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Abstract: Purpose: E-waste management (EWM) refers to the operation management of discarded
electronic devices, a challenge exacerbated due to overindulgent urbanization. The main purpose of
this paper is to amalgamate production engineering, statistical methods, mathematical modelling,
supported with Machine Learning to develop a dynamic e-waste supply chain model. Method
Used: This article presents a multidimensional, cost function-based analysis of the EWM framework
structured on three modules including environmental, economic, and social uncertainties in material
recovery from an e-waste (MREW) plant, including the production–delivery–utilization process.
Each module is ranked using Machine Learning (ML) protocols—Analytical Hierarchical Process
(AHP) and combined AHP-Principal Component Analysis (PCA). Findings: This model identifies
and probabilistically ranks two key sustainability contributors to the EWM supply chain: energy
consumption and carbon dioxide emission. Additionally, the precise time window of 400–600 days
from the start of the operation is identified for policy resurrection. Novelty: Ours is a data-intensive
model that is founded on sustainable product designing in line with SDG requirements. The combined
AHP-PCA consistently outperformed traditional statistical tools, and is the second novelty. Model
ratification using real e-waste plant data is the third novelty. Implications: The Machine Learning
framework embeds a powerful probabilistic prediction algorithm based on data-based decision
making in future e-waste sustained roadmaps.

Keywords: supply chain sustainability; e-waste management; sustainable production; machine
learning; kinetic modeling; global optimization

1. Introduction

E-waste management (EWM) is a global challenge with complexities beyond general
waste management [1,2]. Issues like energy efficiency, carbon footprint, availability, hetero-
geneity, technology management, and overall administration impact the supply chain. To
add to the challenge, these factors often evolve asynchronously leading to the randomized
time evolution kinetics of an e-waste supply chain network (SCN), which we refer to as
uncertainties. E-waste management is a lucrative sector, driven by rapid urbanization and
high consumer demand for electronic devices. Such demands have escalated manifold in
the past decade [3–6]. The supply-to-demand ratio targets short innovation cycles, afford-
able pricing, and eye-catching features. A tacit underlier has been the ever-decreasing life
span of electronic items [6], a marketing accessory embedded in the supply chain structure
to prevent market stagnation. This contributes to higher product obsolescence, as laterally
accepted by the United Nations as well, termed as a ‘tsunami of electronic waste’ [7].

It is a well-known fact that e-waste is the world’s fastest growing waste stream [8].
The worldwide generation of e-waste was nearly 62 million metric tons in 2022, which is
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expected to reach 82 million metric tons by 2030, and 120 million metric tons by 2050 [9,10].
E-waste is a very heterogeneous material and it contains an assortment of materials includ-
ing metals, polymers, and siliceous materials, including glass [11,12]. E-waste contains a
greater volume of metals than natural ores and hence it becomes highly lucrative to recover
metals from e-waste [13,14]. Hence, e-waste streams trap a huge amount of metallic and
non-metallic resources, which deems the urban mining of e-waste not an option anymore,
but rather a necessity [15].

Industrially, Material Recovery from E-waste is mainly accomplished through me-
chanical recycling, where the metallic fraction is often transported to sister companies or
third-party smelters [13,16]. Material Recovery from E-waste (MREW), a contemporary
framework, advocates the fact that amalgamating both mechanical and chemical recycling
of e-waste under one umbrella can boost urban mining [13,15]. In developing nations, in-
formal sectors preponderate the resource recovery from e-waste chains using rudimentary
technologies for metal extraction [17,18]. This results in an inefficient MREW supply chain,
which is not a closed loop incumbency, thus affecting business cycles in the longer run [15].
The erratic and uncontrolled use of technology and disposal schemes attribute a strong
stochastic element to the e-waste generation process. Typical examples of this relate to
heterogeneous material, energy efficiency, secondary emissions, recovery efficiency, supply
uncertainty, etc. Hence, the efficiency and the flexibility of the SCN play a pivotal role
in determining the profitability profile of an MREW facility. The following subsections
outline the published literature on the e-waste supply chain network, its sustainability, and
related issues.

1.1. E-Waste Supply Chain Network and Supply Chain Sustainability
1.1.1. General Literature on E-Waste SCN and Application of MCDM Techniques

The SCN of e-waste is a technically complex routine that is even more interesting
due to the versatility of the supply chain dynamics [3,4]. There is extensive literature
available on e-waste SCN. Hazra et al. [19] analyze e-waste SCN issues in India, which
serves as a template for the e-waste menace faced by developing countries. Sharma
et al. [20] presented an Analytic Hierarchy Process (AHP)-based approach for optimizing
delivery SCN, which focuses on qualitative and quantitative aspects together. AHP was
projected as a possible administrative tool for e-waste management focusing on three
pillars of sustainability, as well as political and technological aspects [21]. Again, AHP was
utilized by Lin et al. [22] to investigate multiple criteria of supply chain management of
notebook laptops. They developed a sensitivity model for escalated implementation of
supply chain strategies. Recently, Karuppiah et al. [23] utilized a combination of the fuzzy
delphi method (FDM), fuzzy AHP, and fuzzy measuring attractiveness by the categorically
based evaluation techniques (FMACBETH) and QFD to identify sustainable supply chain
strategies. This study integrates the Business Operations model with multiple Multi-
Criteria Decision Models (MCDMs) techniques by exploiting the economic theory of duality
between production and cost.

1.1.2. Issues and Challenges in E-Waste SCN

The issue of a sustainable e-waste supply chain has been dealt with by focusing on the
prerequisites of a sustainable e-waste recycling plant. The outcome of this study primarily
addressed requirements from the perspective of production and environmental engineers,
although some of that could qualify as operational management issues as well [24]. Wang
et al. [25] analyzed the effect of Chinese government subsidy on e-waste SCN of both formal
and informal scenarios. The primary revolutionary work on e-waste SCN was crafted by
Ghosh et al. [18]. The supply chain mapping executed by them was highly concentrated
on BRICS nations, yet the concerns highlighted were surprisingly more widely applica-
ble. They highlighted compliance to the Basel Convention, transboundary movement,
informal handling of e-waste, rudimentary processing of e-waste in developing countries,
incompetence of formal collection, etc., as major issues. Cruz-Sotelo et al. [26] mapped the
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e-waste supply chain in Mexico and presented a legal framework for sustainable e-waste
management in Mexico. Baidya et al. [27] recognized the drawbacks of the e-waste SCN in
India using AHP and proposed an alternative of sustainable SCN framework. Recently,
Debnath et al. [3] discussed the sustainability aspects of e-waste supply chain network
in detail, and explored the role of new and emerging information and communication
technology in greening the supply chain network.

1.1.3. Application of Mathematical Modelling of E-Waste SCN

From the mathematical modeling perspective, Isernia et al. [28] analyzed the efficiency
of the reverse SCN of e-waste in Italy within a circular economy framework. They relied
on the probability transition matrix method to evaluate the collection efficiency of the
collection centers with the threshold targets defined by the European Union. Polat et al. [29]
employed fuzzy mathematics to model an e-waste SCN considering sales prices, product
weights, costs, and product demands as the fuzzy parameters that reflect the uncertainties
in the real-life model much more efficiently. The model developed by Wang et al. [30]
is structured on a three-echelon game theoretic supply chain model that estimated the
optimal pricing decision and government subsidies with stakeholders, considering the
e-waste remanufacturing utilization rate as a key parameter. Moradi et al. [31] developed a
sustainable and generic e-waste supply chain network based in London focusing on circular
economy. Ghalehkhondabi and Ardjmand [32] used a game theory approach to model an
e-waste supply chain with three players including the government, a recycling center, and
a collection center, and analyzed different scenarios of material recovery, sustainability,
and supply chain profits. Baidya et al. [33] have used a combined AHP-QFD to prioritize
different issues and challenges prevailing along the e-waste supply chain. They validated
their method findings through case studies in India and China. The study compared
the supply chain networks of India and China and discussed the sustainability aspects
qualitatively. Recently, Karuppiah and Sankaranarayanan [34] integrated a fuzzy set (FFS)
with AHP, and Decision-Making Trial and Evaluation Laboratory (DEMATEL).

1.2. Research Gap and Research Questions

The e-waste market is uncertain and susceptible to market volatility. Hence, it is
imperative to identify the sensitive nodes that can reduce uncertainty and maximize profit.
Ambiguity in the e-waste SCN needs immediate attention, as it can affect the profitabil-
ity trend. A MREW facility performing “Mechanical Recycling of E-Waste” has many
economic constraints to abide by environmental regulations, an aspect that contributes
towards environmental uncertainty. However, this does not rule out the effects of other
uncertainties—economic and social uncertainty.

The supply chain literature is replete with examples of applications of Machine Learn-
ing (ML) and Deep Learning (DL), including Artificial Intelligence (AI) [35,36]. Mixed
integer nonlinear programming [37], fuzzy mathematics [38], robust optimization [39],
intelligent algorithms [40], scenario programming [41], stochastic programming [42], and
multivariate multi-layered AI [43] have all been used to analyze stochastically driven sup-
ply chains. While even e-waste prognosis under an ML/AI route is not an entirely virgin
territory, we need to understand that, structurally, an e-waste supply chain network is a
reverse flow network. Such networks are inherently complex and heterogeneous [44] and
require special treatment and specific models [45]. Typical examples include but are not lim-
ited to the implementation of game theory [46], system dynamics modelling approach [47],
evolutionary game analysis [48], fuzzy mathematics [29], combined MCDM techniques [23],
etc. Since the SCN of e-waste is distinctively different from a generic SCN, there is a clear
research gap that can integrate the time evolution of uncertainties evolving from the three
pillars of sustainability in a SCN framework. The following research questions arise from
the previous analysis:

• How to analyze time evolution kinetics of uncertainties evolving from the three pillars
of sustainability and optimize the e-waste SCN?
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• How business profit, constrained by incumbencies, is related to the cost kernel?
• How the minimization of cost kernel can provide stable and optimal solutions while

addressing the complexities and heterogeneities of the e-waste SCN?
• How does the hybrid AHP-PCA formalism improve the ranking of the variables

affecting the cost kernel and what impact will this have on the opertional efficiency
and green supply chain practices?

1.3. Objectives and Novelty of the Study

Under the current investigation, we have extended a recent method developed by
Debnath et al. [5] for the optimization of a supply chain cost kernel with uncertainty
components affecting it. The underlying technique extrapolates the knowledge base from
the physics of mechanics, economics of operations, and the mathematics of stochastic
processes to analyze a dynamically evolving ‘free energy’ model. The model used in
this present work structurally follows a similar mathematical description as in Debnath
et al. [5], but intrinsically differs in the definition of the basic cost function. Three modes of
uncertainty, from the three pillars of sustainability, respectively, have been used as inputs
in our model. The individual (time-evolving) contributions from the three ‘supply lines’
are then ranked first through an independent AHP, followed by a cross-verification and
benchmarking through Principal Component Analysis (PCA). The impacts of unconstrained
and constrained environments are then separately analyzed supporting on the dynamic
variables within this structure, leading to a clear identification of the operational windows
for a green SCN. The following are our research objectives:

• To develop a model of a dynamic production process, with three pillars of sustainability
(economic, environmental, and social), and derive from it a quadratic cost kernel that
can optimize business performance that is consistent with SDG.

• To investigate the effects of AHP and combined AHP-PCA to rank and determine the
interrelationships of the uncertainty variables on the developed model determining
the profitability of the e-waste recycling facility.

• To identify the most delicate nodes and dedicated operational windows for a resilient
e-waste SCN by studying the time evolution dynamics of the leading variables.

Our model integrates all possible cost components based on the ‘Utilization-to-cradle’
regime. One can add or remove components in the cost function and rework the problem.
If it is redundant, then the dimension of the resulting matrix in Equations (10) and (13) will
be reduced (Section 3.2). The choice is ultimately with the concerned recycler, as, after all,
they know their SCN best. This inherent self-sufficiency is the beauty also known as the
novelty-cum-flexibility of the model.

2. Materials and Methods
2.1. Concept and Mathematical Background

Supply chain networks can be addressed from the perspective of Life Cycle Assessment
(LCA), and the range can vary based on the approach taken, such as cradle-to-cradle, cradle-
to-gate, gate-to-gate [5,11] etc. Figure 1 illustrates different boundaries of the supply chain
based on LCA concepts. In this study, we consider a generalized version of an e-waste
SCN, starting from the consumers and ending with the 3rd party recyclers handling the
recovered materials from e-waste, translating to a “utilization-to-cradle” model [5].

The current investigation exclusively develops a cost function-based supply chain
model for Material Recovery from E-waste (MREW) facilities catering to both mechanical
and chemical recycling. An MREW facility can be defined as an integrated facility that can
perform size reduction by implementing mechanical recycling as well as recover materials
using the MREW technologies such as pyrolysis, hydro-, pyro-, and bio-metallurgical
technologies etc. [13]. The model complements three uncertainty modules evolving from
the three pillars of sustainability that affect the supply chain sustainability, each weighted
by its weight factor.
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The optimization of a cost kernel is a central feature of many models reviewed in
the previous section. Thus, a proper specification of such a cost kernel is quite central to
the modeling effort. That cost function specification has two parts, including a theoretical
justification and an empirical counterpart. In this study, we draw upon the business
economic theories of duality in multiproduct translog production and its dual translog
cost function to justify a quadratic cost function. The empirical analysis of production
and cost functions received a big boost with the pioneering contributions by Diewert [49]
and McFadden [50], establishing the duality between them. The actual specification must
reflect the intricate production structure with the underlying separability of production and
distribution activities into a hierarchical network. To capture that hierarchical pattern and
to derive its specification empirically, we employ the Analytic Hierarchy Process (AHP).
The target here is to rank the affecting variables in order of their contribution (through
PCA) so that the reweighed cost matrix depicts functional real relationships between the
inputs and the potential output on one hand, and the cost of the minimum inputs needed
to produce any given output on the other.

2.2. Study Methodology

A new model for e-waste supply chain sustainability has been introduced, which
follows the mathematical kernel outlined in Debnath et al. [5]. Here, we have used two
popular Machine Learning algorithms, i.e., AHP and PCA, and integrated them to develop
a new hybrid AHP-PCA method for ranking the uncertainty variables. The algorithm is
detailed later in Section 3.2.3. The overall methodology has been outlined in the running
flowchart in Figure 2.

Initially, data on e-waste plants are collected and factors affecting the uncertainty of
the e-waste supply chain are identified. Then, the cost function-based model is developed.
Then, it is converted into an optimization problem. As detailed above, AHP and hybrid
AHP-PCA methods are used to derive the weight factors and the interrelation coefficients.
Thereafter, a Hessian matrix H is developed using the second derivatives of the model.
H ≥ 0 defines optimization. This model is dynamically constrained using Lagrange
multipliers. The coupled set of equations for both constrained and unconstrained cases are
solved using MATLAB 2019b (bvp4c) [5], using appropriate boundary conditions depicting
an e-waste recycling plant. Real-life data obtained from an anonymous leading Indian e-
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waste management company are used for validation purposes. The results enable informed
decision making for cleaner production lines leading to a greener supply chain.
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3. Mathematics and Modeling
3.1. Modelling Approach
3.1.1. Model Assumptions

The assumptions considered in the model are stated below:

(i) Numbers are recorded daily, totaling 300 working days and 10 working hours daily.
(ii) The model is developed considering a Material Recovery from E-waste (MREW) [13]

facility performing both mechanical recycling and material recovery (wet processes).
(iii) The cost of recycled products remains constant over time.
(iv) Unit costs remain constant.
(v) Legislative costs and costs towards disposal of hazardous materials in a TSDF remain

constant annually.
(vi) The interdependency of the dependent variables has been assumed to be quadratic

order accuracy.

3.1.2. Model Descriptions

The model uses three stochastic ‘forces’ of volatility as inputs, each of which pertains
to the e-waste SCN derived from the three pillars of sustainability [5]. We assume, as
suggested by the duality theory of production and cost [50], a quadratic cost function-
based model, where minimization of the cost function kernel defines the time dynamics
of the flow (Equation (1)). The structure resembles that of Eulerian mechanics (Goldstein
1964) where the cost function plays the role of a ‘free energy’ potential, whose optimized
dynamics leads to the paradigmatic Euler–Lagrange model.
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The uncertainty in the system arises from different segments of production and dis-
tribution functions, starting from uncertainty in the input markets and ending up with
uncertainty in the final demand for the main outputs of the firm. We can specify a multi-
product, multi-input production relation as follows:

g(q1, q2, . . .. qs) = f(r1, r2, . . .. rt; l1, l2, . . . lp; k1, k2, . . . ku; e), (1)

where q1, q2, . . .. qn are n different outputs produced by the firm including waste products,
r1,r2,. . .. rt are the different raw materials used in production, l1, l2, . . . lp are p types of
human inputs, and k1, k2, . . . ku are u types of capital goods used in production. Finally, e is
the energy input. This relationship is linear in parameters and nonlinear in variables where
the left and right sides of Equation (1) are linear in parameters and are chosen to maximize
the canonical correlation [51]. Using Shephard’s duality, Diewert made a pioneering
contribution in establishing a duality relationship between production and cost functions,
a translog function being the most prominent one [50]. It is a quadratic approximation of
the function expressing the logarithm of outputs as logarithms of all the inputs, keeping
one of the outputs, such as the main output of the firm, as the reference or numeraire
commodity. Pulley and Braunstein [52] specify a quadratic function in logarithms for a
multiproduct cost function. Expression in logarithms is a typical choice by economists
as it happens to generalize a very popular production function in economics that is just
linear in logarithms. The quadratic cost function can be decomposed into three components
including environmental, social, and economic. At each level of decomposition, it could
incorporate an uncertain element. The following quadratic cost function can thus be
treated as drawn from the duality relations between production and cost, underlying the
production of the SMEs we are examining.

F = CEnvironmental + CSocial + CEconomic, where (2)

CEnvironment = ∑ VCO2 f1 + ∑ Ec f2 + ζ
(
∑ WP f3 + ∑ Ww f4

)
(3)

CSocial = ∑ N1 f5 + ∑ N3 f6 (4)

CEconomic = ∑ N4 f7 − ∑ N5 f8 − ∑ N7 f10 − ∑ N8 f11 − ∑ N9 f12 (5)

This model has been developed for an e-waste supply chain network. The topic
relates to key environmental concerns. The three basic cost functions are a collection of
variables from environmental, economic, and social aspects. Equation (3) collectively
represents the cost function of the variables that affect the environment directly, i.e., due
to the operations, there is an environmental impact. In Equation (5), the cost function
of the collective economic variables is defined. For example, in No. of recycled product
(N4), here the variable is basically “product”, the adjective “recycled” is added because
the product is a yield from the recycling activities, just like No. of Products was present in
our earlier model. Again, No. of waste materials being sent to the Treatment, Storage and
Disposal Facility (TSDF) (N8), is an economic indicator because the landfilling in TSDF is
chargeable. This cost has been considered in the economic part. Similarly, the social cost
function includes two components, i.e., the workers part and the awareness generation
part. The overall e-waste awareness is low in India, which is a big problem. Companies
whose data have been used in this study conduct regular awareness activities in schools,
colleges, and social media, which is the social aspect in the case of e-waste management.

The three function modules outlined in Equations (3) and (4) are derived from the three
pillars of sustainability, namely environmental uncertainty (Equation (3)), social uncertainty
(Equation (4)), and economic uncertainty (Equation (5)). Each uncertainty function module
consists of a linear combination of two or more variables affecting the e-waste supply chain
sustainability, categorized as environmental, social, or economic uncertainty, respectively.
These variables have been categorically chosen to study and understand each major and
minor perturbation along the e-waste SCN. These variables cover a wide range of aspects
as they unify the e-waste pollution impacts as a single component module in the utility
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function. Also, socioeconomic factors are addressed within the same framework, and are
all technically constrained by the need to maximize green supply chain deliverables.

Combined with the weight factors (represented by the ϵi’s and Ai’s) derived from
AHP and the combined AHP-PCA method (as detailed later), the cost function takes the
form below:

F = ϵ1(∑N
i=1 A1VCO2 f1 + ∑N

i=1 A2Ec f2 + ∑N
i=1 ζ A3WP f3 + ∑N

i=1 ζ A4Ww f4) + ϵ2(∑N
i=1 A5N1 f5+

∑N
i=1 A6N3 f 6)ϵ3(∑N

i=1 A7N4 f7 − ∑N
i=1 A8N5 f 8 − ∑N

i=1 A9N7 f 10 − ∑N
i=1 A10N8 f 11 − ∑N

i=1 A11N9 f 12)
(6)

Here, ζ is a variable whose value is zero when the e-waste plant performs mechanical
recycling only, whereas when the e-waste plant is a MREW facility, the value is fixed
at unity.

The interdependencies of the variables are expressed as a linear combination of the de-
pendent variables with quadratic accuracy [53]. Equation (7a–g) represent the mathematical
expressions for the interdependency of the variables.

VCO2 = VCO2(N5, N7) = a1N5 + a2N7 + a12N5N7 + a′1N2
5 + a′2N2

7 (7a)

EC = EC(N4, N5) = b1N4 + b2N5 + b12N4N5 + b′1N2
4 + b′2N2

5 (7b)

WP = WP(N5) = Wo
P + c1N5 + c2N2

5 (7c)

WW = WW(N5, WP) = d1N5 + d2WP + d12N5WP + d′1N2
5 + d′2W2

P (7d)

N3 = N3(N4, N9) = α1N4 + α2N9 + α12N4N9 + α′1N2
4 + α′2N2

9 (7e)

N4 = N4(EC, N5) = β1EC + β2N5 + β12EC N9 + β′
1E2

C + β′
2N2

5 (7f)

N7 = N7
(
VCO2

)
= γVCO2 (7g)

3.2. Uncertainty Analysis

The entire premise of an e-waste portfolio is based on stochastic uncertainty modules
that do not allow for absolute prediction of future values. This necessitates appropriate
probabilistic approaches to first rank the key contributors and then analyze their interde-
pendence. This is completed using a combination of the Analytic Hierarchy Process (AHP)
and the Principal Component Analysis (PCA).

3.2.1. Analytical Hierarchical Process (AHP)

In this paper, two exclusive AHP analyses have been carried out, similar to Debnath
et al. [5]. However, the structural specifications differ as the present focus is on e-waste SCN.
The first AHP (Figure 3) model addresses three criteria enumerating the three uncertainties
occurring from the three pillars of sustainability; the key (three) variables are linked
through eleven criteria nodes. The second is a layered AHP (Figure 4) that utilizes the
same criteria as the first but has two layers of alternatives. The layers are created in such
a way that the structure not only connects the alternatives with the criteria but also the
individual interdependencies of the alternatives. The first layer of alternatives consists of
those variables that have dependencies on the variables in the second layer (function of
a function, i.e., a functional). The second AHP is executed to find the interdependencies,
whereas the first AHP is designed to rank the variables. A registered student version
of the commercial software package “Super Decision version 2.10” is used for the AHP
calculations. The determination of compound and square interdependencies follows the
methodology of our previous work. The detailed AHP flowchart is outlined below:
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generated (P1), energy consumption in the processes involved (P2), water used due to the processes
involved (P3), and wastewater generated in the whole process (P4) are the alternatives connected to
S1; No. of laborers (P5) and No. of awareness activities (P6) are the alternatives connected to S2; No.
of recycled products sold (P7), No. of operations involved (P8), No. of logistics involved (P9), No. of
waste materials being send to Treatment, Storage and Disposal Facility (TSDF) (P10), and No. of taxes
(P11) are the alternatives connected to S3.
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3.2.2. Multivariate Study—Principal Component Analysis (PCA)

Principal component analysis (PCA) is perhaps the primogenial and one of the well-
known multivariate analysis techniques. PCA was first introduced by Pearson in 1901 and
later developed by Hotelling by 1933 independently [54]. The fundamental idea of PCA
is to reduce the dimensionality of a huge dataset with interrelated variables, increasing
interpretability while retaining maximum information [55]. The methodology involves a
transformation of the original dataset to a new set of variables also known as the principal
components (PCs), which are uncorrelated and ranked where the top few PCs capture the
maximum variation present in all the original variables [54].

In the context of supply chains, the PCA has been used for a wide range of multivariate
analyses, e.g., damage and fault detection [56], hypothesis testing [56], constrained PCA-
based method development [57], chemometrics [58], radiative transfer computational
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advancement [59], rankings and preferences [55], etc. PCA is also a popular method among
supply chain managers for its versatility [60]. In this study, PCA has been used as a hybrid
method, combined with the AHP analysis in Step 1, for further refining the values obtained
from the generic AHP, specifically to quantify the interdependencies of the dependent
variables as well as to measure their relative positions in the coefficient matrix. The method
is detailed in the following subsection.

3.2.3. Hybrid AHP-PCA Method

Under the current investigation, a hybrid AHP-PCA method is developed for ranking
and finding the interdependencies of the variables of the utility function, the first such
approach known. The uniqueness of this method is that it utilizes the best of both generic
ranking (PCA) and interdependency calibration (AHP). The super-weighted matrix has
been used as an input for the PCA. By doing this, the results obtained using AHP are
being cross-checked and verified. This method thus unifies Multi-Criteria Decision Making
(MCDM) with statistical approaches. The working algorithm of this method is given below:

Step 1: develop the AHP models with ‘m’ (here m = 3) criteria and ‘n’ alterna-
tives (here n = 11), the linear one for alternative rankings and the layered structure for
interdependencies.

Step 2: input ratings for the pairwise comparison matrix for both regular and layered
AHP models to derive the ranking of the alternatives [61].

Step 3: record the AHP outputs and the super-weighted matrices.
Step 4: reduce the super-weighted matrix obtained from the crown structure AHP into

‘p × p’ matrix (here p = 7).
Step 5: use the ‘p × p’ matrix obtained in Step 4 as input and run PCA.
Step 6: use the principal components as alternative rankings for the variables.
Step 7: replace infinitesimally small values with zero in the correlation matrix obtained

from PCA. In this case, we reduce 25 entries to zero while the matrix dimension changes to
7 × 6.

Step 8: find the norm of the newly developed correlation matrix.
Step 9: divide each element of the new correlation matrix by the norm values.
Step 10: map the matrix developed in Step 9 with the matrix in Step 4 and derive the

interdependency factors by matching the positions.
Step 11: if any required values obtained from PCA are zero, then use the equivalent

AHP value. Further, normalize it and use the resultant values as weight factors.
For zero entries from the benchmarking table, AHP values are given preference over

PCA as with AHP, the rankings are already given using the eigenvalues.
We recall that F is the cost. The lambda values are chosen here through the AHP and

AHP-PCA analysis. As was shown in the previous papers [5], these are proportional to the
epsilon values.

When PCA is reapplied, the less important alternatives, i.e., the options with the
smallest eigenvalues, were simply converted to zeroes (given no weight) to emphasize
the prioritized (data or logic-driven) options. In a realistic scenario involving an e-waste
supply chain, we may not be allowed to resort to such oversimplification though. This
double screening through AHP → PCA filters ensures that the finally obtained values offer
reliable estimates for relative weight and interdependency factors. The compound and
square interdependencies are derived using the methodology of Debnath et al. [5]. The
compound interdependencies have been taken as the product of the concerned coefficient,
e.g., value of a23 = value of a2 × value of a3. The squared coefficient has been taken as the
square root of the concerned co-efficient. For example, the value of a′3 = square root of a3.

3.2.4. Unconstrained Problem

The central mathematical outline follows the schematic in Debnath et al. [5], leading
to a Euler–Lagrange structure [62] that depicts the optimized (from the cost function)
time evolution of the interacting variables defining the income–outcome cost matrix. The
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perturbed dynamics close to the linearly stable fixed points can then be represented by the
following dynamical system:

δ



d
dt
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=
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(8)

Focusing on the leading dynamic variables (VCO2, EC, N3, and N4) for the specific
recycler, whose data we seek to compare against, given that the other variables are largely
fixed for them, Equation (8) can be easily simplified:

δ

 d
dt


∂F

∂VCO2
∂F

∂EC
∂F

∂N3
∂F

∂N4


 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




δVCO2

δEC
δN3
δN4

 (9)

Note that other variables like WP, WW, etc., could also have non-trivial contributions
for different recyclers, in which case they would have to be considered as well. Also, it
is relevant to note that the zero rows ascribed to variables N1, N8, and N9 in Equation (8)
above, respectively, relating to the labor capacity (N1), number of waste materials sent
to TSDF (N8), and tax (N9), remain largely unchanged throughout the operation cycle of
the unit, and hence do not contribute to the recycling dynamics. The rearrangement of
Equation (9) leads to the following:

d2

dt2


ρ1δVCO2

ρ2δEC
ρ3δN3
ρ4δN4

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




δVCO2

δEC
δN3
δN4

 (10)

The second-ordered time derivative in Equation (10) mimics an ‘underdamped’ model of
mechanics [5], which from the perspective of a supply chain, represents a ‘lightly’ constrained
SCN where many of the constraints are outliers but not necessarily boundary conditions.

3.2.5. Constrained Problem

The constrained version of the problem is formulated by introducing Lagrange multi-
pliers [62]. This helps in solving the optimization problem without explicit parameterization
in terms of the constraint. The values of the individual Lagrange multipliers are considered
to be proportional to the epsilon values that replicate the corresponding weightage of the
individual uncertainties in the cost function. The Lagrangian ‘L’ is defined as:

L = F − λ1
(
VCO2 f1 − V

)
− λ2(N1 f5 + N3 f6 − E)− λ3(N4 f7 − R) (11)

where λi’s are the Lagrange multipliers. The realistic system restrictions (constraints) are
expressed through the quantities joined with the Lagrange multipliers, which we enforce
on the system. We impose three constraints on V, E, and R, which we have been chosen in
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consultation with the e-waste recycler, on Equation (11): (1) V, the cost associated with CO2
emission control; (2) E, the maximum expenditure budget accorded for wages of the labors
and employees and awareness activities, and (3) R, the maximum revenue target. Overall,
this amounts to a suitably recalibrated greener supply chain within viable operation lines.

The constrained version of the problem takes the following form:

δ

 d
dt


∂L

∂VCO2
∂L
∂EC
∂L

∂N3
∂L

∂N4


 =


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44




δVCO2

δEC
δN3
δN4

 (12)

Rearrangement of Equation (12) leads to:

d2

dt2


ω1δVCO2

ω2δEC
ω3δN3
ω4δN4

 =


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44




δVCO2

δEC
δN3
δN4

 (13)

Equations (10) and (13) are solved using data obtained from an anonymous multi-
award winning Indian e-waste recycler company. MATLAB R2019a (bvp4c) was used to
solve the system of equations concerning the solutions of the corresponding boundary
value problems (Table 1). VCO2 values are in tons of carbon dioxide emissions, energy
consumption values are in Gigawatt, the number of awareness activities are plain numbers,
whereas product sales are in the % of sales target. The initial conditions represent the
current status, whereas the boundary conditions represent the targets to be achieved.

Table 1. Boundary conditions for evaluation of results.

Sl. VCO2 Ec N3 N4

Volume of CO2
(tons of CO2)

Energy Consumption
(% Energy Consumed in GW)

Number of
Awareness

Activities (No.)

Product Sales
(% of sales target)

Initial Conditions (IC)

1 1.2 0.002 2 0.3

Boundary Conditions (BC)

1 0.82 0.0015 4 0.6

4. Results and Discussion

The impact of the time evolution of the leading variables, both for constrained and
unconstrained environments, is discussed below. First, we need to have an essence of
what the standalone constrained and unconstrained systems represent. In simple parlance,
they jointly characterize the dystopian and utopian case scenarios, respectively. Both
cases are ranked using AHP and hybrid AHP-PCA methods and compared. For a real
e-waste recycler, the SCN is stochastic and highly sensitive to minor logistic perturbations,
technically represented as SCN strategies. Appropriate initial and boundary conditions
represent such strategies in our time-varying model. The precise nature of these initial
and boundary conditions is subjective and differ for each SCN. The initial conditions
represent the present state of the system, while the desired state of the system define
the terminal conditions, thus leading to a fixed end point formulation of the problem.
It is desirable sometimes to examine how the solution changes with different terminal
conditions, and hence it is interesting to solve a variable endpoint problem. Such a solution
can identify the trade-offs between the SCN’s total cost F and the cost of relaxation of the
terminal condition.
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This study strategizes how decreasing environmental load with increasing social ac-
countability may still conform to the economic profitability of e-waste recycling plants.
The effect of different ranking methods is explored in the chosen variables both in con-
strained and unconstrained conditions, separately at intervals of one-year, three-year, and
five-year timelines. The 1-year results replicate the immediate effect, whereas the 5-year
timer represents a long-time effect. The 3-year results provide an understanding of events
at intermediate time scales. This intermediate time scale is strategically important because
this provides a clear numerical grasp of the state the company is in at that point and offers
scopes of strategizing for the future. The time dynamic behavior of the four key variables,
e.g., carbon dioxide emission volume (VCO2), energy consumption (EC), number of aware-
ness activities (N3), and product sales (N4) all rely on the hybrid AHP→PCA ranking
method outlined in the preceding sections to identify the best performance strategies.

4.1. Volume of Carbon Dioxide Emission

Figure 5a,b compare the time dependence of the volume of CO2 generated (VCO2)
in a constrained environment for 1-year and 5-year scenarios, respectively. In both cases,
two ranking methods are used for comparison—the AHP (dash-dotted line) and hybrid
AHP-PCA method (solid line). In the 1-year scenario, a parabolic curve is obtained for
AHP, whereas a steep curve is obtained for the AHP-PCA method. On the other hand,
in the 5-year scenario, a comparatively flat curve is obtained for AHP but a parabolic
profile is obtained for the AHP-PCA method. It is clear from the figures that the hybrid
AHP-PCA method provides a better ranking than any individual scoring methods (AHP or
PCA for us), as the solid-line curves capture the immediate effects much better than the
dash-dotted lines. For the 1-year timeline, the AHP results suggest that carbon dioxide
emissions will reach a minimum within the fifth and the sixth month and rise again before
reaching the boundary value, whereas the hybrid AHP-PCA results suggest that carbon
dioxide emissions will smoothly decrease to the targeted value. The AHP curve suggests
when to resurrect the strategy change, represented by the point of inflection; whereas the
AHP-PCA curve suggests that within a year it is impractical to resurrect a strategy change.
We find that the hybrid AHP-PCA results are more realistic, as it is practically impossible
to run into a record low-emission figure (~79% of the starting value) within 4 months.
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In the 5-year timelines, the hybrid AHP-PCA curve identifies the inflection point (the
minima) after 2 years and then converges again to its target value. This suggests that in



Sustainability 2024, 16, 6491 14 of 23

the long term, it is important to devise a policy change to lower the emissions, i.e., savings
in environmental efforts, combining technological efforts in emission reduction, carbon
credits, and positive environmental impacts through Corporate Social Responsibility (CSR)
and other green activities like greening the supply chain, cleaner production lines, and
zero waste efforts. Compared to the hybrid AHP-PCA ranked results, the standalone AHP
ranked results fail to capture the ‘negative-emission’ characteristic of the curve as the curve
flattens to zero after the 1st year till towards the end of the fourth year. Unless there is a
very enthusiastic supply chain manager, the AHP results will lead to a happy-face decision
of offsetting the carbon footprint in the long run. Hence, there may not be a continual
improvement unless it is mentioned in the quality (ISO 9000) [63] and environmental (ISO
14000) policy [64] of the recycling company concerned.

Figure 6 depicts the time dependence of the volume of CO2 generated (VCO2) in a
constrained environment for a 3-year year timespan, with the AHP (dash-dotted line) and
hybrid AHP-PCA method (solid line) as the ranking methods. This is an example of hierar-
chical module training, based on Machine Learning inputs from the hybrid AHP → PCA
model [65]. Similar to the 5-year scenario, a flat curve is obtained for AHP but a parabolic
profile is obtained for the AHP-PCA method. In the unconstrained environment, the solu-
tions are non-convergent indicating an unstable system. The curves resemble the ones with
5-year timelines. However, in this case, the hybrid AHP-PCA curve ensures an “operation
window” within 400–600 days. This indicates that it is possible to achieve further reduction
in emissions driven by a policy change. Hence, it is quite an intelligent approach to set
targets by the 3-year timeline for carbon dioxide emission and revise/tailor as required
within the next 2 years’ timeline. This will allow the supply chain manager to locate
operation windows in a less risk-prone period, enabling short-term strategy enforcement
towards better-fitted solutions. This also opens opportunities to explore unconventional
and newly developed approaches for pilot studies, which is a good way to strengthen the
much-required industry–academia bond.
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Figure 6. Time dependence of volume of carbon dioxide emission (VCO2) in a constrained envi-
ronment, using AHP for ranking (dash-dotted line) and hybrid AHP-PCA for ranking (solid line)
obtained for the 3-year scenario from the simultaneous solution of Equations (9) and (12) over 3 years.

4.2. Energy Consumption

In the 1-year timeline, the results from both AHP and hybrid AHP-PCA ranking
methods show similar trends. Both curves increase smoothly until they reach the target
value. Figure 7a suggests increasing energy consumption, as the mechanical recycling of
e-waste is highly energy intensive. In the 5-year timeline (Figure 7b), the AHP curve has a
hyperbola shape. The curve shows a steep fall in the beginning, followed by a minimum by
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the end of the second year, then rising again to a higher value (nearly double) by the end of
the fifth year. Alternatively, the hybrid AHP-PCA curve shows a similar trend to its 1-year
scenario, which is an increasing profile. We interpret that the system is inherently stochastic,
and energy consumption is a very critical and sensitive parameter that needs attention. In
the long run, the AHP curve identifies an “operation window” for devising policy changes.
A decrease in energy consumption implies an organization heading towards bankruptcy.
However, the variations may be attributed to the supply of e-waste demand uncertainty
or even an economically damaging pandemic that shuts off the entire work cycle. As the
AHP-PCA curve fails to provide any inflection point, we interpret that the current energy
policy in the e-waste organization needs immediate attention. Again, this behavior could be
attributed to the overestimation of the AHP-PCA method or the underestimation of AHP.
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simultaneous solution of Equations (9) and (12): (a) 1-year time span and (b) 5-year time span.

In the constrained environment, the hybrid AHP-PCA ranked curve imitates the 1-year
AHP ranked curve, which shows an increasing trend (Figure 8a). This is quite realistic, as
in reality, the energy consumption of an e-waste recycling plant will increase over time
as supply increases, which is an indicator of sustainable business. Alternatively, from a
mathematical point of view, perhaps the AHP-PCA method is overestimating the dynamics
of the system. On the other hand, the AHP ranked curve (constrained) carries a similar
profile to its 5-year appearance. In this case, an operation window within 200–400 days is
obtained. Whereas, the hybrid AHP-PCA ranked curve in the unconstrained environment
exhibits an increasing parabolic profile, which reaches a maximum within 500–600 days
and then reduces. The sensitivity of this parameter is quite high compared to the other
cases; hence, such behavior of the curves has appeared. However, comparing the results of
constrained and unconstrained cases of the hybrid AHP-PCA method, we interpret that
there might be a case of over-prediction in the constrained case. An ML data-powered
model like ours also suggests how the perturbations in the terminal conditions at an
intermediate period (for a short horizon model, say a 3-year model) for energy consumption
alters the cost of CO2 emissions, thereby providing guidelines on trade-offs between
different components of environmental variables.

We should also be cautious about the possibility of recurrent overestimation accruing
from our hybrid AHP-PCA ranking method, as has been discussed above. Additionally,
both methods are seen to contribute towards parameter sensitivity and are differentially
adaptive to the ambient response (AHP is more stable than PCA on this). E-waste recycling
facilities performing mechanical recycling operations are highly energy intensive, and
hence energy consumption ought to be a critical factor for business sustainability.
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Figure 8. Time dependence of energy consumption (Ec): (a) in a constrained environment, using
AHP for ranking (dash-dotted line) and hybrid AHP-PCA for ranking (solid line) and (b) in an
unconstrained environment, using hybrid AHP-PCA for ranking obtained for the 3-year scenario
from the simultaneous solutions of Equations (9) and (12) over a 3-year timespan.

4.3. Number of Awareness Activities

In developing countries, the awareness level of e-waste disposal is a big issue and
needs proper attention [5,33]. The level of awareness is proportional to the business of an
e-waste recycler. Hence, it is in the recycler’s best interest that awareness activities need
to be taken seriously as well as CSR activity. Such practice is also visible among e-waste
recyclers around the globe. The time dependency of several awareness activities (N3) in
a constrained environment is presented in Figure 9a,b, for 1-year and 5-year timespans,
respectively. The results obtained using standalone AHP as the ranking method are in
dash-dotted lines, whereas the results obtained using the hybrid AHP-PCA method are in
solid lines. As shown in the 1-year scenario, both curves depict a smooth increasing profile.
While the solid line is almost straight, the dash-dotted one is slightly curved in between.
Both curves converge to the same prediction: an increase in awareness activities is helpful.
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In the long-term scenario (5-year), the dash-dotted curve depicts a minimum around
the 500th day and sharply increases to reach the target value. In contrast, the solid line
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depicts the social responsibility of the recycler with a smoothly increasing curve, which
helps the social image and eventually increases the business potential of the recycler.
The dash-dotted curve implies that the e-waste recycler might struggle to sufficiently
increase the number of awareness activities in the initial years, but after some time they
will eventually gear up to increase the number of awareness activities. The minimum is
obtained in the second quarter of the second year, which means that is the point when a
further decision needs to be taken for higher social accountability based on company policy
and budgets. We interpret that the hybrid AHP-PCA model might be giving the perfect fit
as the path shown is more realistic.

Figure 10a,b depict the time dependence of the number of awareness activities (N3),
respectively, in constrained and unconstrained environments, respectively, for the 3-year
case. In the constrained environment, the solid line exhibits a straight line translating to a
realistic scenario. In contrast, the dash-dotted curve toes the trend of the 5-year scenario and
hence merits no further discussion. In the unconstrained environment, the AHP ranking
method provides a wave-like profile, although the negative minimum is unphysical (as
shown in the insets of Figure 10b). On the other hand, the hybrid AHP-PCA method of
ranking creates a semi-parabolic profile that offers a maximum value (~4.5) at the 600-day
timestamp. This means that in an arbitrage condition, the recycler can keep increasing the
awareness activities.
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Figure 10. Time dependence of number of awareness activities (N3): (a) in a constrained environment,
using AHP for ranking (dash-dotted line) and hybrid AHP-PCA for ranking (solid line) and (b) in an
unconstrained environment using hybrid AHP-PCA for ranking and AHP for ranking (provided in
the insets) in a 3-year time span obtained from simultaneous solutions of Equations (9) and (12).

The awareness activity (N3) relates to the social uncertainty contributing to the overall
cost function. Positive growth in social aspects is always a good deal and the hybrid AHP-
PCA ranking method can predict the realistic trends in both constrained and unconstrained
scenarios. On the other hand, the standalone AHP method underpredicts and fails to
describe the dynamic system both in constrained and unconstrained scenarios. Our model
shows that in this case, the decision making on several awareness activities is guided by
the budget constraint. Despite the fact that an e-waste recycling facility can survive on
its own or operate on break-even mode in an arbitrage condition of continuous supply of
e-waste, it is suggested that regular monitoring and the cross-validation of existing policy
should be carried out for business sustainability.

4.4. Product Sales

Figure 11a,b compare the time dependence of product sales (N4) in a constrained
environment for 1-year and 5-year scenarios, respectively. In the 1-year scenario, a parabolic



Sustainability 2024, 16, 6491 18 of 23

curve is obtained for AHP, whereas AHP-PCA predicts a straight line. On the other hand,
in the 5-year scenario, a parabolic curve with a negative minimum is obtained for AHP,
which is practically unfeasible. On the other hand, the AHP-PCA outcome is a stretched
exponential that portrays realistic kinetics. In the 1-year timeline, using AHP (dash-dotted
line) as the ranking method predicts that immediately after the beginning, the e-waste plant
incurs a loss, as shown by the dipping curve, and starts to peak after 3 months to reach a
target value. This parabolic curve (dash-dotted line) suggests that in the current scenario,
the company may face some issues at the start. On the other hand, using the hybrid AHP-
PCA ranking method (solid line) dictates a straight line. Over the 5-year scenario, the dash-
dotted line exhibits a parabolic profile with a minimum at the 750-day timestamp. Clearly,
AHP underpredicts the dynamics of the system. In contrast, the solid line demonstrates a
smooth increasing curve. The market price volatility of recycled products is a major issue;
hence, it is suggested that both methods should be tested in the interest of a greener supply
chain with a cleaner production line leading to sustainable business.
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The curves in Figure 12a depict the results of time dependence of product sales (N4)
in the constrained environment for the 3-year scenario using AHP (dash-dotted line) and
hybrid AHP-PCA (solid line) for ranking. Both the curves display a similar profile to the
5-year results. Hence, the interpretation remains unchanged. Figure 12b illustrates the
time dependence of product sales (N4) in the unconstrained environment for the 3-year
scenario using the AHP-PCA rankings. The AHP results are presented in the insets of
Figure 12b. In this case, the hybrid AHP-PCA method points to interesting outcomes. The
results using the AHP ranking method are provided in the insets of Figure 12b. As seen
in the previous cases, here the standalone AHP also fails to obtain rational results in an
unconstrained scenario (Figure 12b inset). The hybrid AHP-PCA ranked result shows a
parabolic curve. This shows the robustness of the hybrid AHP-PCA method, as it captures
the system dynamics in the unconstrained scenario. The curve profile suggests that even in
arbitrage conditions, the company may not have a steady growth profile.

Economic sustainability is the most important of all from the business perspective
(Debnath and Ghosh 2019). In that sense, a product sold (N4) is the most important
parameter that needs to be nurtured for maximum profit. A greener supply chain network
with a sustainable production line is a utopian case, but we can always look forward to
reaching as close as possible to the target values. That is exactly what these boundary
conditions have helped us to do. The alluded case gives an outlook of comparison of both
the methods, but the choice of boundary conditions lies in the hand of the supply chain
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manager of the respective plant. For business sustainability, it is suggested that regular
monitoring of critical parameters and policy changes at certain intervals (identified through
analysis) will help in greening the supply chain.
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5. Conclusions

The constrained dynamics of the e-waste supply chain network is complex. Using a
model structured on the paradigmatic Euler–Lagrange architecture, a concept borrowed
from physics, the resultant time evolution kinetics of a “Utilization-to-cradle” supply chain
network of an e-waste (MREW) facility has been developed using a cost function-based
model. The model is weighted against interdependencies of the uncertainty parameters,
which are identified using two Machine Learning methods, namely AHP and hybrid AHP-
PCA. The boundary value optimization problem is numerically solved using MATLAB
2019b. The outcomes shed light on how ambient (SCN) and environmental factors contrive
to create profit–sustainability balance, which is the quintessential challenge of most cash-
strapped SMEs.

The model has been validated using anonymous Indian e-waste recyclers data to test
the robustness of the SCN model in 1-, 3-, and 5-year timelines, respectively. The bound-
ary conditions replicate the strategy of decreasing environmental load while increasing
social accountability together with economic profitability. The time evolution dynamics
of the MREW facility, focusing only on mechanical recycling, has been illustrated based
on four leading dynamic variables: volume of carbon dioxide generated (VCO2), energy
consumption (EC), number of awareness activities (N3), and recycled product sales (N4).
The results show that the hybrid AHP-PCA ranking method is superior to the standalone
AHP method of ranking. However, in the case of energy consumption (EC), the hybrid
method overestimated the dynamics of the system. The model can also identify the opera-
tion windows for the supply chain managers for reinvigoration of the policies. To reduce
the carbon dioxide emission, the model predicts the 400–600 day window for policy change.
In the case of energy consumption, an operation window of the 200–400th day is obtained.
Volume of carbon dioxide and energy consumption emerge as the two most important
parameters, while energy consumption is the most sensitive parameter of the system. For
awareness activities, the minimum is obtained in the second quarter of the second year,
which is the inflection point of decision making. This suggests that for social accountability
practice, the decision should be purely guided by the budget constraints to maintain a
sustainable business. On the other hand, product sales, serving as the economic descriptor,
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show an increasing trend. This suggests that the steady growth of e-waste businesses
will lead to economic sustainability. The numbers and outputs are likely to change with
the change in cases and constraints. This study almost unerringly replicates results seen
by real e-waste production facilities and provides a guideline for developing a cleaner
production line with a sustainable profitability margin. The findings address SDG 11 and 12
directly, whereas SDG 13, 14, and 15 are addressed indirectly. Future ML-powered studies
involving exclusive MREW facilities, carrying out both chemical and mechanical recycling,
are presently underway.
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Nomenclature

Cost components
F Cost function
CEnvironment Cost function component for environmental uncertainty
CSocial Cost function component for social uncertainty
CEconomic Cost function component for economic uncertainty
Variables and Parameters
VCO2 Volume of CO2 generated
EC Energy consumption in the processes involved
Wp Water used due to the processes involved
Ww Wastewater generated in the process
N1 Number of laborers

N3
Number of awareness activities, e.g., adaptation to information,
invisible e-waste, and repair substituting new

N4 No. of recycled products sold
N5 No. of operations involved
N7 No. of logistics involved

N8
No. of waste materials being send to Treatment, Storage and Disposal
Facility (TSDF)

N9 No. of taxes to be paid
f1 Unit cost for CO2 recovery
f2 Unit cost of energy used
f3 Unit cost for water used
f4 Unit cost of wastewater treatment
f5 Salary of one labor
f6 Average cost of awareness activity
f7 Unit revenue earned from product sold
f8 Unit cost of each operation
f10 Unit cost of logistics
f11 Unit cost for disposal in TSDF
f12 Unit cost of taxes
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Weight factors
ϵi’s Weigh factor for the four cost functions
Ai’s Weigh factor for the main parameters
ai’s, aij’s & a′is Interdependency values for VCO2
bi’s, bij’s & b′is Interdependency values for EC
ci’s Interdependency values for WP
di’s, dij’s & d′is Interdependency values for Ww
αi’s, αij’s & α′

is Interdependency values for N3
βi’s, βij’s & β′

is Interdependency values for N4
γ Interdependency value for N7
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