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Abstract

The human brain exhibits spatio-temporally complex activity even in the absence of

external stimuli, cycling through recurring patterns of activity known as brain states.

Thus far, brain state analysis has primarily been restricted to unimodal neuroimaging

data sets, resulting in a limited definition of state and a poor understanding of the

spatial and temporal relationships between states identified from different modalities.

Here, we applied hidden Markov model (HMM) to concurrent

electroencephalography-functional magnetic resonance imaging (EEG-fMRI) eyes

open (EO) and eyes closed (EC) resting-state data, training models on the EEG and

fMRI data separately, and evaluated the models' ability to distinguish dynamics

between the two rest conditions. Additionally, we employed a general linear model

approach to identify the BOLD correlates of the EEG-defined states to investigate

whether the fMRI data could be used to improve the spatial definition of the EEG

states. Finally, we performed a sliding window-based analysis on the state time

courses to identify slower changes in the temporal dynamics, and then correlated

these time courses across modalities. We found that both models could identify

expected changes during EC rest compared to EO rest, with the fMRI model identify-

ing changes in the activity and functional connectivity of visual and attention resting-

state networks, while the EEG model correctly identified the canonical increase in

alpha upon eye closure. In addition, by using the fMRI data, it was possible to infer

the spatial properties of the EEG states, resulting in BOLD correlation maps resem-

bling canonical alpha-BOLD correlations. Finally, the sliding window analysis revealed

unique fractional occupancy dynamics for states from both models, with a selection

of states showing strong temporal correlations across modalities. Overall, this study

highlights the efficacy of using HMMs for brain state analysis, confirms that multi-

modal data can be used to provide more in-depth definitions of state and demon-

strates that states defined across different modalities show similar temporal

dynamics.

Received: 25 May 2023 Revised: 25 April 2024 Accepted: 8 May 2024

DOI: 10.1002/hbm.26746

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2024;45:e26746. wileyonlinelibrary.com/journal/hbm 1 of 21

https://doi.org/10.1002/hbm.26746

https://orcid.org/0000-0002-8377-9245
https://orcid.org/0000-0003-1240-1488
https://orcid.org/0000-0001-6217-1292
mailto:b.ingram.1@bham.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm
https://doi.org/10.1002/hbm.26746


K E YWORD S
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Practitioner Points

• Hidden Markov model (HMM) reveals brain states in electroencephalography (EEG) and

functional magnetic resonance imaging (fMRI) data that differ between eyes open and eyes

closed (EC) resting states.

• EEG HMM identified a high alpha power state with significant BOLD correlates resembling

previously identified alpha-BOLD correlations, despite only being active for �15% of the

EC runs.

• State temporal dynamics exhibited strong temporal correlations across neuroimaging

modalities.

1 | INTRODUCTION

During periods of waking rest, the human brain continues to exhibit

spatiotemporally complex activity despite the reduction in external

stimuli. Commonly referred to as resting-state data, subjects are

instructed to relax throughout the duration of a recording

(e.g., functional magnetic resonance imaging [fMRI] or E/MEG), with-

out any task being present. The analysis of such data has led to the

discovery of various resting-state networks, which have since been

shown to persist throughout both rest and task conditions (Biswal

et al., 1995; Smith et al., 2009). These have been associated with

numerous cognitive processes (Buckner et al., 2008; Corbetta &

Shulman, 2002; Vossel et al., 2014), as well as exhibiting differences

between clinical and control populations, and could potentially serve

as biomarkers for neurological and mental health conditions (Buckner

et al., 2008; Calhoun et al., 2009; Greicius et al., 2004; Rosazza &

Minati, 2011). Conventionally, these networks have been identified

by functional connectivity (FC) based approaches, in which the statis-

tical temporal correlation between the neural activity of multiple brain

regions is calculated. Resting-state networks are then defined as a

group of regions showing strong FC with each other. These

approaches have generally been applied across the entire duration of

a recording lasting several minutes, providing a summary measure of

the FC between regions over this timescale. Although this method has

proved useful, it assumes that the FC between regions is static/sta-

tionary, or in other words, that the relationship between brain regions

does not change over the duration of the recording. Many studies

have demonstrated that this is clearly an oversimplification of the

complexity of the brain's activity.

Dynamic approaches, such as sliding window analyses (Allen

et al., 2014), leading eigenvector dynamic analysis (Cabral

et al., 2017), and temporal independent component analysis (ICA)

(Smith et al., 2012), have all demonstrated that FC relationships are

not static/stationary; and that the temporal correlations, both

between network nodes and between different networks, vary over

time. Furthermore, these changes in network FC are non-random,

with specific patterns of activity reoccurring throughout the duration

of recordings (Allen et al., 2014; Sako�glu et al., 2010). This has most

commonly been demonstrated using sliding window-based analyses,

followed by k-means clustering, resulting in a set of reoccurring FC

patterns, commonly referred to as connectivity, or brain, ‘states’.
Once identified, it is then possible to calculate various temporal met-

rics for each state, such as the average time a subject spends within

each state (state lifetimes), or the frequency at which subjects switch

between states (switching rates). Collectively, this has led to the pro-

posal of the chronnectome (Calhoun et al., 2014) or the dynome

(Kopell et al., 2014), which aims to provide a comprehensive charac-

terisation of brain FC and dynamics (Calhoun et al., 2014). Such

methods have also shown potential clinical application, with people

with schizophrenia exhibiting altered connectivity states (Sako�glu

et al., 2010) and state temporal metrics (Damaraju et al., 2014) relative

to control participants.

However, sliding window-based analyses have recently been criti-

cised due to the requirement to arbitrarily select parameters, such as

the window length and offset (Hindriks et al., 2016; Laumann

et al., 2017; Leonardi & Van De Ville, 2015; Zalesky &

Breakspear, 2015). Additionally, simulations have shown that the

method's ability to detect state transitions and state durations is sig-

nificantly impacted by the choice of window length (Shakil

et al., 2016). An alternative approach is to identify and model brain

state dynamics with a HMM (Baker et al., 2014; Vidaurre et al., 2016).

Unlike sliding windows, HMM aims to decompose the data into a

dynamic sequence of distinct states in a data-driven manner, there-

fore avoiding the need to specify a window length and offset.

However, current research has exclusively focused on quantifying

brain states in one neuroimaging modality, and very little is known

about how brain states compare across modalities, or the relationships

between neural and haemodynamic brain states. This limits their

wider interpretation. Furthermore, the definition of each state is

restricted by the advantages and disadvantages of each neuroimaging

modality. Ideally, brain states would be defined with both high spatial

and temporal resolution. This would best enable monitoring of

dynamic activity patterns and regional interactions for applications

such as studying recruitment during task performance and its relation

to behaviour; or spontaneous alterations during changes in awareness

or consciousness. Although fMRI can provide millimetre spatial
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resolution recording of both cortical and subcortical brain activity, it is

limited temporally as a result of the sluggish nature of the BOLD sig-

nal (Buxton et al., 1998). Conversely, electrophysiological measures

such as E/MEG provide millisecond temporal resolution and a direct

measure of neural activity compared to the BOLD signal. They also

allow brain activity to be analysed from a spectral perspective, for

example, studying specific frequency bands rather than the integra-

tion of all underlying local activity represented by the BOLD signal.

However, the spatial resolution and sensitivity to subcortical struc-

tures of E/MEG are greatly reduced compared to fMRI due to volume

conduction.

One potential method to achieve high spatio-temporal resolution

is to employ a multimodal approach, recording electroencephalogra-

phy (EEG) and fMRI data concurrently. This approach allows for the

models to be trained on each modality while using the other to better

inform the spatial or temporal properties of the identified states. For

example, Hunyadi et al. (2019) applied HMM to concurrent EEG-fMRI

data, defining states by changes in power within the EEG data, and

using the state time courses to obtain spatial maps for each state via a

general linear model (GLM) analysis of the fMRI data (Hunyadi

et al., 2019). To date however, there has been no explicit attempt to

define EEG and fMRI brain states from concurrently recorded data

and to study the cross-modal relationships in their properties under a

behavioural manipulation.

One of the simplest and most fundamental manipulations of brain

activity that can be applied is eye closure. Within EEG, there is a

robust and significant increase in alpha power upon eye closure (Barry

et al., 2007; Boytsova & Danko, 2010; Li, 2010). Similarly, fMRI stud-

ies have found that eye closure induces changes in BOLD activity and

FC across visual (Patriat et al., 2013), auditory (Marx et al., 2003;

Patriat et al., 2013; Zou et al., 2015), somatosensory (Liang

et al., 2014; Yang et al., 2007) and insula cortices (Goldman

et al., 2002), as well as the default mode (Jao et al., 2013) and dorsal

attention networks (DANs) (Wang et al., 2016; Zhang et al., 2015).

Concurrent EEG-fMRI studies have identified correlations between

changes in resting-state alpha power and the BOLD signal in these

brain regions, both using static (de Munck et al., 2007; Goldman

et al., 2002; Laufs et al., 2006) and dynamic (Mayhew &

Bagshaw, 2017) analysis methods. However, a deeper understanding

is required of dynamic and spontaneous alpha-BOLD relationships,

and how they vary with the manipulation of awareness and attention,

which can be provided by adopting an analysis of fluctuations in EEG

and fMRI brain-states and an investigation of the relationships

between the activity of states defined from the two modalities.

Therefore, this study used HMM analysis of concurrent EEG-

fMRI resting-state data and compared brain state dynamics between

periods of eyes open (EO) and eyes closed (EC) rest. HMMs were

trained separately on each modality to allow comparison with previ-

ous EEG and fMRI literature. We quantified the changes in brain state

dynamics in each of the two modalities, as well as using a GLM to

identify the BOLD correlates of EEG states. Furthermore, we

employed a sliding window-based analysis to investigate slower tem-

poral dynamics within each model and then compared them to

identify relationships in state dynamics across modalities. The primary

goal of this was to further identify differences in the state metrics

between the EO and EC conditions, and compare these differences

with those found within the literature. Additionally, we aimed to eval-

uate whether concurrently collected fMRI data could be used to

improve the spatial definition of the EEG-defined states. Finally, we

aimed to investigate the temporal relationships of states across

modalities.

2 | METHODS

2.1 | Participants

A total of 21 healthy participants (11 female, age range = 21–

34 years, mean age = 25.8 years) were recruited via opportunity sam-

pling at the University of Birmingham. Ethical approval for the study

was given by the Research Ethics Committee of the University of Bir-

mingham, and all participants gave informed consent before participa-

tion. No participants were excluded from the fMRI analysis; however,

three participants were removed from the EEG analysis due to data

corruption.

2.2 | EEG-fMRI data acquisition

Concurrent EEG-fMRI data were acquired on a 3T Philips Achieva

scanner using a 32-channel SENSE receive head coil and 64-channel

EEG system (MR-plus amplifiers, Brain Products, Germany) at the Bir-

mingham University Imaging Centre (BUIC). Four resting-state BOLD

fMRI scans were acquired using a whole-brain gradient echo EPI

sequence (TR = 2000 ms, TE = 35 ms, flip angle = 80�, voxel

size = 3 � 3 � 4 mm3, FOV = 240 � 128 � 240 mm3 and

slices = 32).

Participants were instructed to either keep their EO or EC for the

duration of one scan, alternating after each scan (starting with EO).

Two scans were acquired for each of the EO and EC conditions. EO

and EC were not alternated within a scan. Each resting-state scan

contained 300 whole brain volumes, resulting in 10 min per scan. In

total, 1200 volumes were acquired per participant in a task acquisition

time of �40 min. A high resolution (1 mm isotropic MPRAGE with

TR = 2000 ms, TE = 2 ms, TI = 880 ms, flip angle = 8� and FOV

256 � 256) T1-weighted anatomical image was acquired to facilitate

alignment to MNI152 space, resulting in a total scan time of �45 min.

EEG data were acquired via 63 (including reference and ground)

Ag/AgCl MR-compatible scalp electrodes, positioned in accordance

with the 10-20 system, with the remaining electrode recording the

subject's electrocardiogram (ECG) from the clavicle (EasyCap, Brain

Products, Germany). Electrode impedances were kept below 20 kΩ.

EEG was recorded using Brain Vision Recorder (Brain Products,

Germany) at a sampling rate of 5 kHz, alongside hardware filters of

0.016–250 Hz. Recordings were synchronised with the MR scanner's

internal clock (Syncbox, Brain Products, Munich, Germany)
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(Mandelkow et al., 2006; Mullinger et al., 2008). The MR scanner's

physiological monitoring system was used to record cardiac cycles, via

vectorcardiogram (VCG) (Mullinger et al., 2008).

2.3 | fMRI preprocessing

All fMRI analysis was performed within FSL (6.0.1) (Woolrich

et al., 2009). Automated brain extraction (Smith, 2002), motion cor-

rection (MCFLIRT) (Jenkinson et al., 2002), slice timing correction,

spatial smoothing (Gaussian Kernel, FWHM = 6 mm) and high-pass

temporal filtering (>0.01 Hz) were applied to all fMRI data. Transforms

to MNI152 (2 mm) standard space were calculated via non-linear

alignment (FLIRT and FNIRT) (Jenkinson & Smith, 2001). Single-

subject ICA (Beckmann & Smith, 2004) and FIX (Griffanti et al., 2014;

Salimi-Khorshidi et al., 2014) (Training Set = Standard.R,

threshold = 20) were applied to the data to identify noise compo-

nents, which were then removed using fsl_regfilt. Cleaned data were

transformed to standard space using the applywarp command with

the previously calculated transformations.

2.4 | fMRI spatial ICA

As a data reduction step for the fMRI HMM analysis (Ahrends

et al., 2022; Vidaurre, Abeysuriya, et al., 2018; Vidaurre et al., 2017),

data were temporally concatenated and decomposed into 25 indepen-

dent components (ICs) via group spatial ICA (MELODIC). A compo-

nent dimension of 25 was chosen to acquire ICs containing individual,

whole resting-state networks and to avoid overfitting during the

F IGURE 1 Group spatial ICA results displaying the 13-network ICs used in subsequent HMM analysis. Numbers in brackets represent the
number of ICs that were combined for visualisation in the individual panels. Within a panel, each colour represents a different IC. Images
presented using neurological conventions (left = left). HMM, hidden Markov model; ICA, independent component analysis.
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HMM training. Only ICs that had time courses in the lower frequen-

cies and did not spatially overlap with known artefacts (motion, vascu-

lar, physiological, susceptibility) or non-grey matter regions (white

matter, CSF) were used in the subsequent analysis, resulting in

13 components being retained (see Figure 1). ICs were visually com-

pared with the FIND lab ICA components (Shirer et al., 2012) to assist

network labelling. ICs were found within visual (occipital pole, medial

and lateral), auditory, dorsal attention, default mode, precuneus,

salience, sensorimotor (superior and inferior) and frontoparietal (FPN)

(left and right) networks. Dual regression (Beckmann et al., 2009;

Nickerson et al., 2017) was applied to estimate BOLD signal time

courses for each network IC, in each scan of each subject.

2.5 | EEG preprocessing

MR-gradient artefacts were removed from the data using the average

template subtraction method with a sliding window (window

length = 41 volumes), as implemented within Brain Vision Analyzer

2.0 (Brain Products, Munich, Germany). Heartbeat events were

detected on the VCG and added as markers to the EEG via in-house

MATLAB and Perl scripts. Ballistocardiogram (BCG) artefacts were

removed via the optimal basis sets method (principal

components = 3) using an in-house Python script ported from the

fMRIB EEGLab plugin (Niazy et al., 2005). Unlike the conventional

average artefact subtraction approach (i.e., calculate the average arte-

fact and subtract it), a PCA decomposition is conducted on all gradient

artefacts, resulting in a set of optimal basis sets. These basis sets are

then fitted to each artefact individually and subtracted, allowing the

approach to better account for variability in the BCG artefact. For

data reduction and based on the eye closure manipulation being

expected to have the largest impact on the alpha band, the EEG analy-

sis focused on the alpha band. This restricted spectral band also opti-

mises the data quality, since both lower (Yan et al., 2010) and higher

(Allen et al., 2000) frequencies are contaminated by residual BCG and

gradient artefacts, respectively. To isolate alpha band activity

and exclude residual MR gradient and BCG artefacts, the data were

bandpass filtered between 7 and 13 Hz. Data were then averaged

referenced, epoched by the TR (2 s) and down sampled to 40 Hz. Fas-

tICA (Hyvarinen, 1999) was conducted to further isolate posterior

alpha components. Only components with clear alpha-power peaks

(7–13 Hz) and posterior scalp topographies were retained. On aver-

age, two to three posterior alpha components were identified per sub-

ject, except for one subject who only had one component. Alpha

power components were then retro-projected to channel space.

2.6 | GLM analysis investigating alpha-BOLD
relationships

In order to identify which regions of the brain showed a correla-

tion with the posterior alpha rhythm, a GLM analysis was con-

ducted. The GLM analysis is a commonly applied method that

utilises multiple linear regression to statistically identify which

regions of the brain respond to a specific task or stimulus. In this

instance, we used the GLM to identify regions of the brain whose

BOLD signal was significantly correlated with the power of the

posterior alpha rhythm. As this approach has been commonly

applied to EEG-fMRI previously, it is referred to as the conven-

tional alpha-BOLD GLM. The alpha power of each TR epoch was

calculated via Welch's method for electrodes Oz, O1/2, PO3/4

and POz. The average alpha power was calculated across these

channels for each TR epoch, resulting in a continuous alpha time

course at the same sampling rate as the fMRI data (Mayhew &

Bagshaw, 2017; Mayhew, Hylands-White, et al., 2013; Mayhew,

Ostwald, et al., 2013). The continuous alpha power time courses

from each scan per participant were demeaned and normalised to

control for differences in maximum alpha power between subjects.

The alpha power time courses were then convolved with the FSL

double gamma function and used as explanatory variables in a

first-level GLM analysis using FSL FEAT (Woolrich et al., 2001),

with contrasts for both the mean positive and negative activa-

tions. A second-level FEAT analysis was conducted to obtain the

average EO and EC alpha activation maps per subject, followed

by a group-level FEAT analysis (FLAME1, Z threshold = 3.1, cluster

p threshold = 0.05) (Woolrich et al., 2004) to obtain group aver-

age maps for EO and EC, as well as EO > EC and EC > EO

contrast map.

2.7 | Alpha power analysis

The average change in alpha power between the EO and EC condi-

tions was quantified and tested statistically using the alpha power

time courses created for the GLM. The means of all EO and EC time

points were calculated for each subject. Alpha power values were

then compared statistically with a paired s test.

2.8 | Hidden Markov model

The HMM is a statistical model that decomposes time series data into

a sequence of states. Each state is defined by an observation model,

which can be changed depending on the data type, allowing states to

be inferred according to different properties of the data. For example,

when the model is applied to fMRI data, a multivariate Gaussian

model is typically used, as each state can be parametrised according

to the mean activity within a region and its covariance with other

regions. Conversely, in E/MEG data, the spectral information is gener-

ally richer and is often of more interest than the mean activity of an

electrode/region. Thus, more complex observation models are often

employed, such as the multivariate autoregressive model and the

time-delayed embedded model, both of which allow states to be

defined according to the spectral properties of the data

(e.g., frequency and phase). Unlike other dynamic analysis approaches

(e.g., sliding window approach), the parameters of the HMM (e.g., the
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initial state, transition matrix and state time courses) and each state

(e.g., means and covariance) can be inferred computationally, thus

providing a data-driven approach for the analysis of brain dynamics.

Within this study we used the publicly available HMM-MAR tool-

box (Vidaurre et al., 2016) to separately train two HMMs: one on the

fMRI data and one on the EEG data. For the fMRI HMM, the BOLD

signal time courses from each network IC, obtained via dual regres-

sion, were concatenated across all runs and participants and used as

the inputs to the model. For the EEG HMM, the Hilbert transform of

the retro-projected alpha components from electrodes Oz, O1/2,

PO3/4 and POz were concatenated and used as inputs for the model,

allowing for changes in alpha power to be modelled. Inputs from both

models underwent amplitude standardisation (SD = 1, mean = 0). A

multivariate Gaussian model was selected as the observation model

for both HMMs. For the fMRI HMM, this meant that each state was

defined according to the mean amplitude of each resting-state net-

work IC, as well as the covariance between resting-state network ICs.

For the EEG HMM, each state was defined according to the mean

amplitude of each electrode, and the covariance between them.

Model parameters were inferred based on variational Bayes and

the minimisation of variational free energy (Vidaurre et al., 2016). The

inference process determines the likelihood of any given state being

active at each time point (state probability time course), the starting

state of the model (initial state), the likelihood of transitioning from

one state to another (transition matrix) and the model parameters of

each state (mean vector and covariance matrix). Inference was per-

formed at the group level, resulting in common states being defined

across all subjects, whereas the state probability time courses were

defined at the subject level.

2.9 | Model selection

Though the inference process provides a data-driven method for

obtaining the model parameters, there are two main issues with this

approach. First, the inference process is stochastic, and will not always

provide the same results when run multiple times on the same data.

Second, the inference process does not provide the optimum number

of states. To circumvent these issues, a model selection process is

conducted in which HMMs are trained multiple times to assess the

reliability of the inference process, and with different state numbers

in order to find the optimum state number. For HMMs run on both

EEG and fMRI data, the inference process was conducted multiple

times, with the number of states ranging from 2 to 15. Additionally,

for each state number, the inference process was repeated five times.

To determine the optimum model, several metrics were calculated

to assess both the reliability of the inference process and the model's

ability to describe the dynamics of the data. These metrics were: the

variational free energy, the maximum fractional occupancy values and

repeat reliability. The simplest of these measures is the variational free

energy, which is the metric minimised during the inference process,

with lower free energy values indicating a better model fit. However,

this metric typically decreases with the addition of more states, and

therefore is not often used to determine the optimum state number

alone. The maximum fractional occupancy values represent the largest

percentage of the data time series occupied (e.g., the state is active)

by a single state of each run. The distribution of these values is indica-

tive of how well the model describes the dynamics of the data, with

higher values indicating that the model is being dominated by a single

state, and lower values indicating that the dynamics of the data are

being explained by a combination of all of the states. Finally, the

repeat reliability was assessed by correlating the state time courses

across repeats, giving a measure of model similarity (e.g., higher corre-

lation co-efficient indicates higher reliability and hence a more stable

model).

Based on these measures, the model with the highest number of

states while still retaining a low max fractional occupancy, variational

free energy and high repeat reliability was selected. Initially, the mean

repeat reliability values were plotted to identify the state number in

which the reliability began to drop (due to the increase in parameters).

The maximum fractional occupancies were then calculated for that

model to ensure that the model was accurately describing the dynam-

ics, as well as differentiating between the separate runs (e.g. if one of

the models repeats has a lower average maximum fractional occu-

pancy). This process was undertaken independently for the EEG and

fMRI data.

Once the optimum model was selected, multiple state metrics

were calculated to describe the temporal dynamics of the states.

These metrics were fractional occupancy (the percentage of the

data each state occupies), the state lifetimes (the duration of each

state visit), state interval times (the duration of time between two

visits of the same state), and the state switching rate. To calculate

these state metrics (including the maximum fractional occupancy

used for the model selection), we needed to know when each

state was ‘active’ (e.g., a state visit). This could be achieved in

two ways: by thresholding the state time courses, or by using the

Viterbi path. The former approach works by defining a state as

active if its likelihood reaches a threshold. For example, if there is

an >80% likelihood of a state being active at a time point, it is

deemed as ‘active’. The latter approach relies on the Viterbi algo-

rithm, which estimates the most likely sequence of states given

the data, also known as the Viterbi path. Within this study, all

state metrics were calculated using the Viterbi Path

(Forney, 1973).

2.10 | Estimating spectra and spatial properties of
EEG states

As the EEG states were defined on the Hilbert transform of the

EEG data, the states were defined based on changes in power as

opposed to spectra. When using wideband data, this would mean

that it is not immediately possible to determine whether a change

in power was associated with a specific frequency band. In this

instance, the data were bandpass filtered, and thus it is clear that

changes in power reflect changes in alpha power. However, it still
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did not provide the specific spectra of each state. Thus, the state

spectra of each state were estimated using a state-wise weighted

version of the multi-taper approach in which periods of the data

where a particular state was more likely to be active contribute

more to the spectral estimation (Vidaurre et al., 2016). This pro-

vided a full spectral definition of each state and provides the

spectra of each state for visualisation.

To determine the spatial properties of each EEG state, the

state probability time courses from the EEG HMM were used

within a fMRI GLM analysis (Hunyadi et al., 2019). The time

courses of each state were convolved with a double gamma func-

tion, and down-sampled to the same sampling rate as the TR. A

separate first-level GLM was run for each state per scan, with

contrasts for both the positive and negative mean activations.

Second-level FEAT analyses generated average state activation

maps for both EO and EC conditions at the subject-level, by

grouping across scans, whereas third-level FEAT (FLAME1,

Z threshold = 3.1, cluster p threshold = 0.05) analyses created a

group average map for each condition, as well as contrast maps

between the two conditions (EO > EC & EC < EO).

2.11 | State metric analysis

State metrics were statistically compared between the EO and EC

conditions using paired t tests within both the fMRI HMM and EEG

HMM analysis. Bonferroni correction was used to control for multiple

comparisons. State lifetimes and interval times were not statistically

compared due to being dependent on the number of visits/intervals

per condition, often resulting in unequal groups.

2.12 | Sliding window analysis

To observe slower changes in state dynamics across a single scan, the

fractional occupancies were also calculated within a 10-s sliding win-

dow, resulting in a fractional occupancy time course (Baker

et al., 2014). These time courses were averaged across subjects to

compare temporal trends in state dynamics between the EC and EO

conditions. Additionally, we computed the Pearson correlation

between the time courses from the EEG and fMRI HMM to compare

the temporal relationship between states defined by different neuro-

imaging modalities.

3 | RESULTS

3.1 | Alpha power analysis

The alpha power analysis found a clear increase in alpha power within

the EC condition relative to the EO condition (see Figure 2a). Alpha

power showed larger variability between subjects within the EC con-

dition compared to the EO condition. The difference in alpha power

was examined statistically using a paired t test, which found the dif-

ference to be significant with a large effect size

(difference = 1.54e�12, 95% confidence interval [CI] [6.52e�13 to

2.43e�12], t(17) = 3.66, p = .002; Cohen's d = 0.86, Cohen's d 95%

CI: [0.31–1.40]). The mean alpha power time course further revealed

that the largest increase in alpha power was observed during the first

half of each scan (see Figure 2b). Additionally, the initial increase in

alpha power appeared larger within the first EC scan. Conversely, the

alpha power in the second EC remained consistently high throughout

F IGURE 2 Alpha power compared between the EO and EC conditions. (a) Comparison of the mean alpha power of each condition.
** = p < .01. (b) Group-level alpha power time course at the sampling rate of the fMRI (TR = 2 s). Dashed vertical lines mark the boundaries of
each scan. Shaded regions represent 95% confidence intervals between subjects. EC, eyes closed; EEG, electroencephalography; EO, eyes open;
fMRI, functional magnetic resonance imaging.
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the duration of the scan, unlike the first EC scan, which eventually

returned to a similar amplitude as observed within the EO scans.

3.2 | Model selection

The model selection process aimed to find the highest optimum state

number, whereas still possessing a relatively low variational free

energy value, high inter-correlation between repeats and low maxi-

mum fractional occupancy values. For both the fMRI and EEG HMM,

the variational free energy decreased with the addition of each state

(see Figure 3a,b). The mean reliabilities remained consistently high

between states two to four within both models, with the reliability

dropping at approximately six states in the fMRI model (see

Figure 3c), and five states in the EEG model (see Figure 3d). Both state

numbers showed high-inter repeat reliability, with all correlations

exceeding 0.80 within the fMRI model (see Figure 3e), and 0.90 within

the EEG model (see Figure 3f). Repeat three from the fMRI 6-state

solution possessed the lowest maximum fractional occupancies values

and was therefore selected for the analysis (see Figure 3g). Maximum

fractional occupancies within the EEG 5-state solution showed mini-

mal variation, and therefore, the first repeat was selected for analysis

(see Figure 3h).

3.3 | HMM states

The fMRI HMM identified a total of six states (labelled F1–F6),

defined by the mean activity across the inputted networks and the FC

between each network (see Figure 4). Observing the states, F1 and F2

F IGURE 3 Model selection procedure for fMRI (left column) and EEG (right column) HMMs. (a and b) show the mean free energy for each
state number. (c and d) show the mean correlation between repeats for each state number. (e and f) show the correlations between each repeat
for state numbers 6 (left) and 5 (right). (g and h) show the max fractional occupancy distributions for each repeat for state numbers 6 (left) and
5 (right). Each point represents the maximum fractional occupancy of each scan. EEG, electroencephalography; fMRI, functional magnetic
resonance imaging; HMM, hidden Markov model.
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F IGURE 4 fMRI HMM state plots. Each row represents a different state identified by the HMM (F1 to F6). Column (a) shows the mean
activation maps plotted on brain surfaces. Column (b) shows the corresponding bar chart for the mean activation maps, displaying the mean
contribution of each IC to each HMM state; the coloured bars represent the three largest amplitudes (red: positive, blue: negative). Column
(c) shows the estimated fc for each state. FC is estimated using the covariance matrix of each state. EEG, electroencephalography; FC, functional
connectivity; fMRI, functional magnetic resonance imaging; HMM, hidden Markov model; IC, independent component.
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each showed large activations/deactivations within multiple sensory

regions, including sensorimotor, auditory, and visual cortex. The FC

between visual regions was notably higher within these states relative

to other states. F3 showed large activations within the salience net-

work and sensory regions, particularly auditory, as well as a

deactivation within the DMN. F4's largest activations were predomi-

nately within the DMN. F3 showed positive FC between medial visual

cortex FC and the DMN and precuneus network, whereas F4's FC

pattern on average resembled the other states, with overall the lowest

FC strength of all the states. F5 exhibited very low activations across

F IGURE 5 EEG HMM state spectral properties and voxel-wise correlations between EEG HMM state probability time courses and the BOLD

signal. (a) Power spectral density estimate and activation maps for state E2. (b) Power spectral density estimate and activation maps for state E5.
Brain images plotted in MNI152 space (coordinates = 111 � 96 � 117). Z threshold = 3.1, cluster p threshold = 0.05. Images presented using
neurological convention (left = left). Shaded regions represent 95% confidence intervals of the mean alpha power across the channels inputted to
the HMM. EEG, electroencephalography; HMM, hidden Markov model.
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all networks relative to other states, with the DMN, right frontoparie-

tal and DAN showing the largest de/activations. F6's largest activa-

tions were within a combination of the FPN and DAN, alongside

deactivations within posterior somatosensory and auditory net-

works. Both F5 and F6 showed increased FC between the precu-

neus network and the DMN relative to other states. Five states

were inferred with the EEG HMM (E1–E5), defined by changes in

posterior alpha (7–13 Hz) power amplitude (Hilbert Transform) and

alpha power correlations across the posterior electrodes (O1, O2,

Oz, POz, PO3 and PO4). All five states primarily differed in mean

amplitude, whereas showing similar patterns of covariance. State

spectra were estimated using data from both conditions via a

state-wise weighted multi-taper analysis for each channel and

averaged. E5 exhibited the highest alpha power, followed sequen-

tially by E4, E2, E3 and E1 which exhibited the lowest alpha

power (see examples in Figure 5). Only states E1 and E5 showed

significant correlations between their state probability time course

and the BOLD signal (see Figure 5). Within the EC condition, E5

exhibited negative correlations across cortex, including visual cor-

tex, parietal cortex, frontal cortex and the DAN. In contrast, dur-

ing the EO condition, E5 exhibited negative BOLD correlations

exclusively within the lateral visual cortex. Conversely, E1 dis-

played positive BOLD correlations with similar activation patterns

to E5 during both EO and EC conditions. Unlike E5, the BOLD

correlations during the EC condition were notably less widespread

across the occipital and parietal cortex.

The conventional analysis, investigating alpha power correlations

with BOLD signal, found similar results (see Figure 6). During the EC

condition, negative alpha-BOLD correlations were observed within

primary visual cortex, frontal cortex and DAN. The correlations were

notably less widespread compared to the E5 activation map but

showed a large amount of overlap. Similarly, during the EO condition,

negative alpha-BOLD correlations were observed within lateral visual

cortex, though notably less than observed for E5. However, unlike E5,

positive alpha-BOLD correlations were observed within the insula

bilaterally, anterior cingulate cortex and the cerebellum during the EO

condition.

3.4 | Fractional occupancy sliding window analysis

The sliding window analysis of the fractional occupancies revealed

multiple unique patterns of state dynamics within the fMRI and

EEG HMMs. Specifically, the fMRI sliding window analysis found

that states F1 and F2 showed gradual increases in fractional occu-

pancy upon eye closure, before decreasing to near zero upon eye

opening (see Figure 7). States F3 and F4 both increased their

occupancy during the EO conditions. F5 showed dramatic

F IGURE 6 Group-level
statistical maps from the
conventional alpha-BOLD
correlation approach plotted in
MNI152 space (coordinates:
92 � 149 � 97). Mean positive
(red) and negative (blue)
correlations between alpha power
and BOLD signal are shown for

both EO (upper) and EC (lower)
rest conditions. Z threshold = 3.1,
cluster threshold = 0.05. Images
presented using neurological
convention (left = left). EC, eyes
closed; EO, eyes open.
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increases in fractional occupancy upon eye closure, before gradu-

ally returning to a baseline level. It was also noted that fractional

occupancy of F5 increased upon reopening of the eyes, but to a

lesser magnitude than upon eye closure. State F6 exhibited the

most static time course of occupancy, with no notable changes

between conditions (see Figure 7).

F IGURE 7 Time courses of state fractional occupancies across all four scans (in order of acquisition EO, EC, EO, EC), calculated using a sliding
window analysis, for both HMMs. Window size = 10 s, overlap = 0. EC, eyes closed; EO, eyes open; HMM, hidden Markov model.
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Regarding the EEG sliding window analysis, states E1, E2, E4 and

E5 all showed changes upon eye closure, with the former two states

showing a rapid decrease in fractional occupancy upon eye closure,

and the latter two states exhibiting the opposite pattern (see

Figure 7). All four states then gradually returned to a baseline level.

State E3 showed minimal variation across the duration of the session,

except for a minor increase within the final scan. State E4 showed a

gradual increase across all four scans, with fractional occupancy

increasing upon each eye closure.

Correlating the sliding window time courses across the EEG

and fMRI model states revealed strong correlations between sev-

eral states (see Figure 8). Specifically, during run 1 (EO), state F1

exhibited a range of correlations with the EEG states, with state

E1 showing the strongest negative correlation and E5 showing the

strongest positive correlation. Similarly, during run 2, states F2

and F5 also showed strong correlations with the EEG states, with

F2 showing strong positive correlations with states E1 and E2,

and strong negative correlations with E5 and E4. Conversely, state

F5 showed an inverse relationship with the EEG states, showing

strong positive correlations with E5 and E4, and strong negative

correlations with E1 and E2. Only low correlations between states

were observed in run 3, with only state F3 showing a moderate

positive correlation with state E5, and a moderate negative corre-

lation with state E2. Finally, during run 4, state F5 showed similar

correlations with the EEG states as during run 2. Additionally,

states F1 and F2 all showed moderate positive correlations with

states E1, E2 and E3, and moderate negative correlations with

state E5.

3.5 | State metric comparison

Statistical comparison of the fMRI HMM state metrics across EO/EC

conditions revealed multiple significant differences. Significant

F IGURE 8 Correlation matrices of sliding window time courses across EEG and fMRI sliding window time courses. Pearson correlations were
calculated at the group level. EC, eyes closed; EEG, electroencephalography; EO, eyes open; fMRI, functional magnetic resonance imaging. All
p values are Bonferroni corrected (number of comparisons = 30). * = p < .05, ** = p < .01, *** = p < .001.
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differences in state fractional occupancy between conditions were

found for all states. F1, F2 and F5 had a significantly higher fractional

occupancy during the EC condition, whereas F3 and F4 had a signifi-

cantly higher fractional occupancy during the EO condition (see

Figure 9a and Table 1). State lifetimes also showed differences

between conditions, with F1, F2 and F5 having longer state lifetimes

during the EC than the EO condition, and F4 having the opposite (see

Figure 9c). All states had lower state interval times when in the condi-

tions in which they had higher fractional occupancy (see Figure 9d).

The state switching rate was significantly higher for the EO condition

relative to the EC condition (difference = 0.01, 95% CI: [3.81e�03 to

0.02], t(20) = 2.90, p = .009; Cohen's d = 0.63, Cohen's d 95% CI:

[0.16–1.10]) (see Figure 9b).

In comparison, only one significant difference in state metrics was

found between the two conditions for the EEG HMM (see Figure 10a,

b, and Table 2). State E4 had a significantly higher fractional occu-

pancy during the EC condition relative to the EO condition. No signifi-

cant difference in switching rate was found between the two

conditions (difference = �6.63e�04, 95% CI: [�2.23e�03 to

9.02e�04], t(17) = �0.89, p = .384; Cohen's d = �0.21, Cohen's

d 95% CI: [�0.67 to 0.26]). State lifetimes were highest for states E1

and E5, and lowest for E4. Both states E4 and E5 showed a minor

F IGURE 9 Comparison of fMRI HMM state metrics between EO and EC conditions. (a) Fractional occupancy. (b) Switching rate. (c) State life
time. (d) State interval time. EC, eyes closed; EO, eyes open; fMRI, functional magnetic resonance imaging; HMM, hidden Markov model. All
p values are Bonferroni corrected (number of comparisons = 6). * = p < .05, ** = p < .01, *** = p < .001.

TABLE 1 Paired t test parameters for fMRI HMM state fractional occupancy comparisons between the EO and EC conditions.

HMM state Difference t(20) p Adjusted p 95% CI Cohen's d Cohen's d 95% CI

F1 �0.09 �6.88 <.001 <.001 [�0.11 to �0.06] �1.50 [�2.12 to �0.86]

F2 �0.17 �5.82 <.001 <.001 [�0.23 to �0.11] �1.27 [�1.84 to �0.68]

F3 0.14 6.55 <.001 <.001 [0.09–0.18] 1.43 [0.81–2.04]

F4 0.17 9.74 <.001 <.001 [0.13–0.21] 2.13 [1.34–2.90]

F5 �0.09 �4.22 <.001 .003 [�0.14 to �0.05] �0.92 [�1.43 to �0.40]

F6 0.04 3.46 <.001 .015 [0.02–0.06] 0.75 [0.26–1.23]

Note: p values adjusted using the Bonferroni method (number of comparisons = 6).

Abbreviations: EC, eyes closed; EEG, electroencephalography; EO, eyes open; fMRI, functional magnetic resonance imaging; HMM, hidden Markov model.
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increase in state lifetimes when within the EC rest condition relative

to the EO rest condition (see Figure 10c). Interval times also showed

minimal variance between the two conditions, with E1 and E2 show-

ing a minor reduction during the EO rest condition, and E3 showing a

minor increase during the EO rest condition (see Figure 10d).

Based upon the results of the sliding window analysis (i.e., time

courses in Figure 7), the state metrics were additionally compared

solely within the first quarter of each scan (2.5 mins), since various

states demonstrated larger changes within that period. Within the

EEG HMM, this revealed significant differences in the fractional occu-

pancies of state E5 (difference = �0.09, 95% CI: [�0.15 to �0.03], t

(17) = �3.32, p = .004, adjusted p = .020; Cohen's d = �0.78,

Cohen's d 95% CI [�1.30 to �0.24]) between conditions. The

switching rate did not differ significantly between conditions during

the first quarter. Conversely, for the fMRI analysis, the significance of

both state fractional occupancy and switching rates did not change

when restricted to the first quarter.

4 | DISCUSSION

4.1 | Summary

This study applied HMM to EEG-fMRI data to investigate changes in

brain state dynamics during 10-min scans of either EO or EC resting

state. HMMs were trained separately on each imaging modality and

F IGURE 10 Comparison of EEG HMM state metrics between EO and EC conditions. (a) Fractional occupancy. (b) Switching rate. (c) State
lifetime. (d) State interval time. EEG, electroencephalography; HMM, hidden Markov model. All p values are Bonferroni corrected (number of

comparisons = 6, ** = p < .01, n.s = non-significant).

TABLE 2 Paired t test parameters for EEG HMM state fractional occupancy comparisons between the EO and EC conditions.

HMM state Difference t(17) p Adjusted p 95% CI Cohen's d Cohen's d 95% CI

E1 0.03 2.06 .055 .277 [0.00–0.06] 0.48 [�0.01 to 0.97]

E2 0.03 1.38 .187 .934 [�0.01 to 0.06] 0.32 [�0.15 to 0.79]

E3 <0.01 �0.52 .610 1 [�0.04 to 0.02] �0.12 [�0.58 to 0.34]

E4 �0.04 �4.49 <.001 .002 [�0.06 to �0.02] �1.06 [�1.63 to �0.47]

E5 �0.01 �1.15 .268 1 [�0.03 to 0.01] �0.27 [�0.74 to 0.20]

Note: p values adjusted using the Bonferroni method (number of comparisons = 5).

Abbreviations: EC, eyes closed; EEG, electroencephalography; EO, eyes open; fMRI, functional magnetic resonance imaging; HMM, hidden Markov model.
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underwent model selection to determine the optimal number of states

(fMRI = 6, EEG = 5). A comparison of the state metrics found signifi-

cant differences in the fractional occupancy of both the fMRI and

EEG states. A sliding window analysis further revealed that specific

fMRI and EEG states showed substantial changes in fractional occu-

pancy upon eye closure, before returning to baseline level after

approximately two and half minutes. Additionally, the sliding window

analysis revealed states from the fMRI model showed strong correla-

tions in fractional occupancy with states from the EEG model, indicat-

ing that states inferred from different modalities were capturing

similar temporal dynamics. Finally, a GLM analysis revealed that state

E5, which was associated with the highest alpha power, showed

BOLD correlations closely resembling canonical alpha-BOLD

correlations.

4.2 | fMRI HMM states

The fMRI HMM identified six states, each with unique activation

maps. Of these, F1, F2 and F5 showed significantly increased frac-

tional occupancy during the EC rest, whereas states F3 and F4

showed decreased fractional occupancy during EC. With the excep-

tion of F3, all identified states have been reported within either pre-

vious HMM research (Song et al., 2023) and/or complex PCA

resting-state research (Bolt et al., 2022), indicating that these states

occur reliably. Furthermore, the component equivalent to states F1

and F2 identified within this study was highly correlated with the

global BOLD signal (Bolt et al., 2022). Though the origin and signifi-

cance of the global BOLD signal have been heavily debated, particu-

larly in regard to whether it is a representation of noise or

physiologically plausible signal (Liu et al., 2017), animal literature has

demonstrated that it correlates strongly with local field potentials,

but only during periods of eye closure (Schölvinck et al., 2010). This

suggests that the global BOLD signal exhibits different dynamics

within EO and EC rest, a finding that has been reported within previ-

ous fMRI literature (Agcaoglu et al., 2019; Weng et al., 2020), with

research demonstrating that BOLD signal amplitude shows signifi-

cantly higher variability within the EC condition (Jao et al., 2013).

Given our results this would seem unsurprising, given that both

states were defined by large changes in activity within sensory

regions, as well as showing greatly increased FC with eye closure.

Furthermore, the reported increase in variability during the EC con-

dition, matches the results here, with the state fractional occupancy

values exhibiting higher variability during the EC condition relative

to the EO condition. As to what these states represent, previous

research demonstrating increases in BOLD signals within sensory

regions during eye closure has suggested that this represents mental

imagery (Marx et al., 2004). Alternatively, given the states' potential

association with the global BOLD signal, they could represent a

reduction in vigilance, given previous EEG-fMRI research finding cor-

relates between the global BOLD signal and vigilance measures

(Wong et al., 2016). It has also been suggested that EC resting-state

scans contain periods of sleep (Tagliazucchi & Laufs, 2014) and

future work will be needed to understand the impact of sleep on

HMM states and their properties.

Regarding the remaining states, the interpretation is less complex.

State F4 solely consisted of the activity within the DMN and showed

a higher fractional occupancy during the EO resting condition, as pre-

viously reported (Jao et al., 2013; Wang et al., 2022; Yan et al., 2010).

This potentially occurs as a result of the removal of visual stimuli

when the eyes are closed, as both posterior cingulate cortex and

medial prefrontal cortex have been linked to sensory monitoring

(Brandman et al., 2021; Raichle et al., 2001). State F3, on the other

hand, primarily consisted of large activations within the salience and

auditory networks, with the same pattern of fractional occupancy as

state F4. As the salience network is primarily associated with the

detection of sensory stimuli (Downar et al., 2000), it can be hypothe-

sised that the state was also more active during EO rest as result of

being able to perceive external visual stimuli. Finally, state F4 exhib-

ited minimal activation across all networks relative to the other states.

However, the sliding window analysis revealed that F5 was the only

fMRI state to show an increase in fractional occupancy at eye closure.

Additionally, the state also showed a similar increase in functional

connectivity between visual regions as in states F1 and F2. Thus, the

state appears to represent the initial increase in FC within the visual

cortex upon eye closure. Together, this suggests that the fMRI HMM

was able to accurately identify the changes in dynamics between the

two rest conditions.

4.3 | EEG HMM states

The EEG HMM identified five states with varying alpha power, with

E5 exhibiting the highest alpha power, followed by states E4, E2, E3

and E1. Using the state time courses from each state as regressors

within an fMRI GLM analysis, significant BOLD correlates were identi-

fied for both the highest (E5) and lowest (E1) alpha power states in

both EO and EC conditions. These activation maps closely resembled

the activation maps obtained from the conventional alpha-BOLD

approach. Specifically, during the EC condition, state E5 showed wide-

spread negative correlations across occipital and parietal cortex, as

well as within the DAN. Conversely, during the EO condition, state E5

showed bilateral negative correlations within lateral occipital cortex.

This suggests that the HMM approach can identify states whose time

course of fractional occupancy has meaningful BOLD correlates,

resulting in brain states with both high temporal and spatial

properties.

Though neither E1 nor E5 showed a significant difference in frac-

tional occupancy across the two conditions, the sliding window analy-

sis revealed that E5 showed a significant spike in fractional occupancy

during the first quarter (2.5 min) of each EC scan, before gradually

returning to a baseline level. This pattern in fractional occupancy

appeared unique to the EEG HMM states, with fMRI state fractional

occupancy remaining stationary across the entire duration of each

scan (except for F4). We hypothesise that this is due to the fMRI

states representing slow global metabolic changes over time, whereas
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the EEG states solely represent more dynamic changes in alpha

power. This is supported by the fact that E5's fractional occupancy

time course closely resembled the changes in alpha power observed

in the alpha power time courses, suggesting that state E5 specifically

represents the initial change in alpha power induced by eye closure.

Furthermore, when restricting the fractional occupancy to the first

quarter of each scan, state E5 showed a significant increase in frac-

tional occupancy during the EC condition, providing further support

for this theory.

4.4 | fMRI-informed EEG state spatial properties

By utilising the concurrently collected fMRI data, we were able to

infer the spatial properties of the EEG states E5 and E1, which

showed high similarity to maps of alpha-BOLD correlations obtained

from conventional EEG-fMRI (de Munck et al., 2007; Goldman

et al., 2002; Laufs et al., 2006; Mayhew & Bagshaw, 2017). Interest-

ingly, the identified BOLD maps for the two states were almost identi-

cal inverses of each other. One reason this potentially occurred is that

E5 was the state associated with high alpha power activity, whereas

E1 was associated with the low alpha power activity. Thus, when one

state was more active, the other was likely to be inactive, resulting in

inverse BOLD maps. Overall, these results are in accordance with pre-

vious literature (Hunyadi et al., 2019), and demonstrate that fMRI data

can be used to infer the spatial activity of states defined by EEG data,

resulting in states with both high spatial, temporal, and potentially

spectral resolution (although in the current case this was restricted to

the alpha band).

However, unlike previous literature, reliable BOLD maps were

able to be identified from states that were only active for a short

duration of the overall scan (�15%). This suggests that BOLD corre-

lates obtained from conventional EEG-fMRI approaches are predomi-

nantly driven by short periods of high alpha power, or ‘bursts’, as
opposed to a sustained alpha rhythm that spans across the duration

of an entire scan (Quinn et al., 2019). A similar conclusion has also

been drawn from MEG data, with HMMs identifying beta ‘bursts’ dur-
ing a motor task (Seedat et al., 2020).

4.5 | Cross modality correlations

Correlating the sliding window time courses across modalities

revealed that several states showed strong temporal correlations

across modalities. This can be interpreted as showing that during a

time point when the probability of being in a specific fMRI state was

high across the subject group, then it was likely that those subjects

were also in a specific EEG state. Most notably, states E5 and F5

showed a strong positive correlation during the EC runs, with their

fractional occupancy beginning high and steadily decreasing back to

baseline after approximately 2.5 min. This correlation is especially

interesting due to state E5 showing the highest alpha power of the

EEG states, thus indicating that the dynamics of fMRI state F5 closely

resemble the slow temporal changes in alpha power. However, it is

difficult to interpret this relationship further, given that F5 showed

low mean BOLD activity across all networks relative to the other fMRI

states. Despite this, these correlations in temporal dynamics across

neuroimaging modalities indicate that the states are capturing similar

underlying dynamics in the data.

4.6 | Limitations and future work

This study had several limitations. First, the study did not employ

counterbalancing, with all participants completing the scans in the

same order. This makes it difficult to discuss any links to vigilance as it

is not possible to rule out potential order effects, and therefore coun-

terbalancing of scan order should be employed in future research.

Second, the EEG analysis was restricted to occipital alpha power. This

analysis was chosen due to a priori knowledge of how occipital alpha

power changes upon eye closure; however, it only serves as a limited

definition of a brain state. In future work, a more complex observation

model, such as a time-delay embedded (TDE) model (Vidaurre, Hunt,

et al., 2018) or multivariate autoregressive (MAR) model (Vidaurre

et al., 2016), should be employed to directly infer states according to

their spectral properties, including both power and phase. However, it

is yet unclear how well these observation models will perform on con-

current EEG-fMRI data, given the restricted bandwidth available due

to the residual harmonics of the gradient and BCG artefacts. It is also

acknowledged that the HMM approach itself is not free of limitations.

The primary limitation being that it is reliant on the Markov assump-

tion, assuming that the probability of being in any one state at a time

point is determined solely based on the state active at the time point

prior. Additionally, the HMM approach requires an extensive model

selection process to ensure both the reliability and validity of the

mode. Despite these limitations, the results here suggest that

the HMM approach can detect dynamic changes in both the BOLD

signal and alpha power that are in accordance with the literature.

5 | CONCLUSIONS

This study identified unique spatiotemporal dynamics during periods

of EO and EC rest in concurrent EEG-fMRI recordings. In line with

previous research, the fMRI model found significant changes in the

mean activity and functional connectivity of sensory and attention

networks, whereas the EEG model identified the canonical increase in

alpha power upon eye closure. This demonstrates that the HMM

approach is capable of reliably identifying brain state dynamics in

EEG-fMRI data. Furthermore, we demonstrate that multimodal data

can be used help to infer the spatial properties of EEG-defined states

using the concurrently recorded fMRI data, resulting in states with

high spatial and temporal resolution. Specifically, we found that the

high alpha state showed significant BOLD activation patterns resem-

bling those identified in the literature. Given the low fractional occu-

pancy of the state (�15%), this suggests that these BOLD patterns
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are driven by short periods of high-intensity alpha, as opposed to a

sustained rhythm. Finally, we found that several states showed

a strong correlation in fractional occupancy across modalities, indicat-

ing that states defined by EEG and fMRI data capture similar dynamics

despite differences in spatial and temporal resolution. However, it is

noted that the observation model used with the HMM provides an

oversimplification of the dynamics, given that it can only model

changes in power within a predefined frequency band, and thus future

research should utilise more advanced observation models, such as

the TDE (Vidaurre, Abeysuriya, et al., 2018; Vidaurre, Hunt,

et al., 2018) or MAR (Vidaurre et al., 2016) models to improve the

spectral definitions of the EEG states. Overall, these findings demon-

strate the efficacy of applying HMM to multimodal data for the pur-

poses of brain state analysis, the ability of multimodal data to improve

the characterisation of brain states, and show that state dynamics

often show strong temporal correlations across modalities.
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