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Abstract—We examine various design aspects of a learned
time-domain multiple-input multiple-output (MIMO) Volterra-
based equaliser and reveal their impact on the convergence and
performance of the model. We show that appropriate parameter
initialisation is vital for the model’s convergence and scalability to
a higher number of channels. This design optimisation enables the
first demonstration of a 7× 7 operation of the MIMO algorithm
at one step per span, achieving 1.5 dB effective signal-to-noise
ratio improvement over single-channel nonlinear equalisation,
hence significantly enhancing the transmission performance in
a wavelength-division multiplexing scenario.

Index Terms—nonlinearity equalisation, machine learning,
Volterra series, optical fibre systems

I. INTRODUCTION

Digital equalisation of Kerr-effect induced nonlinear im-
pairments is a promising approach to enhance the capacity
of optical fibre links [1]. In practical wavelength division
multiplexing (WDM) systems, inter-channel nonlinearities are
the dominant degradation factors of transmission performance.
Effective nonlinearity compensation requires sophisticated dig-
ital signal processing (DSP) developed from an in-depth
knowledge of the physical layer model and capable of simul-
taneously equalising multiple co-propagating channels. Initial
approaches to multichannel equalisation were based primarily
on digital backpropagation (DBP) techniques. In particular,
broadband full-field DBP [2], an approach that processes
WDM channels as a unified field, demonstrated remarkable
efficacy in counteracting four-wave mixing (FWM) and cross-
phase modulation (XPM) impairments. Despite its potential,
the practical deployment of this approach encountered sig-
nificant limitations, notably, the necessity for a large num-
ber of processing steps and high digital oversampling rates
[3]. Conversely, multiple-input multiple-output (MIMO) DBP
approaches, which were designed to solve coupled nonlinear
Schrödinger equations and targeted the mitigation of XPM
impairments only, featured less computational complexity at
the cost of reduced performance improvements. Subsequent
advancements made MIMO DBP more efficient. For example,
integrating frequency-domain filtered nonlinear steps reduced
the number of steps needed for multichannel operation signif-
icantly [4]. Nevertheless, such approaches are still impractical
for real-world applications due to their computational cost.
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Fig. 1. Block diagram of a 2× 2 time-domain MIMO L-simIVSTF for two
computational steps.

The integration of machine learning (ML) into nonlinear
equalisation (NLE) has completely revolutionised the approach
to improving system performance. Substantial research has
focused on applying ML to refine traditional equalisation tech-
niques. Using ML in single-channel DBP has reduced com-
plexity and enhanced equalisation capability [5]. ML-based
optimisation techniques have also advanced the operational ef-
ficiency of MIMO-DBP so as to require only one step per span,
for both frequency- and time-domain implementations [6], [7].
Furthermore, ML has enabled the efficient operation of inverse
Volterra series transfer function (IVSTF) based schemes in
MIMO configurations. In our prior work [8], we introduced a
new time-domain learned (L) MIMO model and demonstrated
its multichannel operation at two steps per span. This model
built on our earlier simplified IVSTF (simIVSTF) architecture
[9], which achieved significant complexity reduction through
efficient finite impulse response (FIR) filter re-use in its linear
steps and incorporated enhanced filtering in its nonlinear steps
[10]. Although ML had a crucial role in the optimisation
of L-Volterra-based MIMO equalisation, key design elements



remain still unexplored.
This paper delves into various design aspects of our time-

domain MIMO L-simIVSTF model [8]. We examine how dif-
ferent MIMO configurations affect performance and identify
dimensions that drive an optimum balance between computa-
tional cost and performance. This design optimisation enables
the first demonstration of 7 × 7 L-Volterra-based MIMO
equalisation at only one step per span, featuring significant
performance improvement compared to single-channel opera-
tion in a WDM transmission scenario.

II. PRINCIPLE, SIMULATION SETUP AND RESULTS

The architecture of our equaliser is depicted in Fig. 1 for
a 2× 2 MIMO implementation with two computational steps.
Each linear step s was implemented similarly to [11], by
convoluting the complex signal y(s−1)

n (t) of the nth channel
with the impulse response h(s)

n (t) of the FIR filter compensat-
ing the chromatic dispersion (CD) of the corresponding fibre
length. Before each linear step, an appropriate delay element
for each channel addressed the walk-off effect. The self-phase
modulation (SPM) and XPM activation functions at the sth
stage were expressed as
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where γ is the nonlinear coefficient of the fibre, Leff is the
effective fibre length, α(s)

c and β(s)
c,k are the filter’s coefficients,

Ts is the sampling interval, and Nch is the dimension of the
MIMO algorithm. The filtering operations were implemented
using the one-dimensional convolutional layers available in
popular ML frameworks but suitably adapted to perform
circular convolution on mini-batches of the received signal by
fulfilling the boundary conditions.

To assess the performance of our equaliser, we considered
an 11-channel single-polarisation WDM transmission over
a 6 × 100-km standard single-mode fibre link (dispersion
parameter D = 17ps/(nm · km), γ = 1.3 (W · km)−1,
loss coefficient α = 0.2 dB/km). Each channel carried a
stream of root-raised cosine pulses of 0.1 roll-off, modulated
by 64 quadrature-amplitude modulation symbols at a rate
of 32 Gbaud. The channel spacing was 40 GHz. Data trans-
mission was simulated using the split-step Fourier method
in batches of 218 symbols, with an up-sampling factor of
32. At the receiver, the WDM channels were brought to
baseband and down-sampled to 2 samples per symbol. The
channels of interest were then passed to the MIMO NLE for
processing. The receiver’s DSP blocks were implemented as
a differentiable computation graph in TensorFlow. After the
NLE stage, each channel underwent matched filtering and
further down-sampling to 1 sample per symbol. During the
training phase, the outputs of the MIMO algorithm were linked

to a single mean-squared-error (MSE) function for computing
the gradients of the model’s trainable parameters,

LMSE =
1
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where x̂(c)
n and x(c)

n are the reference and recovered symbols,
respectively, and M is the total number of symbols within a
batch. During the testing phase, the recovered symbols from
each channel were used to compute the bit error rate, which
was then mapped to an effective signal-to-noise ratio (SNR).
Datasets for a given launch power included 219 symbols for
training and 218 symbols for validation and testing. The model
was trained using the Adam optimiser, with a learning rate of
0.001 and a batch size of 40. These parameters were manually
adjusted to ensure convergence stability.

Our model’s trainable parameters included the coefficients
h

(s)
n of the CD FIR filters and the coefficients α

(s)
c , β(s)

c,k

of the SPM and XPM FIR filters, respectively. These were
treated as independent parameters across each equalisation
layer and channel path. The CD filters were initialised as in
[12]. The initialisation of the SPM and XPM filters was a
subject of study. We assumed zero-valued initial conditions
for all their taps but the central ones, α0 and β0,k, which were
set to ξSPM and ξXPM, respectively, and optimised. Separate
training was performed for each MIMO implementation (3×3,
5× 5, and 7× 7) and launch power level. We also optimised
the model’s hyper-parameters to maximise performance and
reduce complexity [8]. The hyper-parameter set included the
lengths of the FIR filters of the linear and nonlinear steps,
assumed to be the same throughout the model. Following the
same procedure as in [8], we identified the optimum lengths
to be 43 taps, 7 taps, and 41 taps for the CD, SPM, and XPM
filters, respectively.

The study on the initialisation factors ξSPM and ξXPM

highlighted their critical role in the model’s convergence.
The various MIMO configurations were trained for up to
1500 epochs, beyond which no performance improvement was
observed. The validation curves from the training process
of the 5 × 5, one-step-per-span implementation are depicted
in panels (a) and (b) of Fig. 2. These curves represent the
evolution of the MSE over the number of training epochs for
the validation dataset. We can observe from Fig. 2(a) that the
initialisation factor for the SPM filters has minimal influence
on the convergence speed. By contrast, suitable initialisation of
the XPM filters leads to a significantly faster convergence (Fig.
2(b)). This is attributed to the fact that XPM is the dominant
effect responsible for transmission performance degradation.
Repeating the same exercise for two-, three-, and four-steps-
per-span configurations showed similar results. It is worth
noting here that optimising the initial conditions for the SPM
and XPM filters facilitated the convergence of the model,
thereby enabling the implementation of 5 × 5 and 7 × 7
MIMO configurations at only one step per span, which had
not been achieved in [8]. Figure 2(c) shows the effective SNR
performance across the channels for different MIMO sizes.



Fig. 2. MSE evolution over number of training epochs for varying (a) ξSPM and (b) ξXPM values. (c) SNR performance of individual channels for 3× 3
(violet), 5×5 (green) and 7×7 (orange) MIMO schemes operating at one step per span. (d) Average SNR versus channel launch power for linear equalisation
(blue), and single-channel (red), 3× 3 (violet), 5× 5 (green) and 7× 7 (orange) MIMO models operating at one step per span.

We can see that up to 4 channels can be equalised with
a performance difference of less than 0.5 dB relative to the
central channel. The outermost channels in the 7 × 7 MIMO
implementation feature a performance degradation of ∼ 0.7 dB
compared to the central channel. For all implementations,
the edge channels show the lowest performance because they
were affected by the nonlinearity of the channels outside the
equalisation band.

Furthermore, we assessed the average effective SNR perfor-
mance as a function of the channel launch power for different
MIMO sizes and operation at one step per span. The results
are summarised in Fig. 2(d). We can see that single-channel
equalisation brings about a peak-to-peak SNR improvement
of only 0.5 dB over linear equalisation, which is not sufficient
for practical use. Increasing the number of equalised channels
with a 3 × 3 MIMO model contributes a further ∼ 0.6 dB
improvement. Similarly, the other two MIMO sizes bring about
a further ∼ 0.3 dB improvement each. Contrasting with the
recurrent neural network-based multichannel equaliser in [13],
which offers negligible performance benefit when increasing
its size from 3×3 to 5×5, our scheme scales to higher MIMO
sizes with improved performance.

III. CONCLUSIONS

We have examined several design aspects of a learned
time-domain MIMO Volterra-based equaliser and their impact
on the model’s performance and convergence. Our results
have shown that suitable initialisation of the MIMO model’s
parameters is crucial to its convergence and scalability. We
have demonstrated for the first time a 7 × 7 MIMO L-
simIVSTF equaliser at only one step per span, achieving
1.8 dB effective SNR improvement over linear equalisation,
and 1.5 dB over the nonlinear equalisation provided by its
single-channel counterpart for the same number of steps.
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