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Abstract
We study vaccine budget-sharing strategies in the SIR (Susceptible-Infected-Recovered) model
given a structured community network to investigate the benefit of sharing vaccine across
communities. The network studied comprises two communities, one of which controls vaccine
budget and may share it with the other. Different scenarios are considered regarding the
connectivity between communities, infection rates and the unvaccinated fraction of the
population. Properties of the SIR model facilitates the use of dynamic message passing (DMP) and
optimal control methods to investigate preventive and reactive budget-sharing scenarios. Our
results show a large set of budget-sharing strategies in which the sharing community benefits from
the reduced global infection rates with no detrimental impact on its local infection rate.

1. Introduction

Epidemic spreading processes give rise to various challenges, from effective policy making for containment
and mitigation, formulating balanced isolation rules and preventing a healthcare system overload; a failure in
dealing with the epidemic may lead to excess death and suffering in the population, and a breakdown of the
health provision system. Part of the problem is the inability to reach sufficient worldwide vaccine coverage
and prevent the appearance of new variants. In response to the COVID-19 pandemic, we have had the fastest
response in history in developing vaccines for a new virus, exploring different techniques and achieving
multiple immunization alternatives in less than a year. However, as vaccine production became a reality, so
did the disparity in its distribution across countries.

According to Data Futures Platform [1], some of the richest countries may have, at the time of writing,
more than 3 times the number of doses necessary to fully immunise their entire population against
COVID-19, while poorer countries do not sufficient vaccines for a full coverage [1]. A recent study [2] based
on this data, estimates retrospectively the number of lives that could have been saves with a better vaccine
distribution strategy. Relying on an extended version of the mean-field SIR (Susceptible-Infected-Recovered)
model, that considers the estimated infection ratio, the appearance of new variants and details of the
strategies employed in the effort to limit the spread of COVID-19; a different work shows that distributing
the vaccine accordingly to the non vaccinated population would have a significantly reduced total number of
deaths [3].

Spreading processes are ubiquitous in social, natural and technological networks. They play an
increasingly important role in opinion setting, marketing and epidemic modeling [4–7]. While cascading
effects in spreading processes can be desired from an informative or persuasion campaign perspective, such
as election campaigns [8–11] or for raising public awareness [12], being able to predict and control cascading
effects becomes essential to prevent economic loss and unnecessary deaths [13–16]. The key to understanding
the dynamics of spreading processes lies in how information, viruses or failures flow through the edges of an
interaction network between individual constituents, allowing for the identification of important nodes in
the spreading processes and other topological features where control can be employed to contain or boost the
spreading process. On that front, there are multiple strategies for optimal resource allocation in different
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spreading scenarios. One approach, based on topological measures, focuses on identifying influential
spreaders using various topological measures, such as high-degree nodes, betweenness centrality,
random-walk and graph partitioning, among other [17–22]. A caveat of algorithms based on topological
properties is their variable performance depending on network instances and process dynamics [23, 24].

The problem of finding an optimal immunisation set has been addressed using belief
propagation [25–31] for the SIR, SEIR (Susceptible-Exposed-Infected-Susceptible) and SIS
(Susceptible-Infected-Susceptible) models.

In this study we investigate the SIR model in a network with known community structure to investigate
the possibility of sharing vaccine doses across communities (e.g. countries) being beneficial to communities
with surplus doses. It is important to point our that the main thrust of the paper is neither to model a
specific realistic epidemic spreading nor to address the very intricate distributions and parameters involved
in realistic modelling. The aim is to show that sharing vaccines across communities would benefit both
communities due to the cross links between them.

We set up a simple network with two communities, one of which controlling a vaccine budget and shares
it with the other. The simplicity of the SIR model allow us to employ dynamic message passing (DMP) [32]
for estimating the marginal distribution of each node state.Combining DMP and Optimal Control methods,
we analyse possible approaches to manage a vaccine budget to preemptively mitigate the effects or fight an
ongoing epidemic of possible new variants. We also account for a few different scenarios regarding the
connectivity between each community and the fraction of population that cannot or refuse to be vaccinated.
Our results show a large set of sharing strategies for which the community controlling the vaccines pays little
to no cost in terms of its infected population while being globally beneficial.

In section 2 we describe the SIR model in one of its simplest variations, in section 3 we introduce the
DMP method for analysing it, the choices for network topology. A discussion of the results follows in
section 5. The source code with the implementation of the algorithms, analysis and figures can be found
at [33].

2. Model

While a dynamic contact network can be easily accommodated within the same framework, the spreading
process studied here takes place in a static contact network, represented by a graph G = (V ,E) with nodes V
representing individuals and edges E ∈ V ×V representing interactions between them. Each node i is in a
state σi ∈ {S, I,R} indicating whether it is susceptible, infected or recovered (or vaccinated). The epidemic
evolution is encoded by the state transition rules

βij : Si + Ij → Ii + Ij

γ j : Ii → Ri .
(1)

Transition between states, from susceptible to infected is due to having an infected neighbor is controlled by
the parameter βij, the probability that the infected node i infects the neighboring susceptible node j; the
coefficient γi represents the probability of spontaneous recovery of the infected node i.

The transition rules (1) describe the interaction between nodes at each time step t ∈ {0, . . . ,T}, which
may correspond to days. At each time step an infected node i recovers with probability γi and, therefore, the
average recovery period is 1/γi. Analogously, the average period before a susceptible node i is infected by any
infected node is 1/

∑
j∈∂iβ

ji. For demonstration purposes only, we use the values for recovery and incubation

periods for COVID-19; we set γi = γ = 1/8 and βij = β = 1/5, respectively [31]. The values of γi = γ and
βij = β are assumed uniform across nodes and edges and chosen so that the SIR dynamics is at equilibrium
at T. Variable parameters between sites and in time can be easily accommodated within the same framework.

In this study, we investigate the conditions for a vaccine-rich community to benefit from sharing it with a
neighboring vaccine-poor community with no access to it. To investigate how sharing can affect the
spreading process, we set up a network with two communities, A and B, connected by a randomly chosen
fraction µ of the total number of edges, which translates to a fraction µ of nodes in A connected to B.

3. Analysis—DMP

While the infection dynamics can be simulated computationally from random initial conditions, obtaining
reliable solutions is computationally demanding as the system size grows. Alternative methods that assumes
uniform spread [34] or connectivity [35] are also inaccurate when one deals with a specific instance of the
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graph. Exact solutions of the spreading process defined by equation (1) are hard to obtain and various
probabilistic approximation methods have been developed to tackle this type of complex dynamics, such as
individual-based mean-field, belief propagation [36] and DMP. An overview of the features of the former
how DMP can address some its issues are given in [31]. In this work we employ the DMP equations for the
SIR model derived in [32].

The DMP algorithm estimates the marginal distribution of node-states by iterating local message
exchanges in the form of conditional probabilities. As most message-passing based algorithms it is exact on
trees but offers a good approximation for locally tree-like networks. For the SIR model, in which the interest
lies in estimating the marginal distribution for each node, it is possible to track the marginal estimates by
introducing a set of messages for each directed edge and a set of messages for each node. The evolution of
each message can be deduced through probabilistic inference using the spreading process rules (1). At any
step t, a node is susceptible with probability PiS(t) given by the probability PiS(0) of being susceptible at t= 0
and the probability is has not been vaccinated or infected up to time step t. A susceptible node is vaccinated
at t with probability ν i(t) and the probability it has not been infected by neighbor k up to time t is θk→i(t),
leading to PiS(t) = PiS(0)

∏t−1
τ=0(1− ν i(τ))

∏
k∈∂i θ

k→i(t). Node i can become recovered at t+ 1 is with
probability PiR(t+ 1) = PiR(t)+ ν i(t)PiS(t)+ γPiI(t), considering the recovery rate γ; the probability of i being
infected is the complement of not being infected PiI(t) = 1− PiS(t)− PiR(t).

The evolution of the message θk→i requires another edge message ϕk→i(t) representing the probability of
a neighbor k being infected but not infecting node i up to time step t. The message θk→i decreases as ϕk→i

increases, since having an infected neighboring state increases the probability of spreading the infection,
leading to θk→i(t+ 1) = θk→i(t)−βϕk→i(t). The message ϕk→i is reduced with the probability of the
neighbor k not being infected at t for similar reasons. The probability, ϕk→i, is given by the probability of
neither activating the infection signal β nor the recovery γ, or by increasing the probability of being
susceptible in the cavity graph where i is removed (hence the name, the graph with a cavity where node i has
been). The later is given by a another edge message Pk→i

S . In analogy with the dynamics of PiS(t), its evolution
is given by the probability of k being susceptible at step t= 0 and not being infected by neighbors in the
cavity graph without i, i.e. Pk→i

S (t) = Pk(0)
∏t−1

τ=0(1− νk(τ))
∏

j∈∂k/i θ
j→k(t). Therefore, the evolution of

ϕk→i is given by ϕk→i(t+ 1) = (1−β)(1− γ)ϕk→i(t)− [(1− νk(t+ 1))Pk→i
S (t+ 1)− (1− νk(t))Pk→i

S (t)].

4. Results

In this section we will review a number of spreading and optimization objective scenarios using the
framework described in section 2.

4.1. Sharing vaccines to fight an ongoing epidemic
In the first instance, our main objective is to minimise the expected number of infected nodes within

community B throughout the duration of the epidemic, which is given by IB = E
[∑

i∈B

∑T−1
t=1 1[σt

i = I]
]

=
∑

i∈B

∑T−1
t=1 PiI(t). However, other objectives can be chosen, for instance, flattening the infection curve to

prevent overloading the health system. Introducing entropy-like non-linearity will give rise to a vaccination
strategy that result in a more uniform infection over time. Minimising the expected number of infected
nodes in B in conjunction to having a more uniform infection spread, can be achieved by maximizing the
objective function (minimizing entropy)

O =
∑
i∈V

T−1∑
t=1

1 [i ∈ B]
(
1− PiI (t)

)
ln
(
1− PiI (t)

)
=
∑
i∈B

T−1∑
t=1

(
PiS (t)+ PiR (t)

)
ln
(
PiS (t)+ PiR (t)

)
(2)

subject to the constraints enforcing the DMP equations, initial conditions and vaccine budget. The particular
choice for the p lnp non-linearity was made to favor the Susceptible state, since vaccination and Recovery are
conflated and allowing nodes to be infect and to recover could lead to deceptively higher objective function
values.

The optimization employs methods from DMP and optimal control [30] to maximise the objective using
forward-backward dynamics, where the DMP forward dynamics is complemented by a backward
optimization dynamics of the Lagrange multiplier variables. Maximising the objective function allows us to
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Figure 1. The optimal vaccination strategy with a budget of V= 0.5N and two connectivity scenarios: where µ= 0.01 (top
figures) and µ= 0.1 (bottom figures) of the total edges connecting communities A and B, respectively. Figures on the left column
show the evolution of fraction of infected nodes in B with and without optimal sharing; on the right is shown the accumulated
difference in infected nodes between the optimal split and not optimized vaccination, i.e.

∑t
t′=0 I

opt
B (t ′)− IB(t ′). In both cases it

is clear that community B is better off vaccinating its own constituents and increasingly shares the vaccines with community A.

choose an optimized vaccination strategy ν i(t) for every node and all times. See appendix B for the details. To
manage a budget NV(t) of vaccines, the vaccination probabilities ν i(t)must satisfy

∑
i∈V ν i(t) = NV(t) at all

times, where V(t) ∈ [0,1] represents the fraction of the society that can be vaccinated at t.
In reality, different scenarios of vaccine availability may occur, considering the difficulties involved in

development, production and distribution. While different scenarios can be accommodated by the current
framework, to simplify our analysis and focus on the major problem of vaccine shortage, we consider
scenarios where throughout the time window considered, a total of NV nodes will be vaccinated, uniformly
through time, i.e. V(t) = V/T. We assume that community B has control over a budget of vaccine doses V,
represented as a fraction of nodes to be immunized in the whole network and chooses how to share this
budget with community A, with a split ρ ∈ [0,1].

Following a similar approach to [30, 37], we use the optimal control method jointly with a
forward-backward update algorithm to optimise the objectiveO and obtain a optimal vaccination strategy
ν i(t). Of particular interest are cases where assigning a vaccination probability to nodes in A reduce the
number of infected nodes in B. Figure 1 shows that optimizing the distribution is beneficial to B and figure 2
shows that the most beneficial strategy for B is to initially focus on vaccinating its own nodes and eventually
share its budget with A.

Although the optimal split varies, the general tactic of B is first to vaccinate the constituents of B and then
share share the vaccines budget with A to reduce the number of infections in B. Figure 3 shows the share of
the budget that B should give to A at each time for two connectivity scenarios. It seems that sharing starts
later for more highly connected communities.

4.2. Preemptive vaccine sharing
To investigate preemptive sharing, we set ν i(t) = 0 and choose uniformly the initial probability of each node
to be recovered proportional to the budget available for each community. We also acknowledge the inability
to immunize every node, representing anti-vaccine or vaccine-sensitive population, encoded as a fraction x
of nodes that cannot be vaccinated at t= 0. Finally, we focus on how sharing the vaccine can mitigate the
impact of new variants, assuming that exactly one node infected at t= 0. The objective, from the perspective
of community B, is to reduce the impact of the disease on its nodes. Multiple measures of impact on B can be
considered, such as the total number of infected nodes at any time ( 1T

∑
i∈B

∑T
t=1P

i
I(t)), the peak of infection

(argmaxt
∑

i∈BP
i
I(t)) and the influx infections coming from contact with constituents of A. A proper strategy

for mitigation would require one to devise a vaccine distribution strategy to maximize the benefit to its own
community, potentially giving the proper weight to each impact measure. The current framework is very
flexible and can accommodate each of these measures.

A vaccine budget V ∈ [0,1] representing the fraction of nodes that can be immunized at t= 0, is split
between communities A and B assuming the later has control over the share ratio ρ. It is also assumed that a

4



J. Phys. Complex. 5 (2024) 035006 F Alves and D Saad

Figure 2. The optimal vaccination strategy with a budget of V= 0.5N and two connectivity scenarios: where µ= 0.01 (top
figures) and µ= 0.1 (bottom figures) of the total edges connecting communities A and B, respectively. The left column shows the
optimal sharing probabilities; the right is the objective value optimization under forward-backward optimal control cycles.

Figure 3. The best budget split at all times for budget values V ∈ [0.1,1.0] in two connectivity cases with µ= 0.01 and µ= 0.01 of
total constituents of A and B being connected. Sharing starts later for more highly connected communities.

single node is infected at t= 0, representing the appearance of a new variant and that the vaccine is still
effective against it. We also take into consideration the impossibility of vaccinating all nodes for reasons such
as vaccine deniers, people who do not care or that do not engage with the health systems, by considering a
fraction x of nodes that cannot be immunized.

In terms of initial message values, an infected node among the total of N= NA +NB nodes
leads to a probability of infected nodes PiI(0) = 1/N for all nodes i in the network, while
PaR(0) =min{(1− x)ρVN/NA,1} for nodes a in community A and PbR(0) =min{(1− x)(1− ρ)VN/NB,1}
for nodes b in B, where NA and NB are the number of nodes in each community. Notice the possibility of
excess vaccine, if community B holds a budget greater than the number nodes that can be immunized in
community B; community Bmay decide to accumulate the excess vaccine for future use instead of sharing it,
or if the share ratio is too favorable towards A. For the edge messages, θk→i(0) = 1, ϕk→i(0) = PkI (0) and
Pk→i
S (0) = PkS(0) for all edges (k, i).
The values chosen for the parameters are given in table B1 and the initial conditions are given in (10),

both are in appendix B. Initial message values are summarized in (10), where i and k refer to any node in the
network, while a and b refer to nodes in community A and B, respectively.

The spreading process can be tracked by estimating the marginal probabilities for each state, which is the
typical objective for the SIR model. Figure 4 shows two examples for the evolution of the disease spreading:
the first, a typical global evolution with community A not having any vaccine and B completely immunised
(top) and another where B contributing ρ= 0.25 of its budget to A (bottom). We track all the states, globally,
and the actual number of nodes that are not susceptible or initially vaccinated.

5
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Figure 4. Epidemic evolution with x= 0.01 fraction of excluded nodes. The total number of infected nodes is given by
1− PS(t)− PR(t= 0), where PR(t= 0) is the fraction of nodes initially vaccinated; in this case, the vaccine budget of V = 0.5 of
nodes in the whole network, is enough to cover the whole community B. Notice how sharing can have a positive outcome globally.
Each column shows the effect of a fraction x of nodes in B being excluded from vaccination.

Figure 5. Total number of non-susceptible nodes for all possible budget and share values at t= 50 and µ= 0.001. The brown line
shows the budget necessary to immunize all nodes in B yellow line shows an equal split based on community size. Notice the
region in light pink shows the possibility of having a very small effect on B by sharing, even in situations where full (effective)
vaccine coverage would be sacrificed.

Even if sharing is globally beneficial, the question whether it is futile for community B to be selfish can be
answered by considering in which conditions the number of infected nodes in B does not increase by sharing
vaccine resource. Looking at the total number of non-susceptible nodes in B as a function of the vaccine
budget V and share ratio ρ as in figure 5 we realize that there is a parameter region where sharing is viable, in
the sense that community B is not worse off in spite of sharing their vaccines with community A.

A more illustrative metric for the effect of sharing can be calculated by comparing the increase in the
number of infected nodes for a given share ratio against the case in which community B keeps all the
resource. Let nct(ρ) = 1− p(S|t,ρ, c)− p(R|t= 0,ρ, c) be the fraction of nodes in states I or R in community
c ∈ {A,B,A+B} at step t and for a share ratio ρ, excluding the nodes immunized at t= 0. We define the cost
of share ratio ρ for community c as

Lct (ρ) = nct (ρ) ln
nct (ρ)

nct (ρ= 0)
(3)

which measures the fraction of nodes in states I or R (excluding vaccinated) for a share ratio ρ relative to the
corresponding fraction without sharing (ρ= 0). A negative value for Lct(ρ) indicates that sharing vaccines
reduces the total fraction of infected nodes in c.

Figure 6 shows a large region in parameter space for which the cost of sharing is close to zero for the
contributing community, even when full vaccination coverage is sacrificed. It is clear that sharing may lead to
local and global benefits, specially when B has a surplus of vaccine. The effect of increasing the fraction of
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Figure 6. The loss Lc50 for all values studied for sharing ratio ρ and vaccine budget V and some x values, the fraction of nodes
excluded from the vaccination program. Each column shows the cost for a community c ∈ {B,A+ B(Global),A}.

nodes in B excluded from vaccination is to reduce the area in parameter space for which sharing is beneficial
for B.

The difference between a share ratio ρ ̸= 0 and no sharing, ρ= 0, in the total fraction of infected nodes
nct(ρ)− nct(ρ= 0) is shown in figure 7.

5. Discussion

We investigate the futility of being selfish in vaccine distribution through the application of the SIR model
and optimal control for epidemic spreading in a network with community structure. A vaccine budget
V ∈ [0,1] is split ρ ∈ [0,1] between the two communities A and B, assumed to be under the control of the
later. We study the epidemic spread in the parametric space of V and ρ, where we look at the fraction of
nodes in states I or R, except those who have been already vaccinated. The vaccine budget takes values from
[0,1], meaning the fraction of nodes in the whole network, not only B, that can be fully immunized, while the
share ratio means the fraction of the budget allocated to community A.

Employing the DMP framework to estimate the marginal distribution for node states through the
epidemic evolution, the model shows a large area in parameter space where B pays little or no cost, in terms
of total fraction of infected nodes, for sharing vaccines with A, while benefiting the global population. This
result can be viewed as a theoretical complement to [2], which retroactively estimates the possible number of
lives that could have been saved if a more balanced distribution of vaccines was promoted across the world.
Given the advancements in contact tracing technology, the reconstruction of network topology and the
application of optimal control techniques, help to devise a vaccination strategy that shows the futility of
selfishly hoarding vaccines. It strengthens the argument for developing a collective solution for a global
problem.
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Figure 7. The difference nct(ρ)− nct(ρ= 0) between ρ ̸= 0 and ρ= 0 in Lct for all studied values of budget split ρ and budget V
and some values x, the fraction of nodes excluded from vaccination. Columns show the cost for each community
c ∈ {B,A+ B(Global),A}, under an strict isolation policy with µ= 0.01.
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Appendix A. Network topology

The spreading processes of interest in this work takes place on an interaction graph of two connected
components, A and B, with the same degree distribution; these are initially disconnected from each other,
with NA and NB nodes respectively, with a degree distribution given by a power law of degree α and
minimum degree k0. Graphs with power law distribution are called scale-free and have some of the properties
observed in many real world interaction networks, such as clustering coefficients similar with acquaintance
relationships [38, 39]. To connect the A and B components, EA and EB edges are randomly selected from each
component such that µ= EA+EB

E , where E is the total number of edges and µ the fraction of edges connected
between communities. Each node still belongs to its initial community, i.e. it has at least as many neighbors
within its community as to the other. Figure 8 shows an example of such networks. Controlling the number
of edges between components allows for the investigation of how community isolation/interconnection
influences vaccine sharing strategies.

8
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Figure 8. Example networks with node degree given by a power law distribution with degree α= 3.1, minimum node degree
k0 = 3 and a fraction µ ∈ {10−3,10−2,10−1} of edges between communities.

Appendix B. DMP equations

The DMP equations for the SIR model of equation (1) are

θk→i (t+ 1) = θk→i (t)−βkiϕk→i (t) (4)

Pk→i
S (t+ 1) = PkS (0)

t∏
t′=0

(
1− νk (t ′)

) ∏
j∈∂k/i

θj→k (t+ 1) (5)

ϕk→i (t+ 1) =
(
1−βki

)(
1− γk

)
ϕk→i (t)

−
[
Pk→i
S (t+ 1)− Pk→i

S (t)
]

(6)

and for the edge messages and for the node messages,

PiS (t+ 1) = PiS (0)
∏
j∈∂i

θj→i (t+ 1) (7)

PiR (t+ 1) = PiR (t)+ γiPiI (t) (8)

PiI (t+ 1) = 1− PiS (t+ 1)− PiR (t+ 1) (9)

We use the DMP dynamics equations in conjunction with optimal control-based optimization in order
to extremize an objective function as described in [30] The objective function to be optimised and the
constraints for budget, dynamics and initial conditions give a Lagrangian L=O+B+D+ I +P, where P
is a constraint bounding ν i(t) withing a probability interval,O =

∑
i∈B

∑T
t=0(P

i
S(t)+ piR(t) ln(P

i
S(t)+ PiR(t))

is the objective function,D and I are constraints enforcing the DMP equations and initial conditions and B
enforces the vaccination budget. To optimise the objective, we first solve the DMP equations, the forward
pass, and then solve the Lagrange multipliers equations backward in time, given by the derivatives of L with
respect to the messages, and budget allocation ν. The calculation is long and omitted here, but it is almost
identical to the one presented in [30] including the way the equations are solved.

The parameters used for network creation and budget control are presented in table B1.

Table B1. Parameter values.

Number of nodes: N= 1024
Number of nodes in community: NA = NB = 512
Power law exponent: α= 3.1
Minimum node degree: k0 = 3
Fraction of edges between A and B: µ ∈ {0.001,0.01,0.1}
Fraction of nodes covered by vaccine: V ∈ [0,1]
Split ratio of V between A and B: ρ ∈ [0,1]
Fraction of nodes excluded from V : x ∈ {0,0.01,0.1}

The initial condition used for the DMP equations in the preemptive sharing scenario (no optimal
control) are

9
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PaR (0) =
ρVN

NA
(1− x)

PbR (0) =
(1− ρ)VN

NA
(1− x)

PaI (0) =
1− PaR (0)

NA

PbI (0) =
1− PbR (0)

NB

PiS (0) = 1− PiI (0)− PiR (0)

θk→i (0) = 1

ϕk→i (0) = PkI (0)

Pk→i
S (0) = PkS (0)

(10)

while PaR(0) = PbR(0) = 0 for the optimal control approach.
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