into a matrix 𝑋 at the 𝛾 percentage of 𝑁 ×𝐷 data entries. For instance, with 𝑁 = 980 and 𝐷 = 10
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Fig. 14. Averaged SC and CH scores obtained by SPP-EC(KM) and SPP-EC(EAC-AL) across 30 trials on Data2-simulated (sampling rate of 1%, 𝑀 = 30 and 𝑀∗ = 30), 
categorised by different 𝐵 ∈ {50, 100}.

Fig. 15. Averaged SC scores obtained by proposed and other ensemble clustering methods across 30 trials on 10 noisy versions of Data1 (sampling rate of 10%), 
categorised by different 𝛾 ∈ {5, 10}.

in Data1, 𝛾 = 1% will be equivalent to 98 entries in 𝑋. Having known this amount, those entries are arbitrarily chosen to achieve 
the desired collection. Then, their values are considered missing and filled with 0, which is one the basic approaches to handle this 
problem [47]. The previous experiment with a default setting is repeated here for 30 trials on each of the 10 noisy data versions. This 
applies to those three datasets with 𝛾 ∈ {5, 10} and the sampling rate of 10%.

Specific to Data1, Fig. 15 reports average SC measures obtained by different models and compare these to the scores previously 
presented for a ‘no noise’ case. At the level of 𝛾 = 5%, almost all the ensemble clustering methods included in this study are able to 
sustain good performance with small drops in SC. With SPP-EC(EAC-AL), the score decreases from 0.1489 without noise to 0.1451. 
Likewise, this change is between and 0.1042 and 0.0992 for V-DEC. However, when 𝛾 gets to 10%, these methods become less 
accurate where the scores of 0.1137 and 0.0803 are obtained by the two models mentioned above. Note that similar results have also 
been observed with CH index. In addition, Fig. 16 similarly illustrates those scores recorded for Data2. Looking at EC(EAC-AL) again, 
its performance only declines from 0.2012 to 0.1987 as 𝛾 = 5% but further drops to 0.1402 if noisy entries occupy up to 10% of the 
data matrix. This tendency has been witnessed with the biggest of three datasets, i.e., Data2-simulated, which is shown in Fig. 17. In 
particular, the best and the worst scores of EC(EAC-AL) are 0.1918 and 0.1327, respectively.

It is fair to say that the proposed framework is robust against small amount of noisy feature values, at least up to 5% of entries 
in a given data matrix. Let us turn this investigation to another perspective of information hiding that is implemented by one of 
the related works [13] and identified in the recent survey on data privacy in machine learning systems [48]. It might be possible 
to provide the new framework with a noisy variation of the dataset under investigation, thus allowing the true signatures of some 
instances to be partly hidden. This helps to improve its capacity to preserve data privacy in addition to the use of centroids at the 
global clustering stage. However, as pointed out above, there is a definite tradeoff between the level of noise injected and the quality 
of final data partition obtained. Given this quest, Fig. 18 compares the SC scores averaged across Data1, Data2 and Data2-simulated 
using the sampling rate of 10% like before and 𝛾 ∈ {5, 6, 7, 8, 9, 10}. This focuses on evaluating the new models against the basic result 
achieved by k-means with the whole noise-free datasets, denoted in this figure as ‘Baseline (KM)’. Most of SPP-EC techniques, remain 
comparable to Baseline (KM) up to 𝛾 = 8%, while SPP-EC(KM) becomes sub-optimal as 𝛾 > 5%. Based on these, it is recommended to 
inject noises around 5-8% to the original data prior an application of the SPP-EC approach, with the most reliable results achieved 
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by SPP-EC(EAC-AL), SPP-EC(HBGF) and SPP-EC(CSPA).
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Fig. 16. Averaged SC scores obtained by proposed and other ensemble clustering methods across 30 trials on 10 noisy versions of Data2 (sampling rate of 10%), 
categorised by different 𝛾 ∈ {5, 10}.

Fig. 17. Averaged SC scores obtained by proposed and other ensemble clustering methods across 30 trials on 10 noisy versions of Data2-simulated (sampling rate of 
10%), categorised by different 𝛾 ∈ {5, 10}.

Fig. 18. SC scores obtained by the proposed methods as averages across 30 trials on 10 noisy versions of three datasets (sampling rate of 10%), categorised by different 
16

𝛾 ∈ {5, 6, 7, 8, 9, 10}.
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5. Conclusion

This paper has introduced a new framework of scalable and privacy-preserving clustering, with the focus on analysing big social 
media data in the tourism domain. The resulting approach called SPP-EC attempts to fill a research gap in the current literature, where 
only a few studies have been reported to leveraging ensemble clustering (EC) to obtain those desired properties. Mostly, previous 
works mitigate the potential of EC to a big data collection by either reducing dimensions or implementing original methods on a 
distributed computing platform. Recently, segment-based techniques have been put forward as a way to manage and analyse a big 
data volume, regardless of a physical setting (i.e., implemented in a single or multiple machines). However, only single partition with 
a unified number of clusters is drawn from each segment to create the consensus clustering, which will then be mapped to all instances 
across segments. The proposed SPP-EC approach seeks to boost the diversity of these segment-based inputs by applying the concept 
of multiple clusterings to select representatives from a pool of candidates (each with a possible different number of clusters). Having 
achieved those, different methods are exploited to build the final result, including a classical k-means and benchmark ensemble 
clustering algorithms, e.g., CSPA, HBGF and EAC-AL. In fact, the framework is generalised to accommodate other advanced EC 
techniques, which are not feasible to apply directly to a very large dataset.

According to experimental results systematically run on published tourism datasets with different parameter settings, the SPP-

EC based models generally outperform baselines and relevant state-of-the-art techniques. Despite this initial success, it is important 
to evaluate them on other big sets of data, including those in tourism and other fields where the need to obtain a cluster analysis 
exists [49]. Other issues worth further investigation include a possible use of different swarm intelligence algorithms [19] to select 
representative clusterings from a pre-generated pool. This may improve the quality of segment-specific centroids, which can be sub-

optimal given the current greedy search. In addition, the goodness of those candidates in a clustering pool might be enhanced by 
exploring noise-induced and feature-selection based generation of multiple clusterings [50].
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