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e Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497 GB, the Netherlands

A R T I C L E I N F O

Keywords:
Forensic evaluation
Face comparisons
Embedding aggregation
Likelihood ratio

A B S T R A C T

In forensic facial comparison, questioned-source images are usually captured in uncontrolled environments, with
non-uniform lighting, and from non-cooperative subjects. The poor quality of such material usually compromises
their value as evidence in legal proceedings. On the other hand, in forensic casework, multiple images of the
person of interest are usually available. In this paper, we propose to aggregate deep neural network embeddings
from various images of the same person to improve the performance in forensic comparison of facial images. We
observe significant performance improvements, especially for low-quality images. Further improvements are
obtained by aggregating embeddings of more images and by applying quality-weighted aggregation. We
demonstrate the benefits of this approach in forensic evaluation settings with the development and validation of
common-source likelihood ratio systems and report improvements in Cllr both for CCTV images and for social
media images.

1. Introduction

The increasing number of indoor and outdoor surveillance cameras
and the widespread availability of smartphones have raised the number
of crimes in which the perpetrator’s facial image is recorded. This fact
has fostered the interest in using these data to uncover the perpetrator’s
identity [1]. Still, the uncontrolled acquisition conditions frequently
result in poor quality and limited evidential value of such images for
court proceedings [2,3]. This paper aims to address this issue by
aggregating information from multiple facial images of the same indi-
vidual under a framework suitable for forensic facial comparison.

The currently recommended method for performing forensic facial
comparisons is based on the manual analysis of morphological facial
features [4]. This process involves comparing morphological facial
features in the questioned-source image with those in the known-source
images and evaluating how similar and typical the observed features are
in the relevant population [5]. This evaluation is often done subjectively
by the expert, relying heavily on their experience since, to the best of our
knowledge, there are no systematic databases of the relative frequencies
of morphological features [6,7].

Although forensic practitioners using the current approach have
demonstrated superior performance for facial comparisons relative to
control groups [8,9], there has been a long-standing call for adopting
more objective and quantitative methods in forensic science [10–13]. In
various fields related to biometric comparisons, the research community
has responded to this call by investigating the possibility of using
automated systems to quantify the evidence obtained from the data by
computing an LR [14–22]. Based on the evaluation of comparison scores
obtained from biometric samples, this new approach is especially
appealing for the face modality for two reasons. Firstly, automatic facial
recognition systems have experienced an enormous improvement in
performance over the last few years [23,24]. Secondly, it has been
demonstrated that the combined performance of human experts and
facial recognition algorithms is superior to either the human experts or
the algorithms alone [25,8].

Currently, the LR paradigm is the recommended approach for eval-
uative reporting of source problems in forensic science [7,26]. Under
this paradigm, forensic practitioners should express their evaluation
using a likelihood ratio. The LR represents the degree of support of the
evidence for one hypothesis relative to another mutually exclusive
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hypothesis. In this work, we consider common-source hypotheses,
which, in the case of forensic facial comparison, can be defined as:

• Hp (same-source hypothesis): Both the questioned-source and the
known-source images depict the face of the same person; and;

• Hd (different-source hypothesis): The questioned-source and the
known-source image depict the faces of two different people from the
same population1.

The LR is computed according to

LR =
P(E|Hp, I)
P(E|Hd, I)

, (1)

i.e., it is the ratio of the probabilities (P) of obtaining the evidence (E)
given each hypothesis and case-relevant information (I). An example of
such case-relevant information in the field of forensic facial comparison

is the location (city, region or country) where the questioned-source
image was captured.

Several works have proposed methods to obtain LRs by converting
the similarity scores obtained from face recognition systems through the
estimation of within-source and between-source distributions [20–22].
However, the existing strategies focus only on a single questioned-
source image, disregarding the possibility of aggregating information
from multiple images (e.g., consecutive frames from CCTV footage) to
compute a single LR. Also, current proposals for calculating a score-
based LR employ scores that do not consider the typicality of the
facial images with respect to the relevant population. Disregarding
typicality has been considered inappropriate to obtain adequate likeli-
hood ratios [27,28]. To address both of these limitations, as depicted in
Fig. 1, we introduce a novel strategy for the calculation of common-
source LR in forensic facial comparison when multiple questioned-
source images are available. The proposed method combines the facial
embeddings2 of each facial image. The resulting aggregated embedding
is used to compute an uncalibrated likelihood ratio using Probabilistic

Fig. 1. Comparison between the current methods for calculating likelihood ratios for forensic facial comparisons (top) and the proposed framework (bottom). The
main differences are the inclusion of the aggregation module, which improves the use of available trace material, and the scoring stage, which considers the similarity
and typicality of the embeddings.

1 Often referred to as relevant population in the forensic literature, it is the
population from which an alternative suspect may have came from (e.g., young
adult males from a specific region).

2 The facial embeddings refer to the representation of a facial image obtained
from a Deep Convolution Neural Network-based facial recognition system.
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Linear Discriminant Analysis (PLDA) [29], which is then calibrated
using a regularized logistic regression model.

The paper is organized as follows: in Section 2, we review works on
using biometric systems to evaluate the comparison of facial images as
forensic evidence. In Section 3, we describe the data used in this work
and in 4, the proposed method is detailed. Section 5 describes the ex-
periments performed, and Section 6 presents the results and discussion.
We conclude in Section 7, presenting the limitations of this work and
planned investigations on the same topic.

2. Related work

The possibility of using automated face recognition systems for
quantifying forensic evidence has been studied for at least two decades
[30–32,21,22].

In 2005, Gonzalez-Rodriguez et al. [31] assessed the performance of
face recognition approaches for forensic applications. The authors relied
on a database comprising 295 identities. They used 400 within-source
comparisons and 12,250 between-source comparisons for estimating
the probability density functions of the two distributions, which were
subsequently used to derive the LRs from similarity scores obtained from
the recognition system. The improvement in face recognition accuracy
and the development of more challenging datasets fostered the proposal
of novel studies in the following years.

Ali et al. [30] evaluated the log-LR obtained from within-source and
between-source scores of a commercial face recognition system.
Nevertheless, the authors only analyzed five identities from the Face
Recognition Grand Challenge (FRGC) dataset with 35 images per
identity.

Mandasari et al. [32] introduced an innovative approach based on
inter-session variability modeling followed by a linear transformation of
the similarity score to obtain LRs of face recognition in the Surveillance
Cameras Face Database (SCface), a database comprising samples from a
usual forensic scenario.

Zeinstra et al. [33] analyzed the discriminating power of facial marks
in forensic scenarios. The authors proposed an innovative method based
on the number of marks in each cell of an auxiliary grid superimposed
over the face. The number of marks along each cell is used as the facial
features that are subsequently used by the face classifier. The evaluation
of the Cllr with respect to the number of facial marks and grid size
evidenced the potential of this approach, even though the dataset
considered is not particularly challenging for current face recognition
systems regarding pose and occlusion.

The first publicly available study using real forensic data was carried
out by Mölder et al. [34], using a national database of mugshots.
However, few details were given concerning the face recognition algo-
rithm, and the data used could not be shared.

Jacquet [35] investigated the use of LR to improve the performance
of face recognition systems for investigative and forensic evaluation
applications and demonstrated the feasibility of using such systems for
providing evidence in court, although not all face recognition systems
tested offered sufficient performance.

Ruifrok et al. [19] showed that the distribution of similarity scores
could be used to assess the quality of trace images, which can be sub-
sequently exploited to optimize the score-to-LR conversion, and conse-
quently improve the discrimination and calibration of the obtained LRs.
The previously described papers use scores that consider only the sim-
ilarity of the embeddings, ignoring their typicality with respect to the
relevant population. Morrison and Enzinger [27] demonstrated, using
simulated and real data, that scores used to calculate likelihood ratios
should consider both similarity and typicality.

3. Data

We selected datasets that represent two typical scenarios in forensic
casework: surveillance and social media images.

3.1. Surveillance datasets

In surveillance scenarios, subjects’ images are captured without
control of pose, illumination, expression, and other factors affecting
facial recognition performance. Additionally, motion blur, compression
artifacts, and low resolution of the face region are typical limitations
present in this kind of data. On the other hand, reference images of a
suspect are usually of excellent quality and captured under controlled
conditions (e.g., driver’s license or passport photo). Despite the multiple
datasets devised to study face recognition in the wild, few datasets
mimic the conditions of real surveillance scenarios [36].

Quis-Campi [37] and SCFace [38] are the most representative
datasets comprising data replicating the surveillance scenarios’ degra-
dation factors while providing high-quality reference images. Still, there
are important limitations to the degree to which these datasets are
representative of real forensic caserwork.

In the case of SCFace, all CCTV images are captured simultaneously
by different cameras. In real casework, it is more common that a
sequence of images is captured by the same camera. This aspect is better
represented in the Quis-Campi dataset, where the CCTV images were
captured by a single camera. Even then, it is common in casework that a
sequence of frames, i.e., a video containing the face of interest, is
available. The CCTV images from Quis-Campi comprise a few selected
frames per person.

The SCface dataset contains CCTV images of 130 subjects, captured
at three different distances (far - 4.2 m, medium - 2.6 m, and close - 1.0
m)3 from multiple cameras in the visible and infra-red spectrum. Addi-
tionally, it provides high-quality reference images captured in frontal
pose and at varying degrees of lateral poses [38]. In our experiments,
only the high-quality frontal images are considered references in the 1:1
comparisons. As for the CCTV images, which we use as traces, we only
use images from the five cameras in the visible light spectrum.

The Quis-Campi dataset contains CCTV images of 320 subjects
captured in an uncontrolled outdoor environment. In addition to vari-
ations in pose and distance, also present in the SCface dataset, surveil-
lance images from the Quis-Campi dataset have significant variations in
illumination, occlusion, and facial expression. Motion blur is also pre-
sent in some images. Each subject has one frontal and two lateral profile
reference images, with controlled illumination and neutral expression.
Only frontal images are used as references in this work. We selected a
subset of the Quis-Campi dataset for our experiments with 192 identi-
ties, for which at least one reference and one CCTV image were
available.

3.1.1. Novel verification protocol for the quis-campi dataset
To evaluate the proposed method in a more forensically realistic

scenario, we present a new verification protocol4 for the Quis-Campi
dataset, based on the concept of encounters. In this protocol, the sur-
veillance images of each identity are grouped into sets of images
captured during an encounter of the person of interest with the camera.
For this purpose, we selected a threshold of two minutes as the criteria
for separating the encounters of each person in the dataset. Each group
of trace images of an encounter is compared to the corresponding
reference image, according to the strategies described in Section 4. This
protocol is representative of cases where images of a perpetrator are
registered in the video, and no other surveillance images that can be
safely attributed to the same perpetrator are available. Results using this
protocol are referred to as Quis-campi encounters.

3 We refer to the experiments with the three different subsets of the sur-
veillance images of the SCface dataset as SCface 1 for images captured at 4.2 m,
SCface 2 for images captured at 2.6 m and SCface 3 for images captured at 1 m.

4 Specification of this protocol is available at https://github.com/raf
ribeiro/embedding_aggregation.
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3.2. Social media datasets

Images obtained from social media platforms are usually of better
quality than those obtained in surveillance scenarios. Nevertheless,
these data still exhibit large variations in pose, illumination, facial
expression, and resolution. Moreover, traditional and digital makeup
effects are also frequently present in these images. Two datasets were
selected to evaluate our approach in this scenario: Adience [39] and
Balanced Faces in the Wild (BFW) [40]. We note that it may not be trivial
to guarantee that multiple questioned-source images collected from
social media platforms could be assigned to the same person, which
would undermine the applicability of the proposed approach for this
kind of questioned-source images. Nevertheless, the proposed approach
can be applied to cases where multiple reference, known-source images

are obtained from social media platforms.
The Adience dataset was created to study age and gender recognition

in data obtained in real-world imaging conditions. For this, 26,580
photos of 2,284 subjects were obtained from online image repositories.
Images were acquired using smartphones and other mobile devices and
presented significant variations in pose, lighting condition, facial
expression, and image quality.

Considering that the number of images per identity is heavily
imbalanced, we selected a subset of the Adience dataset, including
identities with at least 11 images - one for reference and at least ten as
traces. This selection resulted in a set of 14,143 images from 373
identities.

The BFW dataset contains 20,000 images of 800 individuals labeled
for gender (female, male) and ethnicity (Asian, Black, Indian, White).

Fig. 2. Bi-modal behavior of genuine scores distributions for the Adience (a) and BFW (b) datasets, suggestive of identity labeling errors. After cleaning, the genuine
distributions no longer exhibit this bi-modal behavior (c, d).

Fig. 3. Examples of identity labeling errors (red boxes) in the Adience and BFW datasets.

R.O. Ribeiro et al.
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The dataset is balanced, with 25 images per subject and 100 subjects in
each demographic group.

3.2.1. Identity errors in adience and BFW Datasets
During our preliminary experiments on the Adience and BFW data-

sets, we observed an atypical bi-modal distribution of the genuine scores
(Fig. 2a and 2b). This unexpected behavior raised suspicion that errors
in the identity labels might be present in these two datasets.

A manual review of the images most frequently involved in low
genuine scores confirmed that many identity labels were incorrect in
both datasets. Fig. 3 shows some examples of these errors.

We adopt a strategy to clean the datasets automatically to mitigate
the effects of such errors. We rely on the approach proposed in [41] that
allows the re-assignment of the identity label for images initially deemed
incorrectly labeled, minimizing the number of images discarded from
the original datasets. Additionally, we manually identified and removed
841 duplicated (same cryptographic hash) images in the Adience data-
set. The cleaned versions of the Adience and BFW datasets, hereafter

referred to as Adience clean and BFW clean, are composed of 13,160
images from 355 identities, 19,131 images from 800 identities,
respectively.5

To assess the effectiveness of the cleaning process, we observe the
differences between the distribution of the genuine and impostors scores
before and after cleaning the datasets. The distributions of genuine
scores of both cleaned datasets present a typical uni-modal distribution
(Figs. 2c and 2d), indicating that the automated cleaning process suc-
ceeded in determining the mislabeled images.

To evaluate if the cleaning procedure had changed the difficulty for
face recognition of the datasets, we investigated the differences in the
distribution of Confusion Scores of the reference and probe images
before and after cleaning. As depicted in Fig. 4, the distributions of the
quality scores (CS) before and after the cleaning process are highly
similar, suggesting that the cleaning procedure did not change the
intrinsic difficulty of the datasets.

3.2.2. Definition of References for Adience clean and BFW clean Datasets
The concept of the reference image is absent in the social media

datasets. Based on the assumption that in forensic scenarios, the refer-
ence images are typically acquired in more controlled scenarios, we
select the image with the highest face quality as the reference image
from each identity.

Fig. 4. Distributions of Confusion Scores for the references and probes from the BFW and Adience datasets, before and after cleaning.

Fig. 5. Examples of references selected for the Adience clean and BFW clean datasets. For each identity, the face at the top left (in green) is selected as a reference,
and the others are used as traces.

5 The list of files corresponding to the cleaned versions of the Adience and
BFW datasets is available at https://github.com/rafribeiro/embedding_aggreg
ation.
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In particular, we rank the images according to their Ser-Fiq and
Confusion Scores and select the image with the best combined ranking.
Fig. 5 depicts the selected references for two identities of each of the
Adience and BFW datasets, illustrating that this strategy resulted in the
selection of good-quality reference images.

4. Proposed method

Our proposal is focused on obtaining embeddings that better repre-
sents the identity corresponding to the trace images. To accomplish this,
we aggregate the information available in multiple facial images in the
embedding space. We investigate multiple aggregation strategies,
described in Section 4.2. We then use the aggregated embedding from
the trace images to calculate a likelihood ratio for the comparison be-
tween the set of trace images and the reference image.

To obtain well-calibrated likelihood ratios, we adopt a pipeline
inspired by forensic voice comparison systems. The stages of this pipe-
line are described in Section 4.3.

We note that this pipeline involves the calculation of a score obtained
from a PLDA model. This score is an attempt to calculate a likelihood
ratio and considers how similar the embeddings are and how typical
they are in the relevant population. Because there is generally a small
amount of data to train the PLDA model relative to the number of pa-
rameters that must be estimated, its output is frequently ill-calibrated. A
calibration model is then applied to the uncalibrated likelihood ratios to
obtain calibrated likelihood ratios.

4.1. Embedding extraction

We conduct all the experiments using a single face recognition model
to extract embeddings from facial images. Before extracting the em-
beddings, we used a face detection model based on SCRFD [42] to locate
the facial region in the image, which was then cropped and aligned using
an affine transformation, resulting in an aligned facial image with
112x112 pixels. For embedding extraction, a ResNet-101 was trained on
the MS1MV2 dataset [43], using the Arcface loss [43], achieving an
accuracy of 99.83% on the LFW dataset [44], which is on par with
performance reported by state-of-the-art face recognition models. The
detection, alignment and embedding extraction procedures were
implemented using the open-source InsightFace library6.

4.2. Embedding aggregation

When multiple images of the same person are available, it is possible
to perform multiple comparisons, raising the question of which com-
parison to derive the LR from or how to combine the multiple compar-

isons to obtain a single LR for the case. Multiplication of the LRs is not
reasonable because the independence of the facial images of the same
person could not be justifiably assumed. To address these issues, we
propose to perform a single comparison in each simulated case. For this
comparison, we use an aggregated embedding obtained from a linear
combination of the embeddings from the trace images that can be
considered to be of the same individual, as described in Eq. 2:

vt =
∑N

i=1
wivti , (2)

where wi is the weight assigned to image i in the aggregation process.
Different strategies to assign this weight are described in the next
sections.

We also consider the strategy of obtaining a single score by averaging
the scores of all possible comparisons between a reference image and
each trace image of the same individual.

4.2.1. Average Pooling
This embedding aggregation strategy involves assigning the same

weight wi for each trace image. This is essentially an unweighted
average of each component of the embeddings.

The following strategies are based on the assumption that the facial
image quality should be related to the weight assigned to each image.
We use two quality estimation approaches as proxies for facial image
quality7.

4.2.2. Ser-Fiq Pooling
Ser-Fiq is a facial quality estimation method proposed in [45]. It is

based on the robustness of the embeddings obtained from multiple
configurations of the same embedding extractor network. Images that
result in embeddings with more variation given the multiple configu-
rations of the embedding extractor are considered to be of lower quality
than images that result in embedding with less variations.

We used the normalized Ser-Fiq quality score si of each trace image as
wi:

wi =
si

∑N

j=1
sj

. (3)

4.2.3. CS Pooling
We also considered the recently proposed face quality estimator

Confusion Score (CS) [19] as a weighting mechanism for aggregation.
This method is based on the observation that the distribution of impostor

Fig. 6. Diagram of stages for processing the embeddings. In this diagram, the rectangles with rounded corners represent data, the rectangles with squared corners
represent processes or models, the dashed-line arrows represent training data to the corresponding model, dotted-line arrows represent data that is being used for
training the corresponding model and that will also be transformed by the trained model, and solid-line arrows represent data that will be transformed by a trained
model. The models in bold compose the proposed scoring stage.

6 Available at https://github.com/deepinsight/insightface.

7 We refer to quality as a measure of the utility of the facial image for its use
in face recognition systems, and not as a synonym to the human-based
perception of image quality.

R.O. Ribeiro et al.

https://github.com/deepinsight/insightface


Science & Justice 64 (2024) 509–520

515

scores from lower quality images extend to higher values than the dis-
tribution of impostor scores of higher quality images. The CS values are
constrained between − 1 and 1, with higher values indicating images
with lower quality and lower values indicating images with better
quality. To account for this inverse relation between the numerical value
of CS and image quality, in this strategy, the weight wi of a trace image
with Confusion Score csi is computed according to Eq. 4:

wi =
1 − csi

∑N

j=1
(1 − csj)

(4)

4.3. Similarity and typicality scores

We adopt scores that consider not only the similarity but also the
typicality of the embeddings with respect to the relevant population, as
recommended in [27]. To properly account for typicality, we computed
scores using PLDA8, following a similar data processing pipeline for the
scoring stage to what is frequently used in forensic voice comparison
systems.

The following subsections briefly describe each component of the
scoring stage, visually depicted in Fig. 6.

4.3.1. CORAL
Correlation Alignment is an unsupervised domain adaptation tech-

nique proposed in [46]. It is frequently used in automatic speaker
recognition systems to enable the use of larger amounts of data from
different domain(s). CORAL is used specifically to align the total
covariance matrix of source (out-of-domain) data to the total covariance
matrix of target (in-domain) data. In our experiments, we used CORAL in
the following manner: for the experiments with each of the two datasets
in each scenario (see Section 3), we used the other dataset of the same
scenario as out-of-domain data.

4.3.2. Whitening and length-normalization
Whitening and length-normalization of the embeddings are per-

formed as the last step before the PLDA model. These two trans-
formations are applied to better condition the embeddings to the
assumption of gaussian distribution of the data for PLDA [47]. The
whitening transformation is trained using the CORAL-transformed out-

of-domain data and the training portion of the in-domain data for each
experiment.

4.3.3. PLDA
The Probabilistic Linear Discriminant Analysis model used in these

experiments was proposed in [29]. This model, as well as other varia-
tions of PLDA, have traditionally been used as a scoring method in
automatic speaker recognition [48]. It is a generative model that can be
used to compute common-source likelihood ratios. Because the amount
of parameters to be estimated is large relative to the amount of data
usually available to train the model, the likelihood ratios output by
PLDA are generally not well calibrated. Therefore, it is common practice
in the forensic voice comparison community to treat the output of PLDA
as a score, and then apply a calibration procedure to obtain a well-
calibrated likelihood ratio [48]. We follow the same approach in this
paper.

4.3.4. Regularized logistic regression calibration
We use a regularized logistic regression model as the last stage to

obtain a calibrated LR. The model is implemented in the open-source LIR
Python package9.

Logistic regression has traditionally been used as a calibration model
in forensic speaker comparison [49–51]. In contrast with other common
calibration models, it does not assume a specific distribution of the
training scores, it is less susceptible to sampling variability than other
calibration methods [20,22,52], and it also guarantees a monotonic
conversion of scores into LRs.

Regularization is used to induce shrinkage of the LR values.
Shrinking the likelihood ratio values is a conservative approach to avoid
overstating the strength of evidence when only a small amount of data is
available to train the system [53]. Since having small amounts of data in
forensically relevant conditions is common in casework, we opted to
include shrinkage10 in our experiments so it better reflects the scenarios
expected to be encountered in casework.

5. Experiments

We focus our experiments on 1:1 comparisons between a reference
image and a set of trace images. In forensic settings, these sets of trace
images may originate from a surveillance video, with multiple frames
depicting the person of interest, or from a set of images collected from

Fig. 7. Distribution of the number of embeddings aggregated per identity in each dataset.

8 The implementation used in our experiments is based on the PLDA model
proposed by S. Ioffe [29] which is available at https://github.com/RaviSoji
/plda.

9 Available in https://github.com/netherlandsforensicinstitute/lir
10 We used the same regulation parameter of 1 in all experiments.
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social media profiles.
As a baseline, we rely on the comparisons between each reference

image and each trace image, without any form of aggregation. This
baseline is representative of common practices in forensic laboratories,
where a single trace image is evaluated independently against the
reference without any form of aggregation.

We evaluate different strategies to integrate the information avail-
able in multiple images of the trace sets, as described in Section 4. The
distribution of the number of embeddings that are aggregated per
identity in each dataset is shown in Fig. 7.

For each aggregation strategy, we calibrate the scores into LRs using
a regularized logistic regression model, described in Section 4.3.4. To
avoid training and testing on the same data, and to avoid data leakage
between training of the PLDA model and the calibration model, we
adopted a nested 10-fold cross validation strategy to train these two
models and to obtain validation LRs for each experiment.

We assess the performance of the resulting forensic evaluation sys-
tems using the log-likelihood ratio cost (Cllr ) [16] and Tippett plots [54].
These criteria are detailed in the following section.

5.1. Performance assessment

We adopt the performance assessment methods described in a
recently published consensus on validation of methods for forensic voice
comparison [18]. These methods consist of a metric of accuracy of
forensic evaluation systems - the log-likelihod ratio cost (Cllr ) - and a
graphical representation of the empirical performance of the system -
Tippett plots. Both are described in the following sections.

5.1.1. Log-likelihood ratio cost - Cllr
The log-likelihood ratio cost is an accuracy metric considered

appropriate for assessing the performance of forensic evaluation systems
that output likelihood ratios [16–18]. It can be computed by the
following formula:

Cllr =
1
2

[
1

Nss

∑

i
log2

(

1 +
1

LRi

)

+
1

Nds

∑

j
log2(1 + LRj)

]

, (5)

where the first sum is over the Nss individual test likelihood-ratios (LRi)
for which the ground truth is same-source, and the second sum is over
the Nds individual test likelihood ratios (LRj) for which the ground truth
is different-sources.

Contrary to common performance metrics for biometric systems like
false acceptance rate, false rejection rate or equal error rate, Cllr does not
depend on the application of a threshold, which is more aligned with
how likelihood ratios should be interpreted. It also gives different pen-
alties according to the magnitude of the log-likelihood ratio: for a vali-
dation pair for which the ground truth is different-sources, an LR much
larger than 1 will be more heavily penalized than an LR not much larger

than 1. For a validation pair for which the ground truth is same-source,
an LR much smaller than 1 will be more heavily penalized than an LR not
much smaller than 1.

Forensic evaluation systems with good performance will exhibit Cllr
closer to zero, while a forensic evaluation system that gives no useful
information (e.g., a system that always output an LR equal to 1) will
have a Cllr value of 1. Well-calibrated systems are considered useful for
forensic casework if they have Cllr lower than 1 [18].

5.1.2. Tippett plots
Tippett plots allow one to visually assess the level of calibration of

the system, its discriminating power, as well as the range of LRs that the
system can output [17,18]. It displays empirical cumulative distribu-
tions of the validation LRs. Two curves are displayed in the same figure,
one corresponding to validation LRs where the ground truth is different-
sources, and another corresponding to validation LRs for which the
ground truth is same-source. The horizontal axis exhibits the range of
LRs output by the system for the validation pairs, in base-10 logarithmic
scale. The vertical axis displays the proportion of LRs that are greater
than or equal to the value in the x-axis, for validation LRs obtained from
different-sources pairs, and the proportion of LRs that are smaller than
or equal to the value in the x-axis for same-source validation pairs.
Ideally, the empirical cumulative distributions are symmetrically
distributed around the neutral value of log10LR = 0, and are far from
each other in the horizontal direction. Appendix C of [18] shows ex-
amples of Tippett plots for systems with various degrees of calibration
and discriminating power.

5.2. Worked example

To illustrate our experiments, a worked example is shown in this
section, with images from the SCface dataset. We select images from the
identity labeled as 001. There is one reference image, with high quality
and captured under ideal conditions, and 15 images of the same person
captured from CCTV cameras from 3 different distances, resulting in
images of three distinct levels of quality, as shown in Fig. 8.

Our baseline involves comparing the reference image to each CCTV
image independently, and calculate a likelihood ratio for each com-
parison. For the AvgPool experiment, we compute the component-wise
average of the embeddings for each group of 5 images from each dis-
tance. We obtain one embedding representing the 5 images from the
SCface 1, another embedding representing the 5 images from the SCface
2, and a third embedding representing the 5 images from SCface 3. We
then compare the reference image to each of the three aggregated em-
beddings, obtaining 3 LR values. The results are shown in Table 1, which
shows higher LR values for the aggregated cases than the individual
comparisons. We also note that most of the individual comparisons
resulted in LRs that support the wrong hypothesis, while all aggregated
results resulted in LRs that support the correct hypothesis.

Fig. 8. Images used in the worked example. The scale of the trace images is correct relative to each distance (1, 2 and 3), but the reference image is of proportionally
higher resolution than shown in the figure.
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6. Results and discussion

Results for the datasets of the surveillance scenario are shown in
Table 2 and Fig. 9.

We first observe the improvements in Cllr compared to Mandasari
et al. [32] on the SCface dataset. This improvement is mainly attributed
to the discriminating power of the facial recognition module since even
our baseline approach offered substantially better results. We also
observe that both embedding aggregation and score averaging were
effective approaches to improve the performance of the forensic evalu-
ation system with respect to our baseline. We also observe that larger
improvements in Cllr occurred for the surveillance scenario datasets
with more embeddings to be aggregated (SCface - 15 embeddings), and
with images of lower quality (SCface 1 and SCface 2).

An unexpected result was observed when comparing the Cllr values
obtained for SCface and SCface 3. Because SCface includes images of
poor, medium and higher quality, we expected that the results of using
only better quality images (SCface 3) would be better. The opposite
happened, which we interpret as an indication that the aggregation
strategies may incorporate useful information from lower-quality im-
ages, improving upon the result obtained from better-quality images
alone.

Results for the social media scenario are shown in Table 3 and
Fig. 10. We also observe gains from the proposed aggregation strategies
compared to the baselines.

In general, we observe that aggregating embeddings from multiple
images of the same individual is an effective technique for improving
recognition performance. The improvements are more pronounced
when dealing with multiple low-resolution images, when no single

Table 1
ln(LR) values for individual and aggregated comparisons for the identity 001 of
the SCface dataset. Since this is a same-source comparison, higher values are
better.

1 2 3 4 5 AvgPool

SCface 1 − 1.9 − 4.7 − 3.1 − 3.0 − 1.8 1.1
Scface 2 1.5 − 4.9 − 3.1 − 2.1 − 3.7 4.3
Scface 3 1.1 − 3.7 − 0.6 2.1 − 1.8 7.5

Table 2
Cllr for the surveillance scenario.

SCface
1

SCface
2

SCface
3

SCface Quis-
Campi

Quis-
Campi

encounters

Mandasari
et al. [32]

Raw
scores

0.659 0.313 0.378 0.503 - -

Mandasari
et al. [32]
ZT-norm

scores

0.664 0.243 0.287 0.419 - -

Baseline 0.545 0.143 0.043 0.217 0.237 0.237
AvgScore 0.328 0.081 0.093 0.002 0.107 0.195
AvgPool 0.327 0.069 0.081 0.0005 0.138 0.184
CSPool 0.576 0.121 0.083 0.009 0.124 0.182

Ser-FiqPool 0.357 0.056 0.37 0.001 0.124 0.178

Fig. 9. Tippett plots for the SCface 1 and Quis-Campi encounters datasets. To avoid cluttering the figure, we only show Tippett plots for the baseline and AvgPool
strategies. Tippett plots for all strategies are available in the supplementary material.
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image is of good enough quality to provide good probative value. We
also note that the number of images that could have their embeddings
aggregated is an important factor and warrants further investigation.
These two observations are especially relevant for realistic forensic
conditions, where CCTV video with a large number of low quality frames
is usually available, such as the recordings of the invasions of the Bra-
zilian Federal Government buildings in January 2023 [55]. Even
“naïve” approaches such as AvgPool can offer substantial performance
improvements relative to considering a single trace image. This strategy
also has the advantage of not requiring the estimation of facial image
quality.

The approaches based on quality-weighted aggregation - Ser-FiqPool
and CSPool - also demonstrate good performance and, for some com-
binations of dataset and quality metric, provided the best performance.
In some combinations, though, quality-based aggregation was detri-
mental to performance (e.g., CSPool on SCface1). This suggests a com-
plex interplay between the quality metrics and the face recognition
model used to extract the embeddings and may warrant further
investigation.

We note two important limitations to the present study.
Firstly, the available datasets are of limited representativity to real

forensic casework, with just a few frames from CCTV footage, in the case
of SCface and Quis-Campi, and with no images representative of stan-
dard reference images, with controlled pose, illumination and facial
expression in the case of Adience and BFW. We also note that, in the case
of the social media datasets, there are multiple images from the same
session for various identities, making it more difficult to generalize the
results of our experiments with these datasets for casework.

The second limitation relates to the amount of data (both the number
of identities and the number of images per identity) to train the PLDA
model, especially in the experiments with CCTV images. As a complex
multivariate model, the limited amount of data available to train the
PLDA model probably represents a major limitation to better
performance.

We aim to address these limitations in future work by collecting new
data and assessing the aggregation approaches on images from CCTV
videos that are more representative of casework conditions.

7. Conclusions

We presented aggregation strategies to improve face recognition
performance under challenging conditions usually found in forensic
casework when multiple images of the same person are available. Our
results indicate an effective approach for dealing with low-quality im-
ages frequently found in forensic casework. Future work will employ
data that are more representative of forensic casework, including the
amount needed to train the statistical models.

We also presented an initial exploration for calculating common-
source likelihood ratios from DNN embeddings extracted from facial
images using scores that consider both the similarity and the typicality
of the embeddings. Future works will deepen the investigation of

Table 3
Cllr for the social media scenario.

Adience clean BFW clean

Baseline 0.035 0.081
AvgScore 0.010 0.037
AvgPool 0.007 0.027
CSPool 0.009 0.031

Ser-FiqPool 0.008 0.023

Fig. 10. Tippett plots for the Adience clean and BFW clean datasets. To avoid cluttering the figure, we only show Tippett plots for the baseline and AvgPool
strategies. Tippett plots for all strategies are available in the supplementary material.
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calculating common-source likelihood ratios for facial comparisons.
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