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Appendix A: Scaling relationships of the number of clusters in CELs in K-Sat problem

In Fig. 2 of the main text, we show that the total number of clusters in CELs in K-Sat problem, C is proportional
to 2γN , i.e. C = A2γN , for some constant A and exponent γ. Remarkably, as shown in Fig. S1(a), the exponents γ
collapse onto a common function of α/K2 for K-Sat problem with K = 3, 4, 5 and 6 and different α. On the other
hand, in Fig. S1(b), we show that the ratio (C/2N )1/(1−γ) collapsed onto a common exponential decay function against
N , for K = 3, 4, 5 and 6 and different α, implying an extensive number of configurations can be grouped in CELs
for clearer illustration. This also implies that the decrease is more extensive with large K, since the satisfiability
constraints are less restrictive in clauses with more variables and more configurations can be grouped in clusters
because they are more likely to have the same energy. Moreover, this suggests that one can estimate the number of
clusters C for the CELs of a K-Sat problem with arbitrary N , M and K. The same applies for the number of local
minima, i.e. nML, which also roughly collapses onto a common function of N as shown in Fig. 2(c) of the main text.

We show the low-energy portion of two more examples of CEL for systems with larger N , namely a spin glass
on random regular graph with N = 20 and f+ = 0.5 and a 3-Sat problem with N = 20 and α = 4 respectively in
Fig. S2(a) and (b).

Appendix B: More examples on the probability Pg of finding the ground states through FELs, CELs

Starting with a uniform P⃗0, we show the sample averaged probability Pg of spin glasses being in the ground state
after t = 103 and 105 iteration steps, as well as Pg of 3-Sat problems after t = 104 and 105 iteration steps, as a function
of β in Fig. S3(a) and (b) respectively. The probability Pg as a function of time t is shown in the corresponding insets.
As we can see, for both systems, the sample averaged Pg first increases with β as expected, but decreases as β further
increases. The sample-averaged MCMC simulation results are also in good agreement with theoretical predictions. In
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Fig. S1. (a) The exponent γ in C ∝ 2γN as a function of α/K2 for the K-Sat problem with K = 3, 4, 5 and 6. (a) The scaled

ratio Ã(C/2N )1/(1−γ) between the number of clusters C in CELs and the corresponding total number of configurations 2N in

FELs as a function of N , where Ã = A1/(1−γ). The results are obtained by averaging over 100 realizations.
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Fig. S2. The low-energy portion of exemplar CELs for an instance of (a) spin glass on random regular graph with f+ = 0.5
and (b) 3-Sat problem with α = 4, both with N = 20. Global minima and local minima are shown in squares and triangles
respectively; node size corresponds to the number of constituent configurations in the clusters; red links correspond to the
connections to local minima.
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Fig. S3. (a,b) The sample-averaged probability Pg of finding the ground states for spin glass on random regular graphs with
N = 10 and f+ = 0.5, as well as 3-Sat problems with N = 15 and α = 4, as a function of inverse-temperature β obtained by
Eq. (4) after t = 103 and 105 iterations, compared with simulation results. Insets: Pg as a function of time t. The results are
obtained by averaging over 200 realizations.

Fig. S3(a), we also show that the sample-averaged Pg obtained by FELs, which agree well with the results from CELs,
implying that CELs capture well the dynamics even after coarse-graining. These results also imply that trapping at
local minima is a phenomenon for all instead of particular instances.

Appendix C: PCELs and simplified PCELs

An example of PCEL for a K-Sat problem with N = 50 and α = 4 is show in Fig. S3(a), obtained by sampling for
T = 105 steps at βs = 5 with 10 re-starts. Since the node size of the PCEL is still too large for analysis, and as we
have discussed in the main text, we further simplify the PCELs by leaving only nodes on one of the single shortest
path between any two minima shown in Fig. S3(b), since we are mainly interested in the glassy behaviors contributed
by the local and global minima, .

We then obtain the simplified transition matrix T̃β from the simplified PCEL in Fig. S3(b), and compute the
probability Pg of the system to be in the ground state after t = 104 and 105 iteration steps as a function of β as in
Fig. S5; Pg as a function of time t is shown in the inset. We can see that the simulation results at different β share a
similar trend with the theoretical predictions by PCELs, which is obtained by a simple procedure at a single value of
βs.
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Fig. S4. (a) The low-energy portion of an exemplar PCEL for an instance of 3-Sat problem instance with N = 50, as a function
of β, sampled for T = 105 steps at βs = 5 with 10 re-starts. (b) The simplified PCEL of (a) by leaving a single shortest
path between any two minima only. Global minima and local minima are shown in squares and triangles respectively; node
size corresponds to the number of constituent configurations in the clusters; red links correspond to the connections to local
minima.
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Fig. S5. The sample-averaged probability Pg of finding the ground states of 3-Sat problem instances with N = 50, as a function
of β, obtained by the transition matrix from PCELs sampled for T = 105 steps at βs = 5 with 10 re-starts, and then by Eq. (4)
after t = 104 and 105 iterations, compared with simulation results. Insets: Pg as a function of time t. The results are obtained
by averaging 50 realizations.




