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A B S T R A C T   

Offline programming (OLP) is a mainstream approach for controlling assembly robots at construction sites. 
However, existing methods are tailored to specific assembly tasks and workflows, and thus lack flexibility. 
Additionally, the emerging large language model (LLM)-based OLP cannot effectively handle the code logic of 
robot programming. Thus, this paper addresses the question: How can robot control programs be generated effec-
tively and accurately for diverse construction assembly tasks using LLM techniques? This paper describes a closed user- 
on-the-loop control framework for construction assembly robots based on LLM techniques. A hierarchical 
strategy to generate robot control programs is proposed to logically integrate code generation at high and low 
levels. Additionally, customized application programming interfaces and a chain of action are combined to 
enhance the LLM’s understanding of assembly action logic. An assembly task set was designed to evaluate the 
feasibility and reliability of the proposed approach. The results show that the proposed approach (1) is widely 
applicable to diverse assembly tasks, and (2) can improve the quality of the generated code by decreasing the 
number of errors. Our approach facilitates the automation of construction assembly tasks by simplifying the 
robot control process.   

1. Introduction 

Assembly tasks are among the most common tasks in construction. 
Notably, the temporal allocation dedicated to assembly undertakings 
constitutes approximately 70% of the aggregate project duration during 
construction (Ding et al., 2020). Additionally, the process of assembling 
structural elements is an example of physically exacting vocations, often 
necessitating iterative engagements with contorted stances involving 
bending and twisting to perform manual handling and repetitive activ-
ities (Gao et al., 2023). With advancements in robotics, intelligent robots 
provide a promising solution for preventing musculoskeletal disorders 
during assembly tasks and improving construction efficiency. 

Offline programming (OLP) is a mainstream method for controlling 
assembly robots on construction sites (Zhang et al., 2023). It stores codes 
relevant to tasks as a corpus, captures the intrinsic logic of the action 
plan based on the task and environmental descriptions, and organically 
combines the corpus to generate an executable robot control program. 

OLP employs virtual robots for programming and simulation, offering a 
flexible solution suitable for intricate environments and tasks, such as 
the collision-free path planning of robots (Vann et al., 2023). Addi-
tionally, OLP can collaborate with technologies such as building infor-
mation modeling, facilitating the workflow planning of robot 
construction, and allocating multi-robot tasks (Kim et al., 2021; Zhu 
et al., 2021). 

Three primary categories of automated OLP methods have been 
investigated: template-based (Hu et al., 2022; Rogeau et al., 2021), skill 
library-based (Wallhoff et al., 2010; Zheng et al., 2022), and neural 
machine translation (Bonilla and Ugalde, 2019; Kahuttanaseth et al., 
2018) methods. However, despite the valuable contributions from the 
extensive research, these methods often have a limited scope, are 
tailored for specific assembly tasks and workflows, and are difficult to 
extend to intricate scenarios. Limited corpora of templates, skill li-
braries, and small models have restricted the range of generated codes. 
Moreover, crucial task-related details such as the construction process 
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and masonry forms are rarely considered in these approaches, which 
results in poor adaptability of the generated codes to unconventional 
construction processes, requiring a large amount of code modification 
work. 

Emerging large language model (LLM) techniques have demon-
strated significant potential in robot programming and intricate task 
resolution (Saka et al., 2024; Zhao et al., 2023), which is promising an 
effective avenue for enhancing robot control. Notably, an impressive 
study by the Autonomous Systems and Robotics Group at Microsoft™ 
harnessed ChatGPT to generate robotic action plans for diverse appli-
cations, enabling users to be supervisors in a closed loop to iteratively 
refine a solution (Vemprala et al., 2023). However, the execution of the 
generated plan relies on the collaboration of pre-defined functions, 
which necessitates the inclusion of low-level policies within these 
functions. A recent study by Google™ proposed a hierarchical 
code-writing approach that recursively defines and nests functions to 
create programs capable of controlling robotic movements (Liang et al., 
2023). However, the generated programs were not flattened at the same 
code logic level and a clear demarcation between the different levels of 
robot programming was not evident, resulting in excessive functional 
nesting and a more intricate code structure. 

Against this contextual background, this paper addresses the 
following research question: How can robot control programs be generated 
effectively and accurately for diverse construction assembly tasks using LLM 
techniques? To address this research question, we refer to the seminal 
work of Vemprala et al. (2023) and develop a closed user-on-the-loop 
construction assembly robot control framework based on LLM tech-
niques. This framework encompasses the construction of an API library, 
hierarchical robot control program generation (HRCPG), simulation and 
optimization, and execution phases. 

Firstly, a customized inventory of basic robot manipulation functions 
for construction assembly tasks is compiled to form an API library. 
Subsequently, HRCPG strategy is proposed to logically integrate code 
generation at high and low levels with the API library, while augmenting 
LLM’s comprehension of assembly action logic through a chain of action 
(CoA) within prompts. Following this, the AI-generated code is executed 
on a robot simulation platform to evaluate its accuracy and efficiency. 
Task completion-related metrics (i.e., code executability and condition 
recall) and task performance-related metrics (e.g., construction effi-
ciency and energy expenditure) are used to ensure the successful 
completion of assembly tasks and to optimize task execution perfor-
mance, respectively. During this phase, LLM identifies all errors in the 
generated code and provides feasible solutions. After several rounds of 
LLM-assisted optimization, the generated codes are seamlessly imple-
mented on a physical robot. The proposed framework enables auto-
mated robot control from task planning to low-level policy codes 
generation through conversational programming with the LLM, thereby 
liberating users from arduous and demanding programming tasks and 
mitigating the knowledge barrier and interaction complexity associated 
with deploying construction robots. Additionally, the accuracy and 
reliability of the LLM outputs are guaranteed through HRCPG, CoA 
strategy and the closed-loop control process, providing a tangible 
example of LLM’s efficacy in construction robotics applications. 

The remainder of this paper is organized as follows. Section 2 re-
views previous research on assembly robot programming in construc-
tion, LLMs for robot programming, and prompt engineering. The 
proposed LLM-based user-on-the-loop robot control approach is 
described in Section 3. Next, the feasibility and reliability of the pro-
posed approach were verified through experiments on an assembly task 
set, as discussed in Section 4. Sections 5 and 6 present the contributions 
and limitations, respectively, and concluding remarks are presented in 
Section 7. 

2. Literature review 

In this section, we first examine the control method of construction 

assembly robots, focusing particularly on the OLP approach. It is high-
lighted that while the emerging LLM technology holds promise in 
simplifying complex task programming, its application in construction 
robot assembly requires further exploration. Consequently, in Section 
2.2, we conduct a comprehensive review of current research on LLM in 
robot tasks, revealing its limitations in low-level code implementation, 
which is also the main obstacle to its application in construction as-
sembly tasks. A well-crafted prompt is indispensable for directing LLM 
to generate the robot control code. Thus, in Section 2.3, we delve into 
the principles of prompt engineering, laying the groundwork for 
designing a holistic framework for integrating LLM into the realm of 
construction assembly robot control. 

2.1. Assembly robot programming in construction 

Assembly tasks are among the most common activities in construc-
tion projects. In recent years, the use of robots for assembly tasks in 
construction projects has attracted significant interest in improving the 
productivity and safety of assembly work (Cai et al., 2019, 2020; Wang 
et al., 2021). In typical real-world scenarios, robots are programmed by 
end users to achieve motion control and autonomous decision-making 
based on different construction environments and assembly task 
requirements. 

Robot programming mainly comprises online programming and 
OLP. In online programming, engineers directly code and debug within 
the robot’s operational environment in real-time, while OLP simulates 
the robot’s operations in a virtual environment. Unlike online pro-
gramming, OLP removes users from the workspace, allowing early 
detection of potential mechanical collisions through simulation and 
adaptation to the evolving construction environment in real-time using 
sensors and advanced algorithms (Cai et al., 2019, 2020; Bruckmann 
and Boumann, 2021; Carvalho et al., 1998; Gao et al., 2022). In terms of 
efficiency, although OLP is hard-coded, it excels in highly repetition 
tasks such as assembly through program reuse (Carvalho et al., 1998). 
Additionally, OLP provides easier integration with building information 
models and digital twins, with numerous current studies conducted 
within an OLP environment (Kim et al., 2021; Zhang et al., 2023). 

Traditionally, OLP is manually encoded by engineers, which is time- 
consuming and requires a high level of robotics expertise for effective 
robot operation (Huang et al., 2018). To address the limitations of 
manual programming, several methods have been developed for auto-
matically generating robot commands for construction assembly. 

The prevalence of analogous action sequences in element assembly 
procedures has resulted in the frequent adoption of template-based ap-
proaches, in which a fixed-action logical framework is established (Ding 
et al., 2020; Hu et al., 2022; Huang et al., 2021). For example, Huang 
et al. (2021) devised an action template and planned a skeleton for a 
discrete bar assembly to implement robot motion planning for additive 
bar structure construction. This template comprised four motion prim-
itives: transit, pick, transfer, and place. The fixed-action logical frame-
work can be represented as a sequence of robot instructions (Ding et al., 
2020). However, most templates are tailored to specific assembly tasks 
and are difficult to extend to other scenarios. 

Another OLP approach for generating robot assembly programs in-
volves the creation of a skill library, which can automatically learn ac-
tion logic and combine skills. Previous studies attempted to integrate 
this method with expert systems, knowledge models, and reinforcement 
learning methods to determine sequences of defined skills (Wallhoff 
et al., 2010; Zheng et al., 2022). For instance, Wallhoff et al. (2010) 
registered the available skills in an expert system, manually decomposed 
a task into these skills, and invoked them through voice input. However, 
the escalating number of skills required for task solutions correspond-
ingly increases the demand for time and processing power (Wallhoff 
et al., 2010). Additionally, the skills in the library delineate the spectrum 
of actions that the robot can undertake, thus resulting in potential se-
curity concerns when the library is not aligned with the task 
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requirements. 
The above two methods require operators with high levels of 

knowledge and expertise. In contrast, more recently, neural machine 
translation has been utilized to translate natural language into robot 
commands for simpler human–robot interactions (Bonilla and Ugalde, 
2019; Kahuttanaseth et al., 2018). However, it also encounters chal-
lenges in scaling to handle more intricate tasks and diverse instructions, 
owing to the limited size of training corpora. 

LLM leverages its extensive training dataset, endowing it with ca-
pabilities that are not readily apparent in smaller models and the po-
tential to effectively solve complex tasks (Zhao et al., 2023). Only a few 
studies have explored the application of LLMs to construction assembly 
robots, with only two studies from the same research group (You et al., 
2023a; Ye et al., 2023). In the first study, a system called RoboGPT, 
based on ChatGPT, was developed for automatic sequence planning. 
When the system receives a task description from users, it generates 
sequential solution commands, which are then decoded by the command 
decoder system, and finally implements object manipulation (You et al., 
2023a). In the second study, a user’s voice was used as the input for 
RoboGPT. It combines contextual information to evaluate the ambiguity 
of voice information and clarifies operational instructions to users 
through conversation. When the information is sufficient for 
decision-making, the response is sent to the command decoder to trigger 
the robot control function to perform the task. In these two studies, LLM 
was used for the automatic planning of tasks and the invocation of 
predefined skills, but the customization of low-level policies was not 
adequately discussed. This is similar to the skill library-based method, 
which relies on predefined policies to map each step of the action plan. A 
summary and comparison of existing LLM-based OLP and general OLP 
methods is presented in Table 1. 

In this study, we harnessed the saliency ability of LLMs to auto-
matically generate robot programs, establishing a full path from task 
description to task planning, trajectory planning, and robot policy code 
generation, thereby reducing the difficulty of robot programming and 
improving the flexibility and security of codes in various assembly tasks. 

2.2. LLMs for robot programming 

In recent years, the emerging LLM technology has introduced a novel 
application paradigm for robots. Models such as LLaMA (Touvron et al., 
2023) and ChatGPT (OpenAI and ChatGPT, 2023) have been successfully 
used to analyze user inputs and translate them into executable robot 
code. LLMs enable nonexpert users to communicate with robots and 

increase the trust of users in human–robot collaborations owing to their 
high communication effectiveness (Ye et al., 2023). 

Task planning is an important research domain in the context of 
LLMs in robotics. In essence, when provided with prompts that describe 
the task and environment, the LLM decodes the task into a sequence of 
actions and arranges them logically through commonsense reasoning 
and code comprehension (Singh et al., 2023). Although previous studies 
have demonstrated the feasibility of robotic task planning using LLMs, 
optimizing an artificial intelligence (AI)-generated plan by modifying 
the order of action sequences poses challenges, primarily because of the 
open-loop nature of pipelines, which cannot receive feedback from the 
environment. 

Recently, the Autonomous Systems and Robotics Group at Micro-
soft™ introduced a framework that facilitates testing, verification, and 
validation of the generated code by enabling user involvement in the 
loop. This framework employs ChatGPT to generate a robotic action 
plan, incorporating task-relevant APIs, and subsequently iteratively 
refining the solution by evaluating output quality and safety (Vemprala 
et al., 2023). However, the execution of the generated plan relies on the 
collaboration of pre-defined functions, requiring the inclusion of 
low-level policies within these functions. Based on this, ROSGPT (Kou-
baa, 2023) and KGGPT (Mu et al., 2023) harness an ontology to mitigate 
the limitation of the output of LLMs. However, they merely decompose a 
high-level task command into several sub-tasks or action sequences, 
without considering the coding work required for robots to execute 
these sub-tasks or actions. This underscores the significance of hierar-
chically generating robot code that seamlessly integrates high-level 
modules from task planning with their corresponding low-level policies. 

The implementation of low-level policies involves research on code 
generation. Previous studies demonstrated the considerable advantages 
of LLMs in generating robot codes (Jain et al., 2022). However, the 
question of generating robot code hierarchically while simultaneously 
creating high-level modules and low-level policies using LLM techniques 
remains largely unexplored. In a recent study conducted by Google™, 
valuable insights were obtained to address this challenge (Liang et al., 
2023). Researchers have proposed a code as policies (CaP) method that 
employs a hierarchical code-writing approach by recursively defining 
and nesting functions, thereby composing code ranging from simple 
Python instructions to more complex programs capable of controlling 
robotic movements. However, this approach is similar to most existing 
LLM-based robot task planning methods and is primarily applicable to 
housework environments, emphasizing the encapsulation and reuse of 
control functions (Huang et al., 2022; Singh et al., 2023). In addition, 
the generated programs were not flattened at the same code logic level 
and a clear demarcation between the different levels of robot pro-
gramming was not evident, resulting in excessive function nesting and a 
more intricate code structure. 

In this study, task planning and code generation of low-level policies 
by LLMs were logically integrated according to different levels of robot 
control, which simplifies the comprehension and application of robot 
control commands for users and augments the capability of LLMs to 
generate robotic solutions tailored to construction scenarios. 

2.3. Prompt engineering 

Prompts serve as instructions from users to the LLMs for intentional 
communication and information interaction (Liu et al., 2023). In LLM 
tasks, prompt engineering is a vital component, as a meticulous prompt 
design can result in a deeper comprehension of human intentions and 
result in more favorable outcomes. Many studies in the LLM domain 
have focused on prompt design, through both manual and automatic 
approaches, across diverse tasks such as task planning and text gener-
ation (Li and Liang, 2021; Teven and Alexander, 2021). 

Prompts can be formulated in three forms: structured language, 
unstructured language, and a hybrid of the two. In an experiment (Liang 
et al., 2023), the use of code prompts for robot-relevant reasoning 

Table 1 
A summary and comparison of existing LLM-based OLP and general OLP 
methods.  

Method Description Pros Cons 

Manual OLP Hand coding Flexible to 
different task 
requirements 

Time-consuming 
and high knowledge 
requirement 

Template- 
based OLP 

Programming in a 
fixed template or 
action framework 

Easy to use with 
only parameter 
setup 

Weak adaptation to 
tasks with different 
workflow 

Skill library- 
based OLP 

Programming with 
encapsulated skills 

Automated action 
logic learning and 
skills combination 

Skills tailored for 
specific task 
requirements with 
limited application 
scope 

Neural 
machine 
translation- 
based OLP 

Directly translate 
natural language 
into robot codes 
using small models 

Simpler human- 
robot interactions 

Limited by the size 
of training corpora 

LLM-based 
OLP 

Directly translate 
natural language 
into robot codes 
using LLMs 

More extensive 
training dataset 
and emergent 
ability for solving 
complex tasks 

Lack customization 
of low-level policies 
in predefined skills  
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resulted in a higher success rate compared with the use of natural lan-
guage prompts. While writing prompts in a structured language can 
mitigate potential syntax errors in the output, it requires users in the 
construction domain to engage in time-consuming and 
knowledge-intensive efforts to describe the usage of all necessary APIs in 
the codes. With the advancement of LLM technologies, studies have 
demonstrated the increased flexibility of prompting in natural language 
(Vemprala et al., 2023). 

Thus, the approach described in this paper adopts natural language 
to describe the usage of APIs and task requirements for prompts. To 
facilitate a streamlined and expedited prompt construction process, we 
developed a dedicated API library tailored for robotic assembly in 
construction. Moreover, the logic chain of robot actions is added to the 
prompts, which draws inspiration from the concept of the chain of 
thought (CoT) (Wei et al., 2022) and collaborates with customized APIs 
to enhance the logical coherence of the generated outputs. 

3. Methodology 

As outlined in Section 2, existing programming approaches for con-
struction assembly robots demand considerable effort from users to 
translate task instructions or action sequences into a robot programming 
language. Typically, construction workers are limited to participating 
solely in the robot execution stage, maintaining a passive collaboration 
with the robots. Leveraging the robust capabilities of LLMs in robot 
planning and control, we delve into its application within construction 

assembly tasks in this section. Here, we introduce a closed-loop frame-
work designed to empower workers with limited programming skills to 
seamlessly engage in the entire process of robot control with the assis-
tance of the LLM. 

3.1. User on the loop of assembly robot control 

Robot control can typically be divided into four levels: task, action, 
primitive, and servo (Siciliano et al., 2008). The primary objective of the 
task and action levels revolves around decomposing the overall task into 
a coherent sequence of logical actions, considering environmental con-
straints. Conversely, the primitive and servo levels focus on motion 
trajectory computation and driving to joint servomotors. Consequently, 
these control levels exhibit distinct requirements concerning the APIs to 
be utilized within robot codes as well as the essential task-related in-
formation necessary for effective robot programming. 

Considering the distinctive attributes of the four control levels, a 
novel framework integrated with a strategy of hierarchical code gener-
ation is proposed for users in the loop of assembly robot control, as 
shown in Fig. 1. Given the APIs and task descriptions in natural lan-
guage, the LLM parses the intentions of users and hierarchically gener-
ates robot control codes at high and low levels, which are then executed 
in the simulation to provide feedback to the LLM for code optimization. 
The proposed pipeline comprises the following four steps. 

Fig. 1. Framework of the user on the loop of assembly robot control.  
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● API Library Construction: Before interacting with the LLM, a robotic 
API library is developed for construction assembly tasks, designed to 
seamlessly integrate with prompts for both high-level and low-level 
code generation. The API library comprises functions that operate at 
the action level with detailed descriptions of their inputs, outputs, 
and roles provided in natural language.  

● HRCPG: The LLM is leveraged to build high-level modules and 
implement low-level policies using the bespoke API library. High- 
level module generation adopts a CoA strategy that collaborates 
with API calls to augment the LLM’s reasoning capabilities in 
assembling action logic. Furthermore, third-party libraries are 
employed to create low-level operational plans within high-level 
functions, culminating in the synthesis of a comprehensive robot 
control program.  

● Simulation and Optimization: The assessment of code quality entails 
the execution of the generated program on a virtual agent, followed 
by the application of metrics to evaluate its performance. The feed-
back obtained is incorporated into iterative prompts, providing 
valuable guidance for optimizing the AI-generated robot control 
program.  

● Execution: After multiple rounds of optimization, the robot control 
codes can be interpreted and deployed on an actual robot for con-
struction assembly tasks. 

Since most third-party libraries for robots handle the implementation 
and encapsulation of control logic at a primitive level, we set the control 
levels of the third-party libraries and the API library as primitive and 
action levels, respectively. Specifically, in the proposed framework, the 
process of high-level module generation refines robot commands from 
the task level to the action level, also referred to as task planning. In low- 
level policy implementation, the LLM further refines the action se-
quences from high-level modules to the primitive level by leveraging 
third-party libraries. These two phases are logically connected through 
the API library at the action level. 

3.2. API library for LLM prompting in construction assembly 

In this section, the process of building the API library is described to 
ensure its ability to fulfill the specific demands of robot assembly tasks. 
These tasks often contain general action primitives, such as grasping and 
placing. Considering this, we present an inventory of basic robot 
manipulation functions for construction assembly tasks grouped into 
three categories: perception, action, and optional functions (Table 2). 

Perception functions are used to access environmental information 
using sensors, and their outputs are used by action functions to generate 
motion trajectories. Action functions encompass a spectrum of action 
sequences executed by a robot, including arm movement, picking, 

placing, and robot movement. In addition to the basic functions in the 
workflow, supplementary functions that can be tailored to task specifi-
cations in the API library are used, such as check_gripper(). The efficacy 
of descriptive names and detailed descriptions of APIs has been proven 
to facilitate the utilization of functions and ensure accurate code gen-
eration (Liang et al., 2023; Vemprala et al., 2023). Hence, the bespoke 
functions are named according to their specific functionalities while 
providing lucid explanations of the types of inputs and outputs, as pre-
sented in Table 2. 

Using the functions listed in Table 2, users can readily select APIs and 
modify their names and descriptions to form an API library for LLM 
prompting. Although certain motions may recur at different steps of the 
assembly, the environmental conditions and state of the robot can differ 
at each step. Hence, the assembly process should be meticulously scru-
tinized and the relevant functions selected accordingly. For instance, as 
shown in Fig. 2, the robot is always under load when moving from the 
storage area to the assembly area, which requires checking the state of 
the end effector while moving and reducing the moving velocity to 
minimize energy consumption and ensure safety. Consequently, the 
function of check_gripper() should be listed in the API library and the 
description of the function related to robot movement should be modi-
fied into “navigate_to(assembly_area_position): Navigates the mobile robot to 
the assembly area position at the speed of …” However, when the robot 
moves from the assembly area to the storage area, it always operates 
under no-load conditions, and the function requirement is relatively 
simple. 

3.3. Hierarchical robot control program generation 

3.3.1. HRCPG framework 
As described in Section 3.1, HRCPG consists of two parts: high-level 

module generation and low-level policy implementation. Based on the 
connotation of the different levels of robot control, in this paper, the task 
and action levels of robotic programming are considered high level, and 
the primitive and servo levels are regarded as low level. The HRCPG 
pipeline is shown in Fig. 3. 

Prompts are designed for the LLM at both high-level and low-level, 
respectively containing necessary information about the robot and the 
task. For high-level module generation, based on the customized API 
library and CoA in prompts, the LLM is given a hint to break an assembly 
task into action sequences and accordingly generate the main control 
unit of the program with APIs. The implementation of low-level policies 
involves the integration of third-party libraries, including open-source 
robot control libraries (Chitta and Koubaa, 2016; Sucan et al., 2012) 
and algorithms (Ren et al., 2021; Yang et al., 2022; You et al., 2023b). 
These libraries and algorithms are used to generate low-level code 
functionalities within high-level functions. Finally, responses to these 

Table 2 
APIs for LLM prompting in construction assembly tasks.  

Types Names Description 

Perception Function get_area_position() Return the area location [X, Y, Z]. 
get_pick_position(object_name) Take the object name as input. Return the [X, Y, Z, Yaw, Pitch, Roll] coordinates of the picked object. 
get_place_position(assembly_order, 
object_name) 

Take the assembly order of the current object and object name as input. Return the [X, Y, Z, Yaw, 
Pitch, Roll] coordinates of the placed object. 

Action 
Function 

Robotic Arm 
Movement 

move_to(object_position) Move the end effector to a position specified by [X, Y, Z, Yaw, Pitch, Roll] coordinates. Return 
nothing. 

move_joints(object_position) Move the end effector to the position along the fastest path using jointed movements. Input the [X, 
Y, Z, Yaw, Pitch, Roll] coordinates and return nothing. 

go_home() Move the robotic arm and its end effector to the home position. Return nothing. 
Picking close_gripper() Close the gripper and grab the object. Return nothing. 

turn_on_suction_pump() Turn on the suction pump and grab the object. Return nothing. 
Placing open_gripper() Open the gripper and place the object. Return nothing. 

turn_off_suction_pump() Turn off the suction pump and place the object. Return nothing. 
Robot Movemnet navigate_to(area_position) Navigate the mobile robot to the area position. Input the [X, Y, Z] coordinates and return nothing. 

fly_to(area_position) Fly the drone to the area position. Input the [X, Y, Z] coordinates and return nothing. 
Optional Function check_gripper() Check the state of the gripper. If it is closed, open it.  
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two prompts are integrated into a complete executable script. 
Throughout the process, the APIs act as a bridge between the high-level 
module and low-level policies of the robot control codes. Ensuring 
consistent API descriptions in both prompts contributes to the harmo-
nious synchronization of function usage across the two programming 
levels. 

3.3.2. High-level module generation 
In this section, we introduce the prompt-setting rules specific to high- 

level module generation using the API library, in which the prompts are 
designed to contain the following parts:  

● Environment: Describes obstacles that the robot may encounter 
during the assembly process and the relative spatial relationship 
between the robot and the working space. Within the context of the 
construction assembly task, the workspace primarily involves ma-
terial storage and assembly areas, wherein the position and orien-
tation of these regions should be informed to the LLM for the picking 
and placing of assembly components.  

● Robot: The type of assembly robot and the description of its end 
effector should be introduced to the LLM, which is conducive for the 
AI to interpret and comprehend the available APIs, such as open_-
gripper() and activate_suction_pump().  

● Task: Inform the LLM of information related to task execution, such 
as the construction process and masonry form. For example, in the 
process of laying floor tiles, users can specify that tiles should be 
arranged in a straight lay pattern, forming a grid with dimensions of 
5 × 3. Additionally, they can define a safe distance above the ma-
terial before the picking operation. To utilize vision-based tech-
niques to perceive the assembly materials and environment, the user 
should integrate the input information for the corresponding model 
into the prompts.  

● Chain of Action: Describes the action execution sequences of the 
assembly task. Inspired by the concept of CoT (Wei et al., 2022), the 
proposed approach involves designing prompts that offer a brief 
description of action logic in natural language, thereby enhancing 
the ability of the LLM for robot action logic reasoning. The 

description of the action in the CoA should align with the provided 
APIs, which avoids incorrect action sequences that misguide the 
LLM. 

Additional information, such as the LLM’s role and output format, is 
an optional component of the prompts. In robotic assembly tasks, the 
LLM typically acts as a robotic algorithm engineer, collaborating with a 
designated robot. The API library is seamlessly integrated into the 
prompt. Thus, the LLM can generate the main control unit of a robot 
program comprising the provided APIs. 

3.3.3. Low-level policy implementation 
Executable third-party libraries are used to build prompts for the 

LLM to implement low-level policies in high-level functions. The 
detailed design principles of prompt engineering are as follows:  

● Introduction of third-party libraries: Demonstrates the usage of 
libraries with explicit descriptions of their inputs, outputs, and roles. 
Because of the well-established familiarity of LLMs with widely used 
third-party libraries such as NumPy and MoveIt, merely mentioning 
the names of these libraries within the prompts is sufficient, without 
necessitating the inclusion of redundant information.  

● Initialization of the robot: Defines the mechanical structure of the 
robot and its sensor configurations. Additionally, serial, network, 
and other interfaces are provided to the LLM to establish commu-
nication with the robot through code. Motion constraints, such as 
goal joint tolerance and maximum velocities, can be included in 
prompts to satisfy task requirements. 

The API library can be directly integrated into this prompt. Alter-
natively, users have the flexibility to transform APIs into a standardized 
function format, whereby function names and input arguments serve as 
function declarations, and the accompanying text descriptions serve as 
code documentation. When robot information is provided in a pro-
gramming language, it can be effectively incorporated into a class 
structure, thereby facilitating parameter invocations within functions. 
The LLM achieves practical implementation of each function on a robot 

Fig. 2. Working process of a typical construction assembly task.  

Fig. 3. Pipeline of HRCPG.  
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platform with third-party libraries. Notably, policy codes exhibit low 
interfunction dependency, making it easy to identify errors within spe-
cific functions using this hierarchical method. 

3.4. Simulation and optimization 

After robot control codes are generated hierarchically, they are 
composed and assembled into a cohesive control script. The script is 
subsequently transmitted to the simulation platform, where it is 
executed to assess the validity and accuracy of the robot control program 
generated by the LLM. Users can then iteratively optimize the code 
based on the simulation findings. A schematic of the interaction between 
the user and the LLM is presented in Fig. 4. 

Throughout the simulation process, users typically prioritize two key 
concerns: (1) Can the task be executed successfully? (2) If so, can it 
perform better? The first concern pertains to task completion. Hence, 
two task completion-related metrics are employed: code executability 
and condition recall. Code executability measures whether a robot 
control script can be interpreted successfully, including syntactic cor-
rectness, verification of indispensable libraries and resources, and 
compatibility with the robot operating system and computer hardware. 
Condition recall measures the percentage of conditions in prompts that 
are satisfied in the codes. 

For further analysis, the reasons for incomplete task execution are 
divided into four types of errors: syntax errors, runtime errors, wrong 
action, and wrong parameters (Skreta et al., 2023). Among them, syntax 
errors are errors that occur during code compilation, such as the use of 
incorrect punctuation; runtime errors occur during the execution phase 
of code, such as an array out of bounds; wrong parameter refers to 
logical errors related to parameters, which typically do not impede the 
standard program execution, albeit fail to align with predetermined task 
prerequisites; wrong action refers to a logical error related to the action 

sequence, such as a missing action. The latter two types of errors are 
logical errors related to condition recall. 

Regarding the second concern, task performance-related metrics are 
applied to improve robot performance. Robot performance can be 
optimized from several aspects, such as construction efficiency, energy 
expenditure, and pose accuracy (Dakhli and Lafhaj, 2017; Petersen 
et al., 2019). For the assembly task in load-bearing construction, the 
metric proposed in (Petersen et al., 2019) is adopted to assess the con-
struction efficiency of a single-material assembly: 

construction efficiency=
Vc

Time ∗ Vr
(1)  

where Vc is the constructed volume, Vr is the volumetric size of all 
deployed robots, and Time is the cumulative duration required by the 
robots to complete the task. When comparing metrics across iterations, 
the specific objectives of code optimization are identified and prompted 
into conversations with the LLM. 

Thus, prompts are built with the relevant code snippets, errors, and 
optimization goals, which are then sent to the LLM as feedback. In 
response, the LLM rectifies the identified errors in the program and 
provides suggestions to the user for code improvements, such as 
adjusting parameter settings and altering control algorithms. 

4. Experiment 

4.1. Assembly task set 

To evaluate the feasibility of the proposed approach in different 
construction scenarios, ten assembly tasks are used to test the method, 
forming a construction assembly task set, as presented in Table 3. The 
use of diverse robot types and end effectors can result in disparities in 
the codes of low-level policies within APIs. Thus, three distinctive types 

Fig. 4. Interaction between the user and the LLM.  
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of construction assembly robots were employed in the task set: fixed 
robotic arm, mobile manipulator, and unmanned aerial vehicle (UAV). 
Owing to the less application of UAV in construction assembly, the ratio 
of fixed robotic arms, mobile manipulators, and UAV in the task set was 
set to 4:4:2. 

In addition, the action sequence provided in a high-level module can 
be influenced by the assembly material, construction process, safety 
requirements, and robot type. Therefore, for the same robot type, the 
task requirements were tailored differently to introduce variations into 
the action sequence. Additionally, nine tasks in the task set adopted 
experimental designs from existing studies, as shown in Table 3. The 
assembly task set aimed to provide a comprehensive evaluation of the 
robustness and generalizability of the proposed method by covering 
common construction assembly materials (e.g., bricks, bars, and tiles), 

different types of robots, and different assembly processes designed for 
specific working environments. 

4.2. Setting and metrics 

To validate the efficacy of the proposed approach, ChatGPT (GPT-3.5 
Version), a highly acclaimed LLM, was used to generate Python codes for 
robot control (van Dis et al., 2023; OpenAI and ChatGPT, 2023). 
ChatGPT has been trained using instruction following human alignment 
and large dialog data, making it outstanding in conversational under-
standing, reasoning, and programming (OpenAI and code, 2023; Zhao 
et al., 2023). Previous studies, such as AirSim-ChatGPT (Vemprala et al., 
2023), RoboGPT (You et al., 2023a; Ye et al., 2023), and KGGPT (Mu 
et al., 2023), have also applied ChatGPT to generate robot programs. In 
contrast to other models within the GPT family, the utilization of 
ChatGPT in this study eliminates constraints related to cost and account 
access, thereby empowering construction professionals across various 
income brackets to engage with, advance, and implement the proposed 
method. In the following experiments, the controllers and communica-
tion modules of mechanical devices were initialized in prompts to 
inform the LLM of the mechanical structure and sensor configurations of 
the robot used. Additionally, all robot control programs were generated 
and executed within a consistent software environment. The detailed 
settings for software environment and hardware configurations are 
shown in Table 4. 

To verify the quality of AI-generated codes in the experiments, the 
codes were evaluated on the strict solution of code analysis and code 
errors were reported. Two key performance indicators, the average 
number of errors and number of optimization rounds, were used to 
evaluate the performance. Specifically, the average number of errors in 
the generated codes of the ten tasks was used to determine the quality of 
the outputs. For this metric, only errors present in the initial set of 
generated robot programs were considered. Furthermore, the number of 
optimization rounds required for each task to rectify all the errors in the 
programs was reported to indicate the efficacy of iterative code opti-
mization within a closed-loop paradigm. 

4.3. Evaluation of results 

To evaluate the superiority of the proposed method over existing 
approaches, we conducted a set of experiments across ten tasks in the 
task set to evaluate its performance in four critical aspects: (1) the ability 
to generate programs for diverse assembly tasks, (2) the impact of the 
HRCPG strategy on the quality of code, (3) the impact of APIs and CoA 
on the quality of code, and (4) the ability to solve tasks through iterative 
optimization. 

Ability to generate programs for diverse assembly tasks. The 
availability of the developed approach was compared with methods that 
use fixed-action templates to generate code automatically (Ding et al., 
2020; Huang et al., 2021; Rogeau et al., 2021). Three main factors that 
determine the diversity of the assembly tasks, considered when con-
structing the task set in Table 3, were used to evaluate the applicability 
of the method. The approach is considered feasible when it satisfies the 
conditions.  

● Assembly material: The approach has control primitives for handling 
assembly materials used, such as grabbing control primitives for 
bricks and rods and suction cup control primitives for plate 
materials. 

● Robot type: The approach satisfies the control requirements of ro-
bots. For example, UAVs require wireless signal transmission and 
flight attitude control.  

● Construction process: The plan skeleton of the approach does not 
need to be changed to adapt to the construction process. However, 
adding intermediate points or adjusting parameters to the original 
action sequence is permitted. 

Table 3 
Construction assembly task set.  

Number Type of 
Robot 

Task 
Description 

Task 
Characteristics 

Reference 

1 Fixed Robot 
Arm 

Use 12 bricks to 
construct a 
brick wall. 

– Ding et al. 
(2020) 

2 Mobile 
Manipulator 

Eight beams 
(four for short 
edge and four 
for long edge) 
and four 
columns are 
assembled to a 
rectangular 
frame. 

Multi-materials 
assembly 

Gao et al. 
(2022) 

3 UAV Use 40 bricks to 
construct a 
foam brick 
tower. 

– Augugliaro 
et al. (2014) 

4 Fixed Robot 
Arm 

Assemble a 
rectangular 
frame with four 
beams (two for 
1.45 m and two 
for 1.83 m) 

Multi-materials 
assembly 

Chong et al. 
(2022) 

5 Mobile 
Manipulator 

A total of nine 
wooden struts 
needs to be 
assembled, 
three of which 
are placed by 
the robot. 

Human–robot 
collaboration; 

Mitterberger 
et al. (2022) 

Stability 
requirement 

6 Fixed Robot 
Arm 

16 square floor 
tiles are laid in 
4 rows and 4 
columns. 

– King et al. 
(2014) 

7 Mobile 
Manipulator 

A suspended 
grid is built. 
The target grid 
is located at the 
top of the robot 
arm, and the 
robot needs to 
install 9 ceiling 
tiles. 

An angle is 
required to move 
the ceiling tile 
above the 
suspended grid. 

(Liang et al., 
2020, 2022) 

8 Fixed Robot 
Arm 

Alternated 
build 8 bricks 
on the front or 
back side of the 
vault. 

A small drawing- 
out movement is 
required before 
each brick fit-in 
step to apply 
epoxy putty. 

Parascho 
et al. (2020) 

9 Mobile 
Manipulator 

Install four 
slabs on the 
wall. 

Three basic 
motion modes are 
defined: move, 
slide, and lift. 

Hu and Cao 
(2022) 

10 UAV A UAV is used 
to assemble six 
square floor 
tiles. 

– –  
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As presented in Fig. 5, the findings reveal that the method proposed 
in this study exhibits universal applicability to all ten tasks from these 
three aspects. Approaches relying on fixed templates can adapt to 
different construction processes but are less adaptable to robot types. 
Notably, the approach presented in (Ding et al., 2020) encounters 
additional constraints related to the programming language. 

Impact of HRCPG strategy on the quality of code. To evaluate the 
effectiveness of the proposed HRCPG strategy, two code generation 
methods were used for comparison: (1) a flat method using a single 
prompt that encapsulates information about the environment, task, 
robot, and CoA, as presented in Fig. 6, and (2) the CaP approach pro-
posed in (Liang et al., 2023), an example of which is shown in Fig. 7. 

Fig. 8 presents a comparison of the results of the flat, CaP, and 
proposed methods in terms of code generation efficiency, coherence, 
and redundancy. Generation efficiency evaluates the cost of a code 
generation method and is determined by the number of prompts used 
and the average number of errors in generating the code. As shown in 
Fig. 8(a), the points of the proposed method are clustered in the lower- 
left corner, indicating that the number of prompts used and the number 
of code errors generated were relatively low. In Fig. 8(b), code coher-
ence analysis was performed by quantifying the total number of errors 
resulting from function encapsulation and hierarchical generation in ten 
tasks. This included errors resulting from misaligned input–output pa-
rameters in function calls and redundant operations across different 
code blocks. The proposed method achieved the same code coherence 
performance as the flat method. As shown in Fig. 8(c), code redundancy 
analysis was conducted by calculating the average number of valid code 
lines (excluding blank and comment lines) in the generated programs. 
This result indicates that redundant code and unnecessary multi-layer 
nesting may exist in the programs generated by the flat and CaP 
methods. 

Fig. 9 depicts the distribution of the average number of errors among 
the four types of errors for the flat, CaP, and proposed methods. The code 
quality generated by the proposed method was significantly better than 
those generated by the other two methods. Additionally, the results 
indicate that the proposed method exhibited significantly fewer errors 
than the other methods in terms of wrong parameter and wrong action. 
Moreover, wrong action errors were the most frequently occurring error 
type among the three methods. 

Impact of APIs and CoA on the quality of code. Four sets of ex-
periments were conducted across the ten tasks to assess the impact of 
APIs, CoAs, and their interactions on the quality of AI-generated codes, 
as presented in Table 5. Two natural language reasoning strategies were 
adopted: the CoA proposed in this paper, and Vanilla, which does not 
provide step-by-step information on the assembly process in the dialogs. 
The results presented in Table 5 indicate that the use of the CoA resulted 
in a reduction of 1.8 errors per task when APIs were provided to the 
LLM. However, when APIs were not included, the influence of CoA on 
code quality appeared to be negligible, as evidenced by the comparable 
error counts observed in both the CoA and Vanilla scenarios. 

The CoA strategy is primarily applied during the high-level module- 
generation phase, effectively rectifying the action sequences and API 
invocations presented within the main control unit. To further assess the 
impact of CoA, we conducted an error analysis of the wrong action in the 
main control unit separately in the APIs + Vanilla and APIs + CoA 
scenarios. Remarkably, the average number of errors in the APIs + CoA 
setting was 1.4, whereas the APIs + Vanilla setting exhibited 0.9 more 
errors. Fig. 10 depicts the performance of each assembly task for both 
settings, emphasizing the favorable effects of CoA in generating code 
pertinent to action sequences. 

Ability of task solving through iterative optimization. It was 
observed that only one out of ten tasks managed to generate the robot 
program without any syntax and logical errors in the initial interaction 
round. This observation underscores the significance of iteratively 
providing feedback to the LLM to optimize the control codes. As shown 
in Fig. 11, after three rounds of optimization, five tasks resulted in 
executable control programs, and all tasks were successfully solved after 
five rounds. On average, nearly three interaction rounds were required 
for code optimization. 

4.4. Use case of brick assembly using a fixed robot arm 

In this section, a use case of brick assembly in construction (the first 
task in the task set) is presented to illustrate how the proposed LLM- 
based user-on-the-loop program generation approach can improve 
construction assembly robot control. Notably, it is required to establish a 
local workspace with essential packages and incorporate robot 3D 
models, controllers, and third-party libraries for offline robot control. 

As depicted in Fig. 12, the brick assembly scenario incorporated a 

Table 4 
The settings of software environment and hardware configurations in the experiments.  

Setting Category Tool Code initialization 

Software Environment Operating System Ubuntu 18.04 – 
Framework ROS Melodic – 
Simulation Platform Gazebo 9 – 
Programming language Python – 

Mechanical Devices Robotic Arm Moveit moveit_commander.MoveGroupCommander(’manipulator’) 
Mobile Robot move_base actionlib.SimpleActionClient(’move_base’, MoveBaseAction) 
Gripper Moveit moveit_commander.MoveGroupCommander(’gripper’) 
Pump – rospy.init_node(’vacuum_pump_controller’, anonymous = True) 

pump_pub = rospy.Publisher(’vacuum_pump_control’, Bool, queue_size = 1) 
UAV (offboard) mavors rospy.wait_for_service(’/mavros/cmd/arming’) 

arm_client = rospy.ServiceProxy(’/mavros/cmd/arming’, CommandBool) 
state_sub = rospy.Subscriber(’mavros/state’, State, callback = state_cb) 
local_pos_pub = rospy.Publisher(’mavros/setpoint_position/local’, PoseStamped, queue_size = 10) 
attitude_pub = rospy.Publisher(’/mavros/setpoint_raw/attitude’, AttitudeTarget, queue_size = 10) 
tool_pub = rospy.Publisher(’/tool_command’, Bool, queue_size = 10)  

Fig. 5. Applicability comparison of four methods in ten assembly tasks.  
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plane measuring approximately 1.4 m × 1.4 m × 0.42 m, which was 
designated as the assembly area. The material storage area was located 
0.4 m away from the assembly area, housing 12 bricks, each with a 
volume of 0.2 m × 0.2 m × 0.2 m. An ABB IRB6700-235 robot (ABB, 
2023) with a gripper attached to its end-effector was used to complete 
the assembly task. 

In this case, the robot was tasked with constructing a brick wall 
structure with a straight lay pattern, in which the bricks were assembled 
in a three-row, four-column arrangement along the XZ-axis plane. For 
safety, the robot was required to maintain a safe distance of 0.3 m above 
the bricks before and after manipulation. 

Fig. 13 shows the interaction between the user and the LLM to 
generate a high-level module in the program. As the robot was a fixed 
arm, the API library was constructed without any functions related to 
the movement of the robot. It was observed that ChatGPT first generated 
the action plan (the outputs in gray) based on the CoA and then effec-
tively invoked the provided APIs following this action plan. The action 
plan was accompanied by code comments in natural language, offering 
valuable insights into how the LLM organized actions to accomplish the 
task. Thus, these comments proved beneficial for code comprehension 
and management within the high-level module. However, we must 
acknowledge that certain errors were identified in the LLM’s responses, 
necessitating correction in the optimization step. 

To implement low-level policies, the LLM was directed to employ the 
third-party library MoveIt to generate instruction codes, as depicted in 
Fig. 14. A class named AssemblyDemo contains built-in prompts to 
furnish the LLM with essential details regarding robot communication 
and control. The example usage provided in the output demonstrates 
ChatGPT’s swift understanding of the usage of the provided APIs 
through its ability to discern the input and output requirements for each 
function from the provided natural language descriptions. 

Fig. 15 shows the feedback loop employed to optimize the code using 
the metrics of code executability and condition recall. Before conducting 
the simulation in ROS, we integrated the codes generated at the high and 
low levels into a Python script. In the first iteration, an invalid syntax 
error occurred in the code snippet brick_name = f“Brick{i}“, and an error 
of wrong action was detected in the subsequent iteration. The response 
from ChatGPT contained an assessment of errors and provided corre-
sponding solutions. Through this feedback, ChatGPT effectively rectified 
errors and the task requirements were satisfied. 

Fig. 16 presents another feedback loop used to enhance the perfor-
mance of the robot based on task-related metrics. ChatGPT was used to 
optimize the action sequences or adjust the parameter settings to reduce 

the total working time while preserving assembly accuracy. In response, 
ChatGPT offered four suggestions along with an updated version of the 
codes, which were subsequently modified and used to improve robot 
performance. 

To compare the quality of the codes, we denote the optimized codes 
generated in the first loop as version 1, and those generated from the 
second loop as version 2. Three experiments were conducted on each 
version to ensure reliability. The resulting average working times and 
axial position errors are listed in Table 6. The analysis revealed that the 
robot driven by the code in version 2 exhibited a significantly reduced 
working time compared with version 1, with only a marginal increase of 
0.02 mm in the average position error. 

After the simulation and optimization, a real-world experiment was 
conducted in a laboratory using an ABB IRB6700-235 robot, as shown in 
Fig. 17. The bricks used in the experiment were connected using a 
mortise and tenon structure, which enabled the assembly wall to satisfy 
the construction strength requirements but required high-precision as-
sembly positions. Before the experiment, we captured the positions of 
the starting grabbing and placing points by teleoperating the robot and 
generated the position of each brick by iterating point offsets. Addi-
tionally, the get_pick_position() and get_place_position() functions were 
defined to support precise assembly. 

The Python script optimized in the simulation scenario was then run 
in ROS to control the robot and perform the brick assembly. Following 
the construction process written in the script, the robot cycled through 
the six operations depicted in Fig. 17 until all bricks were assembled. 
Benefiting from the simulation and optimization, the AI-generated codes 
were executed without errors. However, brick slipping occurred occa-
sionally because of insufficient friction between the gripper jaws and the 
bricks. This successful application verified the effectiveness of the 
approach in grounding an AI-generated program in a physical robotic 
system. 

5. Discussion 

A framework to generate executable robot control programs specific 
to construction assembly tasks through iterative interactions between 
users and LLMs has been proposed. This approach benefits automation 
in construction assembly by simplifying the robot control process, and it 
is adaptable to diverse construction assembly tasks. The contributions of 
this study to the knowledge of construction robot programming are 
twofold. 

First, an HRCPG strategy is designed to logically integrate code 

Fig. 6. Example of the prompt for flat code generation.  
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generation at high and low levels according to the different levels of 
robot control. In construction assembly tasks, low-level policies of the 
control function, such as parameter settings and control algorithms, are 
conditioned by robot configurations and task requirements. The 
encapsulation and repeated application of control functions across 
different robot systems and tasks can result in system errors and safety 
problems in real-world construction scenarios. Therefore, task planning 
and low-level policy implementation of functions must be customized 
for different robot assembly tasks. The proposed HRCPG strategy plans 
the construction process, combines related functions according to con-
struction requirements, and customizes the control functions based on 
robot configurations. As shown in Figs. 8 and 9, the proposed HRCPG 

strategy enables the customization of robot control codes at a lower cost 
and higher accuracy than the flat and CaP methods while effectively 
avoiding the problems of poor code coherence and high redundancy 
caused by hierarchical code generation. 

In addition, LLMs continuously predict the next token based on a 
probabilistic model and eventually produce a complete control script by 
generating codes. The probability of generating a correct script is the 
product of the probabilities of all the tokens in the control program. 
Hence, more intricate tasks present a greater challenge in obtaining 
accurate robot codes, as they often result in longer scripts with a higher 
number of tokens in the LLM response. Previous studies have acknowl-
edged the limitations of LLMs in generating lengthy programs (Merow 

Fig. 7. Example of the prompt for CaP approach to generate code.  
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et al., 2023). The proposed HRCPG strategy can reduce the length of 
AI-generated tokens and increase the likelihood of generating correct 
responses. This is achieved by decomposing the generation of complex 
robot action logic into high-level module generation and low-level 
policy implementation. 

Fig. 8. Comparative analysis of the flat, CaP, and the proposed method in terms of code generation efficiency, coherence, and redundancy.  

Fig. 9. Distribution of average number of errors of the flat, CaP, and pro-
posed methods. 

Table 5 
Number of code errors in different settings of CoA and APIs.  

Average number of total errors APIs Without APIs 

CoA 2.9 5.5 
Vanilla 4.7 5.9  

Fig. 10. Error analysis of wrong action in ten tasks.  

Fig. 11. Number of tasks solved with increasing number of optimiza-
tion rounds. 

Fig. 12. Experimental setup of the use case.  
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Second, an API library was built to enable the LLM to adapt to diverse 
task requirements and hardware configurations of construction assem-
bly tasks, thereby effectively augmenting the efficiency of code gener-
ation. Additionally, the concept of CoA, which provides a lucid sequence 
of actions to indicate the order of API calls in the main control unit, is 
introduced to operate in conjunction with the selected APIs. As depicted 
in Fig. 10, the combined utilization of APIs and CoA enhances the un-
derstanding of the LLM in assembly action logic. In the context of the 
prompts, the accuracy of the API and CoA in delineating assembly tasks 
and conditions correlates directly with the quality of the LLM output. 
Our ablation study, detailed in Table 5, investigated the API library and 
CoA, revealing that AI-generated code errors were halved with the in-
clusion of API and CoA support. This finding underscores the specificity 
and effectiveness of the prompts devised in this study for conveying 
information, indicating that the prompt designed in this paper is more 

specific and adequate in expressing the information. Similar observa-
tions have been reported in previous studies (Merow et al., 2023). 

In the experimental analysis presented in Fig. 18, we observed that 
ChatGPT exhibited a spontaneous output of action logic even without 
explicit requirements provided in the prompt. This finding indicated the 
possibility that ChatGPT may have been trained with CoT, which has 
also been reported in recent research (Chen et al., 2023). As shown in 
Table 5, CoA had no impact on the quality of coding in the absence of 
APIs because the LLM implicitly followed the CoT strategy. However, 
the CoA significantly improved the performance of the LLM with APIs in 
the prompt. This enhancement can be attributed to the high consistency 
between the action descriptions in the CoA and APIs, resulting in more 
accurate functional invocations. By contrast, the CoT in ChatGPT is 
learned from the training data, and the generated action sequences may 
not necessarily align with the provided APIs, rendering it less effective as 

Fig. 13. Input and output of the LLM for high-level module generation.  
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a substitute for CoA. 

6. Limitations and future research 

Despite the contributions of this study, we acknowledge that it has 
the following limitations. First, syntax errors are related to the training 
dataset of the LLM, whereas logical errors involving task condition 
implementation are more relevant to the expression of users and the 
form of prompts. As shown in Fig. 9, an average of 0.7 syntax errors 
resulted when utilizing our code generation approach. This finding 
suggests the presence of potentially false information regarding robot 
control within the training set of ChatGPT. Thus, a fine-tuned LLM 
tailored for code generation for construction robots is required for future 
research. Robot control programs with higher professionalism and 
quality can be generated by performing rigorous training data cleaning 
and efficient fine-tuning techniques such as human feedback-based 

reinforcement learning methods (Zhao et al., 2023). 
Additionally, logical errors can be reduced through a more detailed 

expression of the task requirements. However, we acknowledge that an 
increase in the level of detail may introduce inconvenience to users. 
Thus, striking a balance between providing concise and prompt infor-
mation and obtaining optimal model outputs is a crucial research 
question that warrants further investigation. Furthermore, although the 
prompts are meticulously designed in this paper, the challenge of 
prompt brittleness persists, manifesting in varied outputs across 
different LLMs—a significant research obstacle in LLM technology. 
Future research endeavors will tackle this issue by employing methods 
such as vector representations (Li and Liang, 2021) and data-driven 
prompt engineering (Li and Liang, 2021; Shin et al., 2020) to bolster 
the robustness of the prompts, thereby advancing the reliability and 
usability of LLM applications. 

Second, the proposed approach assumes that the given task and 

Fig. 14. Input and output of the LLM for low-level policy implementation.  
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generated instructions are always supported and executable, but the 
constraints imposed by the robot’s hardware configuration are not 
within the scope of consideration. Further research could incorporate 

retrieval-augmented generation (RAG) technology to assist the LLM in 
retrieving technical documents of the robot during code generation and 
optimization, enhancing its understanding of robot skills, and improving 

Fig. 15. Feedback loop to optimize codes for task completion.  

Fig. 16. Response of the LLM to optimize codes for better performance.  
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the accuracy of API calls (Boiko et al., 2023). Additionally, complex 
physical constraints (such as data noise, static friction, and structural 
vibration) can affect the effectiveness of plan execution during 
real-world experiments. For instance, insufficient friction between 
gripper jaws and bricks can result in slips, whereas brick assemblies in 
the form of mortise and tenon joints can suffer severe collision problems 
owing to slight positional errors. However, these factors accurately are 
difficult to model using existing simulation platforms. Integrating 
multi-dimensional sensor data, such as force and vision sensing, as 
realistic feedback to the proposed framework can enable dual-loop 
optimal control of the robot in simulation and reality, thereby effec-
tively avoiding safety problems and improving assembly accuracy. 

Lastly, the utilization of ChatGPT introduces additional constraints. 
Rate limits, such as those governing requests and tokens per minute, 
impede extensive testing and continuous usage. Scaling the solution 
upwards escalates the expenses associated with API calls, thereby 
prompting financial considerations for long-term adoption. Moreover, 
transmitting sensitive user information to third-party services heightens 
the risk of data security breaches and privacy violations during trans-
mission and storage. Therefore, this further underscores the imperative 
for developing a LLM tailored for code generation for construction 
robotics. 

7. Conclusions 

This study aimed to address the following research question: How can 
robot control programs be generated effectively and accurately for diverse 
construction assembly tasks using LLM techniques? To address this research 
question, a closed user-on-the-loop robot control workflow based on 
LLM techniques is proposed. An HRCPG strategy was designed to ach-
ieve high-level module generation and low-level policy implementation. 

Additionally, a customized API library and CoA were used to prompt an 
LLM to enhance the understanding of user intentions. To evaluate the 
effectiveness of the proposed approach, we conducted experiments 
involving ten distinct construction assembly tasks encompassing various 
construction materials (e.g., bricks, bars, and tiles), diverse robot types 
(e.g., fixed robot arm, mobile manipulator, and UAV), and different 
assembly processes. The experimental results show that (1) the approach 
can implement closed-loop control on the construction robot without the 
high burden of programming work on users, and (2) the proposed code 
generation method can effectively improve the quality of AI-generated 
codes by decreasing the number of code errors from 5.9 to 2.9. 

The approach presented in this paper breaks the technical barriers 
between users and robots by employing an LLM as a medium interme-
diary to translate user intentions into comprehensible robot commands. 
This method facilitates automation in construction assembly by simpli-
fying the process of robot control and can be extended to more complex 
scenarios. The contributions of this research are twofold: (1) the design 
of the HRCPG strategy to logically integrate code generation at high and 
low levels according to different levels of robot control; and (2) the 
combination of APIs and CoA to enhance the understanding of the LLM 
to the assembly action logic. Future studies should focus on developing a 
fine-tuned LLM tailored for code generation for construction robots and 
integrating multidimensional sensor data during operation. 
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Table 6 
Position error and working time of the robot.  

Code Version Axial Position Error (mm) Position Error (mm) Time (s) 

X-axis Y-axis Z-axis 

Version 1 0.28 0.22 2.25 0.92 394.90 
Version 2 0.37 0.22 2.25 0.94 327.61  

Fig. 17. Brick assembly process of the robot.  
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