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Abstract: In mode-division multiplexing (MDM) systems, the computational complexity of
the multi-input multi-output (MIMO) equalization module is a critical obstacle to practical
development. The step size µ and the number of taps K are key parameters in the equalization
algorithm, influencing the performance of finite impulse response (FIR) equalizers, including
convergence speed and output signal quality. To alleviate the computational burden of locating
the optimal µ-K combination, we propose two ant colony optimization (ACO) -based MIMO
equalization schemes: the fixed ACO-MIMO and the random ACO-MIMO, corresponding to
two optimization strategies. These schemes expedite the initialization process of both parameters.
Subsequently, we conduct experiments to evaluate their performance in a 3-mode recirculating-
loop transmission system. Our findings demonstrate that, compared to conventional schemes,
such as genetic algorithm (GA) and steepest descent algorithm (SDA), the proposed ACO-MIMO
schemes significantly reduce the number of calls to the equalization algorithm for locating optimal
µ-K combination by up to 42.74% and 80.63%, reducing the complexity of the whole MIMO
equalization for MDM systems. And the resulting hit-rate Phit for the optimal µ-K combination
reaches up to 99.34%. Moreover, the ACO-MIMO schemes exhibit stable performance across
different data collected from various round-trips, confirming the robust operation for the long-haul
MDM transmission. Finally, we investigate the performance disparity between the two proposed
ACO-MIMO schemes through bit-error-rate (BER) distribution, concluding that under a large
dataset with various BER distributions, the performance of both schemes is essentially equivalent.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Mode-division multiplexing (MDM) technology, utilizing few-mode fiber (FMF), holds significant
promise for achieving high-capacity parallel transmission across spatial mode channels. It emerges
as a leading contender for next-generation fiber-optic communication systems, offering potential
breakthroughs beyond the nonlinear Shannon limit [1–3]. However, the signal quality in MDM
systems is significantly affected by distortions arising from various mode channels, including
mode coupling and differential mode group delay (DMGD). To address these spatial-mode related
distortions, the integration of a multi-input multi-output (MIMO) module featuring butterfly-
shaped finite impulse response (FIR) equalizers is essential for digital signal processing (DSP) at
the receiver [4–6]. In the adaptive equalization algorithm within the MIMO module, the selected
values of crucial parameters, e.g., the step size µ and taps number K, dictate the performance
of the equalizers. In MDM systems experiencing pronounced fluctuations over time [7–9], it’s
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essential to adaptively adjust these parameters as the channel conditions evolve, enabling better
utilization of the compensation function. Locating the best combination of µ-K is crucial for
ensuring consistent communication quality within the system and for optimizing network load
distribution based on communication performance. Hence, computational complexity in MIMO
modules involves two key aspects:

1. The complexity needed to initialize the µ-K parameter space;

2. The complexity associated with executing the equalization function, such as training the
equalizers and generating output signals.

As the number of transmitted modes increases, the complexity induced by MIMO equaliza-
tion grows exponentially, severely impeding the transmission performance of MDM systems.
And minimizing MIMO complexity is crucial for advancing the commercialization of MDM
technology.

Recent research on reducing MIMO complexity has predominantly focused on the second
aspect. An unconstrained adaptive frequency-domain least mean square (FD-LMS) algorithm was
proposed for MDM transmission [10], aimed at compressing the redundant FFT/IFFT during the
training process. Additionally, a training-aided frequency domain equalizer (FDE) was proposed
based on channel estimation through constant-amplitude zero-auto-correlation (CAZAC) codes.
The proposed scheme exhibited a convergence speed 4.48 times faster than typical FD-LMS-
based equalization in a 3-mode multiplexing system [11]. While these schemes notably reduced
MIMO complexity for equalizer convergence, the complexity arising from multiple calls to the
equalization algorithm during parameter initialization (e.g., µ and K) remains significant. To
alleviate the dependence of equalization performance on the initial µ-K values, step-variable
and taps-variable equalization algorithms were proposed. These methods demonstrated higher
training efficiency and reduced residual error [12–14]. However, the complexity issue arising
from the initialization of additional hyper-parameters remains inevitable.

In this paper, to address the first aspect of MIMO complexity, we integrate the ant-colony
optimization (ACO) algorithm into MIMO operations. We propose two ACO-MIMO equalization
schemes, namely fixed and random ACO-MIMOs, aimed at reducing the number of calls to the
FD-LMS algorithm used to locate the optimal µ-K combination. To validate the performance of
these schemes, we establish a 3-mode multiplexed recirculating-loop experimental system based
on a 10 km-length FMF, as in our previous works [15]. Implementing the proposed algorithms
at the receiver side, both fixed and random ACO-MIMO schemes achieve high hit-rates (Phit)
for optimal parameters, reaching up to 99.34% and 97.7%, respectively. Compared to genetic
algorithm (GA) and steepest descent algorithm (SDA), the average number of calls to the FD-LMS
algorithm (referred to as CLMS) required to reach the optimal µ-K combination is significantly
reduced by the ACO-MIMO schemes, by up to 42.74% and 80.63%, respectively. Furthermore,
the proposed schemes exhibit robust performance across varying transmission distances. When
considering data with different round-trips, the ACO-MIMO schemes achieve maximum CLMS
reductions of 28.97% and 26.16% after full evolution compared to GA. Finally, we explore the
relationship between the performance of the two ACO-MIMO schemes and the distribution of
bit-error rate (BER).

The rest part of this paper is arranged as follows: in Section 2, we provide the detailed operation
of both the fixed and the random ACO-MIMO schemes; Section 3 outlines the experimental
setup of the FMF recirculating loop system and describes the corresponding device properties;
then, in Section 4, based on the experimental results, we investigate the performance of the two
ACO-MIMO schemes from various perspectives, including the hit rate of optimal parameters,
distribution characteristics of the BER output, and the required number of calls to the equalization
algorithm; finally, the conclusions are drawn in Section 5.
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2. Principle of ACO-MIMO scheme

The feedback training algorithm stands as the cornerstone of the MIMO equalization module,
categorized into data-aided and non-data-aided types [16,17]. Compared to the non-data-aided
algorithms, data-aided algorithms prove more adept for MDM systems due to their faster and
steadier convergence. In this paper, we employ the FD-LMS algorithm, falling under the
data-aided category, as our equalization algorithm. In the FD-LMS algorithm, µ represents the
step size factor, while K denotes the number of taps [10]. During training, µ directly influences
feedback behavior as a multiplication coefficient, whereas K determines the size of each processed
data block. Therefore, the µ-K combination’s value heavily influences MIMO equalization
performance. Excessive calls to the FD-LMS algorithm for µ-K localization can incur substantial
computational overhead, thereby diminishing MIMO equalization efficiency. Consequently,
finding an efficient method to determine the optimal µ-K combination remains an ongoing issue
for MIMO equalization processing in high-capacity MDM systems, especially considering nearly
1000 modes [18].

The ACO algorithm is primarily employed to address the traveling salesman problem (TSP)
through imitating the ant’s sensitivity to the pheromone, which is left by the crawling ants and
gradually evaporated [19,20]. And the ants prefer the path with higher pheromone concentrations.
Over time, through the iterative process of ant evolution, the optimal path accumulates the
most pheromones due to positive feedback mechanisms. Consequently, the ACO algorithm
is insensitive to the initial state of ants, rendering it more robust. Additionally, due to these
characteristics, the ACO algorithm is well-suited for solving extreme points of multivariate
functions [21,22]. In this scenario, pheromone is correlated with the function value and
determines the ant’s subsequent search behavior, that is whether the local search or global search.
Thus, the ants in ACO algorithm operate in parallel and exhibit self-organizing. In MIMO
equalization, distinct µ-K combinations correspond to varying BER outputs, offering the potential
to substantially diminish computational overhead in locating the optimal µ-K combination by
integrating the ACO algorithm into MIMO equalization.

We enhance the ACO algorithm and introduce two ACO-MIMO schemes, each employing
fixed and random movement directions to execute distinct local search strategies. These schemes
are respectively referred to as the fixed and random ACO-MIMOs. The ACO-MIMO schematic
diagram is depicted in Fig. 1. We divide the ACO-MIMO process into two parts: the basic
outline and the updating policy. The pseudocode of the basic outline, labeled as Algorithm 1, is
presented below. We define the number of ants in ACO-MIMO as N and the evolution times as
G. Initially, all ants are randomly positioned on the BER distribution plane, where each point
(x,y) in Cartesian Coordinates represents a µ-K combination. Each ant independently calls the
FD-LMS function to compute the BER corresponding to its µ-K combination. The pheromone
of the nth ant’s initial coordinate is defined as τn(0)= 0.5-BERn(0), where BERn(0) represents
the BER at the initial coordinate of the nth ant. It indicates that higher pheromone concentration
corresponds to lower BER values, making the corresponding coordinate points more attractive
to the ants. Throughout the entire evolutionary process, we assume ants are initialized only
once, and subsequent state changes are related to previous states. After the tth evolution, the
pheromone of the nth ant’s coordinate τn(t) is updated according to Eq. (1), where ρ represents
the evaporation factor of the pheromone and is assigned as 0.9 [21,22]. In addition, BERn(t)
represents the BER of the coordinate point for the nth ant after t times evolutions.

τn(t) = (1 − ρ) × τn(t − 1) + [0.5 − BERn(t)]. (1)

Then, during the tth evolution, the nth ant determines whether to perform global or local
search for the next step based on the individual transfer probability Pn

tran(t) calculated by Eq. (2)
[23], where τmax(t) represents the maximum pheromone concentration among the coordinate
points of the population after the tth evolution. We set P0 as the transfer probability threshold.
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Typically, higher pheromone concentration corresponds to lower BER. Since BER does not exhibit
significant fluctuations with respect to µ-K, when the of pheromone concentration is high enough
such that Pn

tran < P0, it indicates a higher probability of finding the optimal µ-K combination near
the ant’s vicinity, thus prompting local search. Conversely, when the pheromone concentration at
the coordinate of the ant is low (i.e., Pn

tran(t)>P0), it suggests a higher BER in the ant’s coordinate,
making it unsuitable for local search and hence turning to global search. Additionally, according
to Eq. (2), the maximum pheromone concentration τmax(t) in the population also affects the ants’
search behavior. A higher τmax(t) requires ants to have a higher τn(t) for their transfer probability
to exceed P0, thereby enabling local search. Therefore, at this point, the pheromone concentration
determines search range for the ants. The updating policies of the fixed and random ACO-MIMO
schemes are also shown below, which are titled as Algorithm 2 and Algorithm 3, respectively. To
explore more possibilities and avoid falling into the local optima, the ants randomly select the
candidate coordinate during global search. Notably, the difference between the updating policies
of the two ACO-MIMO schemes lies in the local search method. When the BER of the selected
candidate point is lower than the current BER, the ant moves to the candidate point; otherwise,
the candidate point is added to the blacklist. Afterward, the algorithm concludes and outputs the
minimum BER in the population when the evolving population meets the termination condition;
otherwise, it initiates the next evolution.

Pn
tran(t) =

τmax(t) − τn(t)
τmax(t)

. (2)
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Fig. 1. ACO-MIMO schematic diagram.

Algorithm 1. Basic ACO-MIMO outline.
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1 set ACO parameters 
2 perform MIMO equalization for the μ-K coordinate of each ant 
3 initialize pheromone levels based on the MIMO results 
4 for g = 1 to G do 
5     for n = 1 to N do 
6         determine location of the next step based on the updating policy 
7     end for 
8     record the minimum BER output 
9     update pheromone levels according to Eq. (1) 
10 end for 
11 output the minimum BER 

 
In the local search of ACO-MIMO scheme, we define the movement direction from the

previous coordinate point to the current point as the arrival direction for the ant. Therefore,
in addition to the arrival direction, local search includes 7 coordinate points as candidates for
the next hop, corresponding to 7 movement directions. In the fixed ACO-MIMO scheme, the
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Algorithm 2. Fixed ACO-MIMO updating policy.
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Algorithm 3: Random ACO-MIMO updating policy. 
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Algorithm 3: Random ACO-MIMO updating policy. 
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3     if Pn 
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7             the ant moves to the candidate point 
8         else 
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In the local search of ACO-MIMO scheme, we define the movement direction from the 
previous coordinate point to the current point as the arrival direction for the ant. Therefore, in 
addition to the arrival direction, local search includes 7 coordinate points as candidates for the 
next hop, corresponding to 7 movement directions. In the fixed ACO-MIMO scheme, the 
movement direction of ants in local search is determined by the priorities illustrated in Figs. 2 
(a) and (b), corresponding to different arrival directions. The arrival directions are demonstrated 
by the black dash lines. Additionally, assuming a smooth relationship between BER and μ-K, 
we believe that the greater similarity between the movement direction to the next hop and the 
arrival direction will result in a larger reduction in BER. Therefore, in Figs. 2 (a) and (b), the 
highest priority movement direction, indicated by the red dashed line, aligns with the arrival 
direction. And the angles between the movement directions of the 2nd, 3rd, and 4th priority levels 
and the arrival direction are 45°, 90°, and 135° respectively. This assumption facilitates the  
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movement direction of ants in local search is determined by the priorities illustrated in Figs. 2(a)
and (b), corresponding to different arrival directions. The arrival directions are demonstrated
by the black dash lines. Additionally, assuming a smooth relationship between BER and µ-K,
we believe that the greater similarity between the movement direction to the next hop and the
arrival direction will result in a larger reduction in BER. Therefore, in Figs. 2(a) and (b), the
highest priority movement direction, indicated by the red dashed line, aligns with the arrival
direction. And the angles between the movement directions of the 2nd, 3rd, and 4th priority
levels and the arrival direction are 45°, 90°, and 135° respectively. This assumption facilitates
the rapid location of optimal parameters for the fixed ACO-MIMO scheme under a regular
BER distribution. Nonetheless, irregularities in the BER distribution can potentially lead to the
fixed ACO-MIMO becoming trapped in local optima, requiring a greater number of subsequent
FD-LMS iterations to break free from this predicament. To mitigate this risk, we introduce the
random ACO-MIMO scheme. The movement direction priorities of random ACO-MMO in
local search are depicted in Figs. 2(c) and (d). In this scheme, all directions carry equal priority,
and the search step size remains 1. So that the pheromones associated with the ants performing
consecutive local searches can reflect the BER levels in their vicinity. And it could ensure stable
local search avoiding the entrapment of local optima. A comparative analysis of the two proposed
ACO-MIMO schemes is discussed in Section 4.
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Fig. 2. Movement direction priority in local search for (a), (b) fixed ACO-MIMO, and (c),
(d) random ACO-MIMO.

During evolution, ants converge towards the optimal µ-K coordinate based on the positive
feedback from the updates of the pheromone concentration and the transfer probability. Among
them, during the pheromone update, the evaporation coefficient introduces a form of memory
into the update process of pheromone, enhancing the reliability of results in consecutive local
searches. Furthermore, the ants situated at coordinates with lower BER have a greater likelihood
of locating the optimal points. The update of transfer probability ensures these ants persist in
their local search. Conversely, the transfer probability shifts the ants in the regions with higher
BER toward the regions with higher pheromone concentrations through global search. Therefore,
the joint positive feedback mechanism of transfer probability updating and pheromone updating
gradually guides ants to converge towards the regions with lower BER distributions, thereby
increasing the efficiency of locating the optimal coordinate.

During each evolution, ants update the µ-K coordinates based on the evolution strategy, and
then call the FD-LMS algorithm to compute BER at the current coordinates. Assuming in the
D×D MIMO system, during each call of the FD-LMS algorithm, it is trained TFD−LMS times,
then the required complex multiplications MFD−LMS=TFD−LMS× [(4D+ 4)× log2(2 K)+ 8D]
[10]. However, ACO simply compares BERs according to predefined strategies and moves the
ants accordingly. The computational complexity of the ACO is significantly lower than that of
FD-LMS. Hence, the critical aspect of reducing the complexity associated with locating µ-K
parameters is to minimize the calling times of the FD-LMS algorithm throughout this procedure.
In Section 4, we evaluate the performance of the ACO-MIMO scheme through the hit probability
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of optimal parameters, the number of FD-LMS algorithm calls, and the distribution characteristics
of the output BER. Additionally, for comparison purposes, we also compute the results using the
GA and SDA algorithms to locate the optimal µ-K combination in the subsequent discussion.

3. Experimental setup of a 3-mode recirculating loop transmission system

To validate the practical performance of the ACO-MIMO scheme, we constructed a 3-mode
recirculating loop transmission system. The experimental setup was consistent with our previous
work [15], as illustrated in Fig. 3. The setup comprises three units: the signal generation unit,
the few-mode recirculating loop unit, and the signal processing unit. In the signal generation
unit, a continuous light of 1550.3 nm and a non-return-to-zero (NRZ) signal were generated by
the narrow-linewidth continuous-wavelength (CW1) laser and the arbitrary-waveform generator
(AWG), respectively. Then they were injected into the IQ modulator (IQM) to generate a 10
Gbit/s optical quadrature-phase-shift keying (QPSK) signal for the 3-mode loop transmission.
After undergoing optical amplification and being filtered by an erbium-doped fiber amplifiers
(EDFA) and a band-pass optical filter (BPF), the optical signal was split into three branches
using three 50:50 optical couplers (OCs). Each split signal was individually adjusted by its own
variable optical attenuator (VOA) and polarization controller (PC) in each branch before being
delivered into the few-mode recirculating loop unit.
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Fig. 3. Experimental setup of the 3-mode recirculating loop transmission system.

Within the few-mode recirculating loop unit, the primary functions include controlling the
on-off state of the acousto-optic modulators (AOM) with precise timing, thereby determining the
propagation direction for the optical signals within the loop. We set up the 3-mode recirculating
loop system using multiple single-mode AOMs, with rising and falling edges in the magnitude of
nanosecond, to either block or pass the signals, enabling support for 3-mode looped transmission.
Additionally, 50:50 optical couplers (OC4, OC5, and OC6) within the loop served as the
transmission hub. One output port of each OC was linked to the few-mode converter device,
while the other was responsible delivering the output signals from each round-trip to the signal
processing unit. The excited few-mode optical signals through mode-selective photonic lantern
(PL1) were simultaneously coupled into a 10 km-length graded-index 6-mode fiber. It is worth
noting that the mode multiplexing/demultiplexing performance of fused taper-manufactured
photonic lanterns exhibits a certain dependence on polarization. And we utilized polarization
controllers to ensure that the polarization state of the signals remains in the normal operating
condition of the few-mode device. Then, at the output of the 6-mode fiber, the signals were
demultiplexed by the PL2 for single-mode loop operation. In MDM system, strong time-varying
mode coupling can severely degrade the transmission performance of the system. Exciting only a
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subset of modes to carry signal transmission could reduce the overall mode coupling strength,
which is advantageous for verifying the performance of the ACO-MIMO scheme over longer
transmission distances. In the testing, we found that the coupling strength between the LP01,
LP21a, and LP02 modes in our system was relatively low. Therefore, we considered these three
modes as the mode-division channels in our experiment, as demonstrated in [24]. The PLs
and the 6-mode fiber were produced by Phoenix Photonics and YOFC [25,26], respectively.
The power control via EDFAs and VOAs was implemented to maintain uniform power levels
across each spatial mode. Similar to the single-mode recirculating loop system, the coordinated
operation between AOM4 to AOM6 within the loop and AOM1 to AOM3 outside the loop was
utilized to prevent data collisions during looped transmission.

In the signal processing unit, the output single-mode signals were selected by an optical
switch (OS) one by one. And the selected signal was detected by the coherent receiver (Co-Rx)
and sampled by a digital phosphor oscilloscope (DPO) with the rate of 50 GS/s. Despite this
constraint, we have made significant efforts to synchronize the signals. Based on the varying
delay lengths between delay lines in the signal generation unit, we calculated the symbol offset
between corresponding data frames of each branch. Starting from the received frame header of
each branch, we cut off the corresponding number of symbols according to the symbol offset.
The new frames of each branch are then synchronized as closely as feasible. Before the MIMO
equalization, the three-channel data was processed by the DSP algorithms to compensate the
traditional noise, such as the IQ balance, Gardner algorithm-based time synchronization [27],
Schmidl algorithm-based frame synchronization [28], and quartic method-based frequency offset
estimation [29]. And then the proposed MIMO scheme integrates with a carrier phase recovery
algorithm based on the Viterbi-Viterbi scheme [30] to process these data to mitigate the impact
from the mode-related distortions.

4. Results and discussions

Based on the 3-mode recirculating loop transmission system demonstrated in Section 3, we have
collected data from 20 round-trips. We firstly used the collected data of the 15th round-trip to
investigate the µ-K optimization performance of the proposed ACO-MIMO schemes. Before com-
mencing the scheme, we predefined the value ranges of µ and K as [1× 10−6:2× 10−6:1× 10−4]
and [50:20:950], respectively, where 2× 10−6 and 20 represented the step sizes. Within this
range, the minimal BER could be achieved based on our experience. As each µ-K combination
corresponds to a BER output, the BER distribution plane comprises 2400 coordinate points.
Additionally, as a comparison algorithm, the GA algorithm, known for its effectiveness in
parameter optimization, was implemented with the elite retention strategy, where the crossing
probability Pc and the mutation probability Pm were set as 0.9 and 0.05, respectively [31]. During
each evolution, they compared the BER of all neighboring points and moved towards the point
with the minimum BER. Once all the surrounding BERs were larger than their own, the individual
terminated the evolution.

Based on the description in Section 2, the transfer probability threshold P0 serves as a critical
parameter in ACO-MIMO scheme, determining the search behavior of ants. To quantify the
effectiveness of the ACO-MIMO in locating the optimal parameters, we define Phit as the hitting
probability for the optimal µ-K coordinate, as expressed in Eq. (3). In Eq. (3), T test represents
the number of independent tests conducted, which was considered as 5000. And Thit represents
the number of times the optimal coordinate was hit. Figures 4(a) and (b) respectively depict
the relationships between Phit and the evolution times G under different P0 values in fixed and
random ACO-MIMO. The number of ants in Figs. 4(a) and (b) was fixed as 20. For both ACO
schemes, when P0 is 5e−4, they exhibit the highest convergence speed and converged value of
Phit as G increases. Therefore, in subsequent discussions, P0 is set to 5e−4.
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Fig. 4. Evolution of Phit with G under varying P0 for (a) fixed and (b) random ACO-MIMO;
evolution of Phit with (c) G and (d) N for each algorithm. (In ACO-MIMO, GA, and
SDA, N represents the number of ants, individuals, and parallelly optimized coordinates,
respectively.)

Figures 4(c) and (d) depict the variations of the Phit as a function of G and N for different
schemes, respectively. In Fig. 4(c), N for the four algorithms was fixed at 20. Initially, with small
values of G, the Phit for each algorithm remained low. During the early stages, SDA exhibited a
relatively higher Phit due to its rapid local search capability [32]. However, as G exceeded 10,
the benefits of local search in SDA became saturated, and the Phit surpassed by the proposed
ACO algorithms. Additionally, the superior search capability of the ACO algorithms led to a
significant gap in Phit compared to the GA and SDA algorithms. Specifically, when G= 40, the
Phit values for the fixed ACO, random ACO, GA, and SDA algorithms were 99.34%, 97.7%,
72.6%, and 67.18%, respectively. For Fig. 4(d), the evolution times G was fixed at 40. Similarly,
with small N, the search performance of the algorithm was not fully utilized, resulting in lower
Phit values. As N gradually increased, the proposed ACO algorithms widened the gap in Phit
compared to the comparison algorithms and tended to converge after N> 15.

Phit =
Thit
Ttest

. (3)

Based on the analysis above, it’s evident that the optimal µ-K combination may not be achieved
with these schemes. To quantify the complexity of the proposed schemes, we introduce CLMS,
which represents the number of times the FD-LMS algorithm needs to be called to achieve
the optimal µ-K combination once. This metric can be computed using Eq. (4), where Cmean
denotes the average number of calls to the FD-LMS algorithm across T test tests. In Table 1, we
demonstrate the theoretical Cmean of each algorithm under fixed G, N and the measured Cmean



Research Article Vol. 32, No. 17 / 12 Aug 2024 / Optics Express 29952

over 5000 tests at G= 40 and N= 20. The low Cmean of 820 is achieved by the proposed fixed
and random ACO-MIMO, which is only about 40% compared to SDA. In the SDA algorithm,
to obtain the lowest BER around each individual, it requires a significant number of calls to
the FD-LMS algorithm in every evolution. It should be also noticed that although the GA
approach achieves the lowest Cmean, its lower Phit leads to a higher BER output, see the green
lines in Figs. 4(c) and (d). Therefore, compared to the conventional SDA and GA algorithms,
the proposed fixed and random ACO-MIMO could achieve the best signal output with the less
computation complexity.

CLMS =
Cmean
Phit

= Cmean ×
Ttest
Thit

. (4)

Table 1. Theoretical and Measured Cmean for different algorithms with G=40 and N=20.

Fixed ACO-MIMO Random ACO-MIMO GA SDA

Theoretical Cmean N+N×G N+N×G N+ (N-1)×G <8×N×G

Measured Cmean 820 820 780 2040

To illustrate the computational complexity performance of the proposed schemes, the required
CLMS for each algorithm as G and N increase is depicted in Figs. 5(a) and (b), respectively. In both
figures, it is observed that the required CLMS initially decreases and then increases. This trend
can be explained by the fact that during the initial stages, the increasing speed of Thit is faster than
that of Cmean (the average number of calls to the FD-LMS algorithm) due to insufficient search.
Subsequently, as Phit converged, further increases in G or N elevated the Cmean of the scheme and
consequently increased the required CLMS. The black dashed lines in Figs. 5(a) and (b) represent
the results of the traverse search algorithm (TSA). Since there are 2400 coordinate points on the
µ-K plane, after traversing all coordinate points (i.e., Cmean= 2400), the TSA algorithm could
definitively hit the optimal parameter combination (i.e., Phit= 1). Therefore, the required CLMS
for the TSA algorithm remains fixed at 2400. Due to the SDA algorithm’s limited global search
capability, when its Phit converges to a lower value, the evolutionary behavior mentioned in
Section 2 significantly increases the required CLMS, even surpassing that of the TSA. In Fig. 5(a),
the fixed ACO-MIMO scheme reduced the required CLMS by 42.74%, 80.63%, and 81.93%
compared to the minimum CLMS for the GA, SDA, and TSA algorithms, respectively. Similarly,
the random ACO-MIMO algorithm reduced the required CLMS by 39.03%, 79.37%, and 80.76%,
respectively. In Fig. 5(b), the fixed ACO-MIMO scheme reduced the required CLMS by 39.12%,
85.66%, and 88.5% compared to the minimum CLMS for the GA, SDA, and TSA algorithms,
respectively. Likewise, the random ACO-MIMO scheme reduced the required CLMS by 27.98%,
83.04%, and 86.4%, respectively.

The third aspect of performance measurement pertains to the distribution characteristics of
the BER output. In the 5000 independent tests conducted, the mean BER outputs of each
algorithm were plotted against the increasing values of G and N in Figs. 6(a) and (b), respectively.
The results depicted in these figures were obtained with a fixed N of 20 and a fixed G of 40,
respectively. From Fig. 6(a), it is evident that after full evolution (sufficient N and G), the high Phit
achieved by the ACO-MIMO schemes contributed to reducing the mean BER results, bringing
them closer to the minimum BER (BERmin). Additionally, Fig. 6(b) exhibits a similar trend, with
ACO-MIMO showing smaller BER outputs during the initial stages of evolution. This suggests
that under the same evolutionary cost, i.e., with the same G and N, the ACO-MIMO schemes
achieve higher population quality compared to GA or SDA. Moreover, in order to quantify the
distribution of the output BER, we depicted the normal distributed probability density function
(PDF) in Fig. 7 for the BER of each algorithm in 5000 tests. The PDFs of the fixed ACO and
random ACO exhibited smaller standard deviations of 8.35× 10−6 and 1.7× 10−5, respectively,
compared to those of the GA and SDA algorithms, which were 5.25× 10−5 and 1.04× 10−4,
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Fig. 5. Evolution of required CLMS with (a) G and (b) N for each algorithm. (In ACO-
MIMO, GA, and SDA, N represents the number of ants, individuals, and parallelly optimized
coordinates, respectively.)

respectively. Additionally, the mean values of the ACO-MIMO PDFs were closer to BERmin.
This is significant for long-term communication to maintain system stability.

To evaluate the performance of the ACO-MIMO schemes across various transmission distances,
we implemented them using data collected from different round-trips. The results are illustrated
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Fig. 6. Evolution of mean BER with (a) G and (b) N for each algorithm. (In ACO-MIMO,
GA, and SDA, N represents the number of ants, individuals, and parallelly optimized
coordinates, respectively.)
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Fig. 7. PDF of BER outputs for each algorithm with G= 40 and N= 20.
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in Fig. 8, where G= 40 and N= 20. Each marker represents the average outcome of 25 data sets.
Figure 8(a) demonstrates the Phit for each round-trip. For the first round-trip, the Phit of each
algorithm was high. This is attributed to the high signal quality of the collected data, where
multiple µ-K combinations resulted in the same BER output of 0, facilitating the hitting of
optimal parameters. The increase in transmission distance enlarged the performance gap between
the various algorithms. During the recirculating-loop transmission, the Phit of ACO-MIMO
consistently outperforms that of GA and SDA algorithms. The required CLMS for each algorithm
across different round-trips is depicted in Fig. 8(b). The CLMS results for SDA were not included
due to their excessively high values (over 4000), making them impractical to plot in a single figure.
It can be observed that, except for small round-trips, the CLMS required for ACO-MIMO schemes
is generally lower than that required for the GA algorithm in most cases. On the 6th round-trip,
the fixed and random ACO-MIMO schemes respectively reduced the required CLMS by up to
28.97% and 26.16% compared to the GA algorithm. Additionally, due to the time-varying nature
of channel states in MDM systems, signals collected under different round-trips and datasets
were affected by varying degrees of mode-related distortions. This is what causes the results of
each algorithm in Fig. 8 to fluctuate up and down with the round-trip. However, after statistical
analysis of multiple independent tests, the evident difference between the Phit and CLMS of each
algorithm is able to characterize the performance gap between them.
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Fig. 8. (a) Phit and (b) CLMS for each algorithm from the 1st to 20th round-trip.

As described in Section 2, the difference between the fixed ACO-MIMO and the random ACO-
MIMO comes from the principle of local search. Therefore, the performance gap between the two
schemes heavily depends on the operation scenarios. In Fig. 9, we compare the performance of
the two algorithms under different BER distribution scenarios. The data in the figure is sourced
from the experimental results of the 20th round-trips. Specifically, Fig. 9(a) demonstrates superior
performance for fixed ACO-MIMO, whereas in Fig. 9(b), random ACO-MIMO exhibits better
performance. Additionally, in Figs. 9(a) and (b), we present the respective local BER distribution
plots, with red triangle markers indicating the coordinate points corresponding to the minimum
BER. According to the BER distribution shapes in the two figures, we define the distribution in
Fig. 9(a) as the flat distribution, where there is no local optimum near the optimal point, and the
distribution in Fig. 9(b) as the undulating distribution with the clear local optima. Combining the
performance curves in Fig. 9 with the local search strategies of the two algorithms, we observe
that the flat distributed BER plane is advantageous for the ants in the fixed ACO-MIMO scheme
to converge quickly to the optimal parameter point. In the case of an undulating distributed BER
plane, the fixed ACO-MIMO scheme requires a greater evolutionary cost to escape local optima
traps. Consequently, the undulating distribution is better suited for the random ACO-MIMO
scheme, which exhibits faster escape from local optima. Although both ACO-MIMO schemes
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have distinct advantages, as indicated by the analysis of Fig. 8, there is no notable performance
gap between them across multiple sets of data during the 20 round-trip transmissions. This
suggests that when deployed with substantial practical data featuring diverse BER distributions,
the overall performance of the two proposed ACO-MIMO schemes is nearly identical.
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Fig. 9. Performance comparison of two ACO-MIMO schemes under (a) flat and (b)
undulating BER distribution.

5. Conclusion

We proposed the fixed ACO-MIMO and random ACO-MIMO schemes to efficiently locate
optimal MIMO equalization parameters. We validated the performance of these schemes using a
3-mode recirculating transmission loop system. Our results demonstrate that compared to GA
and SDA algorithms, the proposed ACO-MIMO schemes significantly reduced the CLMS by up
to 42.74% and 80.63%, respectively, achieving a maximum Phit of 99.34% and generating more
concentrated BER outputs. Additionally, when tested with data from 20 round-trips, both fixed
ACO-MIMO and random ACO-MIMO schemes reduced the CLMS required by the GA algorithm
by up to 28.97% and 26.16%, respectively. Finally, our analysis of performance under various
BER distributions reveals that while each scheme has its strengths, their overall performance is
nearly equivalent when applied to extensive test data.
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