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Abstract An onboard facility shows promise in
efficiently converting floating plastics into valuable
products, such as methanol, negating the need for regional
transport and land-based treatment. Gasification presents
an effective means of processing plastics, requiring their
transformation into gasification-compatible feedstock, such
as hydrochar. This study explores hydrochar composition
modeling, utilizing advanced algorithms and rigorous
analyses to wunravel the intricacies of elemental
composition ratios, identify influential factors, and
optimize  hydrochar  production  processes.  The
investigation begins with decision tree modeling, which
successfully captures relationships but encounters
overfitting challenges. Nevertheless, the decision tree vote
analysis, particularly for the H/C ratio, yielding an
impressive R> of 0.9376. Moreover, the research delves
into the economic feasibility of the marine plastics-to-
methanol process. Varying payback periods, driven by
fluctuating methanol prices observed over a decade
(ranging from 3.3 to 7 yr for hydrochar production plants),
are revealed. Onboard factories emerge as resilient
solutions, capitalizing on marine natural gas resources
while striving for near-net-zero emissions. This
comprehensive study advances our understanding of
hydrochar composition and offers insights into the
economic potential of environmentally sustainable marine
plastics-to-methanol processes.
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1 Introduction

The proliferation of plastic pollution in the oceans has led
to an alarming crisis, causing devastating impacts on
marine ecosystems, marine life, and human health.
According to the European Parliamentary Research
Service, an estimated 4.8 x 10° to 12.7 x 10° metric tons
of plastic waste make their way into the oceans annually,
resulting in a substantial economic cost ranging from
259 million to 695 million € [1,2]. Ocean circulation and
tidal processes gather partial plastics and form gigantic
ocean garbage patches [3]. The Great Pacific Garbage
Patch serves as a prominent illustration of the extensive
plastic accumulation in the ocean. The pressing situation
urges attention and innovative strategies to tackle the
ever-growing threat to the marine environment.

Several governments and organizations have dedicated
themselves to addressing marine plastic pollution and
arousing awareness about this pressing concern. The most
well-known group, Ocean Cleanup, developed a complex
continuous operating system to accumulate marine waste
and enable this garbage collection [4]. However, because
of seawater erosion, most plastics collected from the seas
become non-recyclable or unsuitable for use, which leads
to their disposal in landfills or incineration on the land
[5]. The fates of the post-captured marine plastics
somewhat hindered the action of ocean cleaning,
particularly for some countries that banned the import of
plastic waste. It is noticeable to acknowledge that marine
plastic pollution is a global problem, and impractical to
concentrate global waste treatment on specific lands.
Hence, the on-site disposal of marine debris through a
multidisciplinary  collaboration in remote marine
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environments, coupled with the conversion of collected
plastics into valuable commodities or chemicals, emerges
as a promising and scientifically robust solution for
sustainably addressing this global challenge. The notion
of an on-ship mobile factory, resembling a floating
production storage and offloading vessel or an offshore
petroleum rig, offers a compelling avenue for in situ
conversion while fostering sustainability, promoting
plastic waste valorization, minimizing the ecological
footprint associated with cross-regional transportation,
and mitigating environmental litter. This concept not only
enhances its environmental friendliness but also aligns
with political feasibility and profit potential, thereby
harmonizing with the interests of nations in the
repatriation of marine plastics.

In terms of the wastes in the marine environment,
plastics account for up to 80%, and the most common
constituents of marine plastics are polyethylene (PE),
polystyrene, polypropylene (PP), polyamide (PA), and
polyethylene terephthalate (PET) [6,7]. Low densities of
polymers, such as PE and PP, with only carbon and
hydrogen elements and stable C—C linkage framework
chains, predominantly float on the sea and are the primary
ingested plastics in the bodies of some shallow-layer
creatures [8]. The deterioration from long-term insolation
and seawater made them non-recyclable, and the
synthesis mechanism determined hydrolysis inaccessible
to create a sustainable loop through original monomers
upcycling [9]. Within the spectrum of industrialized
approaches for plastic conversion, syngas production
stands out as a viable option to align with the concept of
an on-ship mobile facility and tap into the existing well-
established industrial infrastructure [10,11]. Nonetheless
despite the potential of marine debris gasification, certain
approaches are being explored to generate qualified
syngas for accessing the industrial system. In real-world
scenarios, marine debris typically consists of a mixture of
polyolefins, floating polyester bottles, or PA fishing nets.
The diverse and unstable nature of these materials makes
their gasification challenging. Moreover, the presence of
flame retardants and plasticizers can introduce additional
bromine and sulfur, which significantly impact the
subsequent utilization process [12,13].

Hydrothermal pretreatment (HTP) has been confirmed
as an effective method for converting marine debris into a
uniform gasification feedstock. It efficiently removes
bromine and sulfur from heavily contaminated, moisture-
laden feedstock while promoting the hydrolysis of amide
and ester bonds. Consequently, this capability is well-
suited for gasification pretreatment, preserving the hydro-
carbon structure while breaking down polycondensation
plastics like nylon and PET into smaller, soluble mole-
cules. Raikova et al. [14] used hydrothermal liquefaction
to convert marine plastics and microalgae into liquid
fuels. Ifiguez et al. [15] carbonized marine plastic waste
and removed all nitrogen from the feedstock in

hydrothermal conditions. The increase in amide content
in the liquid phase confirmed the immigration of nitrogen
from solid to liquid. These findings suggest that
hydrothermal could serve as a cost-effective and practical
method within a highly integrated system to produce
high-quality hydrochar, utilizing only water or seawater
when applied to mixed buoyant plastics.

As a result, modeling the HTP to bridge the gap
between the variability of marine debris and the
requirement for plastic gasification is the prerequisite for
customizing the attributes of each batch, ultimately
guaranteeing product stability. It requires an approach to
support the conditioning process by creating functional
models and recognizing external influences. Machine
learning (ML) is an optimal method to assist the
conditioning by developing workable models and
identifying foreign effects with its excellent capability for
big-data analysis. Numerous studies reported using ML
algorithms to investigate the thermal conversion
modeling of waste plastics [16,17]. The widely explored
algorithms in this area comprise decision trees (DT),
random forests (RF), support vector machines (SVM),
gradient boosting (GB), and neural network (NN)
algorithms like artificial NN (ANN) and deep NN, and so
on. For HTP of organics, researchers have predicted
product yield and revealed the effect of several parame-
ters, such as temperature, pressure, feed concentration,
and reaction time [13,18]. The gradient boosting
regression model well predicted R? values of 0.90-0.95
for the predictions of H,, CH,, CO,, and CO [13]. When
modeling the influence of biomass properties on hydro-
gen production and energy efficiency during hydrother-
mal gasification, four ML methods (ANN, GPR, SVM,
and RF) all displayed promising predictive capability
(R?> > 0.98). ML approach predicted bio-oil yields and
higher heating values from hydrothermal liquefaction of
wet biomass and wastes with 17 input features from
feedstock characteristics (biological and elemental
properties) and operating conditions [19]. An extreme GB
(XGB) model gave the best prediction accuracy at R?
value of nearly 0.9 for bio-oil yields, and R?> value of
about 0.87 for higher heating values. Despite the effi-
ciencies of the mentioned algorithms in biomass hydro-
thermal conversion, the complexity of the process made it
challenging to explain the fundamental mechanisms and
the connections between input and output because of the
“black box” attribute.

To our best understanding, no previous work has
proposed a conceptual on-ship facility to address marine
debris. Correspondingly, assessing the feasibility of
gasification digestion is a necessary investigation before
transitioning a land-based facility onto a ship. Hence,
within the nature of marine plastics and the conditions for
gasification, this study first develops a ML model to
explain plastic HTP, with modeling data from experi-
mental data and publications with different virgin
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plastics, salts, and operation parameters. The model
aimed to recognize the nonlinear interactions between
input and output variables, interpret explainable
information and evaluate variables in a complicated data-
driven model. Furthermore, based on the model
established, this study selected an integrated land-based
factory model as a standard to reveal the economic
potential and technical feasibility of this novel idea. This
work provides the understanding and evidence for future
modeling and experiments to enable marine plastic
sustainable conversion.

2 Materials and method

2.1 Materials

The present study used virgin plastics and reagent-grade
salts for the HTP experiments to understand the
contributions of each role. Low-density PE, PP, PET, and
nylon 6 (PA), the most common plastics in the sea, were
selected in the HTP experiment. Before HTP, these raw
plastics were pulverized into ~1 mm powders after being
purchased from the Sigma-Aldrich Co., Ltd., USA. The
salts imitated the compositions of seawater and included
NaCl (AR, > 99%), MgCl, (AR, > 97%), MgSO, (AR, >
99%), K,S0O, (AR, > 99%), CaSO, (AR, > 99%), and
CaCO; (AR, > 99%), which were purchased from the
Thermo Fisher Scientific Co., Ltd., USA. Deionized
water was the liquid phase employed in the tests.

2.2 Data collection

2.2.1 Experimental data

HTP was carried out in a laboratory setting with a
100-mL autoclave reactor without additional gas pressure.
Temperature, residence time, plastics/solvent ratio, and
solvent density in the reactor were the process parameters
to investigate the process efficiency. This work experi-
mented with 80 group tests with different feedstock
ratios, salt amounts, and parameters to obtain adequate
data for ML analysis. Each test heated the mixture to the
desired process temperature in a laboratory oven at
approximately 10 K-min! to the set temperature. After
cooling the HTP, filtration of the mixture separated the
hydrochar and liquid fraction using Whatman filter paper
of 1.2 mm pore size. For subsequent examination, the
hydrochar was dried at 105 °C for 24 h before being kept
at room temperature. The reservation of the liquid phase
was in a PP vessel at 25 °C.

The elemental analysis detected the carbon, hydrogen,
nitrogen, and sulfur contents for each sample (original
mixture and hydrochar) by using a CHNS analyzer
(Perkin-Elmer 2400, UK). In all cases, the initial sample
weight was 50 mg and employed sulfamethazine as the

internal standard. The mass difference calculated the
contents of oxygen. Subsequently, the response data set
collected the elemental ratios of H/C, O/C, and N/C as the
output data sets.

2.2.2  Literature data collection and screening

The publications regarding plastic hydrothermal conver-
sion supplied partial data sets. Data collection reviewed
the HTP literature using PE, PP, PET, or PA as feedstock.
Searching keywords involved plastics, PE, PP, PA, PET,
hydrothermal carbonization, and hydrochar. With the
scope to fit this work, the literature screening only deals
with specific plastic conversion in non-catalytic condi-
tions. The collected data sets from relevant publications
were summarized along with the experimental as the
original data sets and enclosed in the supplementary
materials.

2.3 ML algorithms comparisons

In our previous study of plastic thermal conversion, DT,
NN, and SVM performed practicable fitness in modeling
[17]. Hence, the current work tested three algorithms to
fit the HTP process upon the MATLAB software (version
2022b). Their MATLAB functions were fitrensemble,
fitrnet, and fitsvm, respectively. Within 87 groups data
set, each algorithm divided data sets into a training (70%
of total data points) and a validation test (30% of total
data points). The modeling process randomly selected the
division from the data sets to test the robustness and
predictability of the models. Among these supervised ML
algorithms, DT uses hyperparameter optimization and
pruning to prevent over-fitting and uses the MATLAB
function fitrensemble for model development. NN is a
system based on the operation of biological NN which
analyze data sets and train themselves to recognize
patterns between the input variables and responses. It
consists of the input and output layers and several hidden
layers with adjustable weighted linkages. SVM is an
algorithm that transforms a linear programming problem
into a dual problem. A kernel function is used to develop
the linear relationship between input and response, and
the statistical structure risk minimization principle
reduced the confidence range to a small genuine risk.

2.4 Techno-economic assessment for the potential process

In addition to the modeling aspect, the techno-economic
assessment of the following process meticulously
examined the feasibility and economics of the on-ship
marine plastics-to-methanol system. The total investment
cost encompasses the initial capital outlay, covering
direct and indirect expenses, which include equipment
procurement, installation, supervision, preliminary
engineering design, construction outlays, and startup
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costs. Given that this is a mobile on-ship factory, there is
no need to factor in land costs, resulting in a proportion of
the direct cost savings. Operation and maintenance
(O&M) costs are further categorized into fixed and
variable components. Fixed O&M costs include
expenditures related to salaries, maintenance, insurance,
overhead, and taxes, all of which remain constant and are
unrelated to the production rate. On the other hand,
variable O&M costs are influenced by the production rate
and encompass expenses for raw materials, catalysts, and
power consumption. This study employed an automated
framework developed by Ref. [20] and utilized a
reference configuration with a carbon ratio of 85.7 wt %.
Detailed assumptions regarding the prices of input and
output streams are available in the supplementary
materials. A more comprehensive understanding of the
calculation framework and assumptions is provided in the
Electronic Supplementary Material (ESM).

3 Results and discussion

3.1 Assumption of the marine debris and data statistical
analysis

Converting syngas to methanol is widespread in indus-
tries such as coal and natural gas, enabling the production
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other chemicals across numerous stable-running factories
worldwide [21]. Previous studies have demonstrated the
feasibility of converting waste polyolefins into syngas,
laying the groundwork for subsequent methanol synthesis
and successfully investigating them on a modeling scale
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allows direct treatment of plastics with seawater without
requiring drying or desalination. Generated hydrochar
undergoes thermal drying for further gasification and
solvent access to a centralized water treatment unit.
Steam gasification integrated with methane reforming
converts most hydrochar and combusts any unconverted
char to supply heat and balance energy. The Rectisol unit
purifies gasification products to produce synthesis-level
syngas, utilizing chilled methanol to remove impurities
and yield a pure syngas stream. A commercial Cu/ZnO/
Al,O; catalyst in the synthesis reactor facilitates CO,
hydrogenation to methanol and the water-gas shift
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final product. The WGS process converts unconverted
syngas into hydrogen and storable CO,, serving as
additional products.

Figure 1(b) statistically summarizes input data sets,
including salts in the solvent, ultimate analysis, solvent
conditions, and reaction conditions. With salts, the total
inorganic compounds account for approximately
35 g-kg™! of seawater. The dominant positive ions com-
prise Na*, Mg?*, K*, and Ca®", and the dominant negative
ions include CI-, SO,>~, CO,*", and Br~ [23,24]. NaCl is
the predominant salt in seawater, with a content of about
22-27 gkg!, followed by MgCl,, with 2-3 g-kg!
[23,25]. To simulate the salts in the solvent or deposited
on the debris, the salt effects studies added several
inorganic salts with different concentrations. The addition
of NaCl ranges up to 40.5 g-kg™! when pursuing extreme
conditions, and the commonly used input was up to
23 g'kg'!. As well as the NaCl, the salts with fewer
amounts were investigated to reveal the comprehensive
effects of the HTP, which consists of MgCl,, MgSO,,
K,S0,, CaSO,, CaCO;, and MgBr,. Next, ultimate
analysis refers to the composition of plastics. Both virgin
PE and PP contain carbon and hydrogen elements with
ratios of 0.857 and 0.143, respectively, which provide
only hydrocarbons to the mixture. Virgin PET has
elemental ratios of 0.625 carbon elements, 0.042
hydrogen elements, and 0.333 oxygen elements. Nylon-6,
or PA, contains carbon, hydrogen, oxygen, and nitrogen,
of which the ratios are 0.637, 0.097, 0.141, and 0.124,
respectively, and is the nitrogen source in the mixture.
Without considering the pure polyolefin of 0.857, the
median carbon ratio ranges from 0.64 to 0.74. A higher
carbon ratio refers to more polyolefin in the mixture.
Correspondingly, a lower hydrogen ratio refers to less
polyolefin, as polyolefin has the most hydrogen elements.
Plastic additives, however, also introduce more elemental
species when addressing real-world plastics, because of
some additives are sulfide, bromide, or phosphide [26].
Notably, this work concentrates on polymer framework
conversion in HTP. The results of sulfide and bromide
removal could be found in previous reports [15]. The data
sets also accounted for solvent effects in statistical results.
The plastic-to-solvent ratio runs from 0.0145 to 0.1, with
a median of 0.0384, whereas the solvent density is
between 0.25 and 0.75. With the reaction conditions, the
temperature data set ranges from 200 to 400 °C, and the
reaction time is from 5 to 180 min.

In Fig. 1(b), the response data sets (5) and (6) encom-
pass two distinct categories: hydrochar compositions and
their recovery yields. Within the hydrochar compositions,
essential elemental ratios are considered, including N/C,
O/C, and H/C, which provide insights into the chemical
properties of the product. Additionally, the response data
set accounts for recovery yields and represents the final
hydrochar recovery resulting from various input data sets.
Among these response data sets, the N/C ratio stands out

as particularly significant in the context of HTP for
hydrochar gasification. The primary objective of HTP in
this study is to eliminate nitrogen from the hydrochar,
facilitating the production of pure syngas. Within the
range of elemental ratios, the N/C data set varies from 0
to 0.234. Instances with a ratio of 0 indicate partial non-
PA conversion, while values above 0 entail complete
hydrolysis of PA. Kinetic analysis of hydrothermal PA
depolymerization, as reported in previous research [27],
provided data sets involving an N/C ratio of zero. This
research was conducted at temperatures ranging from 300
to 400 °C, with reaction times spanning 5 to 60 min. The
primary products of PA hydrolysis were found to be
soluble caprolactam and aminocaproic acid. Initially, PA
underwent degradation into aminocaproic acid through
hydrolysis, followed by further decomposition into
smaller molecules. This observation underscores the
importance of addressing wastewater treatment within the
current integration system. In addition to the N/C ratio,
the ratios of H/C and O/C, along with the recovery yield,
play a crucial role in determining the potential produc-
tivity of the resulting syngas. Specifically, carbon
recovery holds significance, as it theoretically impacts the
ultimate syngas yields in a steam gasification process and
serves as the exclusive carbon source for subsequent
carbon oxide conversion and steam reforming processes.

3.2 Modeling of the hydrochar recovery

Upon the input and response data sets summarized above,
three different algorithms, namely DT, NN, and SVM,
were employed to assess their suitability in predicting the
recovery yields of hydrochar. The evaluation criteria for
the model responses included the coefficient of determi-
nation (R?) and the root-mean-squared error (RMSE) for
both the trained and tested data sets. For DT modeling,
the R? value for the training data was notably high at
0.997, but it dropped to 0.787 for the testing data. NN
followed closely with an R? value of 0.965 for both the
training and testing data sets. Additionally, RMSE values
were calculated for the training and testing data sets. DT
exhibited fewer differences in RMSEs between the
training and testing data sets, while NN had higher RMSE
values compared to DT for both the training and testing
data sets. In contrast to the high accuracies achieved by
DT and NN, the SVM algorithm yielded a much lower R?
value of 0.469 for both the training and testing data sets.
Furthermore, the RMSE values for the SVM models were
higher than those of the DT and NN models for the data
sets. These observations collectively suggest that the
SVM algorithm may not be well-suited for modeling in
the present work due to its comparatively lower accuracy.

Figure 2(b) displays fitness plots for various responses
obtained using the DT algorithm. As previously
mentioned, the response data sets for recovery yields
range from O to 1, with some partial data points



approaching 1 originating from experimental outcomes of
ineffectively managed PA and/or PET degradation. The
plot illustrates that most training points align closely with
the fitness line, but numerous test points fall outside of
this line, indicating overfitting within the DT algorithm.
Overfitting occurs when a proposed curve attempts to fit
all or nearly all data points with zero error, which can be
problematic when the proposed curve (model) introduces
errors due to noise in the data. Overfitting often arises
when a model is excessively accurate or overly complex.
While a perfect fit might seem ideal, it may disregard the
actual shape of the underlying curve, which can take
various forms and often includes some degree of noise. If
a model fits all data perfectly without error, it raises
questions about whether the proposed result has captured
data noise. The DT algorithm, primarily used for classifi-
cation tasks, typically mitigates overfitting concerns when
applied to massive data sets, which allows for higher
modeling accuracy [28]. Given the restricted size of the
current data set, mitigating overfitting presents a
significant challenge, and in practical modeling scenarios,
complete avoidance is often challenging.

The predictor importance module within the DT algori-
thm provided a visual representation of each factor’s
contribution, as depicted in Fig. 2(b), facilitating a deeper
understanding of their impact on the outcome to ascertain
the significance of various factors. The classification
algorithm of DT was instrumental in revealing the
importance of each predictor, enhancing interpretability.
While ensemble methods like DT share a black-box

Front. Chem. Sci. Eng. 2024, 18(10): 117

nature with NN, tree-based algorithms offer improved
interpretability due to their capacity to extract feature
importance through a voting mechanism [29]. It was
evident that reaction temperature exerted the most
substantial influence on hydrochar production from
plastic HTP, followed closely by reaction time. These two
factors together accounted for 74% of the total impor-
tance estimates, underscoring the dominant role of reac-
tion conditions in promoting non-catalytic hydrother-
mal conversion. Conversely, the initial compositions of
the feedstock contributed only 11% to the importance
estimates. This observation emphasizes the versatility of
hydrothermal digestion, demonstrating its efficacy in
processing various organic wastes, including different
types of plastics, under optimal reaction conditions. The
solvent’s impact ranked lowest among all factors, collec-
tively representing a 5% importance estimate, suggesting
that solvent density and solid-to-liquid ratio played
relatively minor roles in system design. Among the input
factors, the influence of NaCl on the response exhibited
significant importance, surpassing other salts present in
the solvent. This outcome may be attributed to the
prevalence of NaCl in seawater, which guided the data
collection involving substantial experimental doses.
Additionally, this observation implies that excessive salt
contamination in the feedstock could impede hydrochar
recovery from marine plastics. Consequently, pre-
washing is essential when handling plastics heavily
contaminated with salt.

Building upon the insights derived from the DT vote
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analysis mentioned above, Figure 2(c) provides compara-
tive cross-validation results using the complete set of
factors and only the featured inputs. When using the
complete set for modeling, the cross-validation yielded an
R? value of 0.8124, with a predicted R?> of 0.6106. In
contrast, focusing on the featured factors, such as reaction
temperature, residence time, and NaCl content, for
modeling resulted in an R* of 0.9129 and a predicted R?
of 0.6850. This outcome underscores a robust and
dependable correlation between recovery rates and reac-
tion conditions, as well as the NaCl content. This strong
correlation emphasizes the practicality of hydrochar
recovery modeling. While the accuracy of 0.9129 is
slightly lower than that achieved with ML approaches, the
low cost and satisfactory results make cross-validation a
viable choice for practical modeling. Importantly, this
approach effectively tackles and mitigates potential
overfitting concerns that can arise with algorithms and
serves as an assist means to validate the accuracy.

3.3 Modeling of the hydrochar compositions

In hydrochar composition modeling, the DT method was
initially employed to forecast elemental composition
ratios within the hydrochar, focusing particularly on N/C,
O/C, and H/C ratios. Figure3 showcases the DT
algorithm's remarkable precision in predicting these
composition ratios. For the training data, it becomes
apparent that R” values were close to 1 for N/C and H/C,
while O/C demonstrated an impressive R> of 0.97.
However, the test data presented a broader spectrum of R?
values, ranging from 0.75 to 0.815, suggesting variances
in the modeling outcomes associated with this algorithm.
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When evaluating the test data for H/C, N/C, and O/C
ratios, it becomes evident that the fits obtained are
suboptimal, as substantiated by R? values of 0.794, 0.75,
and 0.815, respectively. Furthermore, the presence of
noticeable RMSE values in these predictions underscores
the need to enhance the accuracy of elemental compo-
sition ratio forecasts within hydrochar. These findings
imply the possibility of overfitting during the modeling
process, warranting further investigation to rectify these
discrepancies and improve model performance.
Furthermore, the DT algorithms provide informative
estimating hydrochar compositions, as depicted in
Fig. 3(b). A common thread among the factors influen-
cing hydrochar composition ratios was the substantial
contribution of initial compositions. Ultimate analysis
played a significant role, accounting for 78%, 74%, and
63% of the estimates for O/C, N/C, and H/C ratios in
hydrochar, respectively. Specifically, the initial presence
of H, C, and O drove the O/C ratio in hydrochar, while
the initial N content primarily influenced the N/C ratio,
and initial H and O content had a notable impact on the
H/C ratio. The introduction of O or N in polymers
replaced some of the existing C and H, resulting in the
decline of their respective ratios within the polymer
structure. Notably, ultimate analysis had a different level
of importance for hydrochar H/C compared to O/C and
N/C. Additionally, the NaCl content in the system also
played a role in influencing the H/C ratio. This obser-
vation can be attributed to the hydrolysis of materials like
PA and PET, which led to a reduction in H content
through the breaking of amide and ester bonds. As
discussed earlier, lower NaCl content facilitated higher
hydrochar recovery, and experimental results supported
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Fig.3 (a) Regression plots for training and testing using the DT algorithm for hydrochar composition modeling, (b) importance
estimates for predictors of each hydrochar composition derived from the DT algorithm.
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this observation, particularly in the case of PA hydrolysis.
The predictor importance estimates provided valuable
insights into the factors influencing hydrochar formation,
particularly when aiming for high recovery yields. To
optimize the HTP model for hydrochar gasification,
primary considerations should focus on the reaction
conditions, initial elemental compositions (to replace
plastic qualitative analysis), and the NaCl content in the
solvent. The reaction conditions and NaCl content
primarily determined hydrochar yield, while the initial
elemental composition content influenced hydrochar
purity. The interplay between initial elemental compo-
sition and NaCl content jointly influenced the H/C ratio in
hydrochar.

As depicted in Fig. 4, this study also conducted a
comparative analysis of NN and SVM, two commonly
employed algorithms, to predict the elemental compo-
sition of hydrochar. The NN algorithm, serving as a
secondary approach for composition ratio predictions,
exhibited remarkable accuracy with R? values exceeding
0.936 for N/C and O/C, and achieving 0.817 for H/C,
underscoring its proficiency in hydrochar modeling
aspect. In contrast to the DT algorithm, which demon-
strated a perfect fit with the training data sets, the NN
algorithm yielded acceptable results when applied to both
the training and test data sets. However, the gap between
the training and test data sets for each response was
considerably smaller than that observed with DT-modeled
results. This outcome suggests that NN may have
established more practical models than DT. It’s worth

) 030

noting that NN is an information processing structure,
particularly suited for applications with unbounded
activation functions [30]. The NN can be configured or
trained to address specific problems, including classifi-
cation tasks. It learns from extensive sets of feature
vectors, which are accompanied by pre-configured classes
or labels, making it a versatile tool for various applica-
tions [31]. In the aspect of polymer degradation predic-
tions, tree-based algorithms have historically been less
frequently utilized than NN [32]. Some practices resorted
to collecting extensive training data sets to mitigate the
overfitting issues associated with tree-based algorithms.
However, when comparing ANN and tree-based algori-
thms for pyrolysis composition prediction, they were
found to achieve similar levels of prediction accuracy
[33]. In practical scenarios, the choice of a ML model
depends on the desired level of accuracy and the
availability of training data. Considering these factors, the
ANN algorithm holds several advantages and appears
well-suited for addressing the objectives of the current
research.

The SVM modeling results reveal a lack of accuracy
and reliability in the predictions. The H/C ratio exhibits a
notably weak fit, with an R*> value of 0.651 and an
elevated RMSE of 0.054. These deficiencies persist in the
test data, where the R% remains low at 0.651, and the
RMSE, though slightly improved at 0.045, still signifies
substantial prediction errors. Similarly, the N/C ratio
presents challenges, with an R? of merely 0.31 and an
RMSE of 0.047, indicating significant uncertainties in the

0.6

R 0.817 R

R 0.936

RMSE | 0.019 RMSE

R
)
(9

0.5

R test 0.817 R test

RMSE 0.042 %
R? test 0.936 oo L °

RMSE test| 0.024 RMSE test

RMSE test| 0.124

R
9
S

Predicted H/C/wt %
S
=
Predicted N/C/wt %
o o
= &

) 0.05 ?
© Train >
Test

0.4 ;

0.3}

0.2

Predicted O/C/wt %

1 0.1, of

> Train i o

+ Test N2
0

© Train
* Test

0 0.05 0.10 0.15 0.20 0

Actual H/C/wt %

-~

S

=z
o
9
S

0.30

0.05 0.10 0.15 0.20 0.25 0.30 0
Actual N/C/wt %

01 02 03 04

Actual O/C/wt %

05 0.6

7 0651 ]

R 0310

R 0.594

OF 00'\¢

RMSE RMSE

R
)
(9

RMSE

R test R test

R test

=
=

RMSE test | 0.045 1]+ « RMSE fest

RMSE test

R
9
=)

e

5

o
|

Predicted H/C/wt %
=) o
= —

W =
Predicted N/C/wt %
[ =1
[y

& v 0.05°

Train o &

Test

a 5 b

Predicted O/C/wt %

O Train
* Test

O Train
Test

0 0.05 0.10 0.15 0.20 0
Actual H/C/wt %

0.05 0.10 0.15 0.20 0.25 0.30 0
Actual N/C/wt %

0.1

02 03 04
Actual O/C/wt %

05 0.6

Fig. 4 Regression plots illustrating training and testing results for hydrochar composition modeling using (a) the NN algorithm and

(b) SVM algorithm.



Yi Cheng et al. Machine learning aided plastics hydrothermal modelling 9

predictions. These issues persist in the test data, where the
R? remains equally low at 0.31, and the RMSE stands at
0.044. While the O/C ratio achieves a relatively higher R
of 0.594, the RMSE remains at 0.123, with considerable
prediction errors. These challenges also extend to the test
data, with an R? of 0.594 and an RMSE of 0.118.
Collectively, these outcomes highlight the necessity for
substantial enhancements to improve the reliability of
these predictions. It’s worth noting that SVM is typically
recognized for its binary classification capabilities in
regression, where the hyperplane serves as the prediction
line for target values. SVM defines boundary lines around
the hyperplane to create margins containing observed
values. Support vectors play a pivotal role in defining the
hyperplane within SVM, with the aim of encompassing as
many data points as possible within the boundary lines.
This strategy serves to maximize the fit of data points
within these margins. In certain contexts, such as
predicting plastic pyrolysis, SVM and ANN methods
have demonstrated the ability to model gas and liquid
yields in both procedures with a remarkable 99%
accuracy [34]. Additionally, SVM models have success-
fully predicted hydrogen yield with an impressive R’
value of 0.997 when estimating hydrogen yield in
biomass gasification [35]. However, a significant draw-
back of SVM, the quadratic programming problem
(QPP), is inevitable. This computational challenge can be
particularly cumbersome in training classifiers [36].
Furthermore, when dealing with extensive data sets, as
illustrated in Section 3.1, which involves input factors
related to marine debris conversion encompassing 15
items, SVM’s computational demands increase substan-

unworkable [37]. Its heightened computational comple-
xity may offer insights into the observed reduced
accuracy in the SVM algorithm within this study.

3.4 Featured factors for hydrochar composition modeling
with NN algorithm

The NN algorithm has demonstrated satisfactory perfor-
mance in hydrochar composition modeling, particularly
for the N/C and O/C ratios. However, further optimiza-
tion of featured factors is necessary to enhance accuracy
and cost-efficiency in modeling. Figure 5(a) illustrates the
hydrochar composition modeling using the NN algorithm
with these featured factors. Leveraging insights from the
DT vote analysis, tailored featured sets, comprising the
top 7, 6, and 5 factors for the H/C, O/C, and N/C
composition ratios, respectively, were utilized in hydro-
char composition modeling. Specifically, the model for
the H/C ratio demonstrated a robust fit, with both R? and
R? test values of 0.9376, along with an exceptionally low
RMSE of 0.0113, signifying minimal prediction errors.
This observation is better than using full factor set
modeling, of which R? was 0.817. However, in the cases
of O/C and N/C, featured sets showed worse performance
than the full set. The modeling of the O/C ratio yielded an
R? value of 0.9027 and an RMSE of 0.0499. For the test
data, the R? value remained at 0.9027, and the RMSE
decreased to 0.0368. Regarding the N/C ratio, the model
provided an R? value of 0.8353 and an RMSE of 0.0364.
These findings were consistent in the test data, with an R?
value of 0.8353 and a reduced RMSE of 0.0332.

Figure 5(b) presents a comparative cross-validation
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composition modeling using the NN algorithm. The
results reveal varying levels of accuracy and predictive
performance across different elemental composition
ratios. For the H/C ratio, the model achieved an R? of
0.7414, indicating a moderate fit, but the predicted R? of
0.4642 suggests a decrease in predictive reliability. In the
case of the O/C ratio, the model demonstrated a high level
of accuracy with an R? of 0.9129, and the predicted R?
remained respectable at 0.685. Finally, for the N/C ratio
modeling, an R> of 0.838 signified good predictive
performance, with a predicted R> of 0.6754. These
findings highlight the model’s variable performance when
predicting different elemental composition ratios in
hydrochar modeling with featured factors.

Figure 5(c) compiles R? outcomes for hydrochar com-
position modeling, evaluating the effectiveness of multi-
ple configurations across different elemental composition
ratios (H/C, O/C, N/C), encompassing the utilization of
the NN algorithm with featured and full factor sets, and
cross-validation with complete factor sets. For the H/C
ratio prediction, the NN with the featured factor set serves
optimal, yielding an R” of 0.938, emblematic of a robust
model with minimal prediction errors. In contrast, the
full-factor models fall slightly short in predictive
accuracy. Moving to the O/C ratio prediction, the full
factor set using the NN algorithm delivers an accurate
model with an R? of 0.936, establishing its reliability in
forecasting this ratio. Meanwhile, the NN algorithm with
the featured factor set and cross-validation with full factor
set, although slightly lower with R? values of 0.903 and
0.913, respectively, remain competitive options, offering
flexibility in model selection. The N/C ratio prediction
reveals that the full factor set excels with an R? of 0.952,
indicating decent accuracy, which is higher than the
featured factor set of 0.835. Consequently, the model
configuration should align with the specific elemental
composition ratio of interest. While the featured factor set
generally demonstrates superior performance for the H/C
ratio, the full factor set shines when predicting the O/C
and N/C ratios.

3.5 Potential of the following process

Previous research has established the wviability of
converting waste plastics into syngas, facilitating subse-
quent processes [38,39]. This study focuses on assessing
the feasibility of the following process with the
assumption of shipboard accessibility. The conceptual
design integrates a pretreatment unit to prepare plastics
for gasification. The current study assumes onboard
equipment requires no significant or costly modifications.
Regarding the collection of widely dispersed debris,
collaborative efforts led by groups, such as Ocean
Cleanup, are assumed to address this aspect. Thus, this
study presumes the availability and collectability of such
debris. In addition, this research seeks to assess the

feasibility of establishing similar plastic-to-methanol
facilities on ships, drawing insights from studies that have
conducted techno-economic evaluations of land-based
installations [39]. The study compared an example based
on a land-based plant capable of processing 2500 kg-h~!
of plastic. According to the data from 2010, approxima-
tely 275 million metric tons of plastic waste were
generated in 192 coastal countries, with an estimated 4.8
to 12.7 million metric tons eventually entering the ocean
[2]. It underscores the need to deploy multiple such
plants, operating for decades, to combat plastic pollution
in a specific ocean area.

In recent years, the global methanol price has exhibited
fluctuations spanning from 0.19 to 0.54 €kg™!', with
detailed information available in the supplementary
materials. To simplify this study, a median price of
0.34 €kg! is utilized to compute methanol revenues. In
the comparative evaluation of plastics-to-methanol
processes, the conventional gasification-synthesis method
incurred a cost of 0.53 €kg~!. However, an integrated
system that includes methane reforming achieved a
considerably reduced cost of 0.26 €-kg™! [38]. This cost
reduction holds appeal for on-ship facilities, as they can
tap into abundant marine natural gas resources with
relatively economical transportation expenses. Moreover,
the process exhibits the potential to attain nearly net-zero
emissions by efficiently capturing carbon dioxide during
syngas generation while simultaneously releasing energy.
Given the plant’s focus on plastic waste in remote oceanic
regions, optimizing the utilization of marine resources
and minimizing production costs becomes imperative. As
a result, this study integrates natural gas reforming into
the system to enhance its economic viability and
environmental sustainability.

Table 1 presents an economic comparison between a
land-based and an on-ship factory for methanol produc-
tion from waste, with assumptions drawn from previous
reports [39]. The table examines various input factors
required for production, including oxygen, natural gas,
and demi-water, as well as the resulting product streams
of methanol and carbon dioxide. The results indicate that
the on-ship factory exhibits greater cost-effectiveness
than the land-based facility. This advantage is attributed
to the onboard infrastructure, which efficiently manages
water treatment through a centralized system and
harnesses cost-effective power from abundant solar
energy using photovoltaic devices. However, it’s worth
noting that the land-based factory in a specific region
generates a higher net revenue than the on-ship factory.
This is primarily due to the land-based facility receiving
waste disposal fees from domestic organizations [39].

The capital expenditure calculations were based on the
methodology outlined by previous report [20], utilizing
a CEPCI value of 813 for 2022. It resulted in total
module cost, grass roots cost, and working capital esti-
mates of 14876948.78, 19531047.77, and 2929657.16 €,
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respectively. As depicted in Fig. 6, the methanol price has
exhibited significant fluctuations over the past decade,
suggesting that the payback period for a single plant
varies from 3 to 7 yr, depending on the methanol price,
which ranges from 0.27 to 0.46 €kg'. It’s worth
emphasizing that, when considering equivalent methanol
productivity at the same scale, the payback period for an
on-ship factory tends to be more durable than that of a
land-based facility. This analysis, however, takes no
safety aspect into account. Implementing safety measures
on a ship is notably more complex than on land, requiring
a reduced feeding rate to ensure safe and secure
operations. Despite the mobility advantages that can lead
to reduced transportation costs and improved profitability
through innovative sales models, it’s notable to
acknowledge that scale remains a fundamental factor
influencing overall profitability. Therefore, the payback

Table 1 The economic estimations of waste to methanol factories

time for a smaller-scale factory would likely be even
longer. This apparent contradiction underscores the need
for future integration efforts to optimize the scale and
explore hybrid approaches, such as a partial on-ship setup
combined with a land-based factory on an island, in
pursuit of a balanced and economically viable solution.

4 Conclusions

This study extensively investigated hydrochar composi-
tion modeling by employing advanced algorithms and
rigorous analyses to uncover insights into elemental
composition ratios of hydrochar, comprehend the factors
influencing hydrochar compositions, and contribute to
optimizing hydrochar production processes. The hydro-
char recovery modeling begins with the DT algorithm,

Streams Unit Land-based Shipboard
Input
Oxygen consumption kg'h! 2057 2057
Oxygen cost €h! 287.98 275.1
Natural gas consumption kgh! 2723 2723
Natural gas cost €h! 25.052 27.674
Demi-water consumption kg-h! 1856 1856
Demi-water cost e 10.208 13.552
Dlectricity consumption kWh 1227 1227
Electricity cost €h! 146.43 39.005
Total costs €h! 469.67 355.331
Output
Methanol yield 99.98% wiw, kg-h™! 3181 3181
Methanol revenues €h! 1081.54 1045.84
Co, 99% wiw, kg-h! 1977 1977
CO, revenues €h! 120.597 150.975
Plastic disposal fee €h! 172.5 0
Total revenues €h! 1374.64 1196.815
Operative margin €h! 904.967 841.484
0.539 2.9
0.471 3.4
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Fig. 6 The methanol price tendency in the past decade and estimated payback years.
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which effectively captures relationships between initial
compositions and hydrochar ratios but faces limitations in
predictive accuracy due to overfitting. However, the DT
vote analysis identifies reaction conditions and NaCl as
pivotal factors for recovery, making low-cost featured
factors cross-validation a practical choice for recovery
modeling. Subsequently, various algorithms are compared
to predict hydrochar composition ratios. The NN
algorithm achieves R? values exceeding 0.936 for N/C
and O/C, and 0.817 for H/C, indicating potential for
generalization. Notably, when paired with featured
factors, the NN algorithm significantly enhances model
accuracy, particularly for the H/C ratio, with an
impressive R? of 0.9376. The featured factor set excels in
predicting the H/C ratio, while the full factor set performs
exceptionally well in O/C and N/C ratios. The study also
explores the economic potential of hydrochar production
for marine plastics-to-methanol process. Methanol price
fluctuations over a decade yield varying payback periods,
ranging from 3.3 to 7 yr for hydrochar production plants.
On-ship factories demonstrate greater resilience than
land-based facilities, capitalizing on marine natural gas
resources and the potential for near net-zero emissions.
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