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Abstract 38 

We investigated the neural signatures of expert decision making in the context of police 39 
training in a virtual reality-based shoot/don’t shoot scenario. Police officers can use stopping 40 
force against a perpetrator, which may require using a firearm and each decision made by an 41 
officer to discharge their firearm or not has substantial implications. Therefore it is important 42 
to understand the cognitive and underlying neurophysiological processes that lead to such a 43 
decision. We used virtual reality-based simulations to elicit ecologically valid behaviour from 44 
Authorised Firearms Officers (AFOs) in the UK and matched novices in a Shoot/Don’t Shoot 45 
task and recorded electroencephalography concurrently. We found that AFOs had 46 
consistently faster response times than novices, suggesting our task was sensitive to their 47 
expertise. To investigate differences in decision making processes under varying levels of 48 
threat and expertise, we analysed electrophysiological signals originating from the anterior 49 
cingulate cortex. In line with similar response inhibition tasks, we found greater increases in 50 
pre-response theta power when participants inhibited the response to shoot when under no 51 
threat as compared to shooting. Most importantly, we showed that when preparing against 52 
threat, theta power increase was greater for experts than novices, suggesting that differences 53 
in performance between experts and novices are due to their greater orientation towards 54 
threat. Additionally, shorter beta-rebounds suggest that experts were “ready for action” 55 
sooner. More generally, we demonstrate that investigation of expert decision making should 56 
incorporate naturalistic stimuli and an appropriate control group to enhance validity. 57 

Significance statement 58 

This study aims to unravel the complexities of how expertise affects neural processes during 59 
uncertain scenarios by investigating police decision making. We present our variant on 60 
shoot/don’t shoot tasks which was co-developed with police instructors to allow graded levels 61 
of force to elicit realistic responses. We show that experts exhibit superior performance in this 62 
virtual reality-based task and that this is associated with greater modulation of frontal midline 63 
theta activity prior to a decision. Understanding the intricacies of police decision making–64 
especially concerning the use of firearms–is vital to inform policy effectively. Further, the 65 
naturalistic imaging methods employed here hold broader significance for neuroscientists 66 
aiming to investigate real world behaviour. 67 

Introduction 68 

Authorised Firearms Officers (AFOs) of United Kingdom police forces can be authorised to 69 
discharge a firearm within the bounds of domestic and international law (United Nations, 70 
1990). While their intention is to apply stopping force, the result may be lethal. To inform policy, 71 
deployment, and training aiming to minimise harm, it is imperative that effort is made to 72 
understand the cognitive and underlying neurophysiological processes related to police 73 
decision making and expertise (Rogers, 2003). We based our predictions on prior lab-based 74 
research on neural signatures of action-related decision-making, (Walsh and Anderson, 2012; 75 
Cavanagh and Frank, 2014; Eisma et al., 2021) expecting that basic aspects of neural 76 
processing would generalise to realistic police-type decision making. In turn, we expected that 77 
our findings within this crucial field of investigation would provide unique insight into how 78 
specialised training in decision making may affect brain signatures more generally.   79 

Recent reviews of research into police decision making have argued that they do not 80 
consistently meet high methodological standards (Cox et al., 2014; Hope, 2016). For example, 81 
novices, rather than police officers, are often studied (Correll et al., 2006; Pleskac et al., 2018; 82 
Scott and Suss, 2019) and control groups are not always matched across demographics, such 83 
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as age (Nieuwenhuys et al., 2012a; Brisinda et al., 2015; Landman et al., 2016; Johnson et 84 
al., 2018; Hamilton et al., 2019; Taylor, 2020), limiting the generalisability and validity of 85 
findings, respectively. Despite this, studies of police decision making have benefited from the 86 
use of naturalistic stimuli to promote ecological validity of results and to replicate the stress 87 
induced by real-world firearms incidents that are not emulated in a standard computer-based 88 
task (Cox et al., 2014; Sonkusare et al., 2019) and recent shoot/don’t shoot (SDS) studies 89 
have taken advantage of this method (Johnson et al., 2014; Taylor, 2020; Biggs and Pettijohn, 90 
2022). Further, developments in virtual reality (VR) technology (Slater, 2018) provide 91 
opportunity for even greater immersion and interactivity while still maintaining a high level of 92 
experimental control (de la Rosa and Breidt, 2018). 93 

In the current study, we created a SDS task presented using head mounted display (HMD) 94 
based VR, enabling participation with negligible prior training specific to the experiment and 95 
equipment. This allowed us to study expert AFO participants, as well as a control group of 96 
age- and sex-matched non-police, novice participants, while they engaged with dynamic, 97 
naturalistic scenarios in VR. Based on the expert advice of police instructors, we adapted the 98 
standard SDS task (Correll et al., 2002) by using immersive VR to present scenarios with 99 
graded threat levels, and realistic decisions that were split into two phases, a threat 100 
assessment phase and a response phase. This ensured a closer link to real-world police 101 
training and conflict situations. 102 

To study components of electroencephalography (EEG) that are of interest to SDS decision 103 
making we employed combined VR EEG methods. In particular, frontal midline theta (FMθ) 104 
neural oscillations are related to action selection and initiation of executive control (Cavanagh 105 
and Frank, 2014; Eisma et al., 2021) in decision making under uncertainty (Walsh and 106 
Anderson, 2012). While the effects of expertise on SDS decision making are poorly 107 
understood, we can draw on studies of similar response inhibition tasks to form hypotheses 108 
about electrophysiological differences between SDS task conditions. For instance, expert 109 
athletes in open skill sports, like tennis, perform better than novices in Go/No-Go tasks and 110 
present with earlier and greater amplitude N200 event-related potential when inhibiting a 111 
response (Di Russo et al., 2006; You et al., 2018), emphasising the importance of training and 112 
expertise as contributing factors in decision making under uncertainty. 113 

Our improved task, which was co-designed with police instructors, along with concurrent EEG, 114 
allowed for unprecedented insight into the decision processes of police firearms experts during 115 
assessment (Phase 1) and response (Phase 2) to threatening scenarios that significantly 116 
extended beyond previous findings from earlier SDS paradigms. We expected group 117 
differences in performance for both decision phases, with the expert group being faster at both 118 
decision-making phases. Differences in response time between conditions in SDS tasks have 119 
been consistently observed (Correll et al., 2002; Nieuwenhuys et al., 2012b), where the 120 
decision to shoot is faster than the decision not to shoot. From our analysis of EEG neural 121 
oscillations during decision making, we expected stronger FMθ for experts than matched 122 
controls to emerge at the preparation phase. We also expected experts to elicit greater FMθ 123 
than novices in the SDS phase. However, based on previous research, the Don’t Shoot 124 
condition of our SDS task should be associated with longer reaction times and greater FMθ 125 
than the Shoot condition, an effect that could potentially be more pronounced in experts. 126 
Finally, successful extraction of meaningful spectral signatures such as FMθ in a dynamic VR 127 
scenario would provide a crucial proof-of-concept for future EEG-VR studies of expert decision 128 
making. Such studies would increase realism and therefore the validity of neurocognitive 129 
findings. 130 

Materials and Methods 131 
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Participants 132 

The experiment was completed by participants at three centres in the UK: Expert AFOs 133 
completed the study at a police training centre; novice participants completed the study within 134 
a comparable physical context at either Aston University or the University of Nottingham. All 135 
participants gave their informed consent to participate in this study. The study was approved 136 
by the Aston University Research Ethics Committee.  137 

The Expert AFO group included 27 police officers with up-to-date training (College of Policing, 138 
Police Firearms Training Curriculum). Their ages ranged from 27 to 53 (M = 40.6, SD = 6.8), 139 
26 were male, two were left-handed (Fig. 2B). Their experience as police officers ranged from 140 
five to 32 years (M = 17.1, SD = 6.9) and they had been AFOs for between one and 22 years 141 
(M = 10.6, SD = 7).  142 

We also recruited a Matched Control group of novice participants. Their ages ranged from 27 143 
to 55 years (M = 38.3, SD = 8.9), 26 were male, 2 were left-handed. In addition, we collected 144 
data from an Unmatched Novice group, with demographics (age and sex) representative of a 145 
typical experiment cohort. This group was made up of 30 participants, but three were excluded 146 
from analysis during data collection due to experimenter error. The 27 remaining participants’ 147 
ages ranged from 18 to 25 (M = 20.4, SD = 2.6), 12 were male, 3 were left-handed.  148 

Virtual reality setup 149 

Head mounted display 150 

An Oculus Rift CV1 (Meta Platforms Inc., USA) HMD presented the experiment as a 3D virtual 151 
environment using displays with a combined field of view of 110° and 1080x1200 resolution 152 
per eye at a 90 Hz refresh rate. Participants responded using two Oculus Touch controllers 153 
held in their hands. They wore an EEG cap underneath the HMD. A speaker in the room was 154 
used for presenting audio, as the Oculus Rift CV1 headphones were not used, to reduce 155 
electrical artefact.  156 

The virtual human and environment were produced using Unreal Engine 4 (Epic Games Inc., 157 
USA). The environment comprised two walled courtyards separated by another wall with an 158 
opening in the middle, which participants faced at the start of each trial (see Fig. 1). From their 159 
perspective, the virtual human started each trial in the opposite courtyard, on the right, 160 
concealed by the dividing wall. A single virtual human was used for all trials: a Caucasian 161 
male, casually dressed and with a neutral expression. 162 

Action mapping 163 

Participants used virtual hands to engage with the task. Four buttons on the hand controller 164 
allowed them to do this: a trigger for the index finger, a trigger for the middle finger, and two 165 
buttons for the thumb. The middle finger trigger was used for grabbing firearms, the index 166 
trigger for discharging firearms and the thumb buttons for pressing Safety and indicating 167 
readiness to continue. Triggers could only be used on the dominant hand controller.  168 

Two virtual holsters held both a Glock (a self-loading pistol/handgun used by AFOs) and a 169 
Taser (a conducted energy device provided as a less lethal alternative use of force). The Glock 170 
was placed close to the hip on the dominant side. The Taser was placed at the centre of the 171 
chest. Firearms instructors advised that these are common placements for AFOs. Placement 172 
was approximate as we used head tracking information only, and assumed the chest was just 173 
below the head, and the hips further below and to the side. In order to grab a firearm using 174 
the middle finger, participants first had to move their hand to the position of the desired virtual 175 
holster. The onset of this movement was not recorded, only the grabbing action itself. 176 
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Procedure 177 

General procedure 178 

Regardless of expertise, participants were briefed in the same way and given the same 179 
instructions. The HMD was set up and adjusted for comfort and clarity of display. Participants 180 
then practiced the task under instruction until familiar. EEG was next applied, and the 181 
participant was coached through minimising artefacts, by demonstrating the effect of talking 182 
and moving muscles on the recording. They then completed the main experiment which was 183 
made up of ten blocks of 20 trials, which took ~35 minutes. 184 

Task procedure 185 

Based on firearms instructor advice, each trial had two phases, risk assessment/preparation 186 
(Phase 1) and SDS Decision (Phase 2) (see Fig. 1). The Weapon Presence condition 187 
determined the stimulus presented at the Preparation stage, and virtual human Compliance 188 
determined the stimulus presented at the Decision stage. Participants made one response per 189 
stage in most instances. The only exception was when participants discharged their firearm 190 
but missed the virtual human on the first (and possibly subsequent) attempt. Note, in these 191 
instances, the trial was excluded from analysis. Participants were instructed that all responses 192 
should be made as quickly and accurately as possible.  193 

In Phase 1, the virtual human would walk from his starting position behind the right wall (from 194 
the participant’s perspective, completely obscured) to stand at the entrance in front of the 195 
participant. In their hand they could hold a gun, a knife, or a drinks can. Previous research has 196 
typically only compared a gun to a neutral condition (Correll et al., 2006; Nieuwenhuys et al., 197 
2012b). Our manipulation of three threat-levels and a choice of stopping force was again 198 
based on the advice of firearms instructors to produce a realistic task in line with expected 199 
behaviour from AFOs. The Weapon Presence condition (Fig. 1) determined which item was 200 
held in the virtual human’s hand and would appear as he came into view. Participants then 201 
completed one of three preparation actions: equip Glock; equip Taser; or press Safety. Their 202 
instructions told them that the correct preparation for each Weapon Presence condition was 203 
to equip the Glock if the suspect held a Handgun, Taser if they held a Knife and press Safety 204 
if they held a Drinks Can. Whichever action participants completed first was recorded as their 205 
response: they could not change their mind during a trial. When Safety was pressed, a ‘click’ 206 
sound was made and the firearms could no longer be equipped. When a firearm (either Glock 207 
or Taser) was equipped, it could not be dropped or replaced with the other firearm. If equipped, 208 
participants were instructed to aim the firearm at the centre of mass of the virtual human, in 209 
preparation for the next stage.  210 

The Decision stage began when the virtual human either Attacked or Surrendered, as 211 
determined by the Compliance condition. The Surrender animation was always the same – 212 
the virtual human would raise both hands while standing in place. The attack animation for the 213 
Handgun involved the virtual human raising their hand to point it toward the participant. For 214 
the Knife, the same arm animation was used but the virtual human also moved towards the 215 
participant. All animations took one second to complete.  216 

Participants could decide to either discharge their firearm or press the Safety button. 217 
Whichever action they chose disabled the other. They were instructed to press Safety as soon 218 
as they saw the virtual human surrendering. A click sound gave them feedback to let them 219 
know the button had been pressed. Likewise, they were to shoot as soon as the virtual human 220 
attacked. If they missed their shot, they were permitted to take another one. When the virtual 221 
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human was shot, his animation blended into a new animation and he fell to the ground. When 222 
the Safety was pressed, the animation continued to its end. At the end of a trial the virtual 223 
human disappeared, and any equipped firearms were automatically replaced in their holster. 224 

Each of the possible combinations of Phase 1 and Phase 2 (Drinks Can, Surrender; Knife, 225 
Attack; Knife, Surrender; Handgun, Attack; Handgun, Surrender) were repeated 40 times, 226 
balanced across the ten blocks. 227 

EEG Analysis 228 

On-line EEG Recording 229 

EEG data were recorded using an Eego sports system (ANT Neuro, Hengelo, Netherlands) 230 
with 65-electrode (Ag/AgC) gel-based Waveguard caps which followed the 10-10 extension of 231 
the International 10-20 system for electrode placement (Jasper, 1958). During recording, 232 
electrodes were referenced to the CPz electrode and grounded at position AFz. All electrodes 233 
were continuously sampled at 500 Hz and the median impedance of electrodes across all 234 
recordings was 10.2 kΩ. Triggers sent via parallel port from the computer rendering the 235 
experimental stimulus presented on the HMD were used to record stimulus presentation and 236 
behavioural responses of participants directly into the EEG timeseries. The data were 237 
organised into a Brain Imaging Data Structure (BIDS) compatible format (Niso et al., 2018). 238 

Pre-processing 239 

Two electrodes (M1, M2) were found to be corrupted by movement artefacts and were 240 
removed before pre-processing. EEG data were then re-referenced to the common average 241 
of all remaining electrodes. We applied Zapline (de Cheveigné, 2020) at 50 Hz (500ms 242 
overlapping window, one component) to remove line noise, and 52.1 Hz (500ms component, 243 
three components) to remove AC noise specific to the HMD (Weber et al., 2021). Next, data 244 
were bandpass filtered (0.5-120 Hz passband, zero-phase, two-pass [forward and reverse], 245 
Hamming-windowed, fourth-order digital Butterworth filter, -24dB/octave slope).  246 

The continuous data were segmented into epochs defined from three seconds before to three 247 
seconds after each trial where the participant responded correctly. Each epoch was visually 248 
inspected for artefacts and if any were present, the whole epoch was excluded. An 249 
independent components analysis (ICA) using the infomax algorithm (Bell and Sejnowski, 250 
1995) was used to identify 61 independent components. Components identifiable as artefacts 251 
(eye blink, eye movement, muscle activity, channel movement, electrocardiogram) were 252 
removed (mean 5.5 components per dataset). The process of visual inspection and ICA was 253 
iterative, as artefacts that could not be successfully removed with ICA were instead removed 254 
at the trial level, and vice versa. For example, if when inspecting a component, it was apparent 255 
that it was local to one trial (e.g. brief channel movement), we would remove the trial and re-256 
run the ICA, rather than removing the whole component. Only a single ICA decomposition was 257 
performed per dataset. We did not attempt to use any automated artefact rejection techniques 258 
as our sample size was small enough for visual inspection to be possible.  259 

Creating the forward model 260 

Individual head models were created from 3D scans taken of participants while wearing the 261 
EEG cap. Following an established electrode digitisation pipeline (Homölle and Oostenveld, 262 
2019), electrodes were localised by labelling the model and moving the electrode position 263 
inwards by 8mm (electrode thickness). When permitted by participants’ hair, head positions 264 
on the forehead and back of the head were also measured. Electrodes and head positions 265 
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were then parsed as head digitisation coordinates to Brainstorm (Tadel et al., 2019). Within 266 
Brainstorm, a template anatomy (ICBM152 2016c (Fonov et al., 2009)) which included a T1 267 
structural MRI and boundary element model (BEM) of the scalp, skull and brain (Oostendorp 268 
and van Oosterom, 1989), was warped to fit these landmarks using a non-linear transformation 269 
(Ashburner and Friston, 1997).  270 

The template and individual head models were used in Fieldtrip for further analysis. A leadfield 271 
was created for the template using the ‘dipoli’ method in Fieldtrip with default conductivity 272 
values (Gabriel et al., 1996). For each individual, a non-linear transformation between the 273 
individual and template head model was calculated (Friston et al., 1995). The inverse of this 274 
transformation was then applied to the template leadfield, and the output used as the individual 275 
leadfield, allowing subsequent analysis to be conducted in a common space.  276 

Source localisation 277 

We estimated the source in the brain of each frequency band of interest to guide further 278 
analysis at the virtual electrode level and to describe the data in the context of associated 279 
brain regions. First, baseline (2000-1400ms pre-trial) and activity (250-850ms post-stimulus) 280 
epochs were defined. The baseline period was selected as the time between trials in which 281 
no condition-specific stimulus was presented on screen. Participants were at rest during this 282 
period. The activity period was selected based on mean response times across conditions 283 
(Fig. 2). The duration of the baseline and activity periods were equal to ensure equal 284 
contribution to covariance. A duration of 600ms was chosen to allow a good estimation of 285 
spectral power, even at low frequencies. Power and cross-spectral density within each 286 
frequency band were calculated for baseline and activity epochs. These data were then 287 
concatenated before calculating the inverse solution using exact low-resolution brain 288 
electromagnetic tomography (eLORETA) (Pascual-Marqui et al., 1994). The common filter 289 
was then applied to the baseline and activity epochs independently before contrasting the two 290 
using decibel conversion. This contrast was then averaged across conditions and participants. 291 
The coordinates of the maximum power of theta and the minimum power of alpha and beta 292 
bands were used in the virtual electrode analysis (Figs. 3C, 4, 5). 293 

Virtual electrode calculation 294 

To estimate virtual electrode data at the peaks of activity for theta, alpha and beta, sensor 295 
level data were segmented into epochs from -3000 to 3000ms around the stimulus in 296 
conditions of interest. The time-locked average and associated covariance matrix were 297 
calculated for each condition. These were used to estimate the inverse solution for the data 298 
and the pre-calculated, individual forward models using a Linearly Constrained Minimum 299 
Variance (LCMV) beamformer (Van Veen et al., 1997). The inverse solution was applied to 300 
the individual epochs to provide virtual electrode data at the previously identified peaks for 301 
each condition. 302 

A time-frequency analysis of power was conducted from 1-32 Hz (1 Hz resolution) on the 303 
virtual electrode data before averaging across trials within each participant and condition (see 304 
Fig. 3D,E). This was done using the ‘mtmconvol’ (multi-taper method convolution) frequency 305 
analysis in Fieldtrip. Despite the name, we used a single Hanning taper for all frequencies. 306 
Power at each frequency was calculated within sliding time windows (20ms resolution). The 307 
width of these time windows was set at four times the wavelength of the specified frequency.  308 

Power values were baseline corrected from -2 to -1 seconds pre-trial using decibel (dB) 309 
conversion and averaged across frequency, within the frequency bands of interest. Note that 310 
baseline correct needed to be applied before statistical analysis of power because variations 311 
in impedance between subjects and throughout recordings cause variation in observed power 312 
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across frequencies. Decibel conversion accounts for this by shifting the power value to a 313 
relative measure that is consistent across subjects and over time. Further, in the case of 314 
oscillatory power, it shifts the power distribution across time and channels to be normal and 315 
within the assumptions of statistical test used.  316 

Experimental Design and Statistical Analysis 317 

We used non-parametric cluster-based permutation, as implemented in Fieldtrip (Maris and 318 
Oostenveld, 2007; Oostenveld et al., 2010), when testing for within- and between-subject 319 
comparisons. For within-subject comparisons, a two-tailed dependent samples t-test was used 320 
as the permuted test statistic and for between-subject comparisons a two-tailed independent 321 
samples t-test was used. In all cases, 10,000 permutations were taken with critical alpha-level 322 
at .025 (after two-tailed correction), cluster alpha-level at .05 based on the ‘maxsum’ method 323 
to correct for multiple comparisons within the test. Note, reported p-values are estimates 324 
based on the distribution of the permuted cluster statistics. We have reported the temporal 325 
bounds of clusters in brackets [start - end], but these should not be considered as explicit 326 
boundaries. While non-parametric cluster-based permutation tests are suitable to test for 327 
differences between data, they may not identify the full extent of a cluster.  328 

Code Accessibility 329 

EEG, behavioural data associated with this study and the code to prepare and analyse them 330 
are available for download from the OpenNeuro data sharing platform (accession number 331 
ds004877). They are prepared according to the EEG-BIDS data formatting standard.  332 

Results 333 

Behavioural data 334 

Matched control groups are essential when comparing expertise 335 

In addition to the Expert AFO and Matched Novice groups, we collected a third dataset of 336 
Unmatched Novices (see Materials and Methods). For each group, we correlated age with 337 
response time at Phase 1 and Phase 2 in the SDS task (Fig. 2). We found moderate positive 338 
correlations between age and response time for Expert AFOs at Phase 1, r(25) = 0.43, p = 339 
0.025, and Phase 2, r(25) = 0.51, p = 0.006. Similar moderate correlations were found for the 340 
Matched Novices group at Phase 2, r(25) = 0.46, p = 0.016, but only negligible correlations 341 
were found at Phase 1, r(25) = 0.33, p = 0.096. Correlations for the Unmatched Novices were 342 
also negligible at Phase 1, r(25) = -.05, p = 0.82, and Phase 2, r(25) = -.09, p = 0.67. These 343 
findings are in line with studies of generalised response time and age which show a plateau 344 
in early adulthood, followed by increasing positive correlation with age (Pierson and Montoye, 345 
1958). 346 

The Expert AFO and Matched Novice groups had only one female participant each, making 347 
analysis of the effects of sex inappropriate. The Unmatched Novices group, however, had a 348 
more balanced distribution of 12 males and 15 females, allowing for comparisons of the effects 349 
of sex of mean response time using unpaired t-tests. At Phase 1, no significant difference was 350 
found, t(25) = 0.744, p = 0.46. At Phase 2, males were found to be significantly faster than 351 
females, t(25) = -2.921, p = 0.007. It is important to note that this effect is not applicable beyond 352 
the Unmatched Novice group. We believe these findings highlight that between-subject 353 
comparisons of expertise require careful control of participant age and, potentially, sex. This 354 
is in addition to established variation in EEG oscillations across age and sex (Hoshi and 355 
Shigihara, 2020).Therefore, although we included response time data from the Unmatched 356 
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Novice group in the subsequent behavioural analysis, we have focussed our analysis of EEG 357 
on the Expert AFO and Matched Novice groups.  358 

Expert AFOs are quicker to respond at the Phase 1 359 

A 3 (between-subject, Expertise: Expert AFOs vs. Matched Novices vs. Unmatched Novices) 360 
x 3 (within-subject, Weapon Presence: Can vs. Knife vs. Handgun) mixed factor analysis of 361 
variance was used to test our hypothesis that response time would differ by expertise and 362 
threat. Mauchly’s test suggested that the assumption of sphericity was violated for the Weapon 363 
Presence factor, so degrees of freedom were corrected for using Huynh-Feldt estimates of 364 
sphericity (ɛ ̃= 0.78). After sphericity corrections, a significant main effect of Weapon Presence 365 
on response times at Phase 1 was observed, F(1.57,81.55) = 9.70, p < 0.001, ηges

2 = 0.08. A 366 
significant main effect of Expertise was also found, F(1,52) = 5.07, p = 0.029, ηges

2 = 0.05.  367 

No significant interaction between Expertise and Weapon Presence was found, F(4,156) = 368 
0.69, p = 0.6, ηges

2 = 0.01, and so the direction of the main effects was tested. Pairwise 369 
comparisons (after Bonferroni correction) between Handgun and Knife were significant (p < 370 
0.001, d = 0.49), as were comparisons between Handgun and Drinks Can (p = 0.004, d = 371 
0.47), but not between Knife and Drinks Can (p = 1, d = 0.08). This suggests that the main 372 
effect of Weapon Presence was driven by faster response times in the Handgun condition 373 
only. Similar pairwise comparisons were conducted for the main effect of Expertise. Expert 374 
AFOs were significantly faster than Matched Novices (p = 0.023, d = 0.61). These results show 375 
that the observed main effect of Group describes AFOs as significantly faster than Matched 376 
Novices.  377 

Expertise resulted in faster decisions to shoot at the Phase 2 378 

A 3 (between-subject, Group: Expert AFOs vs. Matched Novices vs. Unmatched Novices) x 2 379 
(within-subject, Weapon Presence: Knife vs. Handgun) x 2 (within-subject, Action: Surrender 380 
vs. Attack) mixed factor analysis of variance was conducted. As expected, a main effect of 381 
Action was found, F(1,78) = 315.81, p < 0.001, ηges

2 = 0.59. The effect size was large, 382 
suggesting faster response times for firing in response to being attacked compared to pressing 383 
safety in response to a surrender. No significant main effect was found either for Weapon type 384 
(Knife vs Gun), F(1,78) = 0.31, p = 0.58, ηges

2 < 0.01, or for Group, F(2,78) = 1.37, p = 0.26, 385 
ηges

2 = 0.02.  386 

We had expected that Expert AFOs would be faster to respond in the Attack condition. 387 
Surprisingly, neither a significant main effect for Group, F(2,78) = 1.37, p = 0.26, ηges

2 = 0.02 388 
nor a significant interaction between Group and Action, F(2,78) = 2.55, p = 0.084, ηges

2 = 0.02, 389 
were found. However, we conducted an additional pairwise comparison to test for the effect 390 
of Group on the Attack condition of Action only as this was not directly tested by the main and 391 
interaction effect analyses described. For this test, Levene’s test for homogeneity of variance 392 
approached significance (F[2,78] = 3.09, p = 0.051) so we opted to use independent t-tests 393 
without the assumption of equal variance for these pairwise comparisons. This contrast 394 
showed that Expert AFOs’ responses to shoot were significantly faster than Matched Novices’, 395 
p = 0.001, d = 1.06.  396 

EEG data 397 

Separation and source localisation of oscillations 398 

Comparisons of EEG signals between groups and conditions were made by first identifying 399 
and separating signals of interest from the total activity. An overview of this process can be 400 
seen in Fig. 3. In brief, we estimated the cortical source of three frequency bands of interest, 401 
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theta, alpha and beta, independently (see Materials and Methods – Source localisation). The 402 
coordinates of the maximum power of theta (dorsal anterior cingulate cortex [dACC], MNI [0, 403 
0, 40]) and the minimum power of alpha (right angular gyrus, MNI [30 -60 20]) and beta (left 404 
primary motor cortex, MNI [-20 -30 60]) versus baseline were then used to generate virtual 405 
electrode signals.  406 

Theta response is greater in low- vs. high-threat conditions 407 

Comparisons between low- and high-threat conditions at Phase 1 and Phase 2 revealed 408 
similar differences in theta power at a virtual electrode placed at the estimated peak of activity 409 
in the dACC (Fig. 4). At Phase 1, we observed significantly greater pre-response theta when 410 
equipping nothing versus equipping a firearm for both the Expert AFO [0.34s – 0.9s], p < 411 
0.001, and Matched Novice groups [0.44s – 1.02s], p < 0.001. At Phase 2, we observed 412 
significantly greater pre-response theta activity when participants pressed safety versus 413 
shooting their firearm for both the Expert AFOs [0.3s – 1.62s], p < 0.001, and Matched Novices 414 
[0.32s – 1.66s], p < 0.001. In the Matched Novice group, we also observed an unexpectedly 415 
early, significant positive cluster showing greater theta power in the Handgun condition [-0.02s 416 
– 0.26s], p = 0.039. Given the early timing and near threshold significance, this is likely a false 417 
positive result.  418 

Expert AFOs show differences in theta when responding to graded levels of threat 419 

We also contrasted theta activity between trials where participants equipped a Taser versus 420 
a Glock to see whether the measure was sensitive to the use of graded levels of force. For 421 
the Expert AFO group, we found a similar pattern of activity to earlier contrasts which indicated 422 
that lower threat level results in greater theta response: Expert AFOs had greater pre-423 
response theta activity when equipping a Taser versus a Glock [0.32s – 0.82s], p = 0.018. For 424 
the Matched Novice group, this contrast did not reveal any significant pre-response clusters. 425 
However, we did observe a significant post-response cluster, showing greater theta power in 426 
the Glock condition [1.1s – 1.54s], p = 0.015. 427 

Expert AFOs have greater theta than Matched Novices when preparing a response to threat  428 

Between-subject comparisons between Expert AFOs and Matched Novices showed that the 429 
experts had significantly greater theta activity when responding to threat than novices [0.1s – 430 
0.72s], p = 0.006. They also had significantly greater pre-response theta when responding to 431 
no threat [0.1 – 0.7], p = 0.005. See Fig. 5A for details. Although clusters with the same 432 
direction of effect were found when comparing Expert AFOs’ and Matched Novices’ theta 433 
activity at Phase 2 (Fig. 5B), they were not significant for the surrender [0.3s – 0.56s], p = 434 
0.065, nor attack [0.38s – 0.48s], p = 0.126, conditions. No significant pre-response 435 
differences were found for alpha and beta frequency bands. 436 

Expert AFOs show reduced beta desynchronisation/faster beta rebound than Matched 437 
Novices 438 

While our hypotheses were focussed on comparisons of pre-response theta, analysis of beta 439 
band (13-32 Hz) power revealed interesting differences between Expert AFOs and Matched 440 
Novices. In both conditions of Phase 1 (No Threat [1.06s – 1.44s], p = 0.015; Threat [0.64s – 441 
1.5s], p = 0.006), experts showed an earlier beta rebound following their response, possibly 442 
explained by a smaller initial beta desynchronisation pre-response. This effect was replicated 443 
at Phase 2 in the Threat condition [0.42s – 1.24s], p = 0.003.  444 

Discussion 445 
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In the current study, expert police AFOs, an age- and sex-matched novice (non-police) group 446 
and an unmatched novice group completed an SDS task in VR, in which they had to identify 447 
and respond to possible threats in a series of two-phase scenarios. Analysis of response times 448 
showed that AFOs consistently performed best, suggesting our task was sensitive to the 449 
between-group expertise manipulation. Further, comparisons with the unmatched novice 450 
sample included in our study at behavioural level underlined the requirement for matched age 451 
distributions in studies comparing control groups with experts (Fig. 2). Subsequent analysis 452 
of changes in pre-response oscillatory power at both phases of the SDS task revealed distinct 453 
differences between the experts and their matched control group. Most notably, during the 454 
preparation phase – when participants determined the appropriate response to varying levels 455 
of threat – experts had greater estimated theta power in dACC, suggesting increased 456 
orientation towards threatening stimuli.  457 

Our research builds on other studies of police officer decision making that have used variations 458 
of the SDS paradigm (Correll et al., 2002). However, research on EEG signals associated with 459 
SDS decision making has so far been limited and the patterns of activity are not well 460 
understood. Our analysis of EEG data allowed us to first identify the source of signals of 461 
interest within the brain, and then to measure how the oscillatory activity modulated over time. 462 
Generally, our analysis of theta, alpha and beta bands yielded the expected results across all 463 
participant groups (Figs. 4, 5), conforming to demonstrated effects in a variety of traditional 464 
experimental paradigms (Pfurtscheller and Lopes da Silva, 1999), as well as recent, 465 
naturalistic paradigms (Walshe et al., 2023): when a stimulus is presented to participants and 466 
they respond, theta power increases and alpha and beta power decreases.  467 

Having confirmed this expected baseline pattern of activity across groups, we were able to 468 
investigate how our experimental design affected these signals. When contrasting EEG-469 
derived virtual electrode signals time-locked to threatening and non-threatening stimuli, we 470 
found that theta power attributed to the dACC was consistently higher across both phases of 471 
the experiment and both groups when the stimulus was non-threatening versus threatening. 472 
The estimated source of FMθ activity in the anterior cingulate cortex (ACC) is pertinent to its 473 
role in decision making, as ACC is a well-connected hub of the brain (Cohen, 2011) and part 474 
of the executive network (Petersen and Posner, 2012). The ACC is interconnected with the 475 
basal ganglia structures of the reward circuit and the ventral striatum (Graybiel and Grafton, 476 
2015; Jin and Costa, 2015; Saga et al., 2017). Through these pathways, faster response times 477 
to threat observed in SDS tasks can be attributed to preferential, adaptive orientation towards 478 
threatening stimuli (Lang et al., 1990; Öhman et al., 2001). Modulation of activity at ACC have 479 
indeed been observed during SDS tasks and comparable response inhibition paradigms, such 480 
as Go/No-Go tasks (Nieuwenhuis et al., 2003; Correll et al., 2006). Our task also shares a 481 
common limitation with these tasks in that it is difficult to dissociate performance at the task 482 
from motivation. It is possible that observed differences across our expertise manipulation 483 
were in fact due to difference in motivation. However, the effect on behaviour and associated 484 
neural activity is the same. It may be the case that increased motivation and focus are 485 
inextricably linked to increasing expertise in these types of tasks. 486 

Subsequent analysis of differences between groups addressed our main research question 487 
about the effects of expertise on theta activity attributed to dACC. As expected, AFOs showed 488 
greater dACC theta power when assessing the threat in scenarios. This may be related to a 489 
more adaptive response to threat, whereby experts are able to reach a decision to respond or 490 
inhibit a response quicker than novices. In contrast to our expectations, group differences 491 
were not observed for dACC theta nor for alpha or beta frequencies during the second phase 492 
of the SDS decision. This may indicate that the initial threat assessment and preparation were 493 
crucial in the current scenarios and were significantly influenced by prior training and 494 
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expertise. Interestingly, however, after SDS responding, AFOs showed shorter beta-rebounds 495 
compared to Matched Novices, which could indicate swifter recovery after executing an action 496 
(Fig. 5B). In other words, AFOs might be “ready for action” after a shorter delay, which could 497 
be another reflection of training and expertise. 498 

It is important to note that these findings were obtained within a specific context: participants 499 
were standing and engaging in a task in VR which required a considerable amount of 500 
movement. This required adjustment to recording protocol and processing of EEG data to 501 
minimise and suppress artefacts associated with movement (Klug and Gramann, 2021) and 502 
HMD electronics (Weber et al., 2021). Stimulus presentation was naturalistic (Sonkusare et 503 
al., 2019) and the timings that our analysis relied on were taken from a continuous 504 
presentation of a virtual human in a scene. Further, participants’ interactions with VR affected 505 
the stimuli in real-time, meaning that how participants chose to respond to the scenario and 506 
actions were mapped to realistic movements and so varied between conditions. Therefore, 507 
the fact our results are consistent with well-established findings from artificial, highly controlled 508 
experiments such as the Go/No-Go task is promising for ongoing research using naturalistic 509 
stimuli. Research using artificial stimuli benefits as well: replication of basic findings in studies 510 
using naturalistic stimuli is an important demonstration of the validity of both (Rust and 511 
Movshon, 2005). Note, our experimental design was necessarily repetitive and contrived to 512 
benefit from a factorial design and sampling of underlying distributions in the data over time. 513 
This could certainly have a negative effect on ecological validity. However, by allowing natural 514 
behaviours within the bounds of the task we have shown that realistic behaviours can be 515 
observed alongside electrophysiological signals.  516 

Whereas advances in combined VR and neuroimaging (Roberts et al., 2019) and associated 517 
analytical methods suggest that many new and interesting research questions can be 518 
addressed using naturalistic imaging (De Sanctis et al., 2021), the feasibility of using these 519 
methods to address a wide range of research questions varies. Part of the motivation for our 520 
research was that, among “natural” expert behaviours, SDS decision making is particularly 521 
amenable to EEG analysis because it occurs in a single, clearly defined moment: the pulling 522 
of a trigger, or equipping a firearm. This was made clear to us after observing AFO training 523 
and observing similarities between their methods and typical studies of human behaviour, 524 
relating to response time and accuracy. Translating their training into a VR-EEG study enabled 525 
us to increase realism to promote ecologically valid behaviours and EEG with minimal trade-526 
off for experimental control (Loomis et al., 1999; de la Rosa and Breidt, 2018). Additionally, 527 
the use of VR allowed control participants to complete the scenarios without weapon training 528 
and outside of specialised training facilities, so novices and experts could participate in the 529 
same way. Overall, our study highlights the feasibility of VR-based tasks for investigating 530 
police training and expertise more generally. These tasks can be effectively combined with 531 
neuroimaging (Tromp et al., 2018), and so we call for a significant increase in ‘neuro-VR’ 532 
studies to address the impact of expertise and training on performance. 533 
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Figure Legends 696 

Figure 1. Examples of stimuli from two scenarios. Between the pre-trial baseline period and 697 
Phase 1, the virtual human walked from behind the wall, into view. Two examples of threat at 698 
Phase 1 can be seen (Handgun and Knife), as well as the two possible outcomes in Phase 2 699 
(Surrender and Attack). Note, these examples are snapshots from a continuous stimulus 700 
presentation to an HMD, so the precise presentation varied continuously with participant 701 
movement and the display technology presented it as a high-resolution 3D scene.  702 

Figure 2. Summary of response time analysis at the two decision points. Upper panel (A) 703 
shows the results from Phase 1 of the task, where participants decided to equip either Nothing, 704 
a Taser or a Glock. Participants were faster to respond to threat (Knife/Handgun) than no 705 
threat (Drinks Can) and Expert AFO response times were faster than both novice groups at 706 
the preparation decision. Lower panel (B) shows the results from the SDS decision in Phase 707 
2. Again, participants were faster to respond to threat (Attack) versus no threat (Surrender), 708 
and Expert AFOs were faster to respond to threat than both novice groups at the SDS decision 709 
stage. Additional descriptions of the effects of age can be seen on the right of each panel, 710 
along with the age distributions of each group shown with box-and-whisker plots of the inter-711 
quartile range. Note, error bars on bar charts show the standard error of the mean, black bars 712 
highlight significant differences with asterisked references to the level of significance.  713 

Figure 3. Overview of EEG data preparation and source localisation. A and B show the sensor 714 
level time-frequency data for Expert AFO and Matched Novice participants averaged across 715 
trials where a weapon was present, and the virtual human attacked. For the time-frequency 716 
representation figures (top), the average of the central nine electrodes was taken (FC1, FC2, 717 
Cz, CP1, CP2, FCz, C1, C2, CPz) and baseline corrected against data from -2s to -1s using 718 
decibel (dB) conversion. In these figures, data are time-locked to the onset of both stimuli, 719 
which were always 4s apart: Weapon Presence (0s, Phase 1) and Compliance (4s, Phase 2). 720 
On-scalp topographies of frequencies of interest from 250-750ms are shown. C illustrates the 721 
source estimation for the theta, alpha and beta bands using eLORETA. White crosshairs show 722 
the peak activity for each band. D and E show time-frequency data for virtual electrodes placed 723 
at the peaks estimated in C, but for each group separately. Note, all colour axes are formed 724 
of two linear sub-scales: from zero to the maximum value and from zero to the minimum value, 725 
to highlight the topography of each signal. 726 

Figure 4. Within-subject comparisons of theta (3-7 Hz) power at a virtual electrode positioned 727 
at the positive peak in theta activity averaged across all groups (MNI: [0 0 40], Dorsal Anterior 728 
Cingulate Cortex). The right and left panels show that when inhibiting a response (Equip 729 
Nothing, Phase 1, or press Safety, Phase 2) both groups of participants exhibit greater dACC 730 
theta power versus responding to threat (Equip Firearm, phase 1, and Shoot Firearm, phase 731 
2). The central panel shows that only Expert AFOs demonstrate greater theta power when 732 
equipping a Taser versus a Glock in Phase 1. Vertical dashed lines represent stimulus onset 733 
(black) and average response times (orange or purple). Black horizontal lines indicate the 734 
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presence and duration of significant clusters. Shaded areas around lines show the standard 735 
error of the mean. 736 

Figure 5. Comparisons of theta, alpha and beta activity between Expert AFO and Matched 737 
Novice groups within critical decision points. In each case, power has been calculated from a 738 
virtual electrode placed at the positive (theta) or negative (alpha, beta) peak of oscillatory 739 
power in the brain. A shows comparisons from the Preparation Stage (Phase 1) when there 740 
was no threat and when there was a threat. The main finding was that Expert AFOs showed 741 
significantly higher pre-response theta power than the Matched Novices in both conditions. A 742 
shorter beta-rebound was also observed for AFOs compared to Matched Novices after 743 
response in both conditions. B shows comparisons from the SDS decision (Phase 2). No 744 
significant pre-response differences were found. A shorter beta-rebound was again observed 745 
for AFOs compared to Matched Novices after response, but only in the Threat + Attack 746 
condition. Dashed vertical lines represent stimulus onset (black) and mean group response 747 
times (red or blue). Black horizontal lines indicate the presence and duration of significant 748 
clusters. Shaded areas around lines show the standard error of the mean.  749 
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