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Unveiling unique clinical phenotypes of hip
fracture patients and the temporal
association with cardiovascular events

Warrington W. Q. Hsu 1,6, Xiaowen Zhang 1,6, Chor-Wing Sing1,2,
Kathryn C. B. Tan 3, Ian Chi-Kei Wong 1,2,4,5, Wallis C. Y. Lau 1,2,4,5 &
Ching-Lung Cheung 1,2

Cardiovascular events are the leading cause of death among hip fracture
patients. This study aims to identify subphenotypes of hip fracture patients
and investigate their association with incident cardiovascular events, all-cause
mortality, and health service utilisation in Hong Kong and theUnited Kingdom
populations. By the latent class analysis, we show three distinct clusters in the
HongKong cohort (n = 78,417): Cluster 1 has cerebrovascular and hypertensive
diseases, hyperlipidemia, and diabetes; Cluster 2 has congestive heart failure;
Cluster 3 consists of relatively healthy patients. Compared to Cluster 3, higher
risks of major adverse cardiovascular events are observed in Cluster 1 (hazard
ratio 1.97, 95% CI 1.83 to 2.12) and Cluster 2 (hazard ratio 4.06, 95% CI 3.78 to
4.35). Clusters 1 and 2 are also associated with a higher risk of mortality, more
unplanned accident and emergency visits and longer hospital stays. Self-
controlled case series analysis shows a significantly elevated risk of major
adverse cardiovascular events within 60 days post-hip fracture. Similar asso-
ciations are observed in the United Kingdom cohort (n = 27,948). Pre-existing
heart failure is identified as a unique subphenotype associated with poor
prognosis after hip fractures.

Cardiovascular events (CVEs) are the leading cause of death in both
the general population and disease populations1–3. Temporal asso-
ciation with an increased risk of CVEs has been observed in different
disease populations, such as gout4, influenza-like illness5 and hip
fracture6. The incidence of hip fracture, a significant public health
concern, was projected to double by 2050 compared to 20187. A
meta-analysis of observational studies8 further confirmed the asso-
ciation between hip fracture and an increased risk of CVEs. Thus,
there is an urgent need to enhance the current management of hip
fracture patients and improve the prognosis of CVEs following hip
fracture.

In our recent study, we demonstrated that there was an immedi-
ate increased risk of CVEs after hip fracture3,6, even after accounting
for the post-operative cardiac complications. However, the mechan-
isms underlying such temporal association are complex and remain
unstudied. Considering the diverse clinical characteristics of hip frac-
ture patients, which are crucial for their prognosis, the process of
subphenotyping the heterogeneous hip fracture spectrum could pro-
vide valuable insights into the temporal association with CVEs and
management of patients with hip fracture and CVEs.

Clustering algorithms are commonly used to classify patients
with similar characteristics or features. Among various clustering
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algorithms, latent class analysis (LCA), an unsupervised machine
learning technique for classifying subjects into clusters by a combi-
nation of variables9–11, has been shown to be the optimum clustering
algorithm for health records12. Therefore, in this study, we first utilised
the unsupervised LCA to subgroup hip fracture patients who share
common clinical characteristics in two extensive hip fracture cohorts:
one from Hong Kong (HK; N = 78,417) and the other from the United
Kingdom (UK; N = 27,948). Subsequently, to uncover variations in
long-term outcomes for hip fracture patients based on their sub-
phenotypic classification, conventional survival analyses (between-
individual comparison) and self-controlled case series (SCCS; within-
individual comparison) were conducted. The analyses aimed to
quantify the risk of CVE-related outcomes, all-cause mortality, and
health service utilisation following hip fracture and to evaluate
potential differences across the identified subphenotypes. Unlike the
conventional survival analyses comparing the prognosis risk between
individuals, SCCS analyses focused only on hip fracture patients who
experienced the prognostic events with each patient serving as their
own control, which effectively controlled for time-fixed confounders
and between-individual differences13. Consequently, SCCS analyses
enabled the detection of temporal patterns within each LCA-derived
cluster and facilitated the identification of potential differences in
temporal patterns across the clusters, which cannot be captured by
conventional survival analyses alone.Overall, the conventional survival
analysis and SCCS are complementary approaches that provide a
comprehensive understanding of the prognosis risk and temporal
associations in the identified subphenotypes.

Here, we show findings on subphenotypes of hip fracture patients
in both the Hong Kong and the UK older adult populations using LCA.
Heart failure consistently emerges as a key characteristic associated
with poor prognosis in hip fracture patients. Temporal associations
with CVEs in all hip fracture patient subphenotypes are also observed.

Results
Identification of subphenotypes
The LCA was conducted to identify hip fracture subphenotypes, fol-
lowedbydescriptive analysis to investigate the baseline characteristics
of the identified subphenotypes. TheHongKongClinical Data Analysis
and Reporting System (HK CDARS) hip fracture cohort consisted of
78,417 patients (54,892 and 23,525 patients for training and internal
test sets, respectively) with hip fracture aged ≥65 years (Supplemen-
tary Fig. 1a). Themean age for the entire CDARS cohortwas83.43 years
(SD = 7.52) and 68.6% of the cohort were female (Supplementary
Table 1). The United Kingdom Health Improvement Network (UK
THIN) cohort included 27,948 hip fracture patients aged ≥65 years
(Supplementary Fig. 1b), with ameanage of 82.48 years (SD = 7.67) and
74.3% of the cohort being females. All Spearman’s rank correlation
coefficients among the clustering variables were <0.5, therefore no
clustering variables were removed.

The statistics of model fitting performance across the number of
clusters are shown in Supplementary Fig. 2. The optimal number of
clusters was selected to be three in both the HK CDARS training and
test sets (Supplementary Fig. 2a, b) and two in the UK THIN cohort
(Supplementary Fig. 2c). To assess the uncertainty of cluster mem-
bership, the distribution of each subject’s highest class membership
probability (the likelihood that reflects a subject’s most likely cluster
assignment) was evaluated (Supplementary Table 2). This evaluation
was conducted by computing the median, and the lower and upper
quartiles of these probabilities for all subjects within each cluster. The
medians of the highest class membership probabilities ranged from
0.82 to 0.98 across clusters. These median values indicated a moder-
ately high to veryhighdegreeof certainty in the assignmentof subjects
to their respective clusters.

The baseline characteristicsof the three LCA-generated clusters in
the HK CDARS training set resembled that of the three clusters

identified in the CDARS test set (Supplementary Fig. 3a, b), with
Pearson’s correlation coefficients of 1.00 between the corresponding
clusters in training and test sets (Supplementary Table 3). This sup-
ported the decision to merge the two datasets in the subsequent
prognosis analyses. Cluster 1 (n = 11,886 [21.65%] for training set;
n = 4876 [20.73%] for test set) consisted of a high prevalence of cere-
brovascular diseases, hypertensive diseases, hyperlipidemia, and dia-
betes (standardised mean differences [SMD] >0.8 vs Cluster 3;
Tables 1 and 2). Cluster 2 (n = 6588 [12.00%] for training set; n = 3272
[13.91%] for test set) consisted of a high prevalence of coronary heart
disease, congestive heart failure, hypertensive diseases, and arrhyth-
mia and conduction disorders (SMD>0.8 vs Cluster 3; Tables 1 and 2).
Cluster 3 (n = 36,418 [66.34%] for the training set; n = 15,377 [65.36%]
for the test set) was relatively healthy with the lowest prevalence of
most clinical conditions studied. Notably, congestive heart failure was
almost exclusively present in Cluster 2 but not in other clusters.

In the UKTHINdataset, Cluster 1 consisted of a high prevalence of
CVE including coronary heart disease, congestive heart failure, and
arrhythmia and conduction disorders (SMD>0.8), and with a higher
prevalence of most clinical conditions studied when compared with
the relatively healthy Cluster 2 (Table 3 and Supplementary Fig. 3c).
Consistently, congestive heart failure was exclusively present in Clus-
ter 1. Using SMD>0.8 as the criterion to identify the characteristic
variables of large differences between clusters, the baseline char-
acteristics of Cluster 1 inUKTHIN (variableswith SMD>0.8 in the SMD
column in Table 3) resembled that of Cluster 2 in HK CDARS (variables
with SMD>0.8 in the SMD Cluster 2 vs 3 columns in Tables 1 and 2),
except for hypertensive diseases. The two clusters were highly corre-
lated with a Pearson’s correlation coefficient of 0.71. Cluster 2 in UK
THIN and Cluster 3 in HK CDARS (the relatively healthy clusters) were
also strongly correlated, with a Pearson’s correlation coefficient
of 0.93.

Prognosis of subphenotypes
The associations between the hip fracture subphenotypes and prog-
nostic outcomes of interest were investigated using conventional
survival analysis, with the relatively healthy cluster as the reference
groups in both HK CDARS (Cluster 3) and UK THIN (Cluster 2) cohorts
(Table 4 and Fig. 1). In the HK CDARS, the risk of 180-day all-cause
mortality and major adverse cardiovascular events (MACE) were sig-
nificantly higher in Cluster 1 (all-causemortality: hazard ratio [HR] 1.35,
95%CI 1.28 to 1.42;MACE:HR 1.97, 95%CI 1.83 to 2.12) andCluster 2 (all-
cause mortality: HR 2.22, 95% CI 2.10 to 2.34; MACE: HR 4.06, 95% CI
3.78 to 4.35) compared to Cluster 3. For the secondary outcomes, both
Cluster 1 and Cluster 2 were associated with a higher number of hos-
pital visits, accident and emergency (A&E) visits, and total length of
hospital stays in the 180-day period after hip fracture (Table 4
and Fig. 1b).

For the UK THIN cohort, Cluster 1 was associated with an
increased risk of 180-day all-cause mortality (HR 1.38, 95% CI 1.28 to
1.49) and MACE (HR 1.84, 95% CI 1.53 to 2.23) when compared to the
relatively healthy cluster (Table 4 and Fig. 1a). In both the HK CADRS
and UK THIN cohorts, similar results were observed for the individual
MACE outcomes (Supplementary Table 4) and in the sensitivity ana-
lysis (Supplementary Tables 5–7). The increased risk of MACE and all-
cause mortality reported in the main analysis in Cluster 1 and 2 in HK
CDARS, and Cluster 1 in UK THIN, were in general consistently
observed across all the age, sex and surgery type subgroups (Supple-
mentary Table 8). However, differences in themagnitude of these risks
were observedwhen comparing the different subgroups. The stratified
analysis generally showed that females, younger patients, and those
undergoing partial hip replacement surgeries tended to exhibit higher
risks, as reflected by HRs, when compared with the male, older, and
internal fixation counterparts. In particular, in Cluster 2 in HK CDARS
and Cluster 1 in UK THIN, the HR for the association between the hip
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fracture subphenotype and MACE was observed to be higher in
females when compared to males (interaction p-value < 0.05).

Results from the temporal analysis
The competing risk regression and SCCS were used to investigate the
temporal associations between the hip fracture subphenotypes and
MACE. In the between-individual analysis using competing risk
regression, an immediate risk of overall MACE was observed in the HK
CDARS and UK THIN cohorts using the relatively healthy cluster as the
reference (Supplementary Fig. 4). The results of the temporal asso-
ciation with individual MACE outcomes are provided in Supplemen-
tary Table 9.

In the within-individual comparison using the SCCS analysis, we
included 6366 patients with MACE that occurred during the observa-
tion periods in the HK CDARS (Table 5) over a total follow-up time of
19154.64 person-year. Similar temporal association patterns were
observed in all clusters, including the relatively healthy cluster. Spe-
cifically, the age-adjusted incidence rate ratios (IRRs) of MACE were
found to be the highest and statistically significant at 1–60 days after
hip fracture across the three clusters (Cluster 1: IRR 1.84, 95%CI 1.54 to
2.20; Cluster 2: IRR 1.99, 95% CI 1.62 to 2.45; Cluster 3: IRR 2.05, 95% CI
1.81 to 2.33), and the IRRs decreased during the subsequent post-hip
fracture risk periods (Fig. 2a and Table 5). The cluster-specific patterns
matched the overall temporal pattern of the entire cohort, with the
age-adjusted IRR of MACE at 1–60 days after hip fracture being 1.93
(95% CI, 1.76 to 2.11; Fig. 2a and Table 5). Similar results were observed
in theUKTHINdatabase, where significantly higher IRRsofMACEwere
observed at 1–60 days after hip fracture in the two clusters (Cluster 1:

IRR 3.35, 95% CI 2.28 to 4.92; Cluster 2: IRR 2.25, 95% CI 1.81 to 2.81),
matching the overall pattern of the entire cohort (IRR 2.43, 95%CI 2.01
to 2.94; Fig. 2b and Table 6). In both the HK CDARS and UK THIN
within-individual analyses, similar conclusions were observed with the
individual MACE outcomes, and the sensitivity analyses with shorter
exposure intervals and consideringonly thepost-hip fractureperiod as
the baseline (Supplementary Table 10 and Supplementary Fig. 5).
Notably, the higher risk ofMACE was observed in the intervals of 1–30
d and 31–60d inboth theHKCDARS andUKTHINcohorts. In addition,
we plotted the incidence rates of MACE within one year following hip
fracture (Supplementary Fig. 6). The plots showed similar temporal
patterns across clusters, but there were notable differences in the
incidence rates across clusters in both HK CDARS and UK THIN, which
aligned with the results from competing risk regression and SCCS.

Furthermore, to verify the hip fracture subphenotypes were not
direct replications of conventional cardiovascular disease (CVD)
groups, a comparative analysis was conducted using a reference
CDARS cohort composed of patients with myocardial infarction (MI).
In this analysis, the 60-day and 12-month event rates for MACE and all-
cause mortality for the subphenotypes were compared to that of the
referenceMI cohort (Supplementary Table 11). TheMI cohort revealed
expectedly high event rates of MACE and all-cause mortality. Notably,
the MI cohort showed a moderate increase (28.48%) in the event rates
of MACE (18.89%–24.27%) and a substantial rise (137.8%) in mortality
event rates (11.77%–27.99%) from the 60-day to the 1-year period.
Conversely, the hip fracture cohort, with 3.18% of patients with base-
line MI, demonstrated a sharper increase in both outcomes over the
same period, with the MACE event rates more than doubling (164.2%

Table 1 | Baseline characteristics of hip fracture subphenotypes (HK CDARS training set)

HK CDARS training set

Variables Cluster 1 Cluster 2 Cluster 3 SMD Cluster 1 vs 3
(p-valuea)

SMD Cluster 2 vs 3
(p-valuea)

SMD Cluster 1 vs 2
(p-valuea)

n 11,886 6588 36,418

Males, n (%) 3944 (33.2) 2251 (34.2) 11,108 (30.5) 0.058 (<0.001) 0.078 (<0.001) 0.021 (0.179)

Age, mean (SD) 82.38 (7.21) 85.74 (6.84) 83.32 (7.67) 0.126 (<0.001) 0.333 (<0.001) 0.478 (<0.001)

Diagnosis record within 5 years before index date, n (%)

Coronary heart disease 2018 (17.0) 3195 (48.5) 914 (2.5) 0.503 (<0.001) 1.242 (<0.001) 0.713 (<0.001)

Congestive heart failure 5 (0.0) 4954 (75.2) 386 (1.1) 0.138 (<0.001) 2.362 (<0.001) 2.458 (<0.001)

Cerebrovascular diseases 3885 (32.7) 976 (14.8) 1231 (3.4) 0.824 (<0.001) 0.406 (<0.001) 0.430 (<0.001)

Hypertensive diseases 10629 (89.4) 4680 (71.0) 5286 (14.5) 2.266 (<0.001) 1.392 (<0.001) 0.474 (<0.001)

Arrhythmia and conduction disorders 1338 (11.3) 3561 (54.1) 1732 (4.8) 0.241 (<0.001) 1.287 (<0.001) 1.026 (<0.001)

Arterial disease 1398 (11.8) 463 (7.0) 172 (0.5) 0.485 (<0.001) 0.350 (<0.001) 0.163 (<0.001)

Chronic obstructive pulmonary
disease

852 (7.2) 1721 (26.1) 2451 (6.7) 0.017 (0.105) 0.542 (<0.001) 0.526 (<0.001)

Hyperlipidemia 3706 (31.2) 1067 (16.2) 0 (0.0) 0.952 (<0.001) 0.622 (<0.001) 0.358 (<0.001)

Obesity 186 (1.6) 60 (0.9) 0 (0.0) 0.178 (<0.001) 0.136 (<0.001) 0.059 (<0.001)

Diabetes 6680 (56.2) 2204 (33.5) 1807 (5.0) 1.338 (<0.001) 0.776 (<0.001) 0.470 (<0.001)

Thyroid disorders 350 (2.9) 413 (6.3) 243 (0.7) 0.172 (<0.001) 0.310 (<0.001) 0.159 (<0.001)

Chronic renal disease 1420 (11.9) 1395 (21.2) 172 (0.5) 0.490 (<0.001) 0.707 (<0.001) 0.250 (<0.001)

Liver diseases 137 (1.2) 84 (1.3) 141 (0.4) 0.088 (<0.001) 0.098 (<0.001) 0.011 (0.508)

Osteoporosis 568 (4.8) 421 (6.4) 1149 (3.2) 0.083 (<0.001) 0.152 (<0.001) 0.070 (<0.001)

Paget’s disease of bone 6 (0.1) 6 (0.1) 2 (0.0) 0.027 (0.004) 0.039 (<0.001) 0.015 (0.462)

Major fractures other than hip
fracture

1011 (8.5) 607 (9.2) 2845 (7.8) 0.025 (0.016) 0.050 (<0.001) 0.025 (0.109)

Connective tissue disease 82 (0.7) 67 (1.0) 233 (0.6) 0.006 (0.601) 0.042 (0.001) 0.036 (0.022)

Osteoarthritis 1280 (10.8) 870 (13.2) 1816 (5.0) 0.216 (<0.001) 0.289 (<0.001) 0.075 (<0.001)

Depression 388 (3.3) 137 (2.1) 426 (1.2) 0.143 (<0.001) 0.072 (<0.001) 0.074 (<0.001)

Dementia 1320 (11.1) 563 (8.5) 1982 (5.4) 0.207 (<0.001) 0.122 (<0.001) 0.086 (<0.001)

n number of independent patients, % percentage, SD standard deviation, SMD standardized mean difference.
aP-values computed from group comparison tests (Chi-square tests for categorical variables and one-way ANOVA for continuous variables).
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increase, from 2.29 to 6.05%) and all-cause mortality rates tripling
(255.2% increase, from 4.67% to 16.59%). This trend was consistent
across all three clusters within the hip fracture cohort. In particular,
Cluster 2 showed the highest absolute event rates among the hip
fracture clusters, with the 1-year MACE rate being 10.72%, almost half
of that of theMI cohort, even though only 15.04% of patients in Cluster
2 had baseline MI. In addition, the 1-year mortality rate in Cluster
2 surpassed that of the MI cohort (31.35% vs 27.99%).

Discussion
We robustly segmented the hidden clinical characteristics of hip
fracture patients into distinct clusters (i.e., subphenotypes) in both the
Hong Kong and UK populations using LCA and demonstrated that
these clusters explained, at least partially, the observed temporal
association between hip fracture subphenotypes and CVEs. Notably,
one of the clusters predominant by heart failure was correlated with a
poor prognosis characterised by more unplanned A&E visits, pro-
longed hospitalisation, and higher risk of all-causemortality andMACE
in comparison to the relatively healthy reference group. In addition, a
consistent temporal association between the hip fracture sub-
phenotypes and MACE was observed in the Hong Kong and UK
populations, even after accounting for the potential post-operative
cardiac complications.

This retrospective study implemented the unsupervised machine
learning approach of LCA on two population-based electronic health
record (EHR) databases in Hong Kong and the UK to identify hip
fracture subphenotypes. Clusters with a high prevalence of CVEs were
identified in the two independent population cohorts (Cluster 1 and 2

inHKCDARS andCluster 1 in UKTHIN). These clusters were associated
with poor health prognoses, with an increased risk of 180-day all-cause
mortality andMACE. Notably, Cluster 2 in the HK CDARS and Cluster 1
in the UK THINwere highly similar, in which both clusters had a higher
prevalence of coronary heart disease, congestive heart failure and
arrhythmia and conduction disorders compared with the reference
cluster (SMD>0.8). Particularly, these clusters were predominated by
heart failure. Twometa-analyses reported a significantly increased risk
of hip fracture in patients with heart failure14,15. Previous studies also
showed an association between heart failure and decreased bone
mineral density (BMD) at the hip and femoral neck16,17. However, the
detailed mechanism underlying the exclusiveness of heart failure in
the cluster with hip fracture requires further study.

In comparison of the relatively healthy cluster, Cluster 1 and 2 in
theHong Kong cohort (andCluster 1 in theUK cohort) were associated
with an increased risk of 180-day mortality and MACE. Previous
population-based cohort studies showed evidence of an association
between a history of cardiovascular disease and increased mortality
risk in patients with hip fracture18,19. A Danish study showed that a
history of CVEs and cardiovascular biomarkers were associated with
mortality within the 30-day period after hip fracture, with heart failure
demonstrating the strongest association with mortality when com-
pared to other CVEs18. Another study indicated that heart failure
patients with hip fracture experienced an over two-fold increased risk
of mortality compared to heart failure patients without hip fracture20.
The results of previous studies were in line with our LCA results, sug-
gesting that pre-existing CVEs, particularly heart failure, were asso-
ciated with a poorer post-hip fracture prognosis in both the Hong

Table 2 | Baseline characteristics of hip fracture subphenotypes (HK CDARS test set)

HK CDARS test set

Variables Cluster 1 Cluster 2 Cluster 3 SMD Cluster 1 vs 3
(p-valuea)

SMD Cluster 2 vs 3
(p-valuea)

SMD Cluster 1 vs 2
(p-valuea)

n 4876 3272 15,377

Males, n (%) 1517 (31.1) 1082 (33.1) 4692 (30.5) 0.013 (0.440) 0.055 (0.004) 0.042 (0.067)

Age, mean (SD) 82.23 (7.20) 86.27 (6.63) 83.28 (7.62) 0.141 (<0.001) 0.419 (<0.001) 0.584 (<0.001)

Diagnosis record within 5 years before index date, n (%)

Coronary heart disease 624 (12.8) 1616 (49.4) 341 (2.2) 0.410 (<0.001) 1.280 (<0.001) 0.861 (<0.001)

Congestive heart failure 0 (0.0) 2074 (63.4) 186 (1.2) 0.156 (<0.001) 1.780 (<0.001) 1.861 (<0.001)

Cerebrovascular diseases 1654 (33.9) 475 (14.5) 502 (3.3) 0.857 (<0.001) 0.403 (<0.001) 0.465 (<0.001)

Hypertensive diseases 4303 (88.2) 2364 (72.2) 2144 (13.9) 2.222 (<0.001) 1.457 (<0.001) 0.410 (<0.001)

Arrhythmia and conduction disorders 466 (9.6) 1724 (52.7) 541 (3.5) 0.246 (<0.001) 1.307 (<0.001) 1.053 (<0.001)

Arterial disease 618 (12.7) 197 (6.0) 77 (0.5) 0.506 (<0.001) 0.315 (<0.001) 0.230 (<0.001)

Chronic obstructive pulmonary
disease

269 (5.5) 790 (24.1) 1043 (6.8) 0.053 (0.002) 0.495 (<0.001) 0.543 (<0.001)

Hyperlipidemia 1575 (32.3) 545 (16.7) 0 (0.0) 0.977 (<0.001) 0.632 (<0.001) 0.370 (<0.001)

Obesity 83 (1.7) 26 (0.8) 0 (0.0) 0.186 (<0.001) 0.127 (<0.001) 0.082 (0.001)

Diabetes 2800 (57.4) 991 (30.3) 756 (4.9) 1.376 (<0.001) 0.707 (<0.001) 0.569 (<0.001)

Thyroid disorders 162 (3.3) 187 (5.7) 102 (0.7) 0.191 (<0.001) 0.291 (<0.001) 0.115 (<0.001)

Chronic renal disease 569 (11.7) 621 (19.0) 81 (0.5) 0.479 (<0.001) 0.654 (<0.001) 0.204 (<0.001)

Liver diseases 43 (0.9) 42 (1.3) 62 (0.4) 0.060 (<0.001) 0.096 (<0.001) 0.039 (0.101)

Osteoporosis 205 (4.2) 176 (5.4) 509 (3.3) 0.047 (0.004) 0.102 (<0.001) 0.055 (0.016)

Paget’s disease of bone 3 (0.1) 0 (0.0) 1 (0.0) 0.030 (0.072) 0.011 (1.000) 0.035 (0.406)

Major fractures other than hip
fracture

453 (9.3) 310 (9.5) 1173 (7.6) 0.060 (<0.001) 0.066 (<0.001) 0.006 (0.810)

Connective tissue disease 71 (1.5) 25 (0.8) 70 (0.5) 0.103 (<0.001) 0.040 (0.034) 0.066 (0.006)

Osteoarthritis 579 (11.9) 438 (13.4) 737 (4.8) 0.258 (<0.001) 0.302 (<0.001) 0.046 (0.047)

Depression 141 (2.9) 67 (2.0) 185 (1.2) 0.119 (<0.001) 0.067 (<0.001) 0.054 (0.022)

Dementia 504 (10.3) 313 (9.6) 930 (6.0) 0.157 (<0.001) 0.131 (<0.001) 0.026 (0.273)

n number of independent patients, % percentage, SD standard deviation, SMD standardized mean difference.
aP-values computed from group comparison tests (Chi-square tests for categorical variables and one-way ANOVA for continuous variables).
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Kong andUK cohorts. A sex-specific risk ofMACEhas been observed in
Cluster 2 in HK CDARS and Cluster 1 in UK THIN. While the male sex is
often known to be associated with a higher risk of post-fracture mor-
bidity including CVE21, our subgroup analysis showed that in Cluster 2
in HK CDARS and Cluster 1 in UK THIN, the HR for the association
between the hip fracture subphenotype and MACE was higher in
females than inmales. Therefore, it is important to further consider the
factor of sex when evaluating the prognosis for those within the
already high-risk subphenotypes.

Temporal associations of hip fracture subphenotypes with CVEs
were observed. In the between-individual analysis, the risks of MACEs
inClusters 1 and 2 inHKCDARS cohort andCluster 1 inUKTHIN cohort
were higher than that of the relatively healthy clusters, and the risks
decreased within one year following the hip fracture. Such findings
couldbe driven by the higher prevalence of prevalent cardiac events in
these clusters and other potential unmeasured confounders. However,
the differences in the event rates of MACE and all-cause mortality
between the hip fracture subphenotypes and the reference group of
MI patients partially supported that the subphenotypes identified by
LCAwerenot simply reiterations of traditional CVDpatient groups.We
further conducted SCCS analyses to address the between-person
residual confounding and to investigate the temporal patterns within
each identified cluster, which cannot be achieved through conven-
tional survival analyses. While the results revealed similar temporal
association patterns across clusters, consistently showing the highest

risk of MACE within 1–60 days after the hip fracture, it is important to
note that the risk of post-hip fracture MACE remained elevated even
among individuals classified as relatively healthy. Furthermore, a
higher risk of MACE was also observed in the interval of 31–60 and
61–90 days, which were periods unlikely to be affected by post-
operative cardiac complications. Collectively, although the temporal
patterns across clusters were similar, the risk of post-hip fracture
MACE in the clusters varied. Specifically, in HK CDARS, Cluster 2
exhibited the highest risk, followed by Cluster 1 and the relatively
healthy cluster. InUKTHIN, Cluster 1 had a higher risk compared to the
relatively healthy cluster. These findings suggested that hip fracture
per se could lead to short-term elevated risk of MACE and such tem-
poral elevated risk could be exacerbated by the presence of pre-
existing cardiac diseases and other comorbidities.

Our study has several strengths. First, this study implemented the
approach of LCA to investigate the heterogeneity among hip fracture
patients. LCA enables the identification of patient subgroups with
similar characteristics based on clinical and demographic variables,
without requiring predefined hypotheses or assumptions from
researchers. The risk and prognosis of different subphenotypes were
then evaluated through statistical methods including competing risk
regression and SCCS. Anothermajor strength is the inclusion of theUK
THIN cohort, which allowed the validation of the hip fracture sub-
phenotypes identified in the HK CDARS cohort. Medical studies uti-
lising clustering analysis (and machine learning in general) often rely
on homogenous patient samples, which limits the generalisability of
the identified clusters. This study effectively addressed the concern by
incorporating the twodiverse population cohorts. Further strengths of
this study include the large sample sizes and the utilisation of com-
prehensive statisticalmethods. Competing risk regressionwas used to
account for the competing event of death when computing hazard
ratios. The design of SCCS inherently controlled for the time-invariant
covariates and allowed the temporal association between hip fracture
and MACE to be evaluated. The SCCS design outperforms other
observational study designs in terms of efficiency and precision in
estimating exposure effects22.

There are limitations to this study. First, this study mainly used
predefined baseline diagnosis variables for clustering, and other types
of variables such as socioeconomic factors and laboratory features
were not available. Additional clustering variables could potentially
modify the assignment of hip fracture subphenotypes or reveal the
subphenotypes. However, using diagnosis variables as clustering
variables offers accessibility and convenience compared to variables
not routinely collected across EHR systems from different countries
and clinical settings. This facilitates external validationof the identified
subphenotypes and enables timely subphenotype assignment in clin-
ical care for patients with hip fracture. Secondly, in terms of SCCS,
patients with MACE that occurred on day 0 were excluded due to the
uncertainty of whether such a record should be considered a pre- or
post-exposure event. This might bias the IRR estimates in the first risk
period butwasmore likely to be an underestimation. In addition, older
adults with pre-existingMACEweremore likely to experienceMACE as
a postoperative complication after hip fracture23,24. This issue was
addressed by including only the first MACE and using shorter time
intervals. The first 60-day risk period was separated into 1–30 and
31–60 days. The generally significantly high IRRs in the 31–60 day risk
period, not just 1–30day, suggest the associationswereunlikely due to
postoperative complications. Third, due to the use of different diag-
nosis coding systems in the CDARS and THIN databases, the definition
of baseline conditions may vary between the two cohorts. Measures
were taken to ensure consistency, including referencing the health
data research (HDR) UK Phenotype Library for disease definitions and
utilising the UK Biobank’s resource to translate ICD-9 codes from
CDARS to Read codes in THIN. Additionally, the clustering solutions
generatedbyLCAwere not identical in the two cohorts. TheHKCDARS

Table 3 | Baseline characteristics of hip fracture sub-
phenotypes (UK THIN cohort)

UK THIN cohort

Variables Cluster 1 Cluster 2 SMD (p-valuea)

n 4966 22,982

Males, n (%) 1910 (38.5) 5274 (22.9) 0.341 (<0.001)

Age, mean (SD) 83.77 (6.85) 82.20 (7.81) 0.213 (<0.001)

Diagnosis record within 5 years before index date, n (%)

Coronary heart disease 2147 (43.2) 1090 (4.7) 1.010 (<0.001)

Congestive heart failure 1502 (30.2) 0 (0.0) 0.931 (<0.001)

Cerebrovascular diseases 1322 (26.6) 1525 (6.6) 0.557 (<0.001)

Hypertensive diseases 997 (20.1) 2658 (11.6) 0.235 (<0.001)

Arrhythmia and conduction
disorders

2263 (45.6) 1108 (4.8) 1.063 (<0.001)

Arterial disease 827 (16.7) 600 (2.6) 0.490 (<0.001)

Chronic obstructive pulmon-
ary disease

965 (19.4) 2085 (9.1) 0.300 (<0.001)

Hyperlipidemia 396 (8.0) 686 (3.0) 0.221 (<0.001)

Obesity 141 (2.8) 202 (0.9) 0.146 (<0.001)

Diabetes 727 (14.6) 1125 (4.9) 0.333 (<0.001)

Thyroid disorders 779 (15.7) 1866 (8.1) 0.235 (<0.001)

Chronic renal disease 1977 (39.8) 3031 (13.2) 0.633 (<0.001)

Liver diseases 33 (0.7) 66 (0.3) 0.055 (<0.001)

Osteoporosis 548 (11.0) 2669 (11.6) 0.018 (0.257)

Paget’s disease of bone 22 (0.4) 28 (0.1) 0.061 (<0.001)

Major fractures other than hip
fracture

501 (10.1) 2503 (10.9) 0.026 (0.103)

Connective tissue disease 256 (5.2) 781 (3.4) 0.087 (<0.001)

Osteoarthritis 1221 (24.6) 3719 (16.2) 0.210 (<0.001)

Depression 532 (10.7) 1324 (5.8) 0.181 (<0.001)

Dementia 551 (11.1) 2537 (11.0) 0.002 (0.928)

n number of independent patients, % percentage, SD standard deviation, SMD standardized
mean difference.
aP-values computed fromgroup comparison tests (Chi-square tests for categorical variables and
one-way ANOVA for continuous variables).
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and UK THIN databases differed significantly not only in terms of
clinical settings (hospital-based in HK CDARS versus primary care in
UK THIN), but also in the demographic composition of their popula-
tions (predominantly Asian Chinese in HK CDARS versus pre-
dominantly Caucasian in UK THIN), data entry behaviours, and
diagnosis coding systems. These diverse factors inherent to EHR
databases could affect the generalisability of LCA models and survival
analysis results. These variations may also explain the presence of an
additional CVE cluster in the Hong Kong cohort, potentially attributed
to a more comprehensive and timely capture of severe conditions in
the hospital-based CDARS when compared to the primary care-based
THIN. Moreover, underreporting of diagnoses due to factors such as
underdiagnosis and undercoding is a common issue in EHR databases.
The absence of a diagnosis code in the EHR databases, such as in
undiagnosed patients, would result in the condition being classified as
not present under our study’s definition of diagnosis variables. For
example, our reported baseline hypertensive disease prevalence of
13.1% in the UK THIN cohort was much lower than the prevalence of
29.7% in the general UK adult population reportedbyHealth Survey for
England (HSE)25. This underestimation aligned with a study validating
hypertension diagnosis coding in the UK THIN database, which
reported an underestimated prevalence of 14.0% using Read codes to
define hypertension25. The differences in the prevalence of clustering
variables (such as hypertension) between HK CDARS and UK THIN
could potentially contribute to the differences in the resulting clus-
tering solutions. Therefore, a cautious interpretation of the clustering
solutions is required. However, despite the variations between HK
CDARS andUKTHIN, ourfindings demonstrated consistency in several
key aspects across the two cohorts, including the identification of
subphenotypes with a pronounced presence of baseline CVE, and a
temporal association between hip fracture subphenotypes and MACE.
To reinforce the robustness of the LCA models, further independent
validations across EHR databases and populations are recommended,
as consistent clustering results in diverse settings would support the
generalisability of the LCA models. Future studies could also explore
alternative definitions of conditions using data beyond diagnosis
records.

This study has important implications. Notably, the LCA results
revealed subphenotypes with pronounced baseline CVE profiles
across two independent population-based cohorts, without any
preconceived assumption about CVE history being particularly
important among the clustering variables. Although current clinical
guidelines highlight the importance of perioperative evaluation and
optimisation for patients with a high cardiac risk26,27, there is a
noticeable lack of emphasis on CVE risk management in the specific
context of hip fracture care. For example, current heart failure

management guidelines rarely cover the management of osteo-
porosis and hip fracture risk in heart failure patients28,29. Our findings
supported by the previous studies emphasise the importance of
taking measures to mitigate the risk of hip fracture among heart
failure patients, given the potential poor prognosis after hip frac-
ture. Notably, our temporal analysis showed an immediate increased
risk of MACE after hip fracture, with the incidence rates of Cluster 2
in HK CDARS and Cluster 1 in UK THIN being particularly high. These
findings underscore the importance of prompt CVE risk manage-
ment especially in these high-risk patient groups.

The elevated CVE risk after hip fracture is inadequately docu-
mented in the literature, along with the association between pre-
existing CVE and the subsequent risk of CVEs in hip fracture patients,
especially considering multimorbidity is common in the older hip
fracture patient population30. Our study addressed this gap by quan-
tifying the associated risks, and the elevated risk of MACE within
60 days post-hip fracture across all subphenotypes highlighted again
the critical need for integrating CVEmanagement into the broader hip
fracture care strategy within the first year after hip fracture. Using the
relatively healthy cluster as the reference group, this comparative
framework allowed us to evaluate the relative prognosis of each
unique comorbidity cluster, thereby laying the groundwork for more
personalised management strategies and prioritisation of healthcare
resources.

Hip fractures are often managed as a homogenous condition,
yet the current study explored the heterogeneity among hip fracture
patients and reported variations in mortality, CVE risk and hospital
utilisation outcomes across subphenotypes. This variation empha-
sises the need to advance from conventional stratifications, such as
those relying on a single baseline condition or demographic factor,
to a more holistic, multimorbidity-focused approach in classifying
patients, as facilitated by LCA. To operationalise the subphenotyping
process, a digital tool could be developed and incorporated into the
electronic clinical management system for personalised manage-
ment of the hip fracture patients based on their subphenotypes. It is
crucial to acknowledge the population-specific nature of EHR data-
bases and the resulting LCA models. Thus, population-specific sub-
phenotyping models should be developed, instead of one single
model applying to all populations. Future studies should also be
conducted to evaluate if personalised treatment based on LCA-
derived subphenotypes is clinically useful in reducing the risk of CVE
in patients with hip fracture.

Methods
The protocol of this study was approved by the Institutional Review
Board in Hong Kong for the use of CDARS database (Reference

Table 4 | The association between hip fracture subphenotypes and 180-day outcomes of interest

HK CDARSa UK THINb

Cluster 1 vs 3 (ref) Cluster 2 vs 3 (ref) Cluster 1 vs 2 (ref)

Clinical outcomes HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

All-cause mortalityc 1.35 (1.28–1.42) <0.001 2.22 (2.10–2.34) <0.001 1.38 (1.28–1.49) <0.001

MACEd 1.97 (1.83–2.12) <0.001 4.06 (3.78–4.35) <0.001 1.84 (1.53–2.23) <0.001

Hospital outcomese IRR (95% CI) p-value IRR (95% CI) p-value IRR (95% CI) p-value

Number of hospital visits 1.49 (1.47–1.51) <0.001 2.02 (1.99–2.06) <0.001 NA NA

Number of A&E visits 1.47 (1.44–1.50) <0.001 2.04 (1.99–2.09) <0.001 NA NA

Total length of hospital stays in days 1.32 (1.32–1.33) <0.001 1.74 (1.73–1.75) <0.001 NA NA

HR hazard ratio, IRR incidence rate ratio, MACEmajor adverse cardiovascular events, A&E accident and emergency, CI confidence interval.
an = 78,417 independent patients in HK CDARS (n = 16,762 in Cluster 1; n = 9860 in Cluster 2; n = 51,795 in Cluster 3).
bn = 27,948 independent patients in UK THIN (n = 4966 in Cluster 1; n = 22,982 in Cluster 2).
cHRs, associated 95% CIs and two-sided p-values are derived from Cox proportional regression, with adjustment of age and sex.
dHRs, associated 95% CIs and two-sided p-values are derived from competing risk regression, with adjustment of age and sex.
eIRRs, associated 95% CIs and two-sided p-values are derived from Poisson regression, with adjustment of age and sex.
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Number: UW22-076), and the Scientific Review Committee (SRC) in
the UK for the use of THIN database (Reference Number: 23SRC001).
IQVIAMedical Research Data (IMRD) incorporates data from THIN, a
Cegedim Database. Reference made to THIN is intended to be
descriptive of the data asset licensed by IQVIA. The research was
conducted in compliance with all ethical regulations. Informed
consents were exempted as all patients were non-identifiable in
this study.

Overview
First, we used the LCA to subphenotype the hip fracture cohorts from
HongKong and the UK, derived from electronic health records (EHRs).
Second, survival analysiswas conducted to investigate the associations
between the identified hip fracture subphenotypes and MACE, all-
cause mortality and health service utilisation outcomes. Finally, the
temporal association between hip fracture and MACE was explored
using two approaches: the between-individual comparison approach
of competing risk regression and the within-individual comparison
approach of SCCS.

Data sources
Two independent hip fracture patient cohorts were constructed using
EHRs from the CDARS database in Hong Kong and THIN database
in the UK.

CDARS is used for audit and research purposes in the public
healthcare systemmanaged by theHospital Authority in Hong Kong. It
captures clinical information of patients including demographics,
diagnoses, prescriptions, procedures, laboratory tests and mortality
from 43 public hospitals and 122 outpatient clinics in Hong Kong.
CDARS covers >80% of hospital admissions in HK, and around 98% of
hip fracture cases in HKwere admitted to hospitals under HA31. THIN is
a primary care EHR database covering about 6% of the population with
more than 700 general practitioner practices in the UK, and has been
shown to be representative of the general UK population in terms of
demographics, chronic condition prevalence and mortality rates32.

The International Classification of Diseases (ICD) code system is
used by healthcare professionals to record diagnosis data in HK
CDARS, while the Read code system is used by general practitioners to
record diagnoses in the UK THIN. The data quality of both databases
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Fig. 1 | The association between hip fracture subphenotypes and outcomes of
interest. a All-cause mortality and MACE. b Hospital outcomes (HK CDARS only).
Data are presented as adjusted HR and associated 95% CI derived from the Cox
proportional regression for All-cause mortality, and competing risk regression for
MACE. For the hospital outcomes, data are presented as adjusted IRR and asso-
ciated 95%CI derived from Poisson regression. TheHR and IRR are indicated by the
central symbol, and the 95% CI are indicated by the error bar. The dashed line

represents a HR/IRR of 1. Cluster 3 in HK CDARS and Cluster 2 in UK THIN are the
reference groups. n = 78,417 independent patients in HK CDARS (n = 16,762 in
Cluster 1; n = 9860 in Cluster 2; n = 51,795 in Cluster 3). n = 27,948 independent
patients in UK THIN (n = 4966 in Cluster 1; n = 22,982 in Cluster 2). MACE major
adverse cardiovascular events, HR hazard ratios, CI confidence interval, A&E acci-
dent and emergency, IRR incidence rate ratios.
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has been validated for the purpose of epidemiological research33,34.
Both databases have been used to conduct population-wide observa-
tional studies associated with hip fracture in Hong Kong3,6,35–37 and the
UK38–40.

Study design
In the CDARS, patients aged ≥65 years admitted to hospital with newly
diagnosed hip fractures between January 1, 2005 and December 31,
2020 were identified using the ICD-9 codes of 820.XX. Only the
patients who survived until hospital discharge were included and the
index date was defined as the hospital discharge date.

In THIN, Read codes were used to identify patients aged ≥65 years
with newly diagnosed hip fractures between January 1, 2005 and
December 31, 2018. Unlike CDARS which is a hospital EHR database,
THIN is implemented in a primary care setting, and therefore the hip
fracture event date recorded by the general practitioners was used as
index date instead of hospital discharge dates.

Clustering variables and variables harmonisation
Twenty-two variableswere chosen as candidate variables for clustering
(Supplementary Table 12). The list of variables includes the demo-
graphic variables of sex and age, and a set of 20 individual baseline
diagnosis variables associated with hip fracture identified in previous
studies3,6. These diagnosis variables were identified from the previous
literature with consideration including biological plausibility, and
included disease classes, e.g., cardiovascular diseases, respiratory-
related diseases, and endocrine andmetabolic disorders. The baseline
status of each diagnosis variable was defined as the presence of a
diagnosis record in the 5-year period prior to the index date. The sex
variable was determined based on the information health profes-
sionals recorded in HK CDARS and UK THIN. As highly correlated
clustering variables could lead to bias in the clustering results, the
correlations among cluster variables were computed by Spearman’s
rank correlation coefficients and a correlation coefficient of >0.5
represents a pair of highly correlated variables.

To harmonise the identification of variables in the CDARS and
THINdatabases, weused theHDRUKPhenotype Library41, whichoffers
a standardised approach formapping diagnosis codes across different
coding systems in EHR systems (e.g., ICD-9 and Read codes for this
study). This open-source resource provides the diagnosis codes for a
comprehensive list of phenotypes. Furthermore, the UK Biobank’s
resource 592 “Clinical coding classification systems and maps” was
utilised to translate the ICD-9 codes used in the HK CDARS cohort to
Read codes in the THIN cohort to define the baseline diagnosis
variables42.

Outcome ascertainment
All the outcomes of interest in this study reflected the prognosis of hip
fracture patients. The primary outcomes were all-cause mortality and

MACE, which were defined by stroke, MI, or hospitalisation due to
heart failure (HF) through an A&E visit in HK CDARS43 (Supplementary
Table 13). In UK THIN, MACE was defined by stroke or MI. HF hospi-
talisation was unavailable in the primary care database THIN. All the
outcomes were defined as the incidence within 180 days after the
index date, sincewepreviously observed that the temporal association
was mainly confined to the first 180 days after hip fracture6. The sec-
ondary outcomes were on health service utilisation, including the
number of hospital visits, the number of A&E visits, and the total length
of hospital stays (in days) within the 180-day period after the index
date. Similarly, the secondary outcomes were only available in the
hospital-based HK CDARS cohort, but not in the primary care-based
UK THIN cohort.

Latent class analysis
LCA was applied to identify hip fracture subphenotypes, which
represent patient subgroups sharing similar characteristics. In LCA,
class membership probabilities were computed for each patient,
allowing for the assignment of each patient to the cluster with the
highest membership probability. One notable advantage of LCA is its
nature as amodel-based clusteringmethod, enabling the calculationof
model fit statistics to determine the best model with the optimal
number of clusters9. The availability of the statistical assessment on
clustering solutions enhances the robustness of LCA compared to the
conventional clustering algorithms such as k-means clustering, and
was shown to be the optimal clustering algorithm for health data
among various commonly used clustering algorithms12.

Following the design of conventional machine learning studies44,
the CDARS cohort was randomly split into the training (70%) and
internal test (30%) sets, and the entire THIN dataset served as an
independent external validation cohort (Supplementary Fig. 1). The
number of clusterswas the crucial parameter for the optimal clustering
solution. Bayesian information criterion (BIC), average silhouettewidth
(ASW), and integrated complete likelihood (ICL) were used for model
comparison. A clusteringmodelwith a lower BIC, higher ASWor higher
ICL is preferred as these are indications of abettermodelfit45. Using the
HKCDARS training set, iterations of LCAwere run from 1 to 10 clusters,
with BIC, ASW and ICL computed at each iteration. The BIC, ASW and
ICL values of the ten models were then compared to determine the
model with the best performance and the corresponding optimal
number of clusters. This process was independently repeated on both
the HK CDARS internal test set and the UK THIN external dataset to
assess the reproducibility and generalisability of the LCA solution.

Descriptive statistics were computed to report and compare the
baseline characteristics of each LCA-generated cluster. Continuous
variables were summarised by mean and standard deviation (SD), and
categorical variables were summarised by frequency and percentage
(%). Standardised mean differences (SMD) were computed to evaluate
the differences between the clusters in terms of the clustering

Table 5 | Results of the SCCS analysis for the temporal association of hip fracture subphenotypes with the risk of MACE in
HK CDARS

Cluster 1 Cluster 2 Cluster 3 Whole

Hip fracture exposure win-
dow, d

No. of
events

IRRa (95% CI) No. of
events

IRRa (95% CI) No. of
events

IRRa (95% CI) No. of
events

IRRa (95% CI)

2005 1695 2666 6366

1–60 d 146 1.84 (1.54, 2.20) 114 1.99 (1.62, 2.45) 308 2.05 (1.81, 2.33) 568 1.93 (1.76, 2.11)

61–120 d 70 0.9 (0.70, 1.15) 86 1.53 (1.22, 1.93) 211 1.39 (1.20, 1.62) 367 1.25 (1.12, 1.39)

121–180 d 62 0.81 (0.63, 1.05) 63 1.15 (0.89, 1.50) 161 1.01 (0.86, 1.20) 286 0.97 (0.86, 1.10)

Baseline periodb 1727 1 (Reference) 1432 1 (Reference) 1986 1 (Reference) 5145 1 (Reference)

MACEmajor adverse cardiovascular events, d day, IRR incidence rate ratios, CI confidence interval.
aIRR, incidence rate ratio adjusted for age by quintiles.
bBaseline period indicates 366 days before hip fracture plus 181–732 days after hip fracture.
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variables. SMD values of 0.2–0.5, >0.5–0.8, and >0.8 were considered
to have small, medium, and large differences between groups,
respectively46. To further assess cluster similarity between training and
test sets, bivariate Pearson’s correlation coefficients were computed
based on the conditional probabilities for all the clustering variables
resulting from the LCA solution. A correlation coefficient closer to one
represents high association between two clusters.

Survival analysis
After validating the robustness of the LCA solutions on both HK
CDARS training and test sets, the two sets were merged to increase
power for all the subsequent prognosis analyses. Cox proportional
hazard model was used to investigate the associations between the
identified hip fracture subphenotypes and all-cause mortality. Given
that the 180-day mortality following hip fracture is high, the com-
peting risk regression model was used to evaluate the association
between hip fracture subphenotypes and MACE, with death being
the competing event. The secondary outcomes of the number of
hospital visits, number of A&E visits and the length of hospitalisation
were investigated using Poisson regression. Age and sex were
adjusted in all the models. Hazard ratios were computed from the
Cox and competing risk regression models, while incidence rate
ratios were computed from the Poisson regression models. For all
the models, 95% CIs were computed, and statistical significance was
defined as a 2-sided p-value < 0.05.

Sensitivity analyses were conducted: (1) excluding patients with
MACE within 30 days after the index date since such an event could
potentially represent a post-operative cardiac complication or a
delayed coding of a cardiac event just before a hip fracture; (2) refining

theMACEoutcome toMACEhospitalisations admitted through anA&E
visit due to any of the events stroke,MI or HF, which further addressed
the potential issue of a pre-existing CVE being coded as a post-fracture
diagnosis record.MACE hospitalisation served as a stringent definition
of the cardiac outcome, as only a new hospitalisation event due to
MACE was regarded as a post-fracture MACE. Another sensitivity
analysis was also performed using a more conventional definition of
MACE in HK CDARS, which included only acute myocardial infarction
and stroke47. Furthermore, stratified analyses were conducted to
evaluate the associations between the hip fracture subphenotypes and
the outcomes of MACE andmortality, across sex, age, and the types of
surgical treatment received (internal fixation and partial hip
replacement).

Temporal analysis
The temporal association between the hip fracture subphenotypes and
MACE was explored using competing risk regression and SCCS. Since
our previous study demonstrated an immediate risk of MACE in hip
fracture patients when compared to a healthy control group6, the
temporal association was investigated by comparing the post-fracture
MACE risk across clusters, following the competing risk regression-
based design with hazard ratios computed at 90, 180, 270 and
366 days after index date.

In the SCCS analysis, only patients with both exposure (hip
fracture) and outcome (MACE) and with two years of follow-up data
available after the index date, were included in the analysis. Patients
with the outcome of interest were followed from 366 days before the
hip fracture to 732 days after it (Supplementary Fig. 7). The risk
periods were 1–60, 61–120 and 121–180 days. On the individual level,
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Fig. 2 | Temporal association of hip fracture subphenotypes with the risk of
MACE in the within-individual analysis using SCCS. a HK CDARS; b UK THIN.
Data are presented asestimated IRR and associated95%CI. The IRR are indicatedby
the central symbol, and the 95% CI are indicated by the error bar. The dashed line

represents an IRR of 1. MACE major adverse cardiovascular events, d day, IRR
incidence rate ratios, CI confidence interval. IRR, incidence rate ratio adjusted for
age by quintiles. Baseline period indicates 366 days before hip fracture plus 181 to
732 days after hip fracture.

Table 6 | Results of the SCCS analysis for the temporal association of hip fracture subphenotypes with the risk of MACE in
UK THIN

Cluster 1 Cluster 2 Whole

Hip fracture exposure window, d No. of events IRRa (95% CI) No. of events IRRa (95% CI) No. of events IRRa (95% CI)

382 844 1226

1–60 d 38 3.35 (2.28, 4.92) 99 2.25 (1.81, 2.81) 137 2.43 (2.01, 2.94)

61–120 d 14 1.27 (0.72, 2.23) 42 0.95 (0.69, 1.31) 56 1.00 (0.76, 1.32)

121–180 d 16 1.49 (0.88, 2.55) 47 1.06 (0.78, 1.43) 63 1.13 (0.87, 1.46)

Baseline periodb 314 1 (Reference) 656 1 (Reference) 970 1 (Reference)

MACEmajor adverse cardiovascular events, d day, IRR incidence rate ratios, CI confidence interval.
aIRR, incidence rate ratio adjusted for age by quintiles.
bBaseline period indicates 366 days before hip fracture plus 181–732 days after hip fracture.
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all the fixed confounders were controlled implicitly; the risk of the
event during the risk periods was compared to that of the control
periods, where the IRR was constant and equalled 1.0. The null
hypothesis, where IRR = 1.0, implied that the event rate remained
constant during the entire observation period and was not affected
by having a hip fracture. Since we cannot determine whether the
event that happened onday 0was after or before the exposure based
on the diagnosis codes and date, we excluded those with events on
day 0. All the analyses were also performed in each of the hip frac-
ture subphenotypes.

Only the first event of MACE was included in the SCCS analysis.
The SCCS design assumes an event does not influence the sub-
sequent period of observation or subsequent exposures. However, it
is known that cardiac events are associated with an increased risk of
hip fractures20,48. To address this issue, we adopted the modified
SCCS model with event-dependent exposure49. Similarly, SCCS
assumes the occurrence of the outcome event does not shorten the
observation period50. We therefore excluded those censored before
the end of the observational period. The IRRs were adjusted for age
at the exposure by quintile age groups. The robustness of the SCCS
analysis was evaluated by (1) using shorter exposure intervals (i.e.,
1–30, 31–60, 61–90, 91–120, 121–150 and 151–180 days after the
exposure), given that MACE occurred in the period 1–30 days after
the exposure could be attributed to post-operative cardiac events24

and (2) considering only the post-hip fracture period as the baseline
period.

All the statistical analyses were conducted in R51. The R package
poLCA52 (version 1.6.0.1) and the R script published by Lezhnina and
Kismihok45 (2022) were used to run the LCA, the package “cmprsk”
(version 2.2-11) was used to run the competing risk regression53, and
the package “SCCS” (version 1.6) was used for the SCCS analyses50.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study cannot be shared with the public due to
third-party use restrictions and patient confidentiality concerns. The
HK CDARS EHR database is directly under the control of the Hong
Kong Hospital Authority. Local academic institutions, government
departments, or non-governmental organisations can apply for access
to CDARS data through Hong Kong Hospital Authority Data Sharing
Portal (https://www3.ha.org.hk/data). The detailed application proce-
dure can be found at https://www3.ha.org.hk/data/Provision/
ApplicationProcedure. The UK THIN, a Cegedim EHR Database, is
licensed by IQVIA. It is available for researchers from academic, public
health, research establishment, charitable, commercial and regulatory
bodies through purchase. Information on IQVIA Medical Research
Data (IMRD) which incorporated the UK THIN data, can be found at
https://www.iqvia.com/locations/united-kingdom/information-for-
members-of-the-public/medical-research-data. Applications to access
the UK THIN data can be made via https://www.the-health-
improvement-network.com/.

Code availability
This study did not generate any new algorithm/model. Statistical
analyses were performed using R software (version 4.3.0; R Founda-
tion for Statistical Computing, Vienna, Austria) through R packages
provided in the ‘Methods’. The codes used in the analyses are available
from the corresponding author.
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