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Abstract 9 

Recognizing excavator operators’ sitting activities is crucial for improving their health, safety, and productivity. 10 

Moreover, it provides essential information for comprehending operators’ behavior patterns and their interaction with 11 

construction equipment. However, limited research has been conducted on recognizing excavator operators’ sitting 12 

activities. This paper presents a method for recognizing excavator operators’ sitting activities by leveraging multi-13 

sensor data and employing machine learning and deep learning algorithms. A multi-sensor system integrating 14 

interface pressure sensor arrays and inertial measurement units was developed to capture excavator operators’ sitting 15 

activity information at a real construction site. Results suggest that the gated recurrent unit achieved outstanding 16 

performance, with 98.50% accuracy for static sitting postures and 94.25% accuracy for compound sitting actions. 17 

Moreover, several multi-sensor combination schemes were proposed to strike a balance between practicability and 18 

recognition accuracy. These findings demonstrate the feasibility and potential of the proposed approach for 19 

recognizing operators’ sitting activities on construction sites. 20 
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1. Introduction 23 

Construction equipment operation plays a vital role on construction sites, relying heavily on the expertise and 24 

efficiency of construction equipment operators. These operators bear the responsibility of operating a wide range of 25 

machinery, such as excavators, cranes, bulldozers, and forklifts, which are indispensable for ensuring the safe and 26 

effective completion of construction projects. Throughout the operation of construction equipment, the activities 27 

performed by operators dominate the operational process and affect various aspects of construction task performance 28 

[1]. These activities encompass a diverse range of body postures and compound movements carried out by the 29 
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operator while seated, playing a crucial role in their daily tasks [2-5]. Operators often spend prolonged durations 30 

operating construction equipment in harsh environments and are often subjected to conditions that pose significant 31 

construction risks [2-5]. Notably, operators’ sitting activities have been demonstrated to possess profound 32 

implications for construction performance, including operational safety [6,7], workers’ health [2,3,8,9], and 33 

production efficiency [10]. Moreover, human body activities serve as fundamental elements reflecting human 34 

behaviors during interactions with the environment [11]. With the growing presence of machinery operations with 35 

varying levels of automation at modern construction sites [12], continuous monitoring of operators’ sitting activities 36 

has become increasingly necessary. Such monitoring provides essential information for modeling and analyzing 37 

operators’ daily operational performance and behavioral patterns, thereby offering insights for understanding human-38 

machine interactions context at the construction sites. Therefore, given the strong relationship between sitting 39 

activities and construction equipment operation performance, it becomes evident that recognizing operators’ sitting 40 

activities is of substantial necessity and practical significance. 41 

Research on activity recognition of construction workers has received considerable attention. Existing methods for 42 

recognizing workers’ activities can be categorized into three main groups: kinematic-based, computer vision-based, 43 

and audio-based methods [13,14]. These methods capture relevant information from multiple modalities of workers’ 44 

activities and have been applied individually or in combination to address activity recognition challenges in several 45 

application scenarios [13-15], such as work-related musculoskeletal disorders (WMSDs) and operational safety risk 46 

assessment and productivity analysis. While extant studies on construction workers’ activity recognition mainly focus 47 

on manual operation tasks, specific research focusing on recognizing sitting activities of construction equipment 48 

operators remains limited. Construction equipment operation scenes, predominantly involving sitting activities, differ 49 

significantly from manual construction work settings. This presents challenges when attempting to apply existing 50 

activity recognition methods designed for manual tasks to the recognition of sitting activities performed by 51 

construction equipment operators. On the one hand, operators’ sitting activities primarily involve restricted body 52 

movements within a confined space. The movements of the operator’s arms and torso are minimal, making it 53 

challenging to identify changes in sitting posture solely through the image information obtained from cameras placed 54 

in the equipment cockpit [13,16]. On the other hand, the perception of sitting activities is influenced by factors such 55 
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as the cockpit’s optics, acoustic environment, and vibration, which introduce difficulties in sensor placement and data 56 

collection [17]. In particular, vibrations and self-motion of construction equipment produce irregular noise signals 57 

that can affect the performance of kinematic-based sensors, such as accelerometers, thus reducing recognition 58 

performance. Taking the above into account, there exists a distinct research gap that needs to be addressed to develop 59 

an effective method for recognizing the sitting activities of construction equipment operators at real construction sites. 60 

In broader occupational and daily life scenarios, various techniques for sitting activity recognition have been 61 

developed [18-22]. In addition to the aforementioned techniques, the interface pressure sensing technique has 62 

emerged as a promising approach and has been applied in various sectors, such as office environments [23-26], 63 

medical health [27], and car driving [28]. This technique enables accurate recognition of the pressure exerted on the 64 

interface between the human and the seat, providing necessary data that can inform ergonomic interventions and 65 

policy development [29]. Compared with kinematic-based and computer vision-based methods, interface pressure 66 

sensing technology is less invasive and can sensitively capture small pressure changes during sitting activities, which 67 

could be beneficial to obtain high recognition performance while achieving good practicability on construction sites 68 

[30]. These characteristics give this technology a natural advantage when applied to sitting activity recognition. 69 

Therefore, this paper adopts a low-cost and easy-to-install interface pressure sensing technology to collect excavator 70 

operators’ sitting activity-related data. However, implementing the interface pressure sensing technique alone may 71 

not be sufficient to effectively address sitting activity recognition in construction equipment operation contexts. The 72 

vibration and movement of construction equipment can cause changes in the interface pressure between operators 73 

and their seats. Consequently, the collected pressure data is insufficient to directly reflect changes in operators’ actual 74 

sitting postures and compound movements during dynamic operation scenarios. Given the complexity of operators’ 75 

sitting activity recognition, recent studies have utilized multiple homogeneous or heterogeneous sensors to obtain 76 

more information, combined with machine learning or deep learning algorithms to improve activity recognition 77 

performance [31-34]. Nevertheless, the sensors placement, indicators, and features proposed in previous studies may 78 

not be applicable to construction equipment operation scenarios. Thus, further exploration is necessary to identify 79 

suitable combinations of multiple sensors and corresponding features for recognizing operators’ sitting activities, 80 

while considering both practicability and recognition performance, which are crucial for construction practice [35-81 
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37]. 82 

To this end, this paper presents a multi-sensor fusion-based method for recognizing excavator operators’ sitting 83 

activities using machine learning and deep learning algorithms. To address the limitations of relying solely on 84 

interface pressure sensing technology in construction equipment operation scenarios, a multi-sensor system 85 

integrating two interface pressure sensor arrays and four inertial measurement units (IMUs) was developed. The 86 

IMUs were arranged on both the operator’s body and construction equipment to supplementarily collect the data on 87 

operators’ body movement and synchronized equipment vibration and motion. A sitting activity classification system 88 

including static sitting postures and compound sitting actions was constructed to capture the full range of operators’ 89 

sitting activities. Several indicators related to the operators’ sitting activities were established based on the existing 90 

studies. Commonly used supervised machine learning and deep learning algorithms for construction workers’ activity 91 

recognition were applied. To demonstrate the feasibility of the proposed method, a field experiment was conducted 92 

at a real excavator operation site to collect data reflecting the problem characteristics. Several multi-sensor 93 

combination schemes were developed considering various potential application scenarios in earthmoving tasks. By 94 

comparing the performance of these algorithms across different schemes, methods that exhibit practicability (e.g., 95 

cost, invasiveness, and ease of deployment) or high recognition performance were investigated. The results 96 

underscore the effectiveness of combined multi-sensor and machine/deep learning algorithms for recognizing 97 

operators’ sitting activities within the context of excavator operations. Additionally, the findings provide a preliminary 98 

demonstration of the feasibility and application value of the proposed approach in a broader range of construction 99 

equipment operation environments. 100 

2. Literature review 101 

2.1. Activity recognition of construction workers 102 

Monitoring construction workers’ activities is critical to ensuring their health [2,38], safety risks [1], and tracking 103 

the productivity of construction projects [13,14]. Since nearly 80% of fatal and non-fatal injuries are caused by unsafe 104 

behaviors on construction sites [39], and when workers repeatedly perform weight-bearing, kneeling, and twisting 105 

tasks attributed to awkward working postures [40], they are at risk of suffering long-term ergonomic injuries or 106 
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WMSDs [41]. Consequently, workers’ activity recognition can provide necessary data and information for health and 107 

safety management. Such recognition systems offer capabilities to detect target activities (e.g., awkward posture, 108 

inappropriate operations, etc.) and reduce associated health and safety risks [42-44]. Moreover, activity recognition 109 

is widely utilized for measuring the time spent on specific activities, assessing working efficiency, and analyzing 110 

workers’ activity levels to identify areas for productivity improvement [45]. Therefore, health assurance, safety risk 111 

assessment, and productivity analysis are considered primary research objectives in the field of activity recognition 112 

[46], rendering it an essential task at construction sites. 113 

Over the past decades, the recognition of worker activity has primarily relied on self-reported or observational 114 

methods [47,48]. While these traditional methods are simple and less expensive, they often prove labor-intensive, 115 

time-consuming, and less accurate [49]. With advancements in sensing technologies, researchers have increasingly 116 

shifted towards real-time monitoring of workers’ activity [50], incorporating various sensing technologies and 117 

classification algorithms using machine learning or deep learning [13,14]. As mentioned above, workers’ activity 118 

recognition methods can be divided into three main categories based on sensing technologies. Among them, 119 

kinematic-based methods typically employ wearable sensors such as IMUs, physiological sensors, and insole pressure 120 

sensors to collect time-series data to identify kinematic patterns associated with workers’ activities [51-54]. These 121 

methods offer low-cost and automated data acquisition, but are often intrusive to users and impact their working 122 

performance [14]. Computer vision-based approach utilizes 2D image/video cameras and 3D range cameras to 123 

capture visual data on workers’ activities for recognition [55]. These methods generally provide less intrusive data 124 

acquisition capabilities, but they tend to be limited by ambient visibility and raise privacy concerns [13,31]. Audio-125 

based methods rely on recording sound patterns of workers’ activities. However, this method faces challenges such 126 

as acoustic signal blockage by obstacles or interference from other sound signals [56]. 127 

The integration of these sensing technologies enables the acquisition of a substantial amount of objective activity-128 

related data. Accordingly, previous studies have adopted machine learning algorithms to process these extensive 129 

datasets and achieve automatic and real-time activity recognition. Various machine learning algorithms such as 130 

support vector machine (SVM), decision tree (DT), k-nearest neighbor (KNN), linear discriminant analysis (LDA), 131 

and hidden Markov model (HMM), have been applied and refined for activity recognition of different objects on 132 
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construction sites [13]. In recent years, the advancement of deep learning has given rise to the development of 133 

algorithms such as autoencoders, convolutional neural network (CNN), and recurrent neural network (RNN)-based 134 

algorithms (e.g., long-short term memory (LSTM), gated recurrent unit (GRU)) for activity recognition tasks [16,31], 135 

including construction workers’ activity classification problems [14,44]. These deep learning algorithms offer several 136 

important advantages that compensate for the limitations of conventional machine learning algorithms, including 137 

better performance on heterogeneous and large datasets, and automatic features learning through the training process 138 

[31,57], among others. 139 

Despite important research progress, current research on sitting activity recognition of excavator operators or other 140 

construction equipment operators remains limited. Compared to workers who mainly perform manual handling 141 

activities, the limited overall activity space within the operating cockpit often obscures small amplitude of operator’s 142 

body movement, presenting a significant obstacle for motion detection methods based on images or videos [13,16]. 143 

Many workers’ activity recognition methods (e.g., computer vision-based and audio-based methods) rely on the 144 

workers’ surrounding scenes [14], but the monotonous scene within the operating cockpit does not facilitate the 145 

effective segmentation of specific activities performed by the worker. Furthermore, the confined movement area of 146 

the operating cockpit results in minimal body movement during sitting activities, leading to a high degree of similarity 147 

in some sitting postures of construction equipment operators, such as sitting straight and leaning forward. This 148 

complexity presents challenges for accurately distinguishing between different activities using existing methods that 149 

rely on single sensing technology. To this end, advanced technologies suitable for sensing and identifying the sitting 150 

activities of excavator operators need to be further explored and developed. 151 

2.2. Sitting activity sensing and recognition techniques 152 

Sitting activities are closely related to people’s performance at work and daily life. Previous research has 153 

underscored the practical significance of monitoring sitting activities, highlighting various aspects, including health 154 

risk assessment, production efficiency monitoring, and safety risk assessment [7,23,58-60]. For example, adopting 155 

prolonged awkward sitting postures, such as sagging or forward head postures, can lead to discomfort and pain in the 156 

cervical and lumbar spine [58], posing potential WMSDs risks [61]. Identifying and correcting these awkward sitting 157 
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postures can help alleviate corresponding health risks. From a safety perspective, analyzing sitting activities can 158 

provide insights into unsafe behaviors, as observed in road driving scenarios [62], such as driver distraction [63]. 159 

Activity recognition can provide valuable information for detecting and addressing such unsafe behaviors. 160 

Consequently, sitting activity sensing and recognition techniques have garnered extensive attention in various 161 

scenarios, including vehicle driving [28,60,64,65], office work [23-26], daily life [25,66], and healthcare [21,27]. 162 

In the construction equipment operating environment, where whole-body vibration is prevalent, operators often 163 

engage in prolonged work periods, which can lead to the adoption of poor operating postures or inappropriate actions. 164 

These factors contribute to the aforementioned risk issues. Several studies have highlighted that different sitting 165 

activities impact the level of exposure to mechanical equipment vibration, which is considered a common contributor 166 

to sitting discomfort and WMSDs [2,8,9]. Besides, sitting activity has been found to be associated with an individual’s 167 

mental state. Prolonged awkward sitting posture (e.g., hunched back, forward sloping shoulders, curved spine, etc.) 168 

can induce mental fatigue and reduce cognitive performance [6,7,67-69]. Recognizing and correcting sitting activity 169 

can enhance intelligence and cognitive performance, alleviate anxiety and stress, and improve mental health. From 170 

an operational safety standpoint, prolonged operation and uncomfortable sitting postures have the potential to 171 

compromise attention and delay reaction times, directly impacting on-site operational productivity and impairing 172 

operational safety [1,6,70]. Consensus has been reached in studies indicating that continuous monitoring of worker 173 

activity can reduce accident rates and prevent injuries, falls, and WMSDs [71,72]. Additionally, with the construction 174 

industry undergoing industrialization and informatization changes, human-machine interaction on construction sites 175 

is becoming more prominent. The information provided by recognizing sitting activities plays a fundamental role in 176 

understanding various operating behaviors and machinery operation scenarios [11]. 177 

The existing methods for sensing and recognizing sitting activities align with the current state of research in general 178 

human activity recognition, including the recognition of construction worker activities. Commonly employed 179 

approaches in this domain include computer vision-based and kinematics-based methods [21,59,60,62,63,65,73]. 180 

However, most of these methods focus on distinguishing sitting activities from non-sitting activities, without 181 

accurately analyzing the specific types of activities performed while sitting. Recent studies have combined skeletal 182 

reconstruction [74], infrared array sensor [61], and radio frequency identification [75] to identify specific sitting 183 
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activities. Nevertheless, these approaches still face the challenges mentioned earlier. 184 

Among these methods, sitting activity recognition based on interface pressure sensing technology has received 185 

much attention [23-28,76,77]. Interface pressure refers to the pressure exerted by the compression system over the 186 

skin’s surface and is commonly used to assess a cushion’s ability to manage pressure on the buttocks [78]. Interface 187 

pressure sensing technology offers several advantages that make it well-suited for collecting sitting posture-related 188 

data in construction equipment operation scenarios. First, pressure sensors provide a highly sensitive and quantitative 189 

means of measuring activity when direct observation or a limited number of inertial sensors is not feasible [79]. 190 

Second, pressure sensing units are minimally invasive and easy to deploy, making them a viable option for 191 

recognizing construction equipment operators’ sitting activities. However, the complex characteristics of construction 192 

equipment operation scenarios present challenges when solely relying on this technology. As mentioned above, 193 

kinematic signal acquisition sensors are susceptible to the effects of vibration and irregular movements associated 194 

with construction equipment [80,81]. For instance, the collected interface pressure signal is inevitably superimposed 195 

with noise signals resulting from equipment activities. Considering the impact of these factors on activity recognition 196 

is crucial to enhance its performance. Furthermore, apart from recognizing static sitting postures, which have been 197 

the primary focus of existing research, it is crucial to consider the recognition of typical complex posture sequences 198 

during equipment operations. This necessitates further design and development in terms of indicator generation, 199 

recognition algorithm selection, and multi-sensor arrangement to effectively address this challenge. 200 

3. Methods 201 

3.1. Problem description and research framework 202 

The recognition of excavator operators’ sitting activities involves the collection and processing of posture-related 203 

data, which can be categorized into two aspects: static postures and dynamic compound actions [14]. Posture refers 204 

to the static configuration of the operator’s body at specific moments, while action describes the dynamics of the 205 

consecutive body movements over a period of time. This paper systematically analyzes the details of sitting activities 206 

from these two perspectives. Based on the characteristics of the excavator operation scenario, a classification of 207 

excavator operators’ sitting activities was constructed, as shown in Table 1. The classification includes seven static 208 
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sitting postures and nine compound sitting actions. Among them, sitting upright is a commonly observed posture and 209 

is considered an optimal position [82]. Leaning forward or backward can increase tension in the back or neck muscles, 210 

potentially leading to discomfort. Similarly, leaning left or right may cause muscle imbalances and contractures [83]. 211 

Crossing the left or right leg can result in sagittal imbalance, coronal imbalance, pelvic tilt, and spinal valgus angle 212 

[84]. The selection of sitting activities reflects the fundamental types of excavator operations. 213 

Table 1 Predefined excavator operators’ sitting activities. 214 

Static sitting postures Compound sitting actions 

Sitting Upright (SU) Move forward operation (MF) 

Leaning Forward (LF) Move left operation (ML) 

Leaning Backward (LB) Move right operation (MR) 

Leaning Left (LL) Swing operation 

Leaning Right (LR) Raising and lowering the boom (RL Boom) 

Cross Left Leg (CLL) Raising and lowering the arm (RL Arm) 

Cross Right Leg (CRL) Excavation operation 

 Dumping operation 

 Climbing operation 

Fig. 1 presents the research framework proposed in this paper, which comprises five main components. First, an 215 

experiment was conducted at an actual excavator operating site to capture relevant data on the sitting activities 216 

outlined in Table 1. Second, the types of sensors and placement methods for data collection were designed. This 217 

section describes the data preprocessing process, involving metric quantification and sliding window techniques. 218 

Third, feature extraction was performed on the collected multi-sensor data, which is required for training machine 219 

learning algorithms. Three traditional machine learning algorithms and two RNN-based deep learning algorithms 220 

were employed. The final step involves training and evaluating the performance of the models. The performance of 221 

the trained models was assessed under various multi-sensor combination schemes. Further details of each component 222 

are provided below. 223 
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Fig. 1. Research framework. 225 

3.2. Experimental setup 226 

The experiments were conducted at an unobstructed highway construction site in Wuhan, China, providing an ideal 227 

setting for machinery operation. To comprehensively consider the diverse range of sitting postures and actions 228 

adopted by different operators, six highly skilled excavator operators with over five years of experience were recruited. 229 

The experimental data collection spanned for three sunny days to ensure optimal visibility and minimize task 230 
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disruption. Each day consisted of two rounds of data collection, comprising a pre-experiment training session and a 231 

formal experiment. Prior to each formal session, participants underwent a 30-minute training session to familiarize 232 

themselves with the experimental procedure and ensure a standardized approach to data collection. Following the 233 

experimental protocol requirements, two cushions with embedded flexible pressure sensor arrays were placed on the 234 

operator’s seat, while four IMUs were positioned on their arms, torso, and equipment seat side wall, as illustrated in 235 

Fig. 2. It is noteworthy that conducting on-site data collection under completely uncontrolled conditions poses high 236 

safety risks. Furthermore, due to the short duration of certain sitting activities, there might be imbalances in the 237 

dataset, which could hinder the comprehensive capture of the temporal characteristics of diverse sitting activities. 238 

Therefore, to ensure the experiment safety and obtain sufficient data, the following experimental protocols were 239 

adopted. 240 

 241 
Fig. 2. Construction site and field experiment data collection. 242 

Experiment 1 (static sitting posture data collection): Participants were instructed to sit quietly in an excavator 243 

operating cabin and to perform each of the seven static sitting postures. Each posture was held for 90 seconds to 244 

ensure adequate data collection. 245 

Experiment 2 (compound sitting actions data collection): Participants were required to sequentially perform nine 246 

common excavator operations. Each operation was executed continuously without interruption for approximately 90 247 

seconds, culminating in a total experimental duration of approximately 810 seconds. This extended duration was 248 
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necessary to capture sufficient balanced datasets that accurately reflect the characteristics of the compound sitting 249 

actions. 250 

During the data collection, each event was recorded using a video camera, and the pressure data and IMU data 251 

were synchronized. Based on the recorded video and each set of postures and actions, the time series of pressure data 252 

and IMU data were labeled by event type as the base facts. 253 

3.3. Data collection and preprocessing 254 

3.3.1. Multi-sensor-based data collection 255 

Two types of sensors were utilized: the interface pressure sensor array and the nine-axis IMU, as shown in Fig. 3 256 

(a). The Legact RPPS-255 pressure sensor array [85] was employed, featuring 255 pressure sensing units and a 257 

minimum detectable pressure of 20g. This sensor exhibits a rapid response time (<10us) and supports the series 258 

connection of multiple sensors, making it highly adaptable for the data collection requirements. The IMU developed 259 

by WitMotion [86] integrates digital angle, gyroscope, accelerometer, and compass sensors, coupled with a high-260 

performance microprocessor. These features enable the IMU to effectively capture subtle variations in arms and torso 261 

amplitudes across different operators’ sitting activities. 262 

Two interface pressure sensor arrays were used to capture the temporal changes in pressure distribution between 263 

the operator and the seat. Each array consists of a pressure sensing module, a signal acquisition module, and a digital 264 

signal processing module. Fig. 3 (b) illustrates the workflow of the sensor arrays. The pressure sensor array comprises 265 

255 sensing units with a dense distribution of 15×17 units, all possessing identical specifications. Each sensing unit 266 

is placed at a 30×30 mm2 interval, with a diameter of 14 mm and a gap of 16 mm, ensuring accurate capture of 267 

pressure electrical signal. The sensor array was calibrated to collect pressure data from 255 units at a frequency of 50 268 

Hz. To ensure cushion comfort and minimize potential invasiveness on the operator’s body, modifications were made 269 

to the pressure sensor array by utilizing different materials, as depicted in Fig. 3 (e). The sensor arrays were mounted 270 

on the excavator’s seat cushion and backrest, as shown in Fig. 3 (d), with the blue region indicating the sensor 271 

locations. This modification aimed to strike a balance between comfort and avoiding damage caused by excessive 272 

sensor bending.  273 
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Furthermore, four nine-axis IMUs were employed to record the changes in posture angles of the operator’s arms, 274 

torso, and the excavator, as depicted in Fig. 3 (c). Specifically, three IMUs were placed on the operator’s torso and 275 

the left and right arms. Additionally, an IMU was installed on the side wall of the seat to record the excavator’s 276 

movements without intruding on the operator. The primary purpose of collecting IMU data is to supplementarily 277 

capture the operator’s sitting postures and movements across various operational tasks, as well as the simultaneous 278 

vibrations and movements of the excavator. The IMU outputs acceleration, angular velocity, angle, and magnetic 279 

field data along the three axes of the operator’s motion. The data was collected at a frequency of 50 Hz, and a Kalman 280 

filter was automatically applied to reduce measurement noise, enhance accuracy, and enable real-time motion 281 

recording [87]. 282 

 283 

Fig. 3. The proposed multi-sensor system and experimental placement. 284 

Preliminary analysis of the collected raw data from multiple sensors can reveal the complex signal characteristics 285 

of the construction equipment operating environment. Fig. 4 illustrates the fluctuation curves of the IMUs and 286 

pressure sensors over time. The Y-axis angle recorded by a single IMU and the average pressure of the region of 287 

interest (ROI) in the upper left corner of the seat cushion (the detailed ROIs are described in detail in Section 3.3.2) 288 

were selected as representative samples from the original datasets. Fig. 4 (a) clearly illustrates distinct data changes 289 
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at the transition between different activities. Moreover, Fig. 4 (a-d) indicate that the IMUs attached to the operator’s 290 

body exhibit the similar fluctuation trend to the IMU installed on the equipment. This suggests that equipment activity 291 

introduces certain interference with the quality of the operators’ sitting activity data. 292 

  293 

Fig. 4. Multi-sensor data of excavator operator’s sitting activities. 294 

3.3.2. Metrics quantification 295 

The pressure sensor array captures only the interface pressure value from each unit, which provides limited 296 

information. To enhance the accuracy of model training and obtain more meaningful features, the raw pressure data 297 

was utilized to calculate additional pressure metrics. This approach aims to derive physically meaningful features 298 

that exhibit a high correlation within the pressure domain. To achieve this, six main ROIs were defined in the two 299 

sensor arrays based on the delineation of body areas according to the discomfort scale for body parts and the interface 300 

regions between the human body and the seat [28,88], as illustrated in Fig. 5. The utilization of pre-defined ROIs to 301 

calculate corresponding interface pressure metrics has been employed in prior studies [26,28,89]. A coordinate system 302 

was established on each of the two sensor arrays, with the upper left sensing unit as the origin, to quantify the metrics. 303 

Each sensor unit was assigned an integer coordinate. In total, 40 quantitative metrics were obtained (Table 2), 304 

including: (1) 12 parameters indicating average contact areas and ratios [28]; (2) 12 parameters representing average 305 

contact pressures and ratios; (3) 12 parameters describing average peak contact pressures and ratios; (4) 4 parameters 306 

calculating the location of the center of gravity of the pressure cushion. On this basis, the above-mentioned metrics 307 

(a) From MF to ML to MR

(c) From RL Boom to RL Arm to Excavation

(b) From MR to Swing to RL Boom

(d) From Excavation to Dumping to Climbing

Activity Transition
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can be calculated as follows. 308 

 309 

Fig. 5. Segmentation of ROIs in pressure sensor array and the coordinate system. 310 

(1) Contact area: 311 

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑅𝑂𝐼 𝑖 = 𝑆𝑢𝑚(∑ 𝑝(𝑥, 𝑦, 𝑡) > 0)

𝑥,𝑦

    (1) 

where 𝑝(𝑥, 𝑦, 𝑡) represents the pressure value recorded by each sensor at each moment. 𝑅𝑂𝐼 𝑖 represents the 𝑖-th 312 

region of interest. As illustrated in Fig. 5, a total of 6 ROIs are identified. 313 

(2) Contact area ratio: 314 

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜𝑅𝑂𝐼 𝑖 =
𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑅𝑂𝐼 𝑖

∑ 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑅𝑂𝐼 𝑖𝑖
 .    (2) 

(3) Average pressure: 315 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖(𝑡) =
∑ 𝑝′(𝑥, 𝑦, 𝑡)𝑥,𝑦

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑅𝑂𝐼 𝑖
    (3) 

where only pressure values greater than 0 were included in the statistics. 316 

(4) Average pressure ratio: 317 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜𝑅𝑂𝐼 𝑖 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖

∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖𝑖
 . (4) 

(5) Average peak pressure: 318 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖 = 𝑀𝑎𝑥(𝑝(𝑥, 𝑦, 𝑡)𝑅𝑂𝐼 𝑖) . (5) 

where this indicator records the maximum value recorded by the pressure sensor in each ROI per unit time. 319 

(6) Average peak pressure ratio: 320 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜𝑅𝑂𝐼 𝑖 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖

∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖𝑖
 .    (6) 

(7) Center of Pressure (COP): 321 

COP is a common metric in analyzing the postural sway and is often used to indirectly assess the level of discomfort 322 
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and fatigue in a sitting position [90]. In this paper, the COPs were calculated for both pressure arrays, which are 323 

quantified as: 324 

𝐶𝑂𝑃𝑥 =
∑ 𝑝(𝑥,𝑦,𝑡)∗𝑥𝑖

∑ 𝑝(𝑥,𝑦,𝑡)
 ; 𝐶𝑂𝑃𝑦=

∑ 𝑝(𝑥,𝑦,𝑡)∗𝑦𝑖

∑ 𝑝(𝑥,𝑦,𝑡)
    (7) 

where in the process of index calculation, the coordinates of each sensor are shown in Fig. 5 (with the sensor in the 325 

upper left corner as the origin).  326 

Table 2 Interface pressure metrics for excavator operators’ sitting activity recognition. 327 

Metric categories Metrics Description Reference 

Average contact area 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑅𝑂𝐼 𝑖 Contact area per subarea (in practice, expressed as 

the number of sensors with pressure values greater 

than 0 in a single subarea). 

[26,28,91] 

Average contact area ratio 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜𝑅𝑂𝐼 𝑖 Ratio of average contact pressure per sub-area to 

total contact area ( ∑ 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎𝑅𝑂𝐼 𝑖𝑖  ). 

[28] 

Average pressure 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖 The average pressure of each ROI over an interval 

of 8 frames. 

[26,28,29,91] 

Average pressure ratio 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜𝑅𝑂𝐼 𝑖 Ratio of average pressure per sub-area to total 

pressure (∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖𝑖 ). 

[28] 

Average peak pressure 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖 The highest pressure appearing in each ROI during 

the time interval of 8 frames. 

[26,28,29,91] 

Average peak pressure ratio 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜𝑅𝑂𝐼 𝑖 Ratio of the highest pressure in each ROI in 8 

frames to the sum of the highest pressure values in 

each region (∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑅𝑂𝐼 𝑖𝑖 ). 

[28] 

Center of pressure (COP) 𝐶𝑂𝑃𝑥; 𝐶𝑂𝑃𝑦 The location of the center of gravity of the pressure 

cushion. 

[76] 

3.3.3. Data preprocessing 328 

To address the small amount of missing data in the collected dataset, the linear interpolation method was employed 329 

to fill in the missing values within the time series. Additionally, a few instances of abnormal pressure values exceeding 330 

the maximum range of the pressure sensor were detected in the raw data, and these outliers were removed from the 331 

dataset. In the data segmentation process, real-time updates were implemented using sliding windows that encompass 332 

adjacent samples. As new data was added to these windows, the oldest samples were discarded. This approach ensures 333 

that the window perpetually refreshes its contents, thereby enhancing the model’s updating efficiency and adaptability 334 

[92]. Determining the optimal window size is critical to using the sliding window approach [93]. Previous studies 335 

have used a range of window sizes from 0.25 to 6.7s depending on the types of activities to be recognized [94]. In 336 

this paper, the data acquisition was conducted at a sampling frequency of 50 Hz, with each frame lasting 0.02s. In the 337 
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previous metrics quantification process, a time interval of 8 frames was used, resulting in the sliding window being 338 

divided multiple times by 0.16s each. The results confirm that employing a sliding window of 5.12s, which yields a 339 

total of 256 sets of data per window, leads to a highly accurate model. The overlap of consecutive windows was 340 

performed to prevent missing relevant data. Drawing on previous similar studies [44,95], an overlap of 50% in the 341 

length of adjacent data segments was employed. 342 

3.4. Feature extraction 343 

Machine learning efficacy hinges on quality input information. Feature extraction plays a pivotal role in isolating 344 

relevant information from raw data to construct models [96]. It compresses input data dimensionality, bolstering 345 

model performance by discarding extraneous noise and data [97]. This paper extracted features from time and 346 

frequency domains. For the pressure-related data, time domain features including mean, maximum, minimum, 347 

extreme deviation, variance, standard deviation, and kurtosis were used. The time-domain features were converted to 348 

the frequency domain using the self-contained fast Fourier transform (FFT) function [98,99]. Two frequency domain 349 

features, namely spectral energy and entropy, were extracted [99]. Spectral energy provides insights into the 350 

distribution of signal energy across different frequencies, while spectral entropy measures the irregularity of the signal 351 

by calculating the normalized information entropy of the discrete FFT component amplitudes [99]. Regarding the 352 

IMU-related data, acceleration, angular velocity, and angle data were obtained within a certain sliding window. The 353 

vector magnitude √𝑥2+𝑦2+𝑧2 was combined and extracted the features of mean, maximum, minimum, extreme 354 

deviation, variance, standard deviation, kurtosis, spectral energy, and entropy for the corresponding data of vector 355 

magnitude, x-axis, y-axis, and z-axis within the given window, respectively [100]. 356 

3.5. Algorithms for operators’ sitting activity recognition 357 

Machine learning algorithms have been widely used for human activity recognition [77,101]. Traditional 358 

approaches require pre-model training feature extraction from raw data, heavily depending on domain expertise [102]. 359 

These features, especially time and frequency-related, are essentially linear, contrasting with the nonlinearity in real-360 

world human behavior recognition, often resulting in inaccuracies [103]. Conversely, deep learning algorithms 361 
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automatically derive translational invariant and robust features from sensor data, diminishing the need for manual 362 

extraction and selection [31]. They incorporate both feature extraction and activity classification within the model 363 

construction process [97,104], making them increasingly prevalent in human activity recognition [105]. This paper 364 

employed both machine learning and deep learning algorithms for recognizing the sitting activities of excavator 365 

operators, with specific algorithms elaborated in subsequent sections. 366 

3.5.1. Machine learning algorithms 367 

The process of traditional machine learning is shown in Fig. 6. Previous studies [77,93,106] have employed various 368 

supervised machine learning algorithms for human activity recognition. In line with this, three widely used machine 369 

learning algorithms were selected in this paper: DT, KNN, and SVM. 370 

 371 

Fig. 6. Basic flow chart of statistical machine learning. 372 

(1) DT 373 

DT is a foundational classifier in supervised machine learning [107], employing tree structures for decision-making. 374 

In this paper, entropy is utilized to assess split quality, effectively mitigating the impact of dominant classes on overall 375 

purity. 376 

(2) KNN 377 

KNN stands out for its simplicity, directness, and adaptable implementation [108]. It diverges from typical 378 

classifiers by eschewing a learning phase, instead retaining the entire dataset for a direct classification approach. 379 

KNN assigns categories to new data points based on their proximity (distance) to known samples in the training set 380 

[109], with Euclidean distance as the metric in this paper. 381 

(3) SVM 382 

SVM is esteemed for its efficient learning with minimal parameters, resilience against model deviations, and 383 

computational prowess [110]. Its kernel function transforms the input from lower to higher-dimensional spaces, 384 
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enriching the feature representation [111]. This paper employs the Gaussian radial basis function as the kernel, 385 

selected for its proven superior learning rates in prior research [70,106]. 386 

3.5.2. Deep learning algorithms 387 

RNN is a type of neural network specifically designed for processing sequence data. An RNN contains input layers, 388 

hidden layers, and output layers. The activation functions control the output, and the layers are interconnected through 389 

weighted connections [112]. Fig. 7 (a) illustrates the standard structure diagram of an RNN. Each arrow in the diagram 390 

represents a transformation, indicating the connections with corresponding weighted values. The left side is the folded 391 

look, and the right side is the unfolded look. 𝑥 denotes the input, ℎ represents the hidden layer element, 𝑜 signifies 392 

the output, 𝐿 is the loss function, and 𝑦 is the label of the training set. The 𝑡 in the upper right corner of these 393 

elements represents the state of the 𝑡 moment, where it should be noted that the performance of the hidden unit ℎ 394 

at the 𝑡 moment is not only determined by the input at the 𝑡 moment, but also influenced by the moment before the 395 

𝑡 moment. The weights 𝑉, 𝑊, and 𝑈 are connected based on their respective types. In the following parts, two 396 

RNN-based deep learning algorithms are proposed for classifying different types of sitting activities. 397 

  (1) LSTM 398 

LSTM is a specialized type of recurrent neural network capable of analyzing time series. It effectively overcomes 399 

the long-term dependency issues commonly encountered in general RNNs, ensuring that valuable information from 400 

the past is retained. Furthermore, LSTM addresses the issue of gradient disappearance or explosion in RNNs [113]. 401 

  The core of LSTM is the cell state, represented by horizontal lines running through the cell. It is represented in Fig. 402 

7 (b) by 𝐶𝑡−1 to 𝐶𝑡. The LSTM network modifies or adds information about the state of cells through a gate structure, 403 

namely the forget gate (𝑓𝑡), the input gate (𝑖𝑡), and the output gate (𝑜𝑡) [113]. The forget gate (𝑓𝑡) determines which 404 

information in 𝐶𝑡−1 needs to be retained or discarded by considering ℎ𝑡−1 and𝑥𝑡. The input gate (𝑖𝑡) decides which 405 

new information should be incorporated into the cell structure. The output obtained from the forget gate and the input 406 

gate generates a new cell 𝐶𝑡. The output gate (𝑜𝑡) specifies which information in the cell state is to be used as the 407 

final output of the LSTM. The gate structure, cell state (𝐶𝑡) and hidden state (ℎ𝑡) of the cell are calculated as follows 408 

[114]: 409 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)𝑓𝑡 (8) 
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𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 𝑖𝑡 (9) 

Ĉ𝑡 = tanh (𝑊𝑐 . [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (10) 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ Ĉ𝑡 (11) 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)𝑜𝑡 (12) 

ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡) ℎ𝑡 (13) 

where 𝜎 is an activation function, and the softmax function is generally used. 𝑊𝑓, 𝑊𝑖 and 𝑊𝑜 are the weights for 410 

the forget, input, and output gates at time step 𝑡 , respectively. 𝑊𝑐  is the weight for the candidate layer. 𝑥𝑡 411 

represents the input at the current time step 𝑡. ℎ𝑡 and ℎ𝑡−1 are the respective outputs of the cell at the current time 412 

step 𝑡 and previous time step 𝑡 − 1. 𝐶𝑡 and 𝐶𝑡−1 are the cell states at time steps 𝑡 and 𝑡 − 1, respectively. 413 

(2) GRU 414 

GRU is an enhanced variant of the standard RNN that achieves comparable performance with fewer parameters 415 

and a more straightforward structure than LSTM, making it easier to train and greatly improving training efficiency 416 

[114,115]. Similar to LSTM, GRU is designed to reset or update its memory adaptively [44]. The main distinction 417 

from LSTM is that GRU employs only two gates, called reset gate (𝑟𝑡) and update gate (𝑧𝑡). The former corresponds 418 

to the input gate and forget gate of LSTM, and the latter is used to hide the state.  419 

The GRU cell architecture is shown in Fig. 7 (c). First, the state of the two gates was obtained from the last 420 

transmitted state ℎ𝑡−1 and the input 𝑥𝑡 of the current node, where 𝑟𝑡 controls the reset gate and 𝑧𝑡 controls the 421 

update gate. After getting the gating signal, reset gating was used to get the reset data ℎ𝑡−1′, ℎ𝑡−1′ is then spliced 422 

with input 𝑥𝑡, and the data is scaled between -1 and 1 by the tanh activation function to obtain ĥ𝑡. Finally, the 423 

network computes the hidden state ℎ𝑡, which is a vector that carries information for the current unit and passes it to 424 

the network [44]. The calculation process is shown in the following equations. 425 

𝑧𝑡 = 𝜎(𝑊𝑧 . [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)𝑧𝑡 (14) 

𝑟𝑡 = 𝜎(𝑊𝑟 . [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)𝑟𝑡 (15) 

ĥ 𝑡 =  𝑡𝑎𝑛ℎ(𝑊 ∙ [𝑟𝑡  ×  ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ  ) (16) 

ℎ𝑡  = (1 − 𝑧𝑡) ×  ℎ𝑡−1  + 𝑧𝑡  × ĥ𝑡. (17) 

Here, 𝜎 denotes the sigmoid function that converts the data to a value in the range of 0 to 1 to act as a gating 426 
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signal. 𝑧𝑡 and 𝑟𝑡 are the output of the update and reset gates. 𝑊𝑧 and 𝑊𝑟 are the weights for the update and reset 427 

gates. 𝑏𝑧 and 𝑏𝑟 are the biases for the update and reset gates. ℎ𝑡 and ℎ𝑡−1 are the respective outputs of the cell 428 

at the current time step 𝑡 and previous time step 𝑡 − 1. 𝑥𝑡 is the input at the current time step 𝑡. 429 

 430 

Fig. 7. Architectures of recurrent neural networks: Standard RNN, LSTM, and GRU. 431 

3.6. Model training and performance evaluation 432 

In the model training phase, LSTM and GRU were trained with pre-processed, non-feature-extracted multi-sensor 433 

data, contrasting with supervised machine learning algorithms (i.e., DT, KNN, and SVM) that utilized feature-434 

extracted datasets. The paper employed the leave-one-subject-out (LOSO) cross-validation approach, designating a 435 

single subject’s dataset as the test set while amalgamating data from all other subjects for training. This approach 436 

maximizes data utilization from each participant and significantly mitigates subject bias due to individual variability, 437 

a practice prevalently endorsed in worker activity recognition research [70,98]. The deep learning models were 438 

constructed using a sequential framework, each initiated with three homogeneous recurrent layers of corresponding 439 

types (LSTM and GRU), equipped with 512 hidden units per layer. Previous research indicated that similar 440 

architectures can achieve the highest classification accuracy [116]. To mitigate potential overfitting issues, a dropout 441 
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layer with a rate set to 0.2 was integrated into the model, which is a commonly used method for random regularization 442 

[117]. The output layer of the model is a dense layer, with the number of neural units corresponding to the number of 443 

categories in the classification task. Mean squared error was utilized as the cost function to measure model accuracy 444 

[44]. The initial learning rate was set at 0.001 and the ReduceLROnPlateau callback function was employed during 445 

training to dynamically adjust the learning rate, thereby optimizing model performance. Other hyperparameters were 446 

tuned to ascertain the optimal values that provide the highest accuracy while minimizing training time. The results 447 

indicated that optimal accuracy was achieved with epochs, batch size, and optimizer values set to 50, 32, and 448 

RMSProp, respectively. Experiments were conducted using Python 3.6 on an Intel Xeon Processor (Skylake, IBRS), 449 

with 32GB RAM, a 64-bit Windows 10 operating system, and a V100-32G GPU. 450 

The performance of machine learning and deep learning algorithms was evaluated using accuracy, precision, recall, 451 

and F1-score (Eq. 18-21). Accuracy provides an overall assessment of the model’s performance across all classes. 452 

Precision measures the ability of the model to avoid incorrectly labeling negative instances as positive. Recall focuses 453 

on the model’s capability to correctly identify all positive instances. F1-score provides a balanced measure of the 454 

model’s performance by considering both precision and recall. Additionally, individual class performance is analyzed 455 

through confusion matrices, while receiver operating characteristic (ROC) curves for each category provide a 456 

quantitative assessment of classifier quality through the calculation of the area under the curve. 457 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 (18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +   𝐹𝑃 
      (19) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +   𝐹𝑁 
    (20) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
. (21) 

Where true positive (TP) represents the number of positive instances correctly classified as positive, true negative 458 

(TN) represents the number of negative instances correctly classified as negative, false positive (FP) represents the 459 

number of negative instances incorrectly classified as positive, and false negative (FN) represents the number of 460 

positive instances incorrectly classified as negative. 461 
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4. Results 462 

4.1. Effectiveness of the proposed recognition algorithms under multi-sensor data 463 

In the context of operators’ sitting activities, the combination of multiple sensors is categorized into six groups, as 464 

illustrated in Table 3. The excavator’s low-amplitude uniform vibrations during the collection of static sitting posture 465 

data have limited impact on the pressure sensor. As a result, the algorithm performance for the 1st and 6th multi-466 

sensor combination schemes in static sitting posture recognition is comparable. Therefore, the 6th combination 467 

scheme is not considered for static sitting posture recognition. Consequently, a dataset comprising 73,500 instances 468 

of static sitting postures and 94,500 instances of compound sitting actions was collected for this paper. The analysis 469 

primarily aimed to compare the performance of the multi-sensor combinations using different algorithms.  470 

Table 3 Multi-sensor combination schemes. 471 

# Combination schemes 

1 Only use pressure sensors 

2 Only use IMUs 

3 Fusion of pressure sensors and all IMUs 

4 Fusion of pressure sensors and the IMU at the torso 

5 Fusion of pressure sensors and the IMUs at the arms 

6 Fusion of pressure sensors and the IMU at excavator seat side wall  

(1) Static sitting posture recognition 472 

The results reveal that the overall accuracy of static sitting posture recognition among different multi-sensor 473 

combinations ranges from 76.14% to 98.50%. This can be attributed to the relatively stable nature of static sitting 474 

postures over time, allowing for the acquisition of a relatively stable and clean dataset under ideal conditions. 475 

Traditional machine learning algorithms often achieve high classification accuracy by extracting features in the time 476 

domain. Among all the algorithms, SVM (95.69% accuracy), LSTM (97.90% accuracy), and GRU (98.50% accuracy) 477 

exhibit high classification accuracy when using the multi-sensor combination scheme where all sensors are utilized 478 

(scheme #3). In this paper, the performance of SVM, LSTM, and GRU under scheme #3 is further evaluated through 479 

the use of confusion matrices and ROC curves. 480 

Table 4 Recognition performance of static sitting postures under five algorithms with different multi-sensor combinations. 481 

Algorithm Scheme 
Classification performance (%) 

Accuracy Precision Recall F1-Score 

DT 1 0.8743  0.8751  0.8743  0.8744  

 2 0.9307  0.9310  0.9308  0.9307  
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 3 0.9434  0.9435  0.9435  0.9434  

 4 0.9426  0.9427  0.9427  0.9425  

 5 0.9428  0.9430  0.9428  0.9428  

SVM 1 0.7614  0.7722  0.7603 0.7591  

 2 0.9226 0.9235  0.9230  0.9227  

 3 0.9569  0.9571  0.9571  0.9569  

 4 0.9485 0.9478 0.9477  0.9472  

 5 0.9550  0.9551  0.9550  0.9548 

KNN 1 0.7778  0.7802  0.7780  0.7781  

 2 0.9265  0.9264  0.9271  0.9263  

 3 0.9480 0.9483  0.9481  0.9480  

 4 0.9411  0.9417  0.9410  0.9410  

 5 0.9458  0.9455  0.9449  0.9450  

LSTM 1 0.9339  0.9334  0.9336  0.9333  

 2 0.9265  0.9269  0.9263  0.9263 

 3 0.9790  0.9886  0.9788 0.9786   

 4 0.9554  0.9550  0.9554  0.9550  

 5 0.9502  0.9593  0.9507  0.9596  

GRU 1 0.9446 0.9447 0.9444 0.9444 

 2 0.9350 0.9353 0.9348 0.9348 

 3 0.9850 0.9849 0.9849 0.9848 

 4 0.9788 0.9787 0.9789 0.9787 

 5 0.9800 0.9802 0.9800 0.9800 

The confusion matrix (Fig. 8 (a)) reveals the high classification accuracy of distinct static sitting postures by three 482 

algorithms. Misclassification between LR and CLL is noted, likely influenced by asymmetric pressure distribution. 483 

The SVM algorithm excels, with accuracies predominantly above 90%, though it confounds LF and LB, possibly 484 

owing to data collection adjacency and the operator’s incomplete leaning. Conversely, GRU and LSTM surpass 90% 485 

accuracy across all posture types, benefiting from deep learning’s intrinsic automatic feature extraction, which 486 

outperforms manual methods. 487 

The ROC curve, depicted in Fig. 8 (a), demonstrates the interplay between true positive rate (TPR) and false 488 

positive rate (FPR) across thresholds. The area under the ROC curve (AUC) serves as a robust classifier comparison 489 

metric, unaffected by case proportion. Most AUC values exceed 0.98, underscoring classifier efficacy. Notably, deep 490 

learning algorithms exhibit superior AUC values compared to SVM, affirming their enhanced performance in static 491 

sitting posture classification. 492 

In Fig. 9 (a), the GRU model’s accuracy and loss curves under scheme #3 are depicted. As training epochs increase, 493 

there is a notable enhancement in accuracy across training and validation sets, while loss consistently diminishes. 494 

The convergence of these indicators at the 45th epoch demonstrates that the GRU model has been effectively trained, 495 
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achieving this without overfitting the static sitting posture data.  496 

 497 
Fig. 8. Confusion matrix and ROC curve. 498 

SVM LSTM GRU

SVM LSTM GRU

(a) Confusion matrix and ROC curve for static sitting postures (scheme #3)

(b) Confusion matrix and ROC curve for compound sitting actions (scheme #3)
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 499 
Fig. 9. Iterative accuracy and loss curve of GRU model under scheme #3. 500 

(2) Compound sitting action recognition 501 

Regarding the recognition of compound sitting actions, the results differ. Table 5 demonstrates that GRU (94.25% 502 

accuracy) consistently outperforms other algorithms in terms of classification accuracy for compound sitting actions 503 

in different combination schemes. This is because compound sitting actions are considered a fusion of various arm 504 

postures and static sitting postures. GRU models are distinguished by their unique model characteristics and exhibit 505 

significant advantages in handling time series data. Among traditional machine learning algorithms, SVM (93.86% 506 

accuracy) performs relatively better. In the following sections, the performance of SVM, LSTM, and GRU was further 507 

evaluated using confusion matrices and ROC curves, utilizing a scheme where all sensors are employed. 508 

Table 5 Recognition performance of compound sitting actions under five algorithms with different multi-sensor combinations. 509 

Algorithm Scheme 
Classification performance (%) 

Accuracy Precision Recall F1-Score 

DT 1 0.7952  0.7949  0.7980  0.7953  

 2 0.7575  0.7649  0.7573  0.7577  

 3 0.9028  0.9024  0.9024  0.9018  

 4 0.8836  0.8841  0.8847  0.8836  

 5 0.8869  0.8875  0.8875  0.8868  

 6 0.8611  0.8607  0.8607  0.8601  

SVM 1 0.8048 0.8125 0.8062 0.8028 

(a) Iterative accuracy and loss curve of GRU model in static sitting postures

(b) Iterative accuracy and loss curve of GRU model in compound sitting actions
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 2 0.7766   0.7743 0.7788 0.7724 

 3 0.9386  0.9373  0.9373  0.9371  

 4 0.9262  0.9243  0.9238  0.9239  

 5 0.9346  0.9340  0.9342  0.9340  

 6 0.8987  0.8974  0.8974  0.8972  

KNN 1 0.7140  0.7147  0.7210  0.7155  

 2 0.7249  0.7319  0.7253  0.7243  

 3 0.8923  0.8905  0.8931  0.8912  

 4 0.8645  0.8652  0.8649  0.8627  

 5 0.8775  0.8811  0.8781  0.8780  

 6 0.8486  0.8468  0.8494  0.8475  

LSTM 1 0.8152  0.8152  0.8195  0.8125  

 2 0.8219  0.8219  0.8375  0.8161  

 3 0.9384  0.9384  0.9385  0.9380  

 4 0.9346  0.9346  0.9349  0.9345  

 5 0.9362  0.9362  0.9375  0.9356  

 6 0.8962  0.8962  0.8963  0.8958  

GRU 1 0.8130  0.8130  0.8415  0.8080  

 2 0.8519  0.8518  0.8528  0.8504  

 3 0.9425  0.9420  0.9427  0.9420  

 4 0.9392  0.9392  0.9397  0.9385  

 5 0.9398  0.9398  0.9413  0.9395  

 6 0.9035  0.9030  0.9037  0.9030  

The confusion matrix in Fig. 8 (b) indicates high accuracy for nine compound sitting actions across all algorithms.  510 

LSTM and GRU stand out, achieving above 95% accuracy for most actions, except MR. Conversely, SVM, while 511 

effective for certain actions, exhibits limited accuracy in swing operations, MR, and RL Boom. This limitation stems 512 

from the extended duration of most sitting actions, involving overlapping static postures. Traditional machine 513 

learning with fixed sliding windows excels in consistent activity recognition but struggles with compound action 514 

transitions. Deep learning algorithms like LSTM and GRU, are useful for capturing long-term time series 515 

dependencies and significantly enhance compound sitting actions classification. 516 

Subsequent analysis highlights lower prediction accuracies for swing operations (accuracy: SVM: 87%, LSTM: 517 

82%, GRU: 83%) across all algorithms. This is likely due to the excavator’s significant movement range during these 518 

operations, causing marked fluctuations in pressure sensors and IMUs signals, which complicates classification. The 519 

results also found that the predictive accuracy of LSTM and GRU for MR is limited, with some MRs being incorrectly 520 

classified as swing operations. This may be attributed to the fact that, during the execution of MR, there is a prolonged 521 

period where the motion resembles that of a swing operation, characterized by a tendency to rotate the fuselage to 522 

the right. Consequently, the operator’s actions in both scenarios exhibit certain similarities.  523 
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As illustrated in Fig. 8 (b), based on the ROC curves of the three algorithms for various classifications, the majority 524 

of AUC values exceeded 0.95, indicating the effectiveness of the classifiers. For swing operations, MR, RL Boom, 525 

SVM classifier achieved the smallest AUC value of 0.97, suggesting slightly lower prediction accuracy for these 526 

three categories. This observation aligns with the analysis conducted on the confusion matrix. 527 

Fig. 9 (b) displays the performance of the GRU under scheme #3 in terms of accuracy and loss curves. Similar to 528 

the performance of the model in a static sitting posture, the GRU achieves convergence in both accuracy and loss. 529 

This indicates that the GRU model has undergone effective training and has successfully avoided overfitting.  530 

In this paper, a balanced dataset was used to accurately capture the characteristics of excavator operators’ sitting 531 

activities. However, to further demonstrate the reliability and generalization of the developed models in recognizing 532 

sitting activities, imbalanced datasets that are closer to real excavator operations than controlled field experimental 533 

datasets are required. To this end, an imbalance processing was introduced to the original test set. The previously 534 

trained model was tested using these imbalanced data and compared with the recognition performance on the original 535 

test set. This model evaluation approach has been widely used in the construction industry [118]. To align the activity 536 

duration and sequence more closely with real excavation scenarios, insights from earthwork field surveys were 537 

combined with relevant existing studies [119-121]. An imbalanced dataset was constructed through data 538 

augmentation, with the following activity sequence: MF (30s), ML (10s), Climbing (10s), RL Boom (6.25s), RL Arm 539 

(6.25s), Excavation (30s), Swing (3s), Dumping (5s), MR (10s). The original dataset was cropped to extract the time 540 

series of each activity based on the predefined duration. Linear interpolation was applied between continuous 541 

compound sitting actions to ensure a smoother dataset, followed by downsampling to maintain a consistent sampling 542 

frequency in the generated imbalanced dataset. Techniques of jittering and rotation were adopted to emulate the 543 

random noise generated during excavator operation and the potential orientation shifts in IMUs caused by vibrations 544 

and movements. The jittering was applied to the pressure sensors dataset, while both jittering and rotation were 545 

implemented on the IMUs dataset. The noise was modeled using common Gaussian white noise, and the rotation 546 

angle was set at 5 degrees [122]. Based on the preceding results, the SVM, LSTM, and GRU algorithms demonstrated 547 

relatively optimal accuracy in recognizing compound sitting actions. Consequently, the activity recognition 548 

performance evaluation of these three algorithms was further conducted. Specific performance metrics are shown in 549 
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Fig. 10. 550 

 551 

Fig. 10. Comparison of model performance metrics under original and imbalanced dataset. 552 

The performance metrics presented in Fig. 10 reveal variations across different models when applied to the 553 

imbalanced dataset. Particularly, relying solely on pressure sensors resulted in a decline in performance, ranging from 554 

12.23% to 21.80% compared to the original dataset. This outcome underscores the limitations of activity recognition 555 

reliant on a single type of sensor, especially when processing imbalanced datasets that resemble real-world 556 

constructions. As such, pressure sensors are more susceptible to interference from noise and other factors. However, 557 

when employing a multi-sensor combination strategy, the decline in performance metrics is significantly mitigated 558 

(ranging from 0.03% to 9.68%). Notably, scheme #6 demonstrates equally superior efficacy in managing imbalanced 559 

datasets (ranging from 0.02% to 9.53%). These findings substantiate the advantage of the multi-sensor combination 560 

approach for operators’ sitting activity recognition, demonstrating its robust adaptability in the complex operational 561 

environments of construction sites. Regarding individual algorithms, GRU consistently outperforms others in both 562 

datasets, further confirming the superior generalization performance of deep learning algorithms. 563 

4.2. Comparison of multi-sensor combination schemes 564 

In real construction sites, the complex operating environments and application requirements for sensors (e.g., cost, 565 

(c) Recall (d) F1-Score

(a) Accuracy (b) Precision
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invasiveness) may necessitate different configurations of multi-sensor setups. Thus, this paper conducts a detailed 566 

comparison of recognition performance using the multi-sensor combination scheme proposed earlier. Table 6 presents 567 

the performance metrics for the recognition of excavator operator’s sitting postures under various multi-sensor 568 

combinations. These metrics represent the average values of all algorithm performance indicators for each 569 

combination scheme. 570 

Table 6 Average recognition performance for static sitting postures across each multi-sensor combination scheme. 571 

# Combination schemes 
Performance metrics 

Accuracy Precision Recall F1-Score 

1 Only use pressure sensors 0.8584  0.8611  0.8581  0.8579  

2 Only use IMUs 0.9283  0.9286  0.9284  0.9282  

3 Fusion of pressure sensors and all IMUs 0.9625  0.9645  0.9625  0.9623  

4 Fusion of pressure sensors and the IMU at the torso 0.9533  0.9532  0.9531  0.9529  

5 Fusion of pressure sensors and the IMUs at the arms 0.9548  0.9566  0.9547  0.9564  

As depicted in Table 6, higher recognition performance for static sitting postures can be achieved with fewer sensor 572 

combinations, such as “only using pressure sensors” or “only using IMUs.” The accuracy improves to some extent 573 

by fusing pressure sensors and IMUs. Interestingly, the placement of IMUs (e.g., at the torso or arms) seems to have 574 

an impact on recognition performance. This outcome can be attributed to the noticeable changes in the body torso 575 

during different static sitting postures and the significant differences in data between IMUs placed at the torso and 576 

the arms. SVM and GRU algorithms demonstrate strong performance in the classification of static sitting postures. 577 

Therefore, the subsequent analysis will utilize SVM and GRU algorithms to further examine the confusion matrix 578 

under different multi-sensor combination schemes. 579 

 Fig. 11 (a) shows SVM’s recognition accuracy for LR is only 54% when relying solely on pressure sensors. This 580 

is attributed to the similar pressure distribution in LR and CLL postures and potential data quality reduction due to 581 

the operator’s movement during LR data gathering. Conversely, IMUs do not encounter this issue, as they distinctly 582 

capture the varying torso orientations of LR and CLL. Moreover, Fig. 11 (a) and (b) indicate poor classification 583 

accuracy for LB by both algorithms. This discrepancy arises due to the confined space in the operation room, resulting 584 

in minimal forward or backward leaning amplitudes of the operator's torso. Further examination of Fig. 11 (c) and 585 

(d) shows clear misclassifications of SU and CLL by both algorithms when solely utilizing IMUs. These errors likely 586 

arise from the postures’ relatively vertical torso and minimal movement amplitudes, complicating accurate 587 

differentiation. 588 
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As depicted in Fig. 11 (e) and (f), when fusing all IMUs and pressure sensors, both algorithms demonstrate 589 

excellent accuracy for various static sitting postures, with SVM achieving 95.69% and GRU achieving 98.50%. 590 

Notably, when fusing pressure sensors with the IMU at the torso, SVM exhibits exceptional differentiation for static 591 

sitting postures. However, the distinction for LR is relatively lower (88% accuracy), possibly due to the limited space 592 

in the operational area, which constrains the extent of the operator’s overall leaning movements, leading to reduced 593 

sensitivity in the torso’s IMU data, consequently making it challenging to distinguish from other static sitting postures. 594 

Furthermore, fusing pressure sensors with arm IMUs led to SVM and GRU algorithms nearly replicating the 595 

performance levels attained with full IMU utilization. 596 

 597 

Fig. 11. Confusion matrix of static sitting posture under SVM and GRU. 598 

Table 7 presents the average performance metrics for the recognition of compound sitting actions under different 599 

sensor combination schemes. It is evident that both the “only use pressure sensors” and “only use IMUs” schemes 600 

achieve a certain level of accuracy in classifying compound sitting actions, while the fusion of multiple sensors 601 

significantly enhances recognition performance. The accuracy of fusing pressure sensors with IMUs at the arms was 602 

(c) SVM: Scheme #2

(a) SVM: Scheme #1

(i) SVM: Scheme #5

(g) SVM: Scheme #4

(j) GRU: Scheme #5

(h) GRU: Scheme #4

(d) GRU: Scheme #2

(b) GRU: Scheme #1

(e) SVM: Scheme #3 (f) GRU: Scheme #3
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slightly higher compared to fusing pressure sensors with IMUs at the torso. This finding can be attributed to the 603 

distinct range of changes in the IMUs at the arms and the accurate classification of various compound sitting actions. 604 

Furthermore, the fusion of pressure sensors with IMUs on the excavator seat side wall also demonstrates significantly 605 

improved classification accuracy compared to using a single sensor, although its accuracy remains lower than that of 606 

the fusion of all sensors. 607 

Table 7 Average recognition performance for compound sitting actions across each multi-sensor combination scheme. 608 

# Combination schemes 
Performance metrics 

Accuracy Precision Recall F1-Score 

1 Only use pressure sensors 0.7866  0.7890 0.7903  0.7842  

2 Only use IMUs 0.7884  0.7901  0.7972  0.7868  

3 Fusion of pressure sensors and all IMUs 0.9229  0.9221  0.9228  0.9220  

4 Fusion of pressure sensors and the IMU at the torso 0.9096  0.9095  0.9096  0.9086  

5 Fusion of pressure sensors and the IMUs at the arms 0.9150  0.9157  0.9157  0.9148  

6 Fusion of pressure sensors and the IMU at excavator seat side wall  0.8816  0.8808  0.8815  0.8807  

Analysis of Fig. 12 (a) and (b) reveals that when only pressure sensors are used, GRU (71% accuracy) exhibits the 609 

lowest accuracy in recognizing excavation operations. This misclassification can be attributed to the operator’s 610 

limited movement of the upper and lower arms during excavation operations, resulting in minimal changes in both 611 

the excavator and human torso. Consequently, the pressure sensor data does not exhibit significant variations. 612 

Moreover, the subtle changes in pressure data during complex compound sitting actions like excavation, dumping, 613 

and climbing lead to generally low classification accuracies across algorithms. Particularly, SVM’s performance in 614 

classifying ML, MR, and swing operation is diminished, attributed to its reduced efficacy in transitional data 615 

recognition. The fuselage’s left-right oscillation during swing operations also mimics the pressure patterns of ML 616 

and MR, complicating accurate identification. 617 

However, as depicted in Fig. 12 (c) and (d), when only IMUs were used, the previously low classification accuracy, 618 

primarily caused by the complexity and specificity of arm movements, significantly improved. Nevertheless, the 619 

SVM algorithm demonstrates the lowest accuracy (74% accuracy) for the climbing operation, with 24% of the data 620 

being incorrectly classified as RL Boom. This misclassification arises due to the operator’s reliance on using the 621 

Boom to stabilize the fuselage for uphill tasks during climbing operations. Consequently, both of these compound 622 

sitting actions involve extensive use of the Boom control lever.  623 

Fig. 12 (e) and (f) illustrate that the fusion of pressure sensors and IMUs significantly improves the algorithm’s 624 
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performance in recognizing compound sitting actions. By comparing Fig. 12 (g-j), no significant difference in 625 

recognition accuracy was observed between fusing pressure sensors with IMUs at the arms and using all IMUs. 626 

However, the recognition accuracy of fusing pressure sensors with IMUs at the torso slightly decreases. This decline 627 

can be attributed to the IMU at the torso being adhered to the operator’s body, resulting in less overall movement 628 

compared to the arms. 629 

 630 

Fig. 12. Confusion matrix of compound sitting actions under SVM and GRU. 631 

5. Discussion 632 

5.1. Feasibility of the proposed methods 633 

The proposed method was applied in excavator operation scenarios, demonstrating its feasibility for recognizing 634 

operators’ sitting activities. The results indicated that the selected algorithms achieved satisfactory performance in 635 

recognizing sitting activities across various multi-sensor combinations. For static sitting postures, excellent 636 

performance was observed across different algorithms, with all performance evaluation indicators exceeding 90% 637 
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when using the complete multi-sensor combination. Among these, the machine learning algorithms demonstrated 638 

similar performance, while the two deep learning algorithms showed only marginal improvements compared to the 639 

machine learning algorithms. Overall, the distinction in recognition performance between the two types of algorithms 640 

was not substantial. For compound sitting actions, the performance indicators of LSTM and GRU surpassed 80% for 641 

various sitting actions under different multi-sensor combinations. Notably, GRU consistently exhibited outstanding 642 

recognition performance, indicating its high potential for detecting sitting activities of excavator operators. 643 

Additionally, when using a single sensor, the performance of the three machine learning algorithms was comparable. 644 

With the combination of multiple sensors, the performance indicators of SVM significantly outperformed the other 645 

two algorithms. Overall, the performance of machine learning algorithms in compound sitting actions recognition 646 

was notably lower than that of the two deep learning algorithms. Moreover, through model testing and evaluation on 647 

the imbalanced dataset that closely resembles actual excavation operations, this paper demonstrates the acceptable 648 

reliability and generalization of the proposed method to a certain extent. Among these, GRU demonstrated the best 649 

performance in terms of training time and overall recognition accuracy. These findings highlight the applicability and 650 

feasibility of the selected RNN-based algorithms for processing time series data of excavator operators’ sitting 651 

activities. 652 

The proposed method demonstrated distinct differences in recognizing static sitting postures and compound sitting 653 

actions. In the recognition of static sitting postures, all different sensor combination approaches exhibit acceptable 654 

classification accuracy. This finding can be attributed to the significant changes in the operator’s center of gravity 655 

across different static sitting postures, which can be precisely captured. The position of the torso and the 656 

corresponding interface pressure distribution vary noticeably among different sitting postures, enabling the 657 

identification of static sitting postures using only a single sensor. However, in the recognition of compound sitting 658 

actions, the performance of a single interface pressure sensor array is inferior to that of the multi-sensor combination 659 

approach. When only employing IMUs, the algorithm’s performance shows a slight improvement compared to using 660 

only the interface pressure sensor. Nevertheless, the overall recognition performance remains relatively low and can 661 

potentially disrupt the operation process due to its invasive nature. The sitting actions of excavator operators involve 662 

a multitude of compound body movements, but operators typically maintain a relatively upright sitting posture during 663 
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operation. As a result, the pressure distribution does not exhibit significant changes between different sitting actions, 664 

thereby resulting in poor recognition performance. These challenges emphasize the complexity and dynamics 665 

associated with the operators sitting activities.  666 

The utilization of the multi-sensor combination schemes has significantly enhanced the practicability and 667 

recognition performance of the method. Notably, the highest recognition performance was achieved when all sensors 668 

were used. When fusing the interface pressure sensor data with arm-mounted IMU data, the recognition accuracy 669 

slightly surpassed that of the approach combining the pressure sensor with the torso-mounted IMU. This observation 670 

may be attributed to the pronounced overall range of arm movements across various sitting activities, with the arm-671 

mounted IMUs providing more precise data on the operator’s arm movements. However, this solution may introduce 672 

invasive effects and inconveniences associated with wearing arm-mounted sensors. It is worth mentioning that the 673 

combination of the pressure sensor array and the IMU installed on the seat exhibited considerable recognition 674 

performance. Since the IMU is integrated into the excavator’s structure, it does not interfere with the operator’s 675 

regular work while capturing equipment movement. Consequently, it represents a compromise approach that balances 676 

recognition performance with practical considerations such as cost and intrusiveness. Overall, the results 677 

demonstrated that relying solely on the pressure sensor array yields significantly lower recognition performance 678 

compared to multi-sensor fusion. In particular, when the IMU is positioned on the excavator structure, this scheme 679 

exhibits considerable applicability to other construction equipment operation scenarios. This finding further indicates 680 

that when the operator’s sitting activities are influenced by equipment movement, the employed sensors may receive 681 

corresponding noise signals, thereby compromising the data quality. The proposed method could simultaneously 682 

capture both irregular equipment movements and corresponding operators’ sitting activity information through multi-683 

sensor fusion. Compared with using operator sitting activity-related data alone, this multi-sensor data fusion approach 684 

demonstrates superior sitting activity recognition performance. 685 

5.2. Contributions and implications to theory and construction practice 686 

This paper develops theoretical methods and technical solutions for excavator operator activity recognition. The 687 

collection of kinematics-based data in real construction task scenarios presents significant challenges due to the 688 
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construction site’s complex, dynamic, and harsh environmental factors. Moreover, previous studies primarily relied 689 

on data collected from laboratory experiments, which limits the evaluation of the usability and reliability of sensing 690 

technology and data processing methods in practical settings. To overcome these limitations, this paper conducts 691 

experiments and collects data in a real construction site environment. By integrating interface pressure sensing 692 

technology and IMU sensors, simultaneous real-time collection of excavator operators’ sitting activities and 693 

corresponding equipment movement data becomes possible. Consequently, the complex dynamics of operator 694 

activities, influenced by the irregular movements of construction equipment, can be comprehensively recorded and 695 

effectively reflected in the generated features. This supports the selected algorithms in achieving acceptable 696 

recognition performance. The proposed approach exhibits the potential for extension to a broader range of heavy 697 

machinery operating scenarios in challenging and dynamic task environments. Specifically, the proposed method 698 

offers the following advantages: 699 

(1) Multiple sensors were employed to enable the simultaneous collection of target signals and noise signals from 700 

both the equipment and operators, facilitating the comprehensive recording of the entire construction equipment 701 

operating scenario. The findings demonstrate that satisfactory recognition outcomes can be attained by combining 702 

the interface pressure sensor array with a reduced number of IMUs. This presents a fundamental hardware technical 703 

solution for addressing activity recognition challenges in dynamic construction equipment operation scenarios. 704 

(2) This paper compared various machine learning and deep learning algorithms for the recognition of excavator 705 

operator activities. The results unequivocally indicated that RNN-based algorithms are highly effective in capturing 706 

the dynamic characteristics of time series data, exhibiting greater suitability for addressing the research problem. 707 

Notably, GRU consistently exhibited superior recognition performance in certain cases, even when utilizing a reduced 708 

number of sensors. 709 

(3) Operators’ sitting activity recognition methods with high adaptability can be developed by employing flexible 710 

combinations of multiple sensors. Considering practical requirements such as cost-effectiveness and non-711 

intrusiveness, distinct schemes for multi-sensor combinations are proposed, and their feasibility is validated. This 712 

allows for the customization of multi-sensor combinations to suit diverse project requirements and construction site 713 

conditions. In real-world applications, suitable approaches can be selected by carefully considering the trade-off 714 
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between application practicability and efficiency. 715 

 716 

Fig. 13. Practical use of the research. 717 

Furthermore, the proposed method holds potential as a real-time sitting activities recognition tool for managing 718 

the performance of construction equipment operators. To facilitate practical implementation, an executable 719 

application framework was developed, as illustrated in Fig. 13. First, an appropriate multi-sensor combination scheme 720 

should be selected, considering a trade-off between practicability and recognition performance. This selection process 721 

should account for specific application scenario characteristics, activity recognition objectives, project cost control, 722 

and other relevant factors. The collected data incorporates several interpretable interface pressure metrics, which 723 

provide quantitative information on sitting activities. The feedback outcomes can facilitate various aspects of on-site 724 

management, thereby offering significant implications for operator management practices. The information generated 725 

can be utilized for proactive safety risk analysis, health risk assessment, predictive productivity evaluation, and 726 

integration into data-driven methodologies for operators’ behavior perception and operational situation awareness. 727 

For example, the developed method can serve as a technical foundation for measuring and evaluating operators’ 728 

physical discomfort and muscle fatigue levels during prolonged sitting situations, elucidating changes in sitting 729 

posture through pressure distribution and related inertial indicators. Additionally, the evaluation of the recognition 730 

results can inform improvements in the sensor combination scheme and the recognition algorithm. While the specific 731 

application of this framework extends beyond the scope of this paper, its potential benefits are worth exploring in 732 

future research and implementation endeavors. 733 
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5.3. Limitations and future research directions 734 

In construction project practice, the configuration of multiple sensors necessitates a trade-off between method 735 

efficiency and practicability costs. In this paper, a 15×17 pressure sensor array was utilized, which is a redundant 736 

sensor arrangement scheme. The purpose was to fully explore the feasibility of interface pressure sensing technology. 737 

Consequently, some parts of the pressure sensor units in the sensor array did not encounter the participant’s body in 738 

most cases. From the perspective of pressure sensor unit distributions, the pressure features captured by multiple 739 

sensor units in a ROI may be effectively represented by a particular sensor unit within that region. This observation 740 

presents a potential basis for optimizing the layout of the pressure sensor array. Future research should focus on 741 

developing rational sensor layout optimization methods while achieving acceptable sitting activity recognition 742 

performance across a broader range of construction equipment operation scenarios, including its accuracy, 743 

generalization, and other relevant factors. Furthermore, regarding multi-sensor fusion methods, this paper falls under 744 

the category of feature-level fusion method [32]. To enhance the practicability of the multi-sensor systems in diverse 745 

operational tasks, it is crucial to gather more training data in a real construction environment and explore various data 746 

fusion methods regarding their feasibility, adaptability, and recognition performance. Finally, it is important to 747 

acknowledge that this paper employed a partially controlled field experimental setup, although ensuring a balanced 748 

dataset and experimental safety, may not fully capture the complexities of real-world construction scenarios. Hence, 749 

the practicability of the proposed method is still subject to certain limitations. To address this, future research efforts 750 

should verify the reliability of the proposed method under completely uncontrolled conditions, which may necessitate 751 

the development of efficient signal processing techniques and robust classification algorithms. 752 

6. Conclusions 753 

This paper collected and recognized excavator operators’ sitting activities in construction equipment operating 754 

environments. The outcomes could provide essential insights for managing health and safety risks and improving 755 

production efficiency on construction sites. To this end, a field experiment was conducted on a real-world 756 

construction site to collect multi-sensor data on static sitting postures and compound sitting actions in real excavator 757 

operating scenarios. A multi-sensor system, consisting of two pressure sensor arrays and four IMUs sensors, was 758 
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developed to comprehensively capture the dynamics of the excavator operator’s sitting posture. To systematically 759 

describe the characteristics of the interface pressure during operating activities, several typical metrics were generated, 760 

and corresponding features were extracted. The results demonstrated that several machine learning and deep learning 761 

algorithms, including SVM and GRU, achieved superior recognition performance. Specifically, the accuracy of 762 

recognizing compound sitting actions ranges from 77.66% to 93.46% across multi-sensor combinations using SVM, 763 

and from 81.30% to 94.25% using GRU. This paper also explored the recognition performance across different sensor 764 

combinations, highlighting the feasibility and adaptability of various algorithms and sensor combinations in diverse 765 

scenarios. 766 

This paper contributes to both theory and practice in the following ways: (1) The interface pressure sensing 767 

technique and effective pressure indicators related to the excavator operator’s sitting activity are proposed, and its 768 

feasibility is demonstrated. (2) Through multi-sensor data fusion, the construction equipment movements and the 769 

complex dynamics of excavator operators’ sitting activities affected by irregular equipment movements can be 770 

synchronously captured. This mitigates the adverse effects of equipment vibration and movement on operators’ sitting 771 

activity recognition performance, making the proposed method suitable for construction operation contexts. (3) 772 

Comparative analysis of field experimental results identified suitable activity recognition methods that could 773 

recognize excavator operators’ static sitting postures and compound sitting actions. (4) The performance of sitting 774 

activity recognition under various sensor combinations was compared, and optimized sensor arrangement schemes 775 

adaptable to various on-site construction operation scenarios were preliminarily discussed. Moreover, it was revealed 776 

that for more general problems of activity detection and recognition in complex construction equipment operation 777 

scenarios, a multi-sensor fusion-based approach could be a promising technical solution. Future research should focus 778 

on optimizing multi-sensor arrangements and investigating the feasibility and practicability of the proposed methods 779 

across various real construction equipment operation scenarios. 780 

Acknowledgments 781 

This work was partially supported by the National Natural Science Foundation of China (No. 72201254), the 782 

Project funded by China Postdoctoral Science Foundation (No. 2021M692990), the General Research Fund (GRF) 783 



40 

 

Grant (No. 15201621, 15210923), and the Shenzhen Fundamental Research Program (Grant No. 784 

SGDX20201103095203031). Finally, we would like to express our sincere gratitude to the reviewers for their 785 

valuable comments and suggestions on the improvement of the research quality. 786 

References 787 

[1] X. Shen, I. Awolusi, E. Marks, Construction equipment operator physiological data assessment and tracking, Practice 788 

Periodical on Structural Design and Construction. 22 (4) (2017), pp. 04017006, 789 

https://doi.org/10.1061/(asce)sc.1943-5576.0000329. 790 

[2] V.H.P. Vitharana, T. Chinda, Development of a lower back pain prevention index for heavy equipment operators in 791 

the construction industry: system dynamics modelling, International Journal of Construction Management. (2019), 792 

pp. 1-17, https://doi.org/10.1080/15623599.2019.1579969. 793 

[3] N.K. Kittusamy, B. Buchholz, Whole-body vibration and postural stress among operators of construction equipment: 794 

a literature review, Jounal of Safety Research. 35 (3) (2004), pp. 255-261, https://doi.org/10.1016/j.jsr.2004.03.014. 795 

[4] M.P. Smets, T.R. Eger, S.G. Grenier, Whole-body vibration experienced by haulage truck operators in surface mining 796 

operations: a comparison of various analysis methods utilized in the prediction of health risks, Applied Ergonomics. 797 

41 (6) (2010), pp. 763-770, https://doi.org/10.1016/j.apergo.2010.01.002. 798 

[5] T. Waters, A. Genaidy, H. Barriera Viruet, M. Makola, The impact of operating heavy equipment vehicles on lower 799 

back disorders, Ergonomics. 51 (5) (2008), pp. 602-636, https://doi.org/10.1080/00140130701779197. 800 

[6] J. Li, H. Li, H. Wang, W. Umer, H. Fu, X. Xing, Evaluating the impact of mental fatigue on construction equipment 801 

operators' ability to detect hazards using wearable eye-tracking technology, Automation in Construction. 105 (2019), 802 

pp. 102835, https://doi.org/10.1016/j.autcon.2019.102835. 803 

[7] I. Mehmood, H. Li, Y. Qarout, W. Umer, S. Anwer, H. Wu, M. Hussain, M. Fordjour Antwi-Afari, Deep learning-804 

based construction equipment operators’ mental fatigue classification using wearable EEG sensor data, Advanced 805 

Engineering Informatics. 56 (2023), pp. 101978, https://doi.org/10.1016/j.aei.2023.101978. 806 

[8] S.K.K. Jeripotula, A. Mangalpady, G.R.R. Mandela, Assessment of exposure to whole-body vibration of dozer 807 

operators based on postural variability, Mining Metallurgy & Exploration. 37 (2) (2020), pp. 813-820, 808 

https://doi.org/10.1007/s42461-020-00175-z. 809 

[9] K. Ramar, L.A. Kumaraswamidhas, Excavator driver seat occupational comfort assessment with lumbar support 810 

cushion, Journal of Vibration and Control. 28 (23-24) (2021), pp. 3510-3523, 811 

https://doi.org/10.1177/10775463211035891. 812 

[10] J.S. Lee, Y. Ham, H. Park, J. Kim, Challenges, tasks, and opportunities in teleoperation of excavator toward human-813 

in-the-loop construction automation, Automation in Construction. 135 (2022), pp. 104119, 814 

https://doi.org/10.1016/j.autcon.2021.104119. 815 

[11] A.S. Rao, M. Radanovic, Y. Liu, S. Hu, Y. Fang, K. Khoshelham, M. Palaniswami, T. Ngo, Real-time monitoring of 816 

construction sites: Sensors, methods, and applications, Automation in Construction. 136 (2022), pp. 104099, 817 

https://doi.org/10.1016/j.autcon.2021.104099. 818 

[12] P.B. Rodrigues, R. Singh, M. Oytun, P. Adami, P.J. Woods, B. Becerik-Gerber, L. Soibelman, Y. Copur-Gencturk, 819 

G.M. Lucas, A multidimensional taxonomy for human-robot interaction in construction, Automation in Construction. 820 

150 (2023), pp. 104845, https://doi.org/10.1016/j.autcon.2023.104845. 821 

[13] B. Sherafat, C.R. Ahn, R. Akhavian, A.H. Behzadan, M. Golparvar-Fard, H. Kim, Y.-C. Lee, A. Rashidi, E.R. Azar, 822 

Automated methods for activity recognition of construction workers and equipment: State-of-the-art review, Journal 823 

of Construction Engineering and Management. 146 (6) (2020), pp. 03120002, https://doi.org/10.1061/(asce)co.1943-824 

https://doi.org/10.1080/15623599.2019.1579969
https://doi.org/10.1016/j.jsr.2004.03.014
https://doi.org/10.1016/j.apergo.2010.01.002
https://doi.org/10.1080/00140130701779197
https://doi.org/10.1016/j.autcon.2019.102835
https://doi.org/10.1007/s42461-020-00175-z
https://doi.org/10.1177/10775463211035891
https://doi.org/10.1016/j.autcon.2021.104099
https://doi.org/10.1061/(asce)co.1943-7862.0001843


41 

 

7862.0001843. 825 

[14] Y. Yu, W. Umer, X. Yang, M.F. Antwi-Afari, Posture-related data collection methods for construction workers: A 826 

review, Automation in Construction. 124 (2021), pp. 103538, https://doi.org/10.1016/j.autcon.2020.103538. 827 

[15] T. Cheng, J. Teizer, G.C. Migliaccio, U.C. Gatti, Automated task-level activity analysis through fusion of real time 828 

location sensors and worker's thoracic posture data, Automation in Construction. 29 (2013), pp. 24-39, 829 

https://doi.org/10.1016/j.autcon.2012.08.003. 830 

[16] L. Minh Dang, K. Min, H. Wang, M. Jalil Piran, C. Hee Lee, H. Moon, Sensor-based and vision-based human activity 831 

recognition: A comprehensive survey, Pattern Recognition. 108 (2020), pp. 107561, 832 

https://doi.org/10.1016/j.patcog.2020.107561. 833 

[17] C.R. Ahn, S. Lee, C. Sun, H. Jebelli, K. Yang, B. Choi, Wearable sensing technology applications in construction 834 

safety and health, Journal of Construction Engineering and Management. 145 (11) (2019), pp. 03119007, 835 

https://doi.org/10.1061/(asce)co.1943-7862.0001708. 836 

[18] J.C.T. Mallare, D.F.G. Pineda, G.M. Trinidad, R.D. Serafica, J.B.K. Villanueva, A.R. Dela Cruz, R.R.P. Vicerra, 837 

K.K.D. Serrano, E.A. Roxas, Sitting posture assessment using computer vision, 2017 IEEE 9th International 838 

Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment 839 

and Management (HNICEM), Manila, Philippines, 2017, pp. 1-5, https://doi.org/10.1109/HNICEM.2017.8269473. 840 

[19] G. Liang, J. Cao, X. Liu, Smart cushion: A practical system for fine-grained sitting posture recognition, 2017 IEEE 841 

International Conference on Pervasive Computing and Communications Workshops, Kona, HI, USA, 2017, pp. 419-842 

424, https://doi.org/10.1109/PERCOMW.2017.7917599. 843 

[20] A. Arrogi, A. Bogaerts, J. Seghers, K. Devloo, V. Vanden Abeele, L. Geurts, J. Wauters, F. Boen, Evaluation of stAPP: 844 

a smartphone-based intervention to reduce prolonged sitting among Belgian adults, Health promotion international. 845 

34 (1) (2019), pp. 16-27, https://doi.org/10.1093/heapro/dax046. 846 

[21] C.-C. Wu, C.-C. Chiu, C.-Y. Yeh, Development of wearable posture monitoring system for dynamic assessment of 847 

sitting posture, Physical and Engineering Sciences in Medicine. 43 (1) (2019), pp. 187-203, 848 

https://doi.org/10.1007/s13246-019-00836-4. 849 

[22] M. Stinson, R. Ferguson, A. Porter-Armstrong, Exploring repositioning movements in sitting with ‘at risk’ groups 850 

using accelerometry and interface pressure mapping technologies, Journal of Tissue Viability. 27 (1) (2018), pp. 10-851 

15, https://doi.org/10.1016/j.jtv.2017.11.001. 852 

[23] N. Akkarakittichoke, P. Janwantanakul, Seat pressure distribution characteristics during 1 hour sitting in office 853 

workers with and without chronic low back pain, Safety and Health at Work. 8 (2) (2017), pp. 212-219, 854 

https://doi.org/10.1016/j.shaw.2016.10.005. 855 

[24] R. Zemp, M. Fliesser, P.M. Wippert, W.R. Taylor, S. Lorenzetti, Occupational sitting behaviour and its relationship 856 

with back pain - A pilot study, Applied Ergonomics. 56 (2016), pp. 84-91, 857 

https://doi.org/10.1016/j.apergo.2016.03.007. 858 

[25] W. Kim, B. Jin, S. Choo, C.S. Nam, M.H. Yun, Designing of smart chair for monitoring of sitting posture using 859 

convolutional neural networks, Data Technologies and Applications. 53 (2) (2019), pp. 142-155, 860 

https://doi.org/10.1108/dta-03-2018-0021. 861 

[26] W. Li, S. Yu, H. Yang, H. Pei, C. Zhao, Effects of long-duration sitting with limited space on discomfort, body 862 

flexibility, and surface pressure, International Journal of Industrial Ergonomics. 58 (2017), pp. 12-24, 863 

https://doi.org/10.1016/j.ergon.2017.01.002. 864 

[27] C. Ma, W. Li, R. Gravina, G. Fortino, Posture detection based on smart cushion for wheelchair users, Sensors. 17 (4) 865 

(2017), https://doi.org/10.3390/s17040719. 866 

[28] G. Kyung, M.A. Nussbaum, Driver sitting comfort and discomfort (part II): Relationships with and prediction from 867 

interface pressure, International Journal of Industrial Ergonomics. 38 (5-6) (2008), pp. 526-538, 868 

https://doi.org/10.1016/j.ergon.2007.08.011. 869 

https://doi.org/10.1061/(asce)co.1943-7862.0001843
https://doi.org/10.1016/j.autcon.2012.08.003
https://doi.org/10.1016/j.patcog.2020.107561
https://doi.org/10.1109/HNICEM.2017.8269473
https://doi.org/10.1093/heapro/dax046
https://doi.org/10.1007/s13246-019-00836-4
https://doi.org/10.1016/j.jtv.2017.11.001
https://doi.org/10.1016/j.shaw.2016.10.005
https://doi.org/10.1016/j.apergo.2016.03.007
https://doi.org/10.1108/dta-03-2018-0021
https://doi.org/10.1016/j.ergon.2017.01.002
https://doi.org/10.3390/s17040719
https://doi.org/10.1016/j.ergon.2007.08.011


42 

 

[29] J.M. Porter, D.E. Gyi, H.A. Tait, Interface pressure data and the prediction of driver discomfort in road trials, Applied 870 

Ergonomics. 34 (3) (2003), pp. 207-214, https://doi.org/10.1016/s0003-6870(03)00009-7. 871 

[30] J. Cheng, M. Sundholm, B. Zhou, M. Hirsch, P. Lukowicz, Smart-surface: Large scale textile pressure sensors arrays 872 

for activity recognition, Pervasive and Mobile Computing. 30 (2016), pp. 97-112, 873 

https://doi.org/10.1016/j.pmcj.2016.01.007. 874 

[31] H.F. Nweke, Y.W. Teh, G. Mujtaba, M.A. Al-garadi, Data fusion and multiple classifier systems for human activity 875 

detection and health monitoring: Review and open research directions, Information Fusion. 46 (2019), pp. 147-170, 876 

https://doi.org/10.1016/j.inffus.2018.06.002. 877 

[32] S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, H. Zhao, X. Miao, R. Liu, G. Fortino, Multi-sensor information 878 

fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research 879 

challenges, Information Fusion. 80 (2022), pp. 241-265, https://doi.org/10.1016/j.inffus.2021.11.006. 880 

[33] R. Gravina, P. Alinia, H. Ghasemzadeh, G. Fortino, Multi-sensor fusion in body sensor networks: State-of-the-art 881 

and research challenges, Information Fusion. 35 (2017), pp. 68-80, https://doi.org/10.1016/j.inffus.2016.09.005. 882 

[34] S. Miao, L. Chen, R. Hu, Y. Luo, Towards a dynamic inter-sensor correlations learning framework for multi-sensor-883 

based wearable human activity recognition, Proceedings of the ACM on Interactive, Mobile, Wearable and 884 

Ubiquitous Technologies. 6 (3) (2022), pp. 1-25, https://doi.org/10.1145/3550331. 885 

[35] Y. Zhou, Z. Yang, X. Zhang, Y. Wang, A hybrid attention-based deep neural network for simultaneous multi-sensor 886 

pruning and human activity recognition, IEEE Internet of Things Journal. 9 (24) (2022), pp. 25363-25372, 887 

https://doi.org/10.1109/jiot.2022.3196170. 888 

[36] J. Cao, W. Li, C. Ma, Z. Tao, Optimizing multi-sensor deployment via ensemble pruning for wearable activity 889 

recognition, Information Fusion. 41 (2018), pp. 68-79, https://doi.org/10.1016/j.inffus.2017.08.002. 890 

[37] Y. Zeng, C. Wang, C.-C. Chen, W.-P. Xiong, Z. Liu, Y.-C. Huang, C. Shen, Smart device monitoring system based 891 

on multi-type inertial sensor machine learning, Sensors and Materials. 33 (2) (2021), pp. 693-714, 892 

https://doi.org/10.18494/sam.2021.3037. 893 

[38] M.F. Antwi-Afari, H. Li, J.K.-W. Wong, O.T. Oladinrin, J.X. Ge, J. Seo, A.Y.L. Wong, Sensing and warning-based 894 

technology applications to improve occupational health and safety in the construction industry, Engineering, 895 

Construction and Architectural Management. 26 (8) (2019), pp. 1534-1552, https://doi.org/10.1108/ecam-05-2018-896 

0188. 897 

[39] C. Craye, A. Rashwan, M.S. Kamel, F. Karray, A multi-modal driver fatigue and distraction assessment system, 898 

International Journal of Intelligent Transportation Systems Research. 14 (3) (2015), pp. 173-194, 899 

https://doi.org/10.1007/s13177-015-0112-9. 900 

[40] E. Valero, A. Sivanathan, F. Bosche, M. Abdel-Wahab, Musculoskeletal disorders in construction: A review and a 901 

novel system for activity tracking with body area network, Applied Ergonomics. 54 (2016), pp. 120-130, 902 

https://doi.org/10.1016/j.apergo.2015.11.020. 903 

[41] J.Y. Chen, J. Qiu, C.B. Ahn, Construction worker's awkward posture recognition through supervised motion tensor 904 

decomposition, Automation in Construction. 77 (2017), pp. 67-81, https://doi.org/10.1016/j.autcon.2017.01.020. 905 

[42] H. Kim, C.R. Ahn, K. Yang, Identifying safety hazards using collective bodily responses of workers, Journal of 906 

Construction Engineering and Management. 143 (2) (2017), pp. 04016090, https://doi.org/10.1061/(asce)co.1943-907 

7862.0001220. 908 

[43] Y.C. Fang, R.J. Dzeng, Accelerometer-based fall-portent detection algorithm for construction tiling operation, 909 

Automation in Construction. 84 (2017), pp. 214-230, https://doi.org/10.1016/j.autcon.2017.09.015. 910 

[44] M.F. Antwi-Afari, Y. Qarout, R. Herzallah, S. Anwer, W. Umer, Y. Zhang, P. Manu, Deep learning-based networks 911 

for automated recognition and classification of awkward working postures in construction using wearable insole 912 

sensor data, Automation in Construction. 136 (2022), pp. 104181, https://doi.org/10.1016/j.autcon.2022.104181. 913 

[45] Y. Gong, K. Yang, J. Seo, J.G. Lee, Wearable acceleration-based action recognition for long-term and continuous 914 

https://doi.org/10.1016/s0003-6870(03)00009-7
https://doi.org/10.1016/j.pmcj.2016.01.007
https://doi.org/10.1016/j.inffus.2018.06.002
https://doi.org/10.1016/j.inffus.2021.11.006
https://doi.org/10.1016/j.inffus.2016.09.005
https://doi.org/10.1145/3550331
https://doi.org/10.1109/jiot.2022.3196170
https://doi.org/10.1016/j.inffus.2017.08.002
https://doi.org/10.18494/sam.2021.3037
https://doi.org/10.1108/ecam-05-2018-0188
https://doi.org/10.1108/ecam-05-2018-0188
https://doi.org/10.1007/s13177-015-0112-9
https://doi.org/10.1016/j.apergo.2015.11.020
https://doi.org/10.1016/j.autcon.2017.01.020
https://doi.org/10.1061/(asce)co.1943-7862.0001220
https://doi.org/10.1061/(asce)co.1943-7862.0001220
https://doi.org/10.1016/j.autcon.2017.09.015
https://doi.org/10.1016/j.autcon.2022.104181


43 

 

activity analysis in construction site, Journal of Building Engineering. 52 (2022), pp. 104448, 915 

https://doi.org/10.1016/j.jobe.2022.104448. 916 

[46] J.Q. Zhao, E. Obonyo, Applying incremental deep neural networks-based posture recognition model for ergonomics 917 

risk assessment in construction, Advanced Engineering Informatics. 50 (2021), pp. 101374, 918 

https://doi.org/10.1016/j.aei.2021.101374. 919 

[47] P. Spielholz, B. Silverstein, M. Morgan, H. Checkoway, J. Kaufman, Comparison of self-report, video observation 920 

and direct measurement methods for upper extremity musculoskeletal disorder physical risk factors, Ergonomics. 44 921 

(6) (2001), pp. 588-613, https://doi.org/10.1080/00140130118050. 922 

[48] S. Hignett, L. McAtamney, Rapid entire body assessment (REBA), Applied Ergonomics. 31 (2) (2000), pp. 201-205, 923 

https://doi.org/10.1016/s0003-6870(99)00039-3. 924 

[49] G.C. David, Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders, 925 

Occupational medicine. 55 (3) (2005), pp. 190-199, https://doi.org/10.1093/occmed/kqi082. 926 

[50] I. Awolusi, E. Marks, M. Hallowell, Wearable technology for personalized construction safety monitoring and 927 

trending: Review of applicable devices, Automation in Construction. 85 (2018), pp. 96-106, 928 

https://doi.org/10.1016/j.autcon.2017.10.010. 929 

[51] W. Umer, H. Li, G.P.Y. Szeto, A.Y.L. Wong, Identification of biomechanical risk factors for the development of 930 

lower-back disorders during manual rebar tying, Journal of Construction Engineering and Management. 143 (1) 931 

(2017), pp. 04016080, https://doi.org/10.1061/(asce)co.1943-7862.0001208. 932 

[52] M.F. Antwi-Afari, H. Li, W. Umer, Y. Yu, X. Xing, Construction activity recognition and ergonomic risk assessment 933 

using a wearable insole pressure system, Journal of Construction Engineering and Management. 146 (7) (2020), pp. 934 

04020077, https://doi.org/10.1061/(asce)co.1943-7862.0001849. 935 

[53] M.F. Antwi-Afari, S. Anwer, W. Umer, H.-Y. Mi, Y. Yu, S. Moon, M.U. Hossain, Machine learning-based 936 

identification and classification of physical fatigue levels: A novel method based on a wearable insole device, 937 

International Journal of Industrial Ergonomics. 93 (2023), pp. 103404, https://doi.org/10.1016/j.ergon.2022.103404. 938 

[54] S.S. Bangaru, C. Wang, S.A. Busam, F. Aghazadeh, ANN-based automated scaffold builder activity recognition 939 

through wearable EMG and IMU sensors, Automation in Construction. 126 (2021), pp. 103653, 940 

https://doi.org/10.1016/j.autcon.2021.103653. 941 

[55] J. Seo, S. Lee, Automated postural ergonomic risk assessment using vision-based posture classification, Automation 942 

in Construction. 128 (2021), pp. 103725, https://doi.org/10.1016/j.autcon.2021.103725. 943 

[56] M. Jung, S. Chi, Human activity classification based on sound recognition and residual convolutional neural network, 944 

Automation in Construction. 114 (2020), pp. 103177, https://doi.org/10.1016/j.autcon.2020.103177. 945 

[57] M.A. Khan, M. Sharif, T. Akram, M. Raza, T. Saba, A. Rehman, Hand-crafted and deep convolutional neural network 946 

features fusion and selection strategy: An application to intelligent human action recognition, Applied Soft 947 

Computing. 87 (2020), pp. 105986, https://doi.org/10.1016/j.asoc.2019.105986. 948 

[58] C. Bontrup, W.R. Taylor, M. Fliesser, R. Visscher, T. Green, P.M. Wippert, R. Zemp, Low back pain and its 949 

relationship with sitting behaviour among sedentary office workers, Applied Ergonomics. 81 (2019), pp. 102894, 950 

https://doi.org/10.1016/j.apergo.2019.102894. 951 

[59] M. Zhao, G. Beurier, H. Wang, X. Wang, Driver posture monitoring in highly automated vehicles using pressure 952 

measurement, Traffic injury prevention. 22 (4) (2021), pp. 278-283, https://doi.org/10.1080/15389588.2021.1892087. 953 

[60] A. Behera, Z. Wharton, A. Keidel, B. Debnath, Deep CNN, body pose, and body-object interaction features for 954 

drivers’ activity monitoring, IEEE Transactions on Intelligent Transportation Systems. 23 (3) (2022), pp. 2874-2881, 955 

https://doi.org/10.1109/tits.2020.3027240. 956 

[61] X.Y. Zhang, J.M. Fan, T. Peng, P. Zheng, C.K.M. Lee, R.Z. Tang, A privacy-preserving and unobtrusive sitting 957 

posture recognition system via pressure array sensor and infrared array sensor for office workers, Advanced 958 

Engineering Informatics. 53 (2022), pp. 101690, https://doi.org/10.1016/j.aei.2022.101690. 959 

https://doi.org/10.1016/j.jobe.2022.104448
https://doi.org/10.1016/j.aei.2021.101374
https://doi.org/10.1080/00140130118050
https://doi.org/10.1016/s0003-6870(99)00039-3
https://doi.org/10.1093/occmed/kqi082
https://doi.org/10.1016/j.autcon.2017.10.010
https://doi.org/10.1061/(asce)co.1943-7862.0001208
https://doi.org/10.1061/(asce)co.1943-7862.0001849
https://doi.org/10.1016/j.ergon.2022.103404
https://doi.org/10.1016/j.autcon.2021.103725
https://doi.org/10.1016/j.autcon.2020.103177
https://doi.org/10.1016/j.apergo.2019.102894
https://doi.org/10.1080/15389588.2021.1892087
https://doi.org/10.1109/tits.2020.3027240
https://doi.org/10.1016/j.aei.2022.101690


44 

 

[62] L. Su, C. Sun, D. Cao, A. Khajepour, Efficient driver anomaly detection via conditional temporal proposal and 960 

classification network, IEEE Transactions on Computational Social Systems. 10 (2) (2023), pp. 736-745, 961 

https://doi.org/10.1109/tcss.2022.3158480. 962 

[63] C. Ou, F. Karray, Enhancing driver distraction recognition using generative adversarial networks, IEEE Transactions 963 

on Intelligent Vehicles. 5 (3) (2020), pp. 385-396, https://doi.org/10.1109/tiv.2019.2960930. 964 

[64] V. Balasubramanian, M. Jagannath, Detecting motorcycle rider local physical fatigue and discomfort using surface 965 

electromyography and seat interface pressure, Transportation Research Part F: Traffic Psychology and Behaviour. 966 

22 (2014), pp. 150-158, https://doi.org/10.1016/j.trf.2013.12.010. 967 

[65] M. Lu, X. Lu, Keypoint-enhanced adaptive weighting model with effective frequency channel attention for driver 968 

action recognition, Engineering Applications of Artificial Intelligence. 123 (2023), pp. 106321, 969 

https://doi.org/10.1016/j.engappai.2023.106321. 970 

[66] C. Ma, W. Li, R. Gravina, J. Cao, Q. Li, G. Fortino, Activity level assessment using a smart cushion for people with 971 

a sedentary lifestyle, Sensors. 17 (10) (2017), pp. 2269, https://doi.org/10.3390/s17102269. 972 

[67] B. Schwartz, J.M. Kapellusch, A. Schrempf, K. Probst, M. Haller, A. Baca, Effect of alternating postures on cognitive 973 

performance for healthy people performing sedentary work, Ergonomics. 61 (6) (2018), pp. 778-795, 974 

https://doi.org/10.1080/00140139.2017.1417642. 975 

[68] C. Wilkes, R. Kydd, M. Sagar, E. Broadbent, Upright posture improves affect and fatigue in people with depressive 976 

symptoms, Journal of Behavior Therapy and Experimental Psychiatry. 54 (2017), pp. 143-149, 977 

https://doi.org/10.1016/j.jbtep.2016.07.015. 978 

[69] J. Li, H. Li, F. Wang, A.S.K. Cheng, X. Yang, H. Wang, Proactive analysis of construction equipment operators’ 979 

hazard perception error based on cognitive modeling and a dynamic Bayesian network, Reliability Engineering & 980 

System Safety. 205 (2021), pp. 107203, https://doi.org/10.1016/j.ress.2020.107203. 981 

[70] J. Li, H. Li, W. Umer, H. Wang, X. Xing, S. Zhao, J. Hou, Identification and classification of construction equipment 982 

operators' mental fatigue using wearable eye-tracking technology, Automation in Construction. 109 (2020), pp. 983 

103000, https://doi.org/10.1016/j.autcon.2019.103000. 984 

[71] N.D. Nath, T. Chaspari, A.H. Behzadan, Automated ergonomic risk monitoring using body-mounted sensors and 985 

machine learning, Advanced Engineering Informatics. 38 (2018), pp. 514-526, 986 

https://doi.org/10.1016/j.aei.2018.08.020. 987 

[72] D. Ren-Jye, H. Hsien, W. Keisuke, Applications of ICTs and action recognition for construction workers, Trends in 988 

Civil Engineering and its Architecture. 1 (3) (2018), pp. 48-54, https://doi.org/10.32474/TCEIA.2018.01.000113. 989 

[73] B. Li, B.X. Bai, C. Han, Upper body motion recognition based on key frame and random forest regression, 990 

Multimedia Tools and Applications. 79 (7-8) (2020), pp. 5197-5212, https://doi.org/10.1007/s11042-018-6357-y. 991 

[74] A. Kulikajevas, R. Maskeliunas, R. Damasevicius, Detection of sitting posture using hierarchical image composition 992 

and deep learning, PEERJ Computer Science. (2021), pp. 20, https://doi.org/10.7717/peerj-cs.442. 993 

[75] M.Y. Li, Z.H. Jiang, Y.T. Liu, S.H. Chen, M. Wozniak, R. Scherer, R. Damasevicius, W. Wei, Z.Y. Li, Z.X. Li, Sitsen: 994 

Passive sitting posture sensing based on wireless devices, International Journal of Distributed Sensor Networks. 17 995 

(7) (2021), pp. 1-11, https://doi.org/10.1177/15501477211024846. 996 

[76] R. Gravina, Q. Li, Emotion-relevant activity recognition based on smart cushion using multi-sensor fusion, 997 

Information Fusion. 48 (2019), pp. 1-10, https://doi.org/10.1016/j.inffus.2018.08.001. 998 

[77] X. Ran, C. Wang, Y. Xiao, X.L. Gao, Z.Y. Zhu, B. Chen, A portable sitting posture monitoring system based on a 999 

pressure sensor array and machine learning, Sensors and Actuators A-Physical. 331 (2021), pp. 1-10, 1000 

https://doi.org/10.1016/j.sna.2021.112900. 1001 

[78] D.E. Gyi, J.M. Porter, Interface pressure and the prediction of car seat discomfort, Applied Ergonomics. 30 (2) (1999), 1002 

pp. 99-107, https://doi.org/10.1016/s0003-6870(98)00018-0. 1003 

[79] V. Leos-Barajas, T. Photopoulou, R. Langrock, T.A. Patterson, Y.Y. Watanabe, M. Murgatroyd, Y.P. Papastamatiou, 1004 

https://doi.org/10.1109/tcss.2022.3158480
https://doi.org/10.1109/tiv.2019.2960930
https://doi.org/10.1016/j.trf.2013.12.010
https://doi.org/10.1016/j.engappai.2023.106321
https://doi.org/10.1080/00140139.2017.1417642
https://doi.org/10.1016/j.jbtep.2016.07.015
https://doi.org/10.1016/j.ress.2020.107203
https://doi.org/10.1016/j.autcon.2019.103000
https://doi.org/10.1016/j.aei.2018.08.020
https://doi.org/10.32474/TCEIA.2018.01.000113
https://doi.org/10.1007/s11042-018-6357-y
https://doi.org/10.7717/peerj-cs.442
https://doi.org/10.1177/15501477211024846
https://doi.org/10.1016/j.inffus.2018.08.001
https://doi.org/10.1016/j.sna.2021.112900
https://doi.org/10.1016/s0003-6870(98)00018-0


45 

 

R.B. O'Hara, Analysis of animal accelerometer data using hidden Markov models, Methods in Ecology and Evolution. 1005 

8 (2) (2016), pp. 161-173, https://doi.org/10.1111/2041-210x.12657. 1006 

[80] K.T. Sweeney, T.E. Ward, S.F. McLoone, Artifact removal in physiological signals--practices and possibilities, IEEE 1007 

Transactions on Information Technology in Biomedicine. 16 (3) (2012), pp. 488-500, 1008 

https://doi.org/10.1109/TITB.2012.2188536. 1009 

[81] B.O. Akinnuli, O.A. Dahunsi, S.P. Ayodeji, O.P. Bodunde, Z. Jin, Whole-body vibration exposure on earthmoving 1010 

equipment operators in construction industries, Cogent Engineering. 5 (1) (2018), pp. 1507266, 1011 

https://doi.org/10.1080/23311916.2018.1507266. 1012 

[82] V. Korakakis, K. O'Sullivan, R. Whiteley, P.B. O'Sullivan, A. Korakaki, A. Kotsifaki, P.V. Tsaklis, A. Tsiokanos, G. 1013 

Giakas, Notions of "optimal" posture are loaded with meaning. Perceptions of sitting posture among asymptomatic 1014 

members of the community, Musculoskeletal Science and Practice. 51 (2021),  pp. 102310, 1015 

https://doi.org/10.1016/j.msksp.2020.102310. 1016 

[83] Q.S. Hu, X.C. Tang, W. Tang, A smart chair sitting posture recognition system using flex sensors and FPGA 1017 

implemented artificial neural network, IEEE Sensors Journal. 20 (14) (2020), pp. 8007-8016, 1018 

https://doi.org/10.1109/jsen.2020.2980207. 1019 

[84] H.S. Woo, J.C. Oh, S.Y. Won, Effects of asymmetric sitting on spinal balance, Journal of Physical Therapy Science. 1020 

28 (2) (2016), pp. 355-359, https://doi.org/10.1589/jpts.28.355. 1021 

[85] Shenzhen LEGACT Technology Co., Ltd. https://film-sensor.com/force-sensing-technology/. Accessed date: May 1022 

2023. 1023 

[86] WitMotion Shenzhen Co., Ltd. https://www.wit-motion.com/. Accessed date: May 2023. 1024 

[87] J. Xu, E.B. Song, Y.T. Luo, Y.M. Zhu, Optimal distributed kalman filtering fusion algorithm without invertibility of 1025 

estimation error and sensor noise covariances, IEEE Signal Processing Letters. 19 (1) (2012), pp. 55-58, 1026 

https://doi.org/10.1109/lsp.2011.2177495. 1027 

[88] B. Das, S. Gangopadhyay, An ergonomics evaluation of posture related discomfort and occupational health problems 1028 

among rice farmers, Occupational Ergonomics. 10 (1-2) (2011), pp. 25-38, 1029 

https://content.iospress.com/articles/occupational-ergonomics/oer00190. 1030 

[89] M. Pau, B. Leban, P. Fadda, G. Fancello, M.A. Nussbaum, Effect of prolonged sitting on body-seat contact pressures 1031 

among quay crane operators: A pilot study, Work. 55 (3) (2016), pp. 605-611, https://doi.org/10.3233/WOR-162434. 1032 

[90] B. Leban, G. Fancello, P. Fadda, M. Pau, Changes in trunk sway of quay crane operators during work shift: A possible 1033 

marker for fatigue?, Applied Ergonomics. 65 (2017), pp. 105-111, https://doi.org/10.1016/j.apergo.2017.06.007. 1034 

[91] M. Makhsous, F. Lin, J. Bankard, R.W. Hendrix, M. Hepler, J. Press, Biomechanical effects of sitting with adjustable 1035 

ischial and lumbar support on occupational low back pain: evaluation of sitting load and back muscle activity, BMC 1036 

Musculoskeletal Disorders. 10 (2009), pp. 1-11, https://doi.org/10.1186/1471-2474-10-17. 1037 

[92] Y.H. Qin, Y.Y. Yan, H.Q. Ji, Y.Q. Wang, Recursive correlative statistical analysis method with sliding windows for 1038 

incipient fault detection, IEEE Transactions on Industrial Electronics. 69 (4) (2022), pp. 4185-4194, 1039 

https://doi.org/10.1109/tie.2021.3070521. 1040 

[93] J. Ryu, J. Seo, H. Jebelli, S. Lee, Automated action recognition using an accelerometer-embedded wristband-type 1041 

activity tracker, Journal of Construction Engineering and Management. 145 (1) (2019), pp. 04018114, 1042 

https://doi.org/10.1061/(asce)co.1943-7862.0001579. 1043 

[94] S.J. Preece, J.Y. Goulermas, L.P.J. Kenney, D. Howard, K. Meijer, R. Crompton, Activity identification using body-1044 

mounted sensors-a review of classification techniques, Physiological Measurement. 30 (4) (2009), pp. R1-R33, 1045 

https://doi.org/10.1088/0967-3334/30/4/r01. 1046 

[95] Y.J. Liu, M.J. Yu, G.Z. Zhao, J.J. Song, Y. Ge, Y.C. Shi, Real-time movie-induced discrete emotion recognition from 1047 

eeg signals, IEEE Transactions on Affective Computing. 9 (4) (2018), pp. 550-562, 1048 

https://doi.org/10.1109/taffc.2017.2660485. 1049 

https://doi.org/10.1111/2041-210x.12657
https://doi.org/10.1109/TITB.2012.2188536
https://doi.org/10.1080/23311916.2018.1507266
https://doi.org/10.1016/j.msksp.2020.102310
https://doi.org/10.1109/jsen.2020.2980207
https://doi.org/10.1589/jpts.28.355
https://film-sensor.com/force-sensing-technology/
https://www.wit-motion.com/
https://doi.org/10.1109/lsp.2011.2177495
https://doi.org/10.3233/WOR-162434
https://doi.org/10.1016/j.apergo.2017.06.007
https://doi.org/10.1186/1471-2474-10-17
https://doi.org/10.1109/tie.2021.3070521
https://doi.org/10.1061/(asce)co.1943-7862.0001579
https://doi.org/10.1088/0967-3334/30/4/r01
https://doi.org/10.1109/taffc.2017.2660485


46 

 

[96] Z.M. Hira, D.F. Gillies, A review of feature selection and feature extraction methods applied on microarray data, 1050 

Advances in bioinformatics. 2015 (1) (2015), pp. 1-13, https://doi.org/10.1155/2015/198363. 1051 

[97] C. Janiesch, P. Zschech, K. Heinrich, Machine learning and deep learning, Electronic Markets. 31 (3) (2021), pp. 1052 

685-695, https://doi.org/10.1007/s12525-021-00475-2. 1053 

[98] R. Akhavian, A.H. Behzadan, Smartphone-based construction workers' activity recognition and classification, 1054 

Automation in Construction. 71 (2016), pp. 198-209, https://doi.org/10.1016/j.autcon.2016.08.015. 1055 

[99] L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data, International Conference on 1056 

Pervasive Computing, Vienna, Austria, April 21-23, 2004, pp. 1-17, https://doi.org/10.1007/978-3-540-24646-6_1. 1057 

[100] A. Logacjov, K. Bach, A. Kongsvold, H.B. Bardstu, P.J. Mork, HARTH: A human activity recognition dataset for 1058 

machine learning, Sensors. 21 (23) (2021), https://doi.org/10.3390/s21237853. 1059 

[101] J. Roh, H.J. Park, K.J. Lee, J. Hyeong, S. Kim, B. Lee, Sitting posture monitoring system based on a low-cost load 1060 

cell using machine learning, Sensors. 18 (1) (2018), https://doi.org/10.3390/s18010208. 1061 

[102] Y. Bengio, Deep learning of representations: Looking forward, Statistical Language and Speech Processing: First 1062 

International Conference, Tarragona, Spain, July 29-31, 2013, pp. 1-37, https://doi.org/10.1007/978-3-642-39593-1063 

2_1. 1064 

[103] Z.L. Wang, D.H. Wu, J.M. Chen, A. Ghoneim, M.A. Hossain, A triaxial accelerometer-based human activity 1065 

recognition via EEMD-based features and game-theory-based feature selection, IEEE Sensors Journal. 16 (9) (2016), 1066 

pp. 3198-3207, https://doi.org/10.1109/jsen.2016.2519679. 1067 

[104] D. Ravi, C. Wong, B. Lo, G.Z. Yang, A deep learning approach to on-node sensor data analytics for mobile or 1068 

wearable devices, IEEE Journal of Biomedical and Health Informatics. 21 (1) (2017), pp. 56-64, 1069 

https://doi.org/10.1109/jbhi.2016.2633287. 1070 

[105] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature. 521 (7553) (2015), pp. 436-444, 1071 

https://doi.org/10.1038/nature14539. 1072 

[106] M.F. Antwi-Afari, H. Li, Y.T. Yu, L.L. Kong, Wearable insole pressure system for automated detection and 1073 

classification of awkward working postures in construction workers, Automation in Construction. 96 (2018), pp. 1074 

433-441, https://doi.org/10.1016/j.autcon.2018.10.004. 1075 

[107] S.B. Kotsiantis, Decision trees: A recent overview, Artificial Intelligence Review. 39 (4) (2013), pp. 261-283, 1076 

https://doi.org/10.1007/s10462-011-9272-4. 1077 

[108] Z.H. Wang, Z.C. Yang, T. Dong, A review of wearable technologies for elderly care that can accurately track indoor 1078 

position, recognize physical activities and monitor vital signs in real time, Sensors. 17 (2) (2017), pp. 341, 1079 

https://doi.org/10.3390/s17020341. 1080 

[109] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou, Y. Amirat, Physical human activity 1081 

recognition using wearable sensors, Sensors. 15 (12) (2015), pp. 31314-31338, https://doi.org/10.3390/s151229858. 1082 

[110] J. Ahmad, H. Andersson, J. Siden, Screen-printed piezoresistive sensors for monitoring pressure distribution in 1083 

wheelchair, IEEE Sensors Journal. 19 (6) (2019), pp. 2055-2063, https://doi.org/10.1109/jsen.2018.2885638. 1084 

[111] J. Ahmad, J. Siden, H. Andersson, A proposal of implementation of sitting posture monitoring system for wheelchair 1085 

utilizing machine learning methods, Sensors. 21 (19) (2021), pp. 6349, https://doi.org/10.3390/s21196349. 1086 

[112] F. Shahid, A. Zameer, M. Muneeb, Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-1087 

LSTM, Chaos Solitons & Fractals. 140 (2020), pp. 1-9, https://doi.org/10.1016/j.chaos.2020.110212. 1088 

[113] R. Yan, J.Q. Liao, J. Yang, W. Sun, M.Y. Nong, F.P. Li, Multi-hour and multi-site air quality index forecasting in 1089 

Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering, Expert Systems with Applications. 169 1090 

(2021),  pp. 114513, https://doi.org/10.1016/j.eswa.2020.114513. 1091 

[114] S. Gao, Y.F. Huang, S. Zhang, J.C. Han, G.Q. Wang, M.X. Zhang, Q.S. Lin, Short-term runoff prediction with GRU 1092 

and LSTM networks without requiring time step optimization during sample generation, Journal of Hydrology. 589 1093 

(2020), pp. 125188, https://doi.org/10.1016/j.jhydrol.2020.125188. 1094 

https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1016/j.autcon.2016.08.015
https://doi.org/10.3390/s21237853
https://doi.org/10.3390/s18010208
https://doi.org/10.1109/jsen.2016.2519679
https://doi.org/10.1109/jbhi.2016.2633287
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.autcon.2018.10.004
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.3390/s17020341
https://doi.org/10.3390/s151229858
https://doi.org/10.1109/jsen.2018.2885638
https://doi.org/10.1016/j.chaos.2020.110212
https://doi.org/10.1016/j.eswa.2020.114513
https://doi.org/10.1016/j.jhydrol.2020.125188


47 

 

[115] C. Park, C. Lee, L. Hong, Y. Hwang, T. Yoo, J. Tang, Y. Hone, K.H. Bae, H.K. Kim, S-2-Net: Machine reading 1095 

comprehension with SRU-based self-matching networks, ETRI Journal. 41 (3) (2019), pp. 371-382, 1096 

https://doi.org/10.4218/etrij.2017-0279. 1097 

[116] F. Luna-Perejon, J.M. Montes-Sanchez, L. Duran-Lopez, A. Vazquez-Baeza, I. Beasley-Bohorquez, J.L. Sevillano-1098 

Ramos, IoT device for sitting posture classification using artificial neural networks, Electronics. 10 (15) (2021), 1099 

https://doi.org/10.3390/electronics10151825. 1100 

[117] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way to prevent neural 1101 

networks from overfitting, Journal of Machine Learning Research. 15 (2014), pp. 1929-1958, ISSN: 1533-7928. 1102 

[118] K. Koc, Ö. Ekmekcioğlu, A.P. Gurgun, Prediction of construction accident outcomes based on an imbalanced dataset 1103 

through integrated resampling techniques and machine learning methods, Engineering, Construction and 1104 

Architectural Management. 30 (9) (2022), pp. 4486-4517, https://doi.org/10.1108/ecam-04-2022-0305. 1105 

[119] C. Chen, Z.H. Zhu, A. Hammad, Automated excavators activity recognition and productivity analysis from 1106 

construction site surveillance videos, Automation in Construction. 110 (2020), pp. 103045, 1107 

https://doi.org/10.1016/j.autcon.2019.103045. 1108 

[120] C. Chen, Z.H. Zhu, A. Hammad, M. Akbarzadeh, Automatic identification of idling reasons in excavation operations 1109 

based on excavator-truck relationships, Journal of Computing in Civil Engineering. 35 (5) (2021), pp. 04021015, 1110 

https://doi.org/10.1061/(asce)cp.1943-5487.0000981. 1111 

[121] J. Kim, S. Chi, J. Seo, Interaction analysis for vision-based activity identification of earthmoving excavators and 1112 

dump trucks, Automation in Construction. 87 (2018), pp. 297-308, https://doi.org/10.1016/j.autcon.2017.12.016. 1113 

[122] K.M. Rashid, J. Louis, Times-series data augmentation and deep learning for construction equipment activity 1114 

recognition, Advanced Engineering Informatics. 42 (2019), pp. 100944, https://doi.org/10.1016/j.aei.2019.100944. 1115 

https://doi.org/10.4218/etrij.2017-0279
https://doi.org/10.3390/electronics10151825
https://doi.org/10.1108/ecam-04-2022-0305
https://doi.org/10.1016/j.autcon.2019.103045
https://doi.org/10.1061/(asce)cp.1943-5487.0000981
https://doi.org/10.1016/j.autcon.2017.12.016
https://doi.org/10.1016/j.aei.2019.100944

