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Abstract: Facial expression recognition is the key area of research in computer vision, enabling
intelligent devices to understand human emotions and intentions. However, recognition of facial
expressions in natural scenes presents challenges due to environmental factors like occlusion and pose
variations. To address this, we propose a novel approach that combines local feature enhancement
and global information correlation. This method allows the model to learn both local and global
facial features along with contextual information. By enhancing salient local features and exploring
multi-scale facial expression features, our model effectively mitigates the impact of occlusion and pose
variations, improving recognition accuracy. Experimental results demonstrate that our adapted model
outperforms alternative algorithms in recognizing facial expressions under challenging environments,

achieving recognition accuracies of 85.07% and 99.35% on the RAF-DB and CK+ datasets, respectively.

Keywords: face expression recognition; deep learning; attention mechanism; global information
association

1. Introduction

FER (face expression recognition) is a research field that extends from face recogni-
tion [1], with the objective of swiftly and precisely identifying face images and categorizing
expressions based on facial movements, ultimately enabling the analysis and inference of
the emotional state of the subject. To clarify, our computer technology scientifically analyzes
facial images and categorizes them into the seven fundamental expressions: happy, sur-
prised, fear, sad, angry, disgusted, and neutral. This classification is accomplished through
a systematic sampling procedure. As the information age progresses, the technology of
facial expression recognition (FER) has become an integral part of human society, finding
diverse applications in various scenarios. Particularly in the field of human—computer
interaction [2,3], intelligent robots employ real-time emotional detection with FER to an-
alyze the emotions of individuals. Based on the detection results, they can then execute
tailored behavioral responses, enabling intelligent and interactive communication between
humans and computers. In the field of human—computer interaction [4], intelligent robots
employ FER for real-time emotion detection of target individuals and implement targeted
behaviors accordingly, enhancing intelligent human—machine interaction. In the education
sector [5], FER enables teachers to infer students’ real-time classroom states and knowledge
mastery. In the medical field [6], FER aids physicians in accurately assessing patients’
conditions and delivering targeted clinical treatment. In the transportation sector, FER
analyzes drivers’ expressions, promptly generating warning signals and reminders in case
of abnormal situations, thereby helping to prevent traffic accidents [7].

Performing (FER) in natural environments poses numerous challenges to researchers,
with occlusion and pose variations being particularly tricky. Occlusion leads to the loss
of crucial expression information, while pose variations hinder the effective extraction of
facial features, both of which collectively reduce the accuracy and robustness of the FER
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systems. Additionally, the heavy reliance of existing FER models on facial expression image
labels, coupled with issues such as high annotation costs and label inconsistencies in public
expression datasets, further limits the improvement of model performance.

To address these challenges, this study proposes an innovative FER algorithm, LSDC-
FER, which combines local feature enhancement with global information association strate-
gies. By designing a local feature enhancement module, LSDC-FER can strengthen the
extraction and enhancement of locally salient features in facial images, enabling it to capture
valuable information even in occluded scenarios. Simultaneously, the introduction of a
multi-scale global association module allows the model to comprehensively capture the
global information and contextual associations of facial expressions across multiple scales,
improving its adaptability to various pose variations.

In terms of implementation, LSDC-FER is built upon the ResNet34 backbone network.
It first ensures the quality of input images through data preprocessing. Subsequently, the
local feature enhancement module divides the feature map into multiple local regions,
applies asymmetric convolution blocks to enhance local features, and fuses them back
into the global feature map through residual connections. For the purpose of global
information association, the integration of multi-scale convolution strategies with the fused
convolutional self-attention mechanism (ACMix) proves to be effective in extracting both
global multi-scale information and contextual information. Finally, the enhanced local and
global features are fused and fed into subsequent convolutional blocks and fully connected
networks for expression classification.

Experimental results demonstrate that the LSDC-FER algorithm performs exception-
ally well on datasets such as RAF-DB and CK+, achieving recognition accuracies of 85.07%
and 99.35%, respectively, significantly outperforming other comparative algorithms. No-
tably, LSDC-FER exhibits remarkable robustness in handling occlusion and pose variations.

In subsequent chapters, this paper will delve deeper into the current status and
limitations of related work, provide a detailed analysis of the technical details of the LSDC-
FER algorithm, comprehensively present experimental results and analysis, summarize
research findings, and discuss future research directions. Through these efforts, we aspire
to contribute to the advancement of facial expression recognition technology.

2. Related Works
2.1. Expression Recognition Method

In the mid-19th century, international scholars began studying facial expressions, with
psychologist Paul Ekman [8] leading the way. Ekman conducted extensive experiments,
which ultimately led to the identification and classification of six fundamental human
expressions: happiness, surprise, fear, sadness, anger, and disgust. These expressions can
be seen in Figure 1. Ekman also introduced the Facial Action Coding System (FACS) [9].
The Facial Action Coding System (FACS) divides the face into 46 distinct facial movement
units and describes facial expressions by utilizing the combined information derived from
these facial action units. Many scholars studying facial expressions accept and base their
research on this system. The progression of face expression recognition can generally be
categorized into two main types: feature-based face expression recognition methods and
deep learning-based face expression recognition methods.

Currently, there are three common types of facial expression recognition methods.
The first is the feature-designed expression recognition method, a traditional classification
method that predesigns manual features and extracts effective expression information.
The classifier has a significant impact on the accuracy of expression recognition, and
commonly used classifiers include SVM [10], AdaBoost [11], and K-Means [12]. The second
is the geometry-based expression recognition method, which is based on FACS. In 1995,
Cootes et al. [13] proposed an active shape model based on statistical learning, which
detects the outline of the face and extracts facial feature information to allow the model
to more comprehensively extract facial expression features. Matthews et al. [14] proposed
an improved algorithm, the active appearance model, based on the active shape model,
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which enhances the model’s ability to detect face contours and locate facial features. Setyati
et al. [15] proposed an active shape model combined with a radial deviation function
network, which realizes facial expression classification through face reconstruction. Han
et al. [16] proposed the face mesh transformation method, which extracts local action units
related to expressions through mesh edge feature extraction, achieving an overall accuracy
rate of 94.96% in the CK dataset. Finally, there is the texture-based expression recognition
method, which presents facial expression feature information by statistically calculating
the pixel grayscale distribution of local areas of the facial image. Most of the research
methods adopted by researchers are based on classic algorithms such as Local Binary
Pattern (LBP) and Gabor wavelet transform. Fu Xiaofeng [17] proposed a multi-scale center
binary method based on LBP, which uses the comparison of neighboring point pairs and
center pixel weighting to reduce histogram dimensions and introduces an improved LBP
sign function and multi-scale to solve the noise sensitivity problem of the LBP operator
in facial expression recognition, enabling the model to achieve good classification results.
Bashyal et al. [18] extracted facial expression features using 18 Gabor filters and used
principal component analysis for data dimension reduction. Finally, they combined vector
quantization learning to significantly improve the recognition performance of the algorithm
on the Jaffe dataset. Zhang et al. [19] proposed a facial expression recognition algorithm
based on Gabor wavelet transform, LBP, and Local Phase Quantization (LPQ). They used
Gabor filters to extract facial image features from multiple angles and scales to capture
significant facial expression features. The extracted images were encoded using LBP and
LPQ operators, and principal component analysis was used to reduce the dimensions of the
fused features of the transformed LBP and LPQ operators. Zhang Liang et al. [20] proposed
a recognition algorithm based on Gabor wavelet transform and fused gradient feature
LBP, which combines the facial region features extracted by the improved LBP operator
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accuracy rate of 94.96% in the CK dataset. Finally, there is the texture-based expression
recognition method, which presents facial expression feature information by statistically
calculating the pixel grayscale distribution of local areas of the facial image. Most of the
research methods adopted by researchers are based on classic algorithms such as Local
Binary Pattern (LBP) and Gabor wavelet transform. Fu Xiaofeng [17] proposed a multi-
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the weight of each feature and the weight of the relationship between groups of features
to facilitate the reconstruction of face expression features. The weights of the features
and their relationships are determined with respect to their importance. The model is
able to capture valid expression features. The experiments show that FDRL can achieve
a good face expression recognition both in a controlled environment and the natural one.
Zhao et al. [23] designed MA-Net, an attention network based on local and global features,
for facial occlusion and head pose variation. This network uses Resnet-18 as its backbone,
mitigating the interference from occlusion factors. Test results indicate that MA-Net can
effectively achieve facial expression recognition in natural scenarios. Wang et al. [24] also
acknowledged that occlusion and pose variation hinder facial expression recognition tech-
nology and proposed the Region Attention Network (RAN) to adaptively extract effective
facial expression features. Additionally, Wang et al. [25] viewed deep learning-based facial
expression recognition research from another perspective, arguing that uncertainties arising
from low-quality images and non-objective expression image labels seriously mislead the
learning of neural networks. They proposed the Self-Cure Network (SCN) to suppress
the uncertainties faced by facial expression recognition. Unlike suppressing uncertainties,
Zhang et al. [26] also proposed a new solution for the uncertainty problem. They encour-
aged the model to learn more precise uncertainty values through the loss function, helping
the model learn labels for ambiguous expression images from mixed images.

Numerous studies indicate that, in comparison to traditional expression recognition
methods, deep learning-based approaches exhibit superior recognition capabilities. They
are adept at learning intricate expression patterns and contextual information, and typically
demonstrate high accuracy, particularly when trained on large-scale datasets and equipped
with a sufficiently deep network structure. Moreover, these methods also demonstrate a
certain level of robustness to image variations and noise. Even in the presence of image
noise, deformations, and other distortions, deep learning models can effectively recognize
facial expressions. They possess stronger generalization capabilities and capture a wider
range of expression variations and sample diversity through extensive training data. This
enables the method to achieve favorable recognition outcomes on unseen data.

The uniqueness and significance of this study lie in the application of the global in-
formation association module and local feature enhancement. Firstly, by introducing a
multi-scale global association module, this study achieves deep excavation and fusion of
global facial expression information. Furthermore, the integration of the fused convolu-
tional self-attention mechanism (ACMix) dynamically captures the contextual associations
within facial expressions. The effective utilization of the ACMix mechanism enables the
model to intelligently allocate attention, focusing on key facial regions during expression
recognition, thereby significantly enhancing the robustness and accuracy of the model in
handling complex natural scenarios.

Echoing the global information association, this study also conducts meticulous pro-
cessing in local feature enhancement. Through fine-grained segmentation of feature maps
and the introduction of asymmetric convolution blocks, the local feature enhancement mod-
ule precisely captures and effectively enhances the crucial local features of facial expressions.
This meticulous treatment not only improves the expressiveness of local features but also
seamlessly fuses them with the global feature map through residual connections, achieving
complementarity and enhancement between local and global information. Table 1 shows a
comparison of the advantages and disadvantages of the traditional method and ours.

The proposed method in this paper stands out for its ability to integrate global and
local facial features, dynamically model facial contexts across multiple scales, and enhance
salient local features. This unique combination enables robust facial expression recognition,
even under challenging conditions like occlusion and pose variations.



Electronics 2024, 13, 2813

50f22

Table 1. Comparison of the advantages and disadvantages of the traditional method and the method

in this paper.
Model/Methodology Advantages Disadvantages
Global and local information fusion: the global and local . .
. o Computational complexity and
features are effectively fused, which improves the accuracy . .
- resource requirements are high.
and robustness of recognition.
Multi-scale feature extraction: the generalization ability of Several parameters in the model need
the model is enhanced to be carefully tuned for
LSDC-FER ' optimal performance.

Existing methods (e.g.,
De-Ken, Pugh-Ken, etc.)

Dynamic context modeling: the ACMix mechanism can
dynamically capture the contextual association of facial
expressions, which improves the ability of the model to
handle complex scenes.
Robust: excellent in handling complex situations such as
occlusion and pose changes.
Relying too much on local features

High computational efficiency for real-time applications. degrades performance in
complex scenarios.
The model is simple and easy to implement and deploy. Limited generalization ability.
The technology is mature. Lack of dynamic modeling.

Sensitive to parameters.

2.2. Face Expression Dataset

A pivotal aspect of facial expression recognition based on deep learning is the selection
of the dataset. Ideally, the dataset ought to comprise facial expression images representing
a wide array of races, cultures, and environments. In this section, we use the public emoji
dataset in the proposed algorithm. According to the dataset collection source, the dataset
can be divided into laboratory dataset and network collection dataset, as shown in Table 2.

Table 2. Sample distribution of RAF-DB dataset.

Category Table Training Set Test Set
Neutral 0 2524 680
Pleased 1 4772 1185

Sad 2 1982 478

Surprised 3 1290 329

Fear 4 281 74
Disgust 5 717 478

The RAF-DB dataset [27] is a publicly available dataset designed for research in
facial expression recognition and sentiment analysis. It includes face images sourced from
real-world scenes on the Internet and covers diverse factors such as age, gender, and
skin color. The dataset contains 29,672 images in total. Furthermore, the dataset was
annotated by 40 professional expression annotators, incorporating both basic expression
and composite expression datasets. The training set consisted of 12,271 samples, while the
test set contained 3068 samples. The detailed distribution is given in Table 3.

Table 3. Sample distribution of FER-2013 dataset.

Category Table Training Set Test Set

Neutral 0 4965 626
Pleased 1 7215 879
Sad 2 4830 594
Surprised 3 3171 416
Fear 4 4097 528

Disgusted 5 436 55
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FER-2013 is a publicly available emoji dataset, that consists of a substantial collection
of 35,887 images obtained from the Internet, as depicted in Table 3. Unlike RAF-DB, the
FER-2013 dataset maintains a fixed image size of 48 x 48 pixels. However, there is a
challenge where the image-to-label correspondence is inconsistent. Moreover, the presence
of non-face images within the FER-2013 dataset poses difficulties in achieving high accuracy
for the algorithm.

The CK+ dataset [28] is among the datasets commonly used for evaluating expression
recognition algorithms. It is an enhanced version of the original Cohn Kanade dataset,
refined by subsequent researchers. The CK+ dataset contains both images and videos,
although only images are utilized for training and testing purposes in this experiment. It is
noteworthy to mention that the CK+ dataset is a collection of facial expressions gathered in
a controlled laboratory environment.

3. Methods
3.1. Technical Principles

Facial expression recognition often faces problems such as occlusion and posture
change in natural scene applications [29]. The algorithm struggles to capture expression
information from key parts; therefore, it has some impact on the accuracy of facial expres-
sion recognition [30]. Previous studies were mainly focused on detecting and addressing
affected local areas, which are complex, deeper in structure, and resource-intensive [31].
Therefore, our proposal involves developing an adaptive network model called GCLENEet,
which aims to enhance local features and integrate global information. This approach
effectively mitigates the impact of pose transformations and occlusions on facial expression
recognition, leading to improved accuracy and robustness in real-world scenarios. By
combining both local and global features, GCLENet addresses the challenges associated
with variations in facial expressions, ultimately enhancing the overall performance of the
recognition system.

As illustrated in Figure 2, the backbone network of GCLENet is based on ResNet-
34 [32], which, in its structural design, can be specifically divided into two primary modules:
the local feature enhancement module and the multi-scale global association module. After
the expression image is initially processed using the convolution operation of the first two
convolution blocks of ResNet-34, it undergoes further processing by both the local feature
enhancement module (LFA) and the multi-scale global association module (MGC) [33,34].
The purpose of this processing is to extract local features, global features, and global
context information. Specifically, within the local feature enhancement branch module,
the middle-level face feature map is initially segmented into multiple non-overlapping
local feature maps, following the spatial horizontal and vertical directions. Convolution
blocks are subsequently utilized to capture the unique local features of the feature-level
face. In the multi-scale global association module, the feature map initially learns the global
multi-scale information of the face by passing through the multi-scale module. Next, the
fusion convolution (FCM) derived from the attention mechanism ACMix [26] is introduced.
This approach aims at effectively extracting the global context information of the face while
simultaneously convolving the global multi-scale feature map [26,35]. The local features
obtained at the feature level are then fused with the global features, which contain fusion
context information. Finally, these fusion features are fed into the subsequent convolution
group and fully connected network for accomplishing face expression classification.

In this section, this paper will present the facial expression recognition method that
enhances the integration of global information with local features. The method’s efficacy
will be demonstrated with practical experiments, to confirm its exceptional performance in
accurately identifying and categorizing facial expressions.
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network. The feature map F is generated after 7 x 7 convolution and maximum pooling of
the first layer of the base block, which contains rich shallow detail features. The parameters
are as follows: F € RE*HxW C =64, H = W = 56. The results reveal that the crux of
recognizing facial expressions lies in the eyes and mouth, and it is imperative to also
consider the inherent attribute factors of faces. To begin, the feature map F is divided into
four feature submaps along the spatial direction F;, thereinto i € {1,2,3,4}. The facial
image is divided into four regions of interest, each represented as a feature subplot with the
size of 28 x 28. These subplots focus on crucial facial areas. To enhance the local features of
the face, we employ two sets of asymmetric convolutions. The asymmetric convolution
block is composed of three convolution kernels: 1 x 3,3 x 3, and 3 x 1. This configuration
is mathematically represented as

F = convyw3(F;) + convsy3(F;) + convsyq (F) (1)

This enhances the ability to represent local features of facial expressions. Following
two asymmetric convolutions, the four feature submaps are reconnected in their original
sequence. Then, the local feature maps are merged into the global features as residuals.
The LFA module structure during the training process is shown in Figure 3a.
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ing its ability to comprehend their inherent nature. Furthermore, facial expressions are
manifested differently across various scenarios. The incorporation of LFA effectively fil-
ters out occlusion and pose variation information, ultimately enhancing the robustness of
the model.

3.3. Multi-Scale Global Association Module

In the classification of facial expressions, affected by the interclass similarity of facial
expressions, most algorithms ignore the importance of global features and pay more
attention to local features. Previous studies revealed the significance of global features in
recognizing facial expressions under natural scenes. Therefore, we have designed a module
based on ACMix that is capable of extracting global multi-scale features and fusing global
context information to enhance recognition. As illustrated in Figure 4, MGC learns the
global feature information of facial expressions through a two-stage structure. In the first
stage, we map the intermediate face features generated by multiple convolutions. For this
purpose, F is evenly divided into n feature subgraphs along the direction of the channel F;,
thereinto i € {1,2,...,n}. Except that the first feature subgraph F; uses 1 x 1 convolutions,
the remaining subgraphs were extracted by convolution kernels with different receptive
fields. The output subgraph Y; can be represented as follows:

o(F;) i=1
Y, ={ K(...K(F;)...) 1<i<n ()
N————

(i=1)K(e)

where o(-) stands for 1 x 1 convolution and K(-) stands for 3 x 3 convolution. Lastly,
the generated feature submap is concatenated along the channel direction to obtain a
comprehensive global multi-scale feature map Y = concat(Y1,Ys, ..., Yy). Furthermore, the
value of n has a significant impact on the global features learned by the model. Specifically,
as the value of n increases, the global features captured by the model become richer and
more comprehensive, but this leads to an increase in operational cost. Therefore, a balance
between feature learning and operational cost must be struck. We have set the value to 4,
that is, in the same convolutional layer, respectively, the receptive fields of 1 x 1,3 x 3,
5 x 5,7 x 7 convolution check for convolution of four sets of feature subgraphs, as shown
in Figure 4.

The introduction of multi-scale features can indeed empower the model to learn
stronger and more robust global expression information [37]. But from the FACS theory,
facial expressions are jointly described by facial action units. Learning the association
between expression features aids the model’s recognition of facial expressions, improving
its overall performance [38,39]. To accomplish this, we introduce ACMix, a two-branch
fusion convolutional self-attention mechanism that allows the model to effectively learn
the global context information of facial expressions while simultaneously continuing to
learn facial features, as depicted in Figure 5. The output in traditional 3 x 3 convolutions
can be represented as the summation of feature maps, which are computed using pixels as
the basis:

gl(,?'q) = Y Kpafivp—(k/2)j+9-1k/2)
" () (3)
8ij = L 8ij
pq

where f; ; and g; ; denote the pixel positions of the input and output feature maps, respec-
tively, and K, ; represents the weight of the traditional convolution kernel at position p, g.
The top expression in Equation (3) can be simplified by the shift operation:

i) = Shift(Kyafijp— k/2),9 — [k/2]) @
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training process, we utlhzed MTCNN for face image detection and cropping before input-
ting them into the network. The model’s parameters were configured as follows: a mini-
batch size of 128, an initial learning rate of 0.05, with the learning rate decreased by a factor
of 10 every 20 iterations, for a total of 200 training iterations. The loss function utilized in
this study is cross-entropy, and the optimizer algorithm employed is stochastic gradient
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F, we initially subject the feature map to pre-projection. This process typically entails
applying three 1 X 1 convolutions to transform the individual feature maps into n separate
groups, ultimately resulting in a diverse set of intermediate features. The feature map is
subsequently reconstructed via the fully connected layer and goes through the processes
of biasing and aggregation. This process effectively produces a feature map that serves
as an equivalent to the convolutional kernel K for the subsequent convolutions. This
combined approach allows us to effectively leverage the benefits of both convolution and
self-attention mechanisms, enhancing the representation and processing capabilities of
our model. Secondly, by employing 1 x 1 convolutions, the feature projections for query,
key, and value can be obtained simultaneously. The channels for query and key are then
reshaped into vectors using the self-attention mechanism. A similarity matrix is generated
via matrix point multiplication, which is subsequently weighted with the value. Lastly,
the outputs from the two branches are adaptively weighted through parameter control to
obtain the final global feature map.

Therefore, compared to other algorithms, this network extracts a broader range of fea-
tures with diverse receptive fields through multi-scale modules. Furthermore, it integrates
fusion convolutional self-attention to capture the internal correlation among expression
features, effectively mitigating the interference caused by occlusion and posture changes on
the network. This ultimately enhances the performance and robustness of the algorithm.

The global information association module leverages multi-scale feature extraction
and the self-attention mechanism (ACMix) to achieve a deep understanding and dynamic
modeling of global information of facial expressions, effectively enhancing the model’s
recognition capabilities in complex scenarios [40]. Simultaneously, the local feature en-
hancement module significantly boosts the extraction and expression capabilities of local
features through fine-grained segmentation of feature maps and the introduction of asym-
metric convolution blocks [41]. Furthermore, it integrates these local features with the
global feature map through residual connections, creating a complementary and enhanced
feature representation [42,43].

The design of these two modules is grounded on solid scientific theoretical foundations,
not only addressing long-standing challenges in the FER field but also enhancing the
efficiency and value of practical applications of the algorithm.

4. Experiments and Analysis
4.1. Implementation Details

Experiments conducted on 64-bit Ubuntu 16 systems utilized GeForce GTX 1070Ti
graphics for acceleration. The implementation involved two sections: training and ver-
ification. Typically, pre-training with a relevant dataset is utilized for face expression
recognition. Previous studies showed that pre-training on a large-scale face dataset can
enhance the results with fine-tuning for face expression recognition. However, large-scale
pre-training may require substantial resources. To address this, we assembled a training set
consisting of 50,000 facial expression images from three face expression datasets: CAER-
S [44] (see Figure 6), FED-RO [45] (see Figure 7), and AffectNet [46] (see Figure 8). In
the training process, we utilized MTCNN for face image detection and cropping before
inputting them into the network. The model’s parameters were configured as follows: a
mini-batch size of 128, an initial learning rate of 0.05, with the learning rate decreased by
a factor of 10 every 20 iterations, for a total of 200 training iterations. The loss function
utilized in this study is cross-entropy, and the optimizer algorithm employed is stochastic
gradient descent. The momentum parameter is set to 0.9, with the intention of accelerating
the convergence speed during the optimization process. Meanwhile, the weight decay
parameter is set to 0.0005, aiming at preventing model overfitting by slightly penalizing
the weights and thereby enhancing the model’s generalization ability. During the model
validation phase, we incorporated the trained model parameters into the model and set the
learning rate equal to 0.01 and performed 100 additional training iterations. The rest of the
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4.2. Evaluation Indicators

The confusion matrix helps to assess the model’s performance by providing insights
into its accuracy in classifying different categories. It allows computing the performance
metrics, including accuracy, recall, precision, and F1 score, providing a thorough under-
standing of the model’s classification capabilities.

Referring to Table 4, consider a binary classification scenario. The four cells of the
confusion matrix represent true positives, false positives, true negatives, and false negatives,
respectively. The term “true positive” means the cases where the model correctly identifies a
positive example as positive. Conversely, the term “false positive” refers to cases where the
model incorrectly classifies a negative example as positive. Similarly, “true negative” refers
to cases where the model accurately classifies a negative example as negative, whereas
“false negative” indicates cases where the model mistakenly classifies a positive example as
negative. The accuracy can be calculated by Formula (6). We used only these metrics to
assess the performance of the recognition methods.

Accurracy = TP+ 1IN (6)
YT TP+ IN + FP + FN
Table 4. Sample confusion matrix diagram.
True Value
Confusion Matrix
Positive Negative
Predicted value Positive TP FP
Negative FN N

4.3. Experimental Results

In this section, we present a comparison of the performance of our algorithm with
other face expression recognition algorithms, using two distinct datasets, such as RAF-DB
and CK+ [47,48]. These datasets are commonly used for evaluating the accuracy and
effectiveness of facial expression recognition algorithms. To ensure a fair evaluation of
algorithm performance, we adhered to the specific requirements of each algorithm. For the
algorithms that require pre-training, we conducted model pre-training using the ImageNet
dataset. This process establishes a strong foundation for accurate evaluation. Conversely,
for the algorithms that do not require pre-training, we directly assessed their performance
without this supplementary preprocessing step. This approach enables a comprehensive
and reliable comparison of algorithm performance.

(1) Performance comparison on RAF-DB datasets.

The RAF-DB dataset is composed of two sets: the original face image set and the
aligned face image set. Therefore, for performance verification, we can directly use the pre-
processed aligned face image set. Figure 9 displays the comparison of accuracy, demonstrat-
ing the performance of the algorithms on the dataset under evaluation. The performance
of the GCLENet algorithm on RAF-DB is better than the other ones, and its recognition
accuracy reaches 85.07%. Compared to DLP-CNN [49], PG-CNN [50], and IRF-CNN [51],
GCLENet performed better by 0.94%, 1.8%, and 1.53%, respectively. Hence, the superior
performance of GCLENet indicates its ability to effectively address the challenges posed by
occlusion and posture changes in face expression recognition in natural scenes [52].

(2) Performance comparison on the CK+ dataset.

On the CK+ emoji dataset, we tested model performance using only 758 images. There
is not a precise division between the training set and the test set in the official CK+ dataset.
In this paper, we took on the task of partitioning the official CK+ dataset into a training set
and a test set, with the ratio of 4:1. This division allows us to conduct a more systematic
evaluation of the algorithm performance on this dataset. According to the experimental
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4.4. Ablation Experiments
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recognition performance on both datasets. Lastly, the simultaneous utilization of both
modules led to accuracy improvements of 1.69% on RAF-DB and 2.43% on CK+ with re-
spect to the basic version.

Table 5. Results of the ablation studies.

1 FA MGC RAF-DB CK+
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led to accuracy improvements of 1.69% on RAF-DB and 2.43% on CK+ with respect to the
basic version.

Table 5. Results of the ablation studies.

LFA MGC RAF-DB CK+
- - 83.38% 96.92%
Vv - 84.69% 98.88%
- Vv 84.15% 98.21%
Vv Vv 85.07% 99.35%

(2) Local feature enhancement module internal analysis

The local feature enhancement module plays a crucial role in the GCLENet network, as
it enhances local features through feature map segmentation and asymmetric convolution.
The selective utilization of these techniques validates the effectiveness of the local feature
enhancement mechanism. This targeted extraction of local features significantly enhances
the overall performance of the network.

We evaluate four local feature extraction combination strategies here. In the compara-
tive experiments presented in Table 6, four different approaches were employed to extract
local features. The first approach is based on traditional 3 x 3 convolutions extracting local
features in a conventional manner without segmenting the feature map. The second ap-
proach divided the original feature map into four groups and performed 3 x 3 convolution
on each segmented feature subgraph to extract local features. The third approach directly
applied asymmetric convolution to the feature submap, focusing on extracting local fea-
tures. Lastly, the local feature enhancement module developed in this paper, was utilized as
the fourth approach. The experimental results and performance of these four groups can be
found in Table 7. Undoubtedly, the local feature enhancement module exhibits a stronger
effect in comparison with the other groups. This can be attributed to the feature map
segmentation, which enables the model to more effectively concentrate on the local facial
features. Furthermore, the module derives advantages from the influence of the MANet
network. Additionally, the four groups of uncovered feature maps align well with the
facial expression structure, further enhancing the validity of the local feature enhancement
mechanism. At the same time, the use of asymmetric convolution can effectively enhance
the extraction of local facial features, which is effective for recognizing facial expressions in
natural scenes.

Table 6. Analysis of studies of the local feature enhancement module.

Method RAF-DB CK+
Baseline 83.38% 96.92%
Baseline + Asymmetric convolution 83.87% 97.84%
Baseline + Feature map segmentation 84.26% 98.42%
Baseline + Local feature enhancement module 84.69% 98.88%

Table 7. Analysis of studies of the global multi-scale association module.

Method RAF-DB CK+
Baseline 83.38% 96.92%
Baseline + Multi-scale modules 83.72% 97.33%
Baseline + Fusion convolutional attention 83.96% 97.58%
Baseline + Global information association module 84.15% 98.21%

(3) Aninternal analysis of the multi-scale global correlation module

The multi-scale global association module consists of the multi-scale convolution
and fusion convolution self-attention. Its purpose is to investigate the effectiveness of
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incorporating fusion context information into the global multi-scale model. To verify this,
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In addition, to provide a more comprehensive evaluation of the performance of
GCLENet on the RAF-DB dataset, we used confusion matrices and gradient cam graphs.
These visualizations provide more detailed information and allow for a more accurate
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variations caused by occlusion and pose transformations. Experimental results demonstrate
that our method significantly improves the performance of face expression recognition in



Electronics 2024, 13, 2813 20 of 22

natural environments. It exhibits enhanced robustness and generalization capabilities in
comparison with the existing approaches.
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