
Developments in the Built Environment 19 (2024) 100488

Available online 20 June 2024
2666-1659/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Large language model-based code generation for the control of construction
assembly robots: A hierarchical generation approach

Hanbin Luo a,b, Jianxin Wu a,b, Jiajing Liu a,b,c,*, Maxwell Fordjour Antwi-Afari d

a National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, 430074, Wuhan, China
b School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
c School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, 430074, Hubei, China
d Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University, B4 7ET, Birmingham, UK

A R T I C L E I N F O

Keywords:
Construction assembly robot
Large language model
Code generation
ChatGPT
Human–robot collaboration

A B S T R A C T

Offline programming (OLP) is a mainstream approach for controlling assembly robots at construction sites.
However, existing methods are tailored to specific assembly tasks and workflows, and thus lack flexibility.
Additionally, the emerging large language model (LLM)-based OLP cannot effectively handle the code logic of
robot programming. Thus, this paper addresses the question: How can robot control programs be generated effec-
tively and accurately for diverse construction assembly tasks using LLM techniques? This paper describes a closed user-
on-the-loop control framework for construction assembly robots based on LLM techniques. A hierarchical
strategy to generate robot control programs is proposed to logically integrate code generation at high and low
levels. Additionally, customized application programming interfaces and a chain of action are combined to
enhance the LLM’s understanding of assembly action logic. An assembly task set was designed to evaluate the
feasibility and reliability of the proposed approach. The results show that the proposed approach (1) is widely
applicable to diverse assembly tasks, and (2) can improve the quality of the generated code by decreasing the
number of errors. Our approach facilitates the automation of construction assembly tasks by simplifying the
robot control process.

1. Introduction

Assembly tasks are among the most common tasks in construction.
Notably, the temporal allocation dedicated to assembly undertakings
constitutes approximately 70% of the aggregate project duration during
construction (Ding et al., 2020). Additionally, the process of assembling
structural elements is an example of physically exacting vocations, often
necessitating iterative engagements with contorted stances involving
bending and twisting to perform manual handling and repetitive activ-
ities (Gao et al., 2023). With advancements in robotics, intelligent robots
provide a promising solution for preventing musculoskeletal disorders
during assembly tasks and improving construction efficiency.

Offline programming (OLP) is a mainstream method for controlling
assembly robots on construction sites (Zhang et al., 2023). It stores codes
relevant to tasks as a corpus, captures the intrinsic logic of the action
plan based on the task and environmental descriptions, and organically
combines the corpus to generate an executable robot control program.

OLP employs virtual robots for programming and simulation, offering a
flexible solution suitable for intricate environments and tasks, such as
the collision-free path planning of robots (Vann et al., 2023). Addi-
tionally, OLP can collaborate with technologies such as building infor-
mation modeling, facilitating the workflow planning of robot
construction, and allocating multi-robot tasks (Kim et al., 2021; Zhu
et al., 2021).

Three primary categories of automated OLP methods have been
investigated: template-based (Hu et al., 2022; Rogeau et al., 2021), skill
library-based (Wallhoff et al., 2010; Zheng et al., 2022), and neural
machine translation (Bonilla and Ugalde, 2019; Kahuttanaseth et al.,
2018) methods. However, despite the valuable contributions from the
extensive research, these methods often have a limited scope, are
tailored for specific assembly tasks and workflows, and are difficult to
extend to intricate scenarios. Limited corpora of templates, skill li-
braries, and small models have restricted the range of generated codes.
Moreover, crucial task-related details such as the construction process

* Corresponding author. National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, 430074, Wuhan,
China.

E-mail address: liujiajing@hust.edu.cn (J. Liu).

Contents lists available at ScienceDirect

Developments in the Built Environment

journal homepage: www.sciencedirect.com/journal/developments-in-the-built-environment

https://doi.org/10.1016/j.dibe.2024.100488
Received 8 March 2024; Received in revised form 5 May 2024; Accepted 18 June 2024

mailto:liujiajing@hust.edu.cn
www.sciencedirect.com/science/journal/26661659
https://www.sciencedirect.com/journal/developments-in-the-built-environment
https://doi.org/10.1016/j.dibe.2024.100488
https://doi.org/10.1016/j.dibe.2024.100488
https://doi.org/10.1016/j.dibe.2024.100488
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Developments in the Built Environment 19 (2024) 100488

2

and masonry forms are rarely considered in these approaches, which
results in poor adaptability of the generated codes to unconventional
construction processes, requiring a large amount of code modification
work.

Emerging large language model (LLM) techniques have demon-
strated significant potential in robot programming and intricate task
resolution (Saka et al., 2024; Zhao et al., 2023), which is promising an
effective avenue for enhancing robot control. Notably, an impressive
study by the Autonomous Systems and Robotics Group at Microsoft™
harnessed ChatGPT to generate robotic action plans for diverse appli-
cations, enabling users to be supervisors in a closed loop to iteratively
refine a solution (Vemprala et al., 2023). However, the execution of the
generated plan relies on the collaboration of pre-defined functions,
which necessitates the inclusion of low-level policies within these
functions. A recent study by Google™ proposed a hierarchical
code-writing approach that recursively defines and nests functions to
create programs capable of controlling robotic movements (Liang et al.,
2023). However, the generated programs were not flattened at the same
code logic level and a clear demarcation between the different levels of
robot programming was not evident, resulting in excessive functional
nesting and a more intricate code structure.

Against this contextual background, this paper addresses the
following research question: How can robot control programs be generated
effectively and accurately for diverse construction assembly tasks using LLM
techniques? To address this research question, we refer to the seminal
work of Vemprala et al. (2023) and develop a closed user-on-the-loop
construction assembly robot control framework based on LLM tech-
niques. This framework encompasses the construction of an API library,
hierarchical robot control program generation (HRCPG), simulation and
optimization, and execution phases.

Firstly, a customized inventory of basic robot manipulation functions
for construction assembly tasks is compiled to form an API library.
Subsequently, HRCPG strategy is proposed to logically integrate code
generation at high and low levels with the API library, while augmenting
LLM’s comprehension of assembly action logic through a chain of action
(CoA) within prompts. Following this, the AI-generated code is executed
on a robot simulation platform to evaluate its accuracy and efficiency.
Task completion-related metrics (i.e., code executability and condition
recall) and task performance-related metrics (e.g., construction effi-
ciency and energy expenditure) are used to ensure the successful
completion of assembly tasks and to optimize task execution perfor-
mance, respectively. During this phase, LLM identifies all errors in the
generated code and provides feasible solutions. After several rounds of
LLM-assisted optimization, the generated codes are seamlessly imple-
mented on a physical robot. The proposed framework enables auto-
mated robot control from task planning to low-level policy codes
generation through conversational programming with the LLM, thereby
liberating users from arduous and demanding programming tasks and
mitigating the knowledge barrier and interaction complexity associated
with deploying construction robots. Additionally, the accuracy and
reliability of the LLM outputs are guaranteed through HRCPG, CoA
strategy and the closed-loop control process, providing a tangible
example of LLM’s efficacy in construction robotics applications.

The remainder of this paper is organized as follows. Section 2 re-
views previous research on assembly robot programming in construc-
tion, LLMs for robot programming, and prompt engineering. The
proposed LLM-based user-on-the-loop robot control approach is
described in Section 3. Next, the feasibility and reliability of the pro-
posed approach were verified through experiments on an assembly task
set, as discussed in Section 4. Sections 5 and 6 present the contributions
and limitations, respectively, and concluding remarks are presented in
Section 7.

2. Literature review

In this section, we first examine the control method of construction

assembly robots, focusing particularly on the OLP approach. It is high-
lighted that while the emerging LLM technology holds promise in
simplifying complex task programming, its application in construction
robot assembly requires further exploration. Consequently, in Section
2.2, we conduct a comprehensive review of current research on LLM in
robot tasks, revealing its limitations in low-level code implementation,
which is also the main obstacle to its application in construction as-
sembly tasks. A well-crafted prompt is indispensable for directing LLM
to generate the robot control code. Thus, in Section 2.3, we delve into
the principles of prompt engineering, laying the groundwork for
designing a holistic framework for integrating LLM into the realm of
construction assembly robot control.

2.1. Assembly robot programming in construction

Assembly tasks are among the most common activities in construc-
tion projects. In recent years, the use of robots for assembly tasks in
construction projects has attracted significant interest in improving the
productivity and safety of assembly work (Cai et al., 2019, 2020; Wang
et al., 2021). In typical real-world scenarios, robots are programmed by
end users to achieve motion control and autonomous decision-making
based on different construction environments and assembly task
requirements.

Robot programming mainly comprises online programming and
OLP. In online programming, engineers directly code and debug within
the robot’s operational environment in real-time, while OLP simulates
the robot’s operations in a virtual environment. Unlike online pro-
gramming, OLP removes users from the workspace, allowing early
detection of potential mechanical collisions through simulation and
adaptation to the evolving construction environment in real-time using
sensors and advanced algorithms (Cai et al., 2019, 2020; Bruckmann
and Boumann, 2021; Carvalho et al., 1998; Gao et al., 2022). In terms of
efficiency, although OLP is hard-coded, it excels in highly repetition
tasks such as assembly through program reuse (Carvalho et al., 1998).
Additionally, OLP provides easier integration with building information
models and digital twins, with numerous current studies conducted
within an OLP environment (Kim et al., 2021; Zhang et al., 2023).

Traditionally, OLP is manually encoded by engineers, which is time-
consuming and requires a high level of robotics expertise for effective
robot operation (Huang et al., 2018). To address the limitations of
manual programming, several methods have been developed for auto-
matically generating robot commands for construction assembly.

The prevalence of analogous action sequences in element assembly
procedures has resulted in the frequent adoption of template-based ap-
proaches, in which a fixed-action logical framework is established (Ding
et al., 2020; Hu et al., 2022; Huang et al., 2021). For example, Huang
et al. (2021) devised an action template and planned a skeleton for a
discrete bar assembly to implement robot motion planning for additive
bar structure construction. This template comprised four motion prim-
itives: transit, pick, transfer, and place. The fixed-action logical frame-
work can be represented as a sequence of robot instructions (Ding et al.,
2020). However, most templates are tailored to specific assembly tasks
and are difficult to extend to other scenarios.

Another OLP approach for generating robot assembly programs in-
volves the creation of a skill library, which can automatically learn ac-
tion logic and combine skills. Previous studies attempted to integrate
this method with expert systems, knowledge models, and reinforcement
learning methods to determine sequences of defined skills (Wallhoff
et al., 2010; Zheng et al., 2022). For instance, Wallhoff et al. (2010)
registered the available skills in an expert system, manually decomposed
a task into these skills, and invoked them through voice input. However,
the escalating number of skills required for task solutions correspond-
ingly increases the demand for time and processing power (Wallhoff
et al., 2010). Additionally, the skills in the library delineate the spectrum
of actions that the robot can undertake, thus resulting in potential se-
curity concerns when the library is not aligned with the task

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

3

requirements.
The above two methods require operators with high levels of

knowledge and expertise. In contrast, more recently, neural machine
translation has been utilized to translate natural language into robot
commands for simpler human–robot interactions (Bonilla and Ugalde,
2019; Kahuttanaseth et al., 2018). However, it also encounters chal-
lenges in scaling to handle more intricate tasks and diverse instructions,
owing to the limited size of training corpora.

LLM leverages its extensive training dataset, endowing it with ca-
pabilities that are not readily apparent in smaller models and the po-
tential to effectively solve complex tasks (Zhao et al., 2023). Only a few
studies have explored the application of LLMs to construction assembly
robots, with only two studies from the same research group (You et al.,
2023a; Ye et al., 2023). In the first study, a system called RoboGPT,
based on ChatGPT, was developed for automatic sequence planning.
When the system receives a task description from users, it generates
sequential solution commands, which are then decoded by the command
decoder system, and finally implements object manipulation (You et al.,
2023a). In the second study, a user’s voice was used as the input for
RoboGPT. It combines contextual information to evaluate the ambiguity
of voice information and clarifies operational instructions to users
through conversation. When the information is sufficient for
decision-making, the response is sent to the command decoder to trigger
the robot control function to perform the task. In these two studies, LLM
was used for the automatic planning of tasks and the invocation of
predefined skills, but the customization of low-level policies was not
adequately discussed. This is similar to the skill library-based method,
which relies on predefined policies to map each step of the action plan. A
summary and comparison of existing LLM-based OLP and general OLP
methods is presented in Table 1.

In this study, we harnessed the saliency ability of LLMs to auto-
matically generate robot programs, establishing a full path from task
description to task planning, trajectory planning, and robot policy code
generation, thereby reducing the difficulty of robot programming and
improving the flexibility and security of codes in various assembly tasks.

2.2. LLMs for robot programming

In recent years, the emerging LLM technology has introduced a novel
application paradigm for robots. Models such as LLaMA (Touvron et al.,
2023) and ChatGPT (OpenAI and ChatGPT, 2023) have been successfully
used to analyze user inputs and translate them into executable robot
code. LLMs enable nonexpert users to communicate with robots and

increase the trust of users in human–robot collaborations owing to their
high communication effectiveness (Ye et al., 2023).

Task planning is an important research domain in the context of
LLMs in robotics. In essence, when provided with prompts that describe
the task and environment, the LLM decodes the task into a sequence of
actions and arranges them logically through commonsense reasoning
and code comprehension (Singh et al., 2023). Although previous studies
have demonstrated the feasibility of robotic task planning using LLMs,
optimizing an artificial intelligence (AI)-generated plan by modifying
the order of action sequences poses challenges, primarily because of the
open-loop nature of pipelines, which cannot receive feedback from the
environment.

Recently, the Autonomous Systems and Robotics Group at Micro-
soft™ introduced a framework that facilitates testing, verification, and
validation of the generated code by enabling user involvement in the
loop. This framework employs ChatGPT to generate a robotic action
plan, incorporating task-relevant APIs, and subsequently iteratively
refining the solution by evaluating output quality and safety (Vemprala
et al., 2023). However, the execution of the generated plan relies on the
collaboration of pre-defined functions, requiring the inclusion of
low-level policies within these functions. Based on this, ROSGPT (Kou-
baa, 2023) and KGGPT (Mu et al., 2023) harness an ontology to mitigate
the limitation of the output of LLMs. However, they merely decompose a
high-level task command into several sub-tasks or action sequences,
without considering the coding work required for robots to execute
these sub-tasks or actions. This underscores the significance of hierar-
chically generating robot code that seamlessly integrates high-level
modules from task planning with their corresponding low-level policies.

The implementation of low-level policies involves research on code
generation. Previous studies demonstrated the considerable advantages
of LLMs in generating robot codes (Jain et al., 2022). However, the
question of generating robot code hierarchically while simultaneously
creating high-level modules and low-level policies using LLM techniques
remains largely unexplored. In a recent study conducted by Google™,
valuable insights were obtained to address this challenge (Liang et al.,
2023). Researchers have proposed a code as policies (CaP) method that
employs a hierarchical code-writing approach by recursively defining
and nesting functions, thereby composing code ranging from simple
Python instructions to more complex programs capable of controlling
robotic movements. However, this approach is similar to most existing
LLM-based robot task planning methods and is primarily applicable to
housework environments, emphasizing the encapsulation and reuse of
control functions (Huang et al., 2022; Singh et al., 2023). In addition,
the generated programs were not flattened at the same code logic level
and a clear demarcation between the different levels of robot pro-
gramming was not evident, resulting in excessive function nesting and a
more intricate code structure.

In this study, task planning and code generation of low-level policies
by LLMs were logically integrated according to different levels of robot
control, which simplifies the comprehension and application of robot
control commands for users and augments the capability of LLMs to
generate robotic solutions tailored to construction scenarios.

2.3. Prompt engineering

Prompts serve as instructions from users to the LLMs for intentional
communication and information interaction (Liu et al., 2023). In LLM
tasks, prompt engineering is a vital component, as a meticulous prompt
design can result in a deeper comprehension of human intentions and
result in more favorable outcomes. Many studies in the LLM domain
have focused on prompt design, through both manual and automatic
approaches, across diverse tasks such as task planning and text gener-
ation (Li and Liang, 2021; Teven and Alexander, 2021).

Prompts can be formulated in three forms: structured language,
unstructured language, and a hybrid of the two. In an experiment (Liang
et al., 2023), the use of code prompts for robot-relevant reasoning

Table 1
A summary and comparison of existing LLM-based OLP and general OLP
methods.

Method Description Pros Cons

Manual OLP Hand coding Flexible to
different task
requirements

Time-consuming
and high knowledge
requirement

Template-
based OLP

Programming in a
fixed template or
action framework

Easy to use with
only parameter
setup

Weak adaptation to
tasks with different
workflow

Skill library-
based OLP

Programming with
encapsulated skills

Automated action
logic learning and
skills combination

Skills tailored for
specific task
requirements with
limited application
scope

Neural
machine
translation-
based OLP

Directly translate
natural language
into robot codes
using small models

Simpler human-
robot interactions

Limited by the size
of training corpora

LLM-based
OLP

Directly translate
natural language
into robot codes
using LLMs

More extensive
training dataset
and emergent
ability for solving
complex tasks

Lack customization
of low-level policies
in predefined skills

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

4

resulted in a higher success rate compared with the use of natural lan-
guage prompts. While writing prompts in a structured language can
mitigate potential syntax errors in the output, it requires users in the
construction domain to engage in time-consuming and
knowledge-intensive efforts to describe the usage of all necessary APIs in
the codes. With the advancement of LLM technologies, studies have
demonstrated the increased flexibility of prompting in natural language
(Vemprala et al., 2023).

Thus, the approach described in this paper adopts natural language
to describe the usage of APIs and task requirements for prompts. To
facilitate a streamlined and expedited prompt construction process, we
developed a dedicated API library tailored for robotic assembly in
construction. Moreover, the logic chain of robot actions is added to the
prompts, which draws inspiration from the concept of the chain of
thought (CoT) (Wei et al., 2022) and collaborates with customized APIs
to enhance the logical coherence of the generated outputs.

3. Methodology

As outlined in Section 2, existing programming approaches for con-
struction assembly robots demand considerable effort from users to
translate task instructions or action sequences into a robot programming
language. Typically, construction workers are limited to participating
solely in the robot execution stage, maintaining a passive collaboration
with the robots. Leveraging the robust capabilities of LLMs in robot
planning and control, we delve into its application within construction

assembly tasks in this section. Here, we introduce a closed-loop frame-
work designed to empower workers with limited programming skills to
seamlessly engage in the entire process of robot control with the assis-
tance of the LLM.

3.1. User on the loop of assembly robot control

Robot control can typically be divided into four levels: task, action,
primitive, and servo (Siciliano et al., 2008). The primary objective of the
task and action levels revolves around decomposing the overall task into
a coherent sequence of logical actions, considering environmental con-
straints. Conversely, the primitive and servo levels focus on motion
trajectory computation and driving to joint servomotors. Consequently,
these control levels exhibit distinct requirements concerning the APIs to
be utilized within robot codes as well as the essential task-related in-
formation necessary for effective robot programming.

Considering the distinctive attributes of the four control levels, a
novel framework integrated with a strategy of hierarchical code gener-
ation is proposed for users in the loop of assembly robot control, as
shown in Fig. 1. Given the APIs and task descriptions in natural lan-
guage, the LLM parses the intentions of users and hierarchically gener-
ates robot control codes at high and low levels, which are then executed
in the simulation to provide feedback to the LLM for code optimization.
The proposed pipeline comprises the following four steps.

Fig. 1. Framework of the user on the loop of assembly robot control.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

5

● API Library Construction: Before interacting with the LLM, a robotic
API library is developed for construction assembly tasks, designed to
seamlessly integrate with prompts for both high-level and low-level
code generation. The API library comprises functions that operate at
the action level with detailed descriptions of their inputs, outputs,
and roles provided in natural language.

● HRCPG: The LLM is leveraged to build high-level modules and
implement low-level policies using the bespoke API library. High-
level module generation adopts a CoA strategy that collaborates
with API calls to augment the LLM’s reasoning capabilities in
assembling action logic. Furthermore, third-party libraries are
employed to create low-level operational plans within high-level
functions, culminating in the synthesis of a comprehensive robot
control program.

● Simulation and Optimization: The assessment of code quality entails
the execution of the generated program on a virtual agent, followed
by the application of metrics to evaluate its performance. The feed-
back obtained is incorporated into iterative prompts, providing
valuable guidance for optimizing the AI-generated robot control
program.

● Execution: After multiple rounds of optimization, the robot control
codes can be interpreted and deployed on an actual robot for con-
struction assembly tasks.

Since most third-party libraries for robots handle the implementation
and encapsulation of control logic at a primitive level, we set the control
levels of the third-party libraries and the API library as primitive and
action levels, respectively. Specifically, in the proposed framework, the
process of high-level module generation refines robot commands from
the task level to the action level, also referred to as task planning. In low-
level policy implementation, the LLM further refines the action se-
quences from high-level modules to the primitive level by leveraging
third-party libraries. These two phases are logically connected through
the API library at the action level.

3.2. API library for LLM prompting in construction assembly

In this section, the process of building the API library is described to
ensure its ability to fulfill the specific demands of robot assembly tasks.
These tasks often contain general action primitives, such as grasping and
placing. Considering this, we present an inventory of basic robot
manipulation functions for construction assembly tasks grouped into
three categories: perception, action, and optional functions (Table 2).

Perception functions are used to access environmental information
using sensors, and their outputs are used by action functions to generate
motion trajectories. Action functions encompass a spectrum of action
sequences executed by a robot, including arm movement, picking,

placing, and robot movement. In addition to the basic functions in the
workflow, supplementary functions that can be tailored to task specifi-
cations in the API library are used, such as check_gripper(). The efficacy
of descriptive names and detailed descriptions of APIs has been proven
to facilitate the utilization of functions and ensure accurate code gen-
eration (Liang et al., 2023; Vemprala et al., 2023). Hence, the bespoke
functions are named according to their specific functionalities while
providing lucid explanations of the types of inputs and outputs, as pre-
sented in Table 2.

Using the functions listed in Table 2, users can readily select APIs and
modify their names and descriptions to form an API library for LLM
prompting. Although certain motions may recur at different steps of the
assembly, the environmental conditions and state of the robot can differ
at each step. Hence, the assembly process should be meticulously scru-
tinized and the relevant functions selected accordingly. For instance, as
shown in Fig. 2, the robot is always under load when moving from the
storage area to the assembly area, which requires checking the state of
the end effector while moving and reducing the moving velocity to
minimize energy consumption and ensure safety. Consequently, the
function of check_gripper() should be listed in the API library and the
description of the function related to robot movement should be modi-
fied into “navigate_to(assembly_area_position): Navigates the mobile robot to
the assembly area position at the speed of …” However, when the robot
moves from the assembly area to the storage area, it always operates
under no-load conditions, and the function requirement is relatively
simple.

3.3. Hierarchical robot control program generation

3.3.1. HRCPG framework
As described in Section 3.1, HRCPG consists of two parts: high-level

module generation and low-level policy implementation. Based on the
connotation of the different levels of robot control, in this paper, the task
and action levels of robotic programming are considered high level, and
the primitive and servo levels are regarded as low level. The HRCPG
pipeline is shown in Fig. 3.

Prompts are designed for the LLM at both high-level and low-level,
respectively containing necessary information about the robot and the
task. For high-level module generation, based on the customized API
library and CoA in prompts, the LLM is given a hint to break an assembly
task into action sequences and accordingly generate the main control
unit of the program with APIs. The implementation of low-level policies
involves the integration of third-party libraries, including open-source
robot control libraries (Chitta and Koubaa, 2016; Sucan et al., 2012)
and algorithms (Ren et al., 2021; Yang et al., 2022; You et al., 2023b).
These libraries and algorithms are used to generate low-level code
functionalities within high-level functions. Finally, responses to these

Table 2
APIs for LLM prompting in construction assembly tasks.

Types Names Description

Perception Function get_area_position() Return the area location [X, Y, Z].
get_pick_position(object_name) Take the object name as input. Return the [X, Y, Z, Yaw, Pitch, Roll] coordinates of the picked object.
get_place_position(assembly_order,
object_name)

Take the assembly order of the current object and object name as input. Return the [X, Y, Z, Yaw,
Pitch, Roll] coordinates of the placed object.

Action
Function

Robotic Arm
Movement

move_to(object_position) Move the end effector to a position specified by [X, Y, Z, Yaw, Pitch, Roll] coordinates. Return
nothing.

move_joints(object_position) Move the end effector to the position along the fastest path using jointed movements. Input the [X,
Y, Z, Yaw, Pitch, Roll] coordinates and return nothing.

go_home() Move the robotic arm and its end effector to the home position. Return nothing.
Picking close_gripper() Close the gripper and grab the object. Return nothing.

turn_on_suction_pump() Turn on the suction pump and grab the object. Return nothing.
Placing open_gripper() Open the gripper and place the object. Return nothing.

turn_off_suction_pump() Turn off the suction pump and place the object. Return nothing.
Robot Movemnet navigate_to(area_position) Navigate the mobile robot to the area position. Input the [X, Y, Z] coordinates and return nothing.

fly_to(area_position) Fly the drone to the area position. Input the [X, Y, Z] coordinates and return nothing.
Optional Function check_gripper() Check the state of the gripper. If it is closed, open it.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

6

two prompts are integrated into a complete executable script.
Throughout the process, the APIs act as a bridge between the high-level
module and low-level policies of the robot control codes. Ensuring
consistent API descriptions in both prompts contributes to the harmo-
nious synchronization of function usage across the two programming
levels.

3.3.2. High-level module generation
In this section, we introduce the prompt-setting rules specific to high-

level module generation using the API library, in which the prompts are
designed to contain the following parts:

● Environment: Describes obstacles that the robot may encounter
during the assembly process and the relative spatial relationship
between the robot and the working space. Within the context of the
construction assembly task, the workspace primarily involves ma-
terial storage and assembly areas, wherein the position and orien-
tation of these regions should be informed to the LLM for the picking
and placing of assembly components.

● Robot: The type of assembly robot and the description of its end
effector should be introduced to the LLM, which is conducive for the
AI to interpret and comprehend the available APIs, such as open_-
gripper() and activate_suction_pump().

● Task: Inform the LLM of information related to task execution, such
as the construction process and masonry form. For example, in the
process of laying floor tiles, users can specify that tiles should be
arranged in a straight lay pattern, forming a grid with dimensions of
5 × 3. Additionally, they can define a safe distance above the ma-
terial before the picking operation. To utilize vision-based tech-
niques to perceive the assembly materials and environment, the user
should integrate the input information for the corresponding model
into the prompts.

● Chain of Action: Describes the action execution sequences of the
assembly task. Inspired by the concept of CoT (Wei et al., 2022), the
proposed approach involves designing prompts that offer a brief
description of action logic in natural language, thereby enhancing
the ability of the LLM for robot action logic reasoning. The

description of the action in the CoA should align with the provided
APIs, which avoids incorrect action sequences that misguide the
LLM.

Additional information, such as the LLM’s role and output format, is
an optional component of the prompts. In robotic assembly tasks, the
LLM typically acts as a robotic algorithm engineer, collaborating with a
designated robot. The API library is seamlessly integrated into the
prompt. Thus, the LLM can generate the main control unit of a robot
program comprising the provided APIs.

3.3.3. Low-level policy implementation
Executable third-party libraries are used to build prompts for the

LLM to implement low-level policies in high-level functions. The
detailed design principles of prompt engineering are as follows:

● Introduction of third-party libraries: Demonstrates the usage of
libraries with explicit descriptions of their inputs, outputs, and roles.
Because of the well-established familiarity of LLMs with widely used
third-party libraries such as NumPy and MoveIt, merely mentioning
the names of these libraries within the prompts is sufficient, without
necessitating the inclusion of redundant information.

● Initialization of the robot: Defines the mechanical structure of the
robot and its sensor configurations. Additionally, serial, network,
and other interfaces are provided to the LLM to establish commu-
nication with the robot through code. Motion constraints, such as
goal joint tolerance and maximum velocities, can be included in
prompts to satisfy task requirements.

The API library can be directly integrated into this prompt. Alter-
natively, users have the flexibility to transform APIs into a standardized
function format, whereby function names and input arguments serve as
function declarations, and the accompanying text descriptions serve as
code documentation. When robot information is provided in a pro-
gramming language, it can be effectively incorporated into a class
structure, thereby facilitating parameter invocations within functions.
The LLM achieves practical implementation of each function on a robot

Fig. 2. Working process of a typical construction assembly task.

Fig. 3. Pipeline of HRCPG.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

7

platform with third-party libraries. Notably, policy codes exhibit low
interfunction dependency, making it easy to identify errors within spe-
cific functions using this hierarchical method.

3.4. Simulation and optimization

After robot control codes are generated hierarchically, they are
composed and assembled into a cohesive control script. The script is
subsequently transmitted to the simulation platform, where it is
executed to assess the validity and accuracy of the robot control program
generated by the LLM. Users can then iteratively optimize the code
based on the simulation findings. A schematic of the interaction between
the user and the LLM is presented in Fig. 4.

Throughout the simulation process, users typically prioritize two key
concerns: (1) Can the task be executed successfully? (2) If so, can it
perform better? The first concern pertains to task completion. Hence,
two task completion-related metrics are employed: code executability
and condition recall. Code executability measures whether a robot
control script can be interpreted successfully, including syntactic cor-
rectness, verification of indispensable libraries and resources, and
compatibility with the robot operating system and computer hardware.
Condition recall measures the percentage of conditions in prompts that
are satisfied in the codes.

For further analysis, the reasons for incomplete task execution are
divided into four types of errors: syntax errors, runtime errors, wrong
action, and wrong parameters (Skreta et al., 2023). Among them, syntax
errors are errors that occur during code compilation, such as the use of
incorrect punctuation; runtime errors occur during the execution phase
of code, such as an array out of bounds; wrong parameter refers to
logical errors related to parameters, which typically do not impede the
standard program execution, albeit fail to align with predetermined task
prerequisites; wrong action refers to a logical error related to the action

sequence, such as a missing action. The latter two types of errors are
logical errors related to condition recall.

Regarding the second concern, task performance-related metrics are
applied to improve robot performance. Robot performance can be
optimized from several aspects, such as construction efficiency, energy
expenditure, and pose accuracy (Dakhli and Lafhaj, 2017; Petersen
et al., 2019). For the assembly task in load-bearing construction, the
metric proposed in (Petersen et al., 2019) is adopted to assess the con-
struction efficiency of a single-material assembly:

construction efficiency=
Vc

Time ∗ Vr
(1)

where Vc is the constructed volume, Vr is the volumetric size of all
deployed robots, and Time is the cumulative duration required by the
robots to complete the task. When comparing metrics across iterations,
the specific objectives of code optimization are identified and prompted
into conversations with the LLM.

Thus, prompts are built with the relevant code snippets, errors, and
optimization goals, which are then sent to the LLM as feedback. In
response, the LLM rectifies the identified errors in the program and
provides suggestions to the user for code improvements, such as
adjusting parameter settings and altering control algorithms.

4. Experiment

4.1. Assembly task set

To evaluate the feasibility of the proposed approach in different
construction scenarios, ten assembly tasks are used to test the method,
forming a construction assembly task set, as presented in Table 3. The
use of diverse robot types and end effectors can result in disparities in
the codes of low-level policies within APIs. Thus, three distinctive types

Fig. 4. Interaction between the user and the LLM.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

8

of construction assembly robots were employed in the task set: fixed
robotic arm, mobile manipulator, and unmanned aerial vehicle (UAV).
Owing to the less application of UAV in construction assembly, the ratio
of fixed robotic arms, mobile manipulators, and UAV in the task set was
set to 4:4:2.

In addition, the action sequence provided in a high-level module can
be influenced by the assembly material, construction process, safety
requirements, and robot type. Therefore, for the same robot type, the
task requirements were tailored differently to introduce variations into
the action sequence. Additionally, nine tasks in the task set adopted
experimental designs from existing studies, as shown in Table 3. The
assembly task set aimed to provide a comprehensive evaluation of the
robustness and generalizability of the proposed method by covering
common construction assembly materials (e.g., bricks, bars, and tiles),

different types of robots, and different assembly processes designed for
specific working environments.

4.2. Setting and metrics

To validate the efficacy of the proposed approach, ChatGPT (GPT-3.5
Version), a highly acclaimed LLM, was used to generate Python codes for
robot control (van Dis et al., 2023; OpenAI and ChatGPT, 2023).
ChatGPT has been trained using instruction following human alignment
and large dialog data, making it outstanding in conversational under-
standing, reasoning, and programming (OpenAI and code, 2023; Zhao
et al., 2023). Previous studies, such as AirSim-ChatGPT (Vemprala et al.,
2023), RoboGPT (You et al., 2023a; Ye et al., 2023), and KGGPT (Mu
et al., 2023), have also applied ChatGPT to generate robot programs. In
contrast to other models within the GPT family, the utilization of
ChatGPT in this study eliminates constraints related to cost and account
access, thereby empowering construction professionals across various
income brackets to engage with, advance, and implement the proposed
method. In the following experiments, the controllers and communica-
tion modules of mechanical devices were initialized in prompts to
inform the LLM of the mechanical structure and sensor configurations of
the robot used. Additionally, all robot control programs were generated
and executed within a consistent software environment. The detailed
settings for software environment and hardware configurations are
shown in Table 4.

To verify the quality of AI-generated codes in the experiments, the
codes were evaluated on the strict solution of code analysis and code
errors were reported. Two key performance indicators, the average
number of errors and number of optimization rounds, were used to
evaluate the performance. Specifically, the average number of errors in
the generated codes of the ten tasks was used to determine the quality of
the outputs. For this metric, only errors present in the initial set of
generated robot programs were considered. Furthermore, the number of
optimization rounds required for each task to rectify all the errors in the
programs was reported to indicate the efficacy of iterative code opti-
mization within a closed-loop paradigm.

4.3. Evaluation of results

To evaluate the superiority of the proposed method over existing
approaches, we conducted a set of experiments across ten tasks in the
task set to evaluate its performance in four critical aspects: (1) the ability
to generate programs for diverse assembly tasks, (2) the impact of the
HRCPG strategy on the quality of code, (3) the impact of APIs and CoA
on the quality of code, and (4) the ability to solve tasks through iterative
optimization.

Ability to generate programs for diverse assembly tasks. The
availability of the developed approach was compared with methods that
use fixed-action templates to generate code automatically (Ding et al.,
2020; Huang et al., 2021; Rogeau et al., 2021). Three main factors that
determine the diversity of the assembly tasks, considered when con-
structing the task set in Table 3, were used to evaluate the applicability
of the method. The approach is considered feasible when it satisfies the
conditions.

● Assembly material: The approach has control primitives for handling
assembly materials used, such as grabbing control primitives for
bricks and rods and suction cup control primitives for plate
materials.

● Robot type: The approach satisfies the control requirements of ro-
bots. For example, UAVs require wireless signal transmission and
flight attitude control.

● Construction process: The plan skeleton of the approach does not
need to be changed to adapt to the construction process. However,
adding intermediate points or adjusting parameters to the original
action sequence is permitted.

Table 3
Construction assembly task set.

Number Type of
Robot

Task
Description

Task
Characteristics

Reference

1 Fixed Robot
Arm

Use 12 bricks to
construct a
brick wall.

– Ding et al.
(2020)

2 Mobile
Manipulator

Eight beams
(four for short
edge and four
for long edge)
and four
columns are
assembled to a
rectangular
frame.

Multi-materials
assembly

Gao et al.
(2022)

3 UAV Use 40 bricks to
construct a
foam brick
tower.

– Augugliaro
et al. (2014)

4 Fixed Robot
Arm

Assemble a
rectangular
frame with four
beams (two for
1.45 m and two
for 1.83 m)

Multi-materials
assembly

Chong et al.
(2022)

5 Mobile
Manipulator

A total of nine
wooden struts
needs to be
assembled,
three of which
are placed by
the robot.

Human–robot
collaboration;

Mitterberger
et al. (2022)

Stability
requirement

6 Fixed Robot
Arm

16 square floor
tiles are laid in
4 rows and 4
columns.

– King et al.
(2014)

7 Mobile
Manipulator

A suspended
grid is built.
The target grid
is located at the
top of the robot
arm, and the
robot needs to
install 9 ceiling
tiles.

An angle is
required to move
the ceiling tile
above the
suspended grid.

(Liang et al.,
2020, 2022)

8 Fixed Robot
Arm

Alternated
build 8 bricks
on the front or
back side of the
vault.

A small drawing-
out movement is
required before
each brick fit-in
step to apply
epoxy putty.

Parascho
et al. (2020)

9 Mobile
Manipulator

Install four
slabs on the
wall.

Three basic
motion modes are
defined: move,
slide, and lift.

Hu and Cao
(2022)

10 UAV A UAV is used
to assemble six
square floor
tiles.

– –

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

9

As presented in Fig. 5, the findings reveal that the method proposed
in this study exhibits universal applicability to all ten tasks from these
three aspects. Approaches relying on fixed templates can adapt to
different construction processes but are less adaptable to robot types.
Notably, the approach presented in (Ding et al., 2020) encounters
additional constraints related to the programming language.

Impact of HRCPG strategy on the quality of code. To evaluate the
effectiveness of the proposed HRCPG strategy, two code generation
methods were used for comparison: (1) a flat method using a single
prompt that encapsulates information about the environment, task,
robot, and CoA, as presented in Fig. 6, and (2) the CaP approach pro-
posed in (Liang et al., 2023), an example of which is shown in Fig. 7.

Fig. 8 presents a comparison of the results of the flat, CaP, and
proposed methods in terms of code generation efficiency, coherence,
and redundancy. Generation efficiency evaluates the cost of a code
generation method and is determined by the number of prompts used
and the average number of errors in generating the code. As shown in
Fig. 8(a), the points of the proposed method are clustered in the lower-
left corner, indicating that the number of prompts used and the number
of code errors generated were relatively low. In Fig. 8(b), code coher-
ence analysis was performed by quantifying the total number of errors
resulting from function encapsulation and hierarchical generation in ten
tasks. This included errors resulting from misaligned input–output pa-
rameters in function calls and redundant operations across different
code blocks. The proposed method achieved the same code coherence
performance as the flat method. As shown in Fig. 8(c), code redundancy
analysis was conducted by calculating the average number of valid code
lines (excluding blank and comment lines) in the generated programs.
This result indicates that redundant code and unnecessary multi-layer
nesting may exist in the programs generated by the flat and CaP
methods.

Fig. 9 depicts the distribution of the average number of errors among
the four types of errors for the flat, CaP, and proposed methods. The code
quality generated by the proposed method was significantly better than
those generated by the other two methods. Additionally, the results
indicate that the proposed method exhibited significantly fewer errors
than the other methods in terms of wrong parameter and wrong action.
Moreover, wrong action errors were the most frequently occurring error
type among the three methods.

Impact of APIs and CoA on the quality of code. Four sets of ex-
periments were conducted across the ten tasks to assess the impact of
APIs, CoAs, and their interactions on the quality of AI-generated codes,
as presented in Table 5. Two natural language reasoning strategies were
adopted: the CoA proposed in this paper, and Vanilla, which does not
provide step-by-step information on the assembly process in the dialogs.
The results presented in Table 5 indicate that the use of the CoA resulted
in a reduction of 1.8 errors per task when APIs were provided to the
LLM. However, when APIs were not included, the influence of CoA on
code quality appeared to be negligible, as evidenced by the comparable
error counts observed in both the CoA and Vanilla scenarios.

The CoA strategy is primarily applied during the high-level module-
generation phase, effectively rectifying the action sequences and API
invocations presented within the main control unit. To further assess the
impact of CoA, we conducted an error analysis of the wrong action in the
main control unit separately in the APIs + Vanilla and APIs + CoA
scenarios. Remarkably, the average number of errors in the APIs + CoA
setting was 1.4, whereas the APIs + Vanilla setting exhibited 0.9 more
errors. Fig. 10 depicts the performance of each assembly task for both
settings, emphasizing the favorable effects of CoA in generating code
pertinent to action sequences.

Ability of task solving through iterative optimization. It was
observed that only one out of ten tasks managed to generate the robot
program without any syntax and logical errors in the initial interaction
round. This observation underscores the significance of iteratively
providing feedback to the LLM to optimize the control codes. As shown
in Fig. 11, after three rounds of optimization, five tasks resulted in
executable control programs, and all tasks were successfully solved after
five rounds. On average, nearly three interaction rounds were required
for code optimization.

4.4. Use case of brick assembly using a fixed robot arm

In this section, a use case of brick assembly in construction (the first
task in the task set) is presented to illustrate how the proposed LLM-
based user-on-the-loop program generation approach can improve
construction assembly robot control. Notably, it is required to establish a
local workspace with essential packages and incorporate robot 3D
models, controllers, and third-party libraries for offline robot control.

As depicted in Fig. 12, the brick assembly scenario incorporated a

Table 4
The settings of software environment and hardware configurations in the experiments.

Setting Category Tool Code initialization

Software Environment Operating System Ubuntu 18.04 –
Framework ROS Melodic –
Simulation Platform Gazebo 9 –
Programming language Python –

Mechanical Devices Robotic Arm Moveit moveit_commander.MoveGroupCommander(’manipulator’)
Mobile Robot move_base actionlib.SimpleActionClient(’move_base’, MoveBaseAction)
Gripper Moveit moveit_commander.MoveGroupCommander(’gripper’)
Pump – rospy.init_node(’vacuum_pump_controller’, anonymous = True)

pump_pub = rospy.Publisher(’vacuum_pump_control’, Bool, queue_size = 1)
UAV (offboard) mavors rospy.wait_for_service(’/mavros/cmd/arming’)

arm_client = rospy.ServiceProxy(’/mavros/cmd/arming’, CommandBool)
state_sub = rospy.Subscriber(’mavros/state’, State, callback = state_cb)
local_pos_pub = rospy.Publisher(’mavros/setpoint_position/local’, PoseStamped, queue_size = 10)
attitude_pub = rospy.Publisher(’/mavros/setpoint_raw/attitude’, AttitudeTarget, queue_size = 10)
tool_pub = rospy.Publisher(’/tool_command’, Bool, queue_size = 10)

Fig. 5. Applicability comparison of four methods in ten assembly tasks.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

10

plane measuring approximately 1.4 m × 1.4 m × 0.42 m, which was
designated as the assembly area. The material storage area was located
0.4 m away from the assembly area, housing 12 bricks, each with a
volume of 0.2 m × 0.2 m × 0.2 m. An ABB IRB6700-235 robot (ABB,
2023) with a gripper attached to its end-effector was used to complete
the assembly task.

In this case, the robot was tasked with constructing a brick wall
structure with a straight lay pattern, in which the bricks were assembled
in a three-row, four-column arrangement along the XZ-axis plane. For
safety, the robot was required to maintain a safe distance of 0.3 m above
the bricks before and after manipulation.

Fig. 13 shows the interaction between the user and the LLM to
generate a high-level module in the program. As the robot was a fixed
arm, the API library was constructed without any functions related to
the movement of the robot. It was observed that ChatGPT first generated
the action plan (the outputs in gray) based on the CoA and then effec-
tively invoked the provided APIs following this action plan. The action
plan was accompanied by code comments in natural language, offering
valuable insights into how the LLM organized actions to accomplish the
task. Thus, these comments proved beneficial for code comprehension
and management within the high-level module. However, we must
acknowledge that certain errors were identified in the LLM’s responses,
necessitating correction in the optimization step.

To implement low-level policies, the LLM was directed to employ the
third-party library MoveIt to generate instruction codes, as depicted in
Fig. 14. A class named AssemblyDemo contains built-in prompts to
furnish the LLM with essential details regarding robot communication
and control. The example usage provided in the output demonstrates
ChatGPT’s swift understanding of the usage of the provided APIs
through its ability to discern the input and output requirements for each
function from the provided natural language descriptions.

Fig. 15 shows the feedback loop employed to optimize the code using
the metrics of code executability and condition recall. Before conducting
the simulation in ROS, we integrated the codes generated at the high and
low levels into a Python script. In the first iteration, an invalid syntax
error occurred in the code snippet brick_name = f“Brick{i}“, and an error
of wrong action was detected in the subsequent iteration. The response
from ChatGPT contained an assessment of errors and provided corre-
sponding solutions. Through this feedback, ChatGPT effectively rectified
errors and the task requirements were satisfied.

Fig. 16 presents another feedback loop used to enhance the perfor-
mance of the robot based on task-related metrics. ChatGPT was used to
optimize the action sequences or adjust the parameter settings to reduce

the total working time while preserving assembly accuracy. In response,
ChatGPT offered four suggestions along with an updated version of the
codes, which were subsequently modified and used to improve robot
performance.

To compare the quality of the codes, we denote the optimized codes
generated in the first loop as version 1, and those generated from the
second loop as version 2. Three experiments were conducted on each
version to ensure reliability. The resulting average working times and
axial position errors are listed in Table 6. The analysis revealed that the
robot driven by the code in version 2 exhibited a significantly reduced
working time compared with version 1, with only a marginal increase of
0.02 mm in the average position error.

After the simulation and optimization, a real-world experiment was
conducted in a laboratory using an ABB IRB6700-235 robot, as shown in
Fig. 17. The bricks used in the experiment were connected using a
mortise and tenon structure, which enabled the assembly wall to satisfy
the construction strength requirements but required high-precision as-
sembly positions. Before the experiment, we captured the positions of
the starting grabbing and placing points by teleoperating the robot and
generated the position of each brick by iterating point offsets. Addi-
tionally, the get_pick_position() and get_place_position() functions were
defined to support precise assembly.

The Python script optimized in the simulation scenario was then run
in ROS to control the robot and perform the brick assembly. Following
the construction process written in the script, the robot cycled through
the six operations depicted in Fig. 17 until all bricks were assembled.
Benefiting from the simulation and optimization, the AI-generated codes
were executed without errors. However, brick slipping occurred occa-
sionally because of insufficient friction between the gripper jaws and the
bricks. This successful application verified the effectiveness of the
approach in grounding an AI-generated program in a physical robotic
system.

5. Discussion

A framework to generate executable robot control programs specific
to construction assembly tasks through iterative interactions between
users and LLMs has been proposed. This approach benefits automation
in construction assembly by simplifying the robot control process, and it
is adaptable to diverse construction assembly tasks. The contributions of
this study to the knowledge of construction robot programming are
twofold.

First, an HRCPG strategy is designed to logically integrate code

Fig. 6. Example of the prompt for flat code generation.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

11

generation at high and low levels according to the different levels of
robot control. In construction assembly tasks, low-level policies of the
control function, such as parameter settings and control algorithms, are
conditioned by robot configurations and task requirements. The
encapsulation and repeated application of control functions across
different robot systems and tasks can result in system errors and safety
problems in real-world construction scenarios. Therefore, task planning
and low-level policy implementation of functions must be customized
for different robot assembly tasks. The proposed HRCPG strategy plans
the construction process, combines related functions according to con-
struction requirements, and customizes the control functions based on
robot configurations. As shown in Figs. 8 and 9, the proposed HRCPG

strategy enables the customization of robot control codes at a lower cost
and higher accuracy than the flat and CaP methods while effectively
avoiding the problems of poor code coherence and high redundancy
caused by hierarchical code generation.

In addition, LLMs continuously predict the next token based on a
probabilistic model and eventually produce a complete control script by
generating codes. The probability of generating a correct script is the
product of the probabilities of all the tokens in the control program.
Hence, more intricate tasks present a greater challenge in obtaining
accurate robot codes, as they often result in longer scripts with a higher
number of tokens in the LLM response. Previous studies have acknowl-
edged the limitations of LLMs in generating lengthy programs (Merow

Fig. 7. Example of the prompt for CaP approach to generate code.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

12

et al., 2023). The proposed HRCPG strategy can reduce the length of
AI-generated tokens and increase the likelihood of generating correct
responses. This is achieved by decomposing the generation of complex
robot action logic into high-level module generation and low-level
policy implementation.

Fig. 8. Comparative analysis of the flat, CaP, and the proposed method in terms of code generation efficiency, coherence, and redundancy.

Fig. 9. Distribution of average number of errors of the flat, CaP, and pro-
posed methods.

Table 5
Number of code errors in different settings of CoA and APIs.

Average number of total errors APIs Without APIs

CoA 2.9 5.5
Vanilla 4.7 5.9

Fig. 10. Error analysis of wrong action in ten tasks.

Fig. 11. Number of tasks solved with increasing number of optimiza-
tion rounds.

Fig. 12. Experimental setup of the use case.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

13

Second, an API library was built to enable the LLM to adapt to diverse
task requirements and hardware configurations of construction assem-
bly tasks, thereby effectively augmenting the efficiency of code gener-
ation. Additionally, the concept of CoA, which provides a lucid sequence
of actions to indicate the order of API calls in the main control unit, is
introduced to operate in conjunction with the selected APIs. As depicted
in Fig. 10, the combined utilization of APIs and CoA enhances the un-
derstanding of the LLM in assembly action logic. In the context of the
prompts, the accuracy of the API and CoA in delineating assembly tasks
and conditions correlates directly with the quality of the LLM output.
Our ablation study, detailed in Table 5, investigated the API library and
CoA, revealing that AI-generated code errors were halved with the in-
clusion of API and CoA support. This finding underscores the specificity
and effectiveness of the prompts devised in this study for conveying
information, indicating that the prompt designed in this paper is more

specific and adequate in expressing the information. Similar observa-
tions have been reported in previous studies (Merow et al., 2023).

In the experimental analysis presented in Fig. 18, we observed that
ChatGPT exhibited a spontaneous output of action logic even without
explicit requirements provided in the prompt. This finding indicated the
possibility that ChatGPT may have been trained with CoT, which has
also been reported in recent research (Chen et al., 2023). As shown in
Table 5, CoA had no impact on the quality of coding in the absence of
APIs because the LLM implicitly followed the CoT strategy. However,
the CoA significantly improved the performance of the LLM with APIs in
the prompt. This enhancement can be attributed to the high consistency
between the action descriptions in the CoA and APIs, resulting in more
accurate functional invocations. By contrast, the CoT in ChatGPT is
learned from the training data, and the generated action sequences may
not necessarily align with the provided APIs, rendering it less effective as

Fig. 13. Input and output of the LLM for high-level module generation.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

14

a substitute for CoA.

6. Limitations and future research

Despite the contributions of this study, we acknowledge that it has
the following limitations. First, syntax errors are related to the training
dataset of the LLM, whereas logical errors involving task condition
implementation are more relevant to the expression of users and the
form of prompts. As shown in Fig. 9, an average of 0.7 syntax errors
resulted when utilizing our code generation approach. This finding
suggests the presence of potentially false information regarding robot
control within the training set of ChatGPT. Thus, a fine-tuned LLM
tailored for code generation for construction robots is required for future
research. Robot control programs with higher professionalism and
quality can be generated by performing rigorous training data cleaning
and efficient fine-tuning techniques such as human feedback-based

reinforcement learning methods (Zhao et al., 2023).
Additionally, logical errors can be reduced through a more detailed

expression of the task requirements. However, we acknowledge that an
increase in the level of detail may introduce inconvenience to users.
Thus, striking a balance between providing concise and prompt infor-
mation and obtaining optimal model outputs is a crucial research
question that warrants further investigation. Furthermore, although the
prompts are meticulously designed in this paper, the challenge of
prompt brittleness persists, manifesting in varied outputs across
different LLMs—a significant research obstacle in LLM technology.
Future research endeavors will tackle this issue by employing methods
such as vector representations (Li and Liang, 2021) and data-driven
prompt engineering (Li and Liang, 2021; Shin et al., 2020) to bolster
the robustness of the prompts, thereby advancing the reliability and
usability of LLM applications.

Second, the proposed approach assumes that the given task and

Fig. 14. Input and output of the LLM for low-level policy implementation.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

15

generated instructions are always supported and executable, but the
constraints imposed by the robot’s hardware configuration are not
within the scope of consideration. Further research could incorporate

retrieval-augmented generation (RAG) technology to assist the LLM in
retrieving technical documents of the robot during code generation and
optimization, enhancing its understanding of robot skills, and improving

Fig. 15. Feedback loop to optimize codes for task completion.

Fig. 16. Response of the LLM to optimize codes for better performance.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

16

the accuracy of API calls (Boiko et al., 2023). Additionally, complex
physical constraints (such as data noise, static friction, and structural
vibration) can affect the effectiveness of plan execution during
real-world experiments. For instance, insufficient friction between
gripper jaws and bricks can result in slips, whereas brick assemblies in
the form of mortise and tenon joints can suffer severe collision problems
owing to slight positional errors. However, these factors accurately are
difficult to model using existing simulation platforms. Integrating
multi-dimensional sensor data, such as force and vision sensing, as
realistic feedback to the proposed framework can enable dual-loop
optimal control of the robot in simulation and reality, thereby effec-
tively avoiding safety problems and improving assembly accuracy.

Lastly, the utilization of ChatGPT introduces additional constraints.
Rate limits, such as those governing requests and tokens per minute,
impede extensive testing and continuous usage. Scaling the solution
upwards escalates the expenses associated with API calls, thereby
prompting financial considerations for long-term adoption. Moreover,
transmitting sensitive user information to third-party services heightens
the risk of data security breaches and privacy violations during trans-
mission and storage. Therefore, this further underscores the imperative
for developing a LLM tailored for code generation for construction
robotics.

7. Conclusions

This study aimed to address the following research question: How can
robot control programs be generated effectively and accurately for diverse
construction assembly tasks using LLM techniques? To address this research
question, a closed user-on-the-loop robot control workflow based on
LLM techniques is proposed. An HRCPG strategy was designed to ach-
ieve high-level module generation and low-level policy implementation.

Additionally, a customized API library and CoA were used to prompt an
LLM to enhance the understanding of user intentions. To evaluate the
effectiveness of the proposed approach, we conducted experiments
involving ten distinct construction assembly tasks encompassing various
construction materials (e.g., bricks, bars, and tiles), diverse robot types
(e.g., fixed robot arm, mobile manipulator, and UAV), and different
assembly processes. The experimental results show that (1) the approach
can implement closed-loop control on the construction robot without the
high burden of programming work on users, and (2) the proposed code
generation method can effectively improve the quality of AI-generated
codes by decreasing the number of code errors from 5.9 to 2.9.

The approach presented in this paper breaks the technical barriers
between users and robots by employing an LLM as a medium interme-
diary to translate user intentions into comprehensible robot commands.
This method facilitates automation in construction assembly by simpli-
fying the process of robot control and can be extended to more complex
scenarios. The contributions of this research are twofold: (1) the design
of the HRCPG strategy to logically integrate code generation at high and
low levels according to different levels of robot control; and (2) the
combination of APIs and CoA to enhance the understanding of the LLM
to the assembly action logic. Future studies should focus on developing a
fine-tuned LLM tailored for code generation for construction robots and
integrating multidimensional sensor data during operation.

CRediT authorship contribution statement

Hanbin Luo: Writing – original draft, Methodology, Funding
acquisition, Conceptualization. Jianxin Wu: Writing – original draft,
Methodology. Jiajing Liu: Writing – review & editing, Writing – original
draft, Methodology, Funding acquisition, Conceptualization. Maxwell
Fordjour Antwi-Afari: Software, Resources.

Declaration of competing interest

This manuscript has not been published or presented elsewhere in
part or in entirety and is not under consideration by another journal. We
have read and understood your journal’s policies, and we believe that
neither the manuscript nor the study violates any of these. There are no
conflicts of interest to declare.

Table 6
Position error and working time of the robot.

Code Version Axial Position Error (mm) Position Error (mm) Time (s)

X-axis Y-axis Z-axis

Version 1 0.28 0.22 2.25 0.92 394.90
Version 2 0.37 0.22 2.25 0.94 327.61

Fig. 17. Brick assembly process of the robot.

H. Luo et al.

Developments in the Built Environment 19 (2024) 100488

17

Data availability

Data will be made available on request.

Acknowledgements

The authors acknowledge the financial support of the National Key
R&D Program of China (No. 2023YFC3806605), the National Natural
Science Foundation of China (Grant Nos. 72301114 and U21A20151)
and China Postdoctoral Science Foundation (Grant No. 2023M731187)
toward conducting the research presented in this paper. Access to the
code used in this study will be made available upon request from the
corresponding author.

References

ABB, I.R.B., 2023. 6700 robots - industrial robots from ABB robotics. https://new.abb.co
m/products/robotics/robots/articulated-robots/irb-6700. (Accessed 29 October
2023).

Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueler, M.W., Willmann, J.
S., Gramazio, F., Kohler, M., D’Andrea, R., 2014. The flight assembled architecture
installation: cooperative construction with flying machines. IEEE Control Syst. Mag.
34 (4), 46–64. https://doi.org/10.1109/Mcs.2014.2320359.

Boiko, D.A., MacKnight, R., Kline, B., Gomes, G., 2023. Autonomous chemical research
with large language models. Nature 624 (7992), 570–578. https://doi.org/10.1038/
s41586-023-06792-0.

Bonilla, F.S., Ugalde, F.R., 2019. Automatic translation of Spanish natural language
commands to control robot comands based on lstm neural network. 2019 Third IEEE
International Conference on Robotic Computing, pp. 125–131. https://doi.org/
10.1109/IRC.2019.00026.

Bruckmann, T., Boumann, R., 2021. Simulation and optimization of automated masonry
construction using cable robots. Adv. Eng. Inf. 50, 101388 https://doi.org/10.1016/
j.aei.2021.101388.

Cai, S., Ma, Z., Skibniewski, M.J., Bao, S., 2019. Construction automation and robotics
for high-rise buildings over the past decades: a comprehensive review. Adv. Eng. Inf.
42, 100989 https://doi.org/10.1016/j.aei.2019.100989.

Cai, S., Ma, Z., Skibniewski, M.J., Guo, J., 2020. Construction automation and robotics:
from one-offs to follow-ups based on practices of Chinese construction companies.
J. Construct. Eng. Manag. 146 (10), 05020013 https://doi.org/10.1061/(ASCE)
CO.1943-7862.0001910.

Carvalho, G.C., Siqueira, M.L., Absi-Alfaro, S.C., 1998. Off-line programming of flexible
welding manufacturing cells. J. Mater. Process. Technol. 78 (1–3), 24–28. https://
doi.org/10.1016/S0924-0136(97)00458-5.

Chen, J., Chen, L., Huang, H., Zhou, T., 2023. When do you need Chain-of-Thought
prompting for ChatGPT? arXiv preprint arXiv:2304.03262. https://doi.org/
10.48550/arXiv.2304.03262.

Chitta, S., 2016. MoveIt!: an introduction. In: Koubaa, A. (Ed.), Robot Operating System
(ROS). Studies in Computational Intelligence, vol 625. Springer, Cham. https://doi.
org/10.1007/978-3-319-26054-9_1.

Chong, O.W., Zhang, J., Voyles, R.M., Min, B.-C., 2022. BIM-based simulation of
construction robotics in the assembly process of wood frames. Autom. ConStruct.
137, 104194 https://doi.org/10.1016/j.autcon.2022.104194.

Fig. 18. Experiment in setting up APIs + Vanilla.

H. Luo et al.

https://new.abb.com/products/robotics/robots/articulated-robots/irb-6700
https://new.abb.com/products/robotics/robots/articulated-robots/irb-6700
https://doi.org/10.1109/Mcs.2014.2320359
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1109/IRC.2019.00026
https://doi.org/10.1109/IRC.2019.00026
https://doi.org/10.1016/j.aei.2021.101388
https://doi.org/10.1016/j.aei.2021.101388
https://doi.org/10.1016/j.aei.2019.100989
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001910
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001910
https://doi.org/10.1016/S0924-0136(97)00458-5
https://doi.org/10.1016/S0924-0136(97)00458-5
https://doi.org/10.48550/arXiv.2304.03262
https://doi.org/10.48550/arXiv.2304.03262
https://doi.org/10.1007/978-3-319-26054-9_1
https://doi.org/10.1007/978-3-319-26054-9_1
https://doi.org/10.1016/j.autcon.2022.104194

Developments in the Built Environment 19 (2024) 100488

18

Dakhli, Z., Lafhaj, Z., 2017. Robotic mechanical design for brick-laying automation.
Cogent Eng. 4 (1), 1361600 https://doi.org/10.1080/23311916.2017.1361600.

Ding, L., Jiang, W., Zhou, Y., Zhou, C., Liu, S., 2020. BIM-based task-level planning for
robotic brick assembly through image-based 3D modeling. Adv. Eng. Inf. 43, 100993
https://doi.org/10.1016/j.aei.2019.100993.

Gao, Y., Meng, J., Shu, J., Liu, Y., 2022. BIM-based task and motion planning prototype
for robotic assembly of COVID-19 hospitalisation light weight structures. Autom.
ConStruct. 140, 104370 https://doi.org/10.1016/j.autcon.2022.104370.

Gao, Y., Shu, J., Xiao, W., Jin, Z., 2023. Polyhedron-bounded collision checks for robotic
assembly of structural components. Autom. ConStruct. 152, 104904 https://doi.org/
10.1016/j.autcon.2023.104904.

Hu, H., Cao, J., 2022. Adaptive variable impedance control of dual-arm robots for
slabstone installation. ISA (Instrum. Soc. Am.) Trans. 128 (Pt A), 397–408. https://
doi.org/10.1016/j.isatra.2021.10.020.

Hu, H., Chen, J., Liu, H., Li, Z., Huang, L., 2022. Natural language-based automatic
programming for industrial robots. J. Grid Comput. 20 (3), 26. https://doi.org/
10.1007/s10723-022-09618-x.

Huang, Y., Garrett, C.R., Mueller, C.T., 2018. Automated sequence and motion planning
for robotic spatial extrusion of 3D trusses. Constr. Robot. 2 (1–4), 15–39. https://doi.
org/10.1007/s41693-018-0012-z.

Huang, Y., Garrett, C.R., Ting, I., Parascho, S., Mueller, C.T., 2021. Robotic additive
construction of bar structures: unified sequence and motion planning. Constr. Robot.
5, 115–130. https://doi.org/10.1007/s41693-021-00062-z.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tompson, J.,
Mordatch, I., Chebotar, Y., Sermanet, P., Brown, N., Jackson, T., Luu, L., Levine, S.,
Hausman, K., Ichter, B., 2022. Inner monologue: embodied reasoning through
planning with language models. arxiv preprint arxiv:2207.05608. https://doi.
org/10.48550/arXiv.2207.05608.

Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N., Parthasarathy, S., Rajamani, S.,
Sharma, R., 2022. Jigsaw: large language models meet program synthesis. In:
Proceedings of the 44th International Conference on Software Engineering,
pp. 1219–1231. https://doi.org/10.1145/3510003.3510203.

Kahuttanaseth, W., Dressler, A., Netramai, C., 2018. Commanding mobile robot
movement based on natural language processing with RNN encoderdecoder. In:
2018 5th International Conference on Business and Industrial Research,
pp. 161–166. https://doi.org/10.1109/ICBIR.2018.8391185.

Kim, S., Peavy, M., Huang, P.C., Kim, K., 2021. Development of BIM-integrated
construction robot task planning and simulation system. Autom. ConStruct. 127,
103720 https://doi.org/10.1016/j.autcon.2021.103720.

King, N., Bechthold, M., Kane, A., Michalatos, P., 2014. Robotic tile placement: tools,
techniques and feasibility. Autom. ConStruct. 39, 161–166. https://doi.org/
10.1016/j.autcon.2013.08.014.

Koubaa, A., 2023. ROSGPT: next-generation human-robot interaction with ChatGPT and
ROS. Preprints, 2023040827. https://doi.org/10.20944/preprints202304.0827.v3.

Li, X.L., Liang, P., 2021. Prefix-tuning: optimizing continuous prompts for generation. In:
Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing, pp. 4582–4597. https://doi.org/10.18653/v1/2021.acl-long.353.

Liang, C.J., Kamat, V.R., Menassa, C.C., 2020. Teaching robots to perform quasi-
repetitive construction tasks through human demonstration. Autom. ConStruct. 120,
103370 https://doi.org/10.1016/j.autcon.2020.103370.

Liang, C.J., Kamat, V.R., Menassa, C.C., McGee, W., 2022. Trajectory-based skill learning
for overhead construction robots using generalized cylinders with orientation.
J. Comput. Civ. Eng. 36 (2), 04021036 https://doi.org/10.1061/(Asce)Cp.1943-
5487.0001004.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., Zeng, A., 2023.
Code as policies: language model programs for embodied control. In: 2023 IEEE
International Conference on Robotics and Automation, pp. 9493–9500. https://doi.
org/10.1109/ICRA48891.2023.10160591.

Liu, P.F., Yuan, W.Z., Fu, J.L., Jiang, Z.B., Hayashi, H., Neubig, G., 2023. Pre-train,
prompt, and predict: a systematic survey of prompting methods in natural language
processing. ACM Comput. Surv. 55 (9), 1–35. https://doi.org/10.1145/3560815.

Merow, C., Serra-Diaz, J.M., Enquist, B.J., Wilson, A.M., 2023. AI chatbots can boost
scientific coding. Nature Ecol. Evol. 7 (7), 960–962. https://doi.org/10.1038/
s41559-023-02063-3.

Mitterberger, D., Atanasova, L., Dörfler, K., Gramazio, F., Kohler, M., 2022. Tie a knot:
human-robot cooperative workflow for assembling wooden structures using rope
joints. Constr. Robot. 6 (3–4), 277–292. https://doi.org/10.1007/s41693-022-
00083-2.

Mu, Z., Zhao, W., Yin, Y., Xi, X., Song, W., Gu, J., Zhu, S., 2023. KGGPT: empowering
robots with OpenAI’s ChatGPT and knowledge graph. In: International Conference
on Intelligent Robotics and Applications. Springer Nature Singapore, Singapore,
pp. 340–351. https://doi.org/10.1007/978-981-99-6495-6_29.

OpenAI, ChatGPT, 2023. https://openai.com/blog/chatgpt/. (Accessed 8 April 2023).
OpenAI, code-davinci-002. https://platform.openai.com/docs/model-index-for-resea

rchers, 2023–. (Accessed 13 November 2023).
Parascho, S., Han, I.X., Walker, S., Beghini, A., Bruun, E.P., Adriaenssens, S., 2020.

Robotic vault: a cooperative robotic assembly method for brick vault construction.
Constr. Robot. 4, 117–126. https://doi.org/10.1007/s41693-020-00041-w.

Petersen, K.H., Napp, N., Stuart-Smith, R., Rus, D., Kovac, M., 2019. A review of
collective robotic construction. Sci. Robot. 4 (28), eaau8479. https://doi.org/
10.1126/scirobotics.aau8479.

Ren, B., Wang, Y., Chen, J., Chen, S., 2021. A novel nonlinear disturbance observer
embedded second-order finite time tracking-based controller for robotic

manipulators. J. Comput. Inf. Sci. Eng. 21 (6), 061005 https://doi.org/10.1115/
1.4050470.

Rogeau, N., Latteur, P., Weinand, Y., 2021. An integrated design tool for timber plate
structures to generate joints geometry, fabrication toolpath, and robot trajectories.
Autom. ConStruct. 130, 103875 https://doi.org/10.1016/j.autcon.2021.103875.

Saka, A., Taiwo, R., Saka, N., Salami, B.A., Ajayi, S., Akande, K., Kazemi, H., 2024. GPT
models in construction industry: opportunities, limitations, and a use case
validation. Dev. Built Environ. 17, 100300 https://doi.org/10.1016/j.
dibe.2023.100300.

Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S., 2020. Autoprompt: eliciting
knowledge from language models with automatically generated prompts. arXiv
preprint arXiv:2010.15980. https://doi.org/10.48550/arXiv.2010.15980.

Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., 2008. Robotics: Modelling, Planning
and Control. Springer Publishing Company, Incorporated. ISBN: 1846286417.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D.,
Thomason, J., Garg, A., 2023. Progprompt: generating situated robot task plans
using large language models. In: 2023 IEEE International Conference on Robotics
and Automation, pp. 11523–11530. https://doi.org/10.1109/
ICRA48891.2023.10161317.

Skreta, M., Yoshikawa, N., Arellano-Rubach, S., Ji, Z., Kristensen, L.B., Darvish, K.,
Aspuru-Guzik, A., Shkurti, F., Garg, A., 2023. Errors are useful prompts: instruction
guided task programming with verifier-assisted iterative prompting. arXiv preprint
arXiv:2303.14100. https://doi.org/10.48550/arXiv.2303.14100.

Sucan, I.A., Moll, M., Kavraki, L.E., 2012. The open motion planning library. IEEE Robot.
Autom. Mag. 19 (4), 72–82. https://doi.org/10.1109/MRA.2012.2205651.

Teven, L.S., Alexander, R., 2021. How many data points is a prompt worth?. In:
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, pp. 2627–2636. https://doi.org/
10.18653/v1/2021.naacl-main.208.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., Lample, G.,
2023. Llama: open and efficient foundation language models. arXiv preprint arXiv:
2302.13971. https://doi.org/10.48550/arXiv.2302.13971.

van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L., 2023. ChatGPT:
five priorities for research. Nature 614 (7947), 224–226. https://doi.org/10.1038/
d41586-023-00288-7.

Vann, W., Zhou, T., Zhu, Q., Du, E., 2023. Enabling automated facility maintenance from
articulated robot Collision-Free designs. Adv. Eng. Inf. 55, 101820 https://doi.org/
10.1016/j.aei.2022.101820.

Vemprala, S., Bonatti, R., Bucker, A., Kapoor, A., 2023. Chatgpt for robotics: design
principles and model abilities. arXiv preprint arXiv:2306.17582. https://doi.org/10.
48550/arXiv.2306.17582.

Wallhoff, F., Blume, J., Bannat, A., Rösel, W., Lenz, C., Knoll, A., 2010. A skill-based
approach towards hybrid assembly. Adv. Eng. Inf. 24 (3), 329–339. https://doi.org/
10.1016/j.aei.2010.05.013.

Wang, X., Liang, C.J., Menassa, C.C., Kamat, V.R., 2021. Interactive and immersive
process-level digital twin for collaborative human-robot construction work.
J. Comput. Civ. Eng. 35 (6), 04021023 https://doi.org/10.1061/(Asce)Cp.1943-
5487.0000988.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, brian, Xia, F., Chi, E., Le, Q.V.,
Zhou, D., 2022. Chain of thought prompting elicits reasoning in large language
models. Adv. Neural Inf. Process. Syst. 35, 24824–24837. In: https://proceedings.
neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Pape
r-Conference.pdf.

Yang, T., Zhang, B., Hong, H., Chen, Y., Yang, H., Wang, T., Cao, D., 2022. Motion
control for earth excavation robot based on force pre-load and cross-coupling
compensation. Autom. ConStruct. 141, 104402 https://doi.org/10.1016/j.
autcon.2022.104402.

Ye, Y., You, H.X., Du, J., 2023. Improved trust in human-robot collaboration with
ChatGPT. IEEE Access 11, 55748–55754. https://doi.org/10.1109/
Access.2023.3282111.

You, H., Ye, Y., Zhou, T., Zhu, Q., Du, J., 2023a. Robot-enabled Construction Assembly
with Automated Sequence Planning Based on ChatGPT: RoboGPT. https://doi.org/
10.48550/arXiv.2304.11018 arxiv preprint arxiv:2304.11018.

You, K., Zhou, C., Ding, L., 2023b. Deep learning technology for construction machinery
and robotics. Autom. ConStruct. 150, 104852 https://doi.org/10.1016/j.
autcon.2023.104852.

Zhang, M., Xu, R., Wu, H., Pan, J., Luo, X., 2023. Human–robot collaboration for on-site
construction. Autom. ConStruct. 150, 104812 https://doi.org/10.1016/j.
autcon.2023.104812.

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J.,
Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X.,
Liu, Z., Liu, P., Nie, J., Wen, J., 2023. A survey of large language models. arXiv
preprint arXiv:2303.18223. https://doi.org/10.48550/arXiv.2303.18223.

Zheng, C., Xing, J., Wang, Z., Qin, X., Eynard, B., Li, J., Bai, J., Zhang, Y., 2022.
Knowledge-based program generation approach for robotic manufacturing systems.
Robot. Comput. Integrated Manuf. 73, 102242 https://doi.org/10.1016/j.
rcim.2021.102242.

Zhu, A., Pauwels, P., De Vries, B., 2021. Smart component-oriented method of
construction robot coordination for prefabricated housing. Autom. ConStruct. 129,
103778 https://doi.org/10.1016/j.autcon.2021.103778.

H. Luo et al.

https://doi.org/10.1080/23311916.2017.1361600
https://doi.org/10.1016/j.aei.2019.100993
https://doi.org/10.1016/j.autcon.2022.104370
https://doi.org/10.1016/j.autcon.2023.104904
https://doi.org/10.1016/j.autcon.2023.104904
https://doi.org/10.1016/j.isatra.2021.10.020
https://doi.org/10.1016/j.isatra.2021.10.020
https://doi.org/10.1007/s10723-022-09618-x
https://doi.org/10.1007/s10723-022-09618-x
https://doi.org/10.1007/s41693-018-0012-z
https://doi.org/10.1007/s41693-018-0012-z
https://doi.org/10.1007/s41693-021-00062-z
https://doi.org/10.48550/arXiv.2207.05608
https://doi.org/10.48550/arXiv.2207.05608
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1109/ICBIR.2018.8391185
https://doi.org/10.1016/j.autcon.2021.103720
https://doi.org/10.1016/j.autcon.2013.08.014
https://doi.org/10.1016/j.autcon.2013.08.014
https://doi.org/10.20944/preprints202304.0827.v3
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.1016/j.autcon.2020.103370
https://doi.org/10.1061/(Asce)Cp.1943-5487.0001004
https://doi.org/10.1061/(Asce)Cp.1943-5487.0001004
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1145/3560815
https://doi.org/10.1038/s41559-023-02063-3
https://doi.org/10.1038/s41559-023-02063-3
https://doi.org/10.1007/s41693-022-00083-2
https://doi.org/10.1007/s41693-022-00083-2
https://doi.org/10.1007/978-981-99-6495-6_29
https://openai.com/blog/chatgpt/
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://doi.org/10.1007/s41693-020-00041-w
https://doi.org/10.1126/scirobotics.aau8479
https://doi.org/10.1126/scirobotics.aau8479
https://doi.org/10.1115/1.4050470
https://doi.org/10.1115/1.4050470
https://doi.org/10.1016/j.autcon.2021.103875
https://doi.org/10.1016/j.dibe.2023.100300
https://doi.org/10.1016/j.dibe.2023.100300
https://doi.org/10.48550/arXiv.2010.15980
http://refhub.elsevier.com/S2666-1659(24)00169-8/sref42
http://refhub.elsevier.com/S2666-1659(24)00169-8/sref42
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.48550/arXiv.2303.14100
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.18653/v1/2021.naacl-main.208
https://doi.org/10.18653/v1/2021.naacl-main.208
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.1038/d41586-023-00288-7
https://doi.org/10.1038/d41586-023-00288-7
https://doi.org/10.1016/j.aei.2022.101820
https://doi.org/10.1016/j.aei.2022.101820
https://doi.org/10.48550/arXiv.2306.17582
https://doi.org/10.48550/arXiv.2306.17582
https://doi.org/10.1016/j.aei.2010.05.013
https://doi.org/10.1016/j.aei.2010.05.013
https://doi.org/10.1061/(Asce)Cp.1943-5487.0000988
https://doi.org/10.1061/(Asce)Cp.1943-5487.0000988
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1016/j.autcon.2022.104402
https://doi.org/10.1016/j.autcon.2022.104402
https://doi.org/10.1109/Access.2023.3282111
https://doi.org/10.1109/Access.2023.3282111
https://doi.org/10.48550/arXiv.2304.11018
https://doi.org/10.48550/arXiv.2304.11018
https://doi.org/10.1016/j.autcon.2023.104852
https://doi.org/10.1016/j.autcon.2023.104852
https://doi.org/10.1016/j.autcon.2023.104812
https://doi.org/10.1016/j.autcon.2023.104812
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.1016/j.rcim.2021.102242
https://doi.org/10.1016/j.rcim.2021.102242
https://doi.org/10.1016/j.autcon.2021.103778

	Large language model-based code generation for the control of construction assembly robots: A hierarchical generation approach
	1 Introduction
	2 Literature review
	2.1 Assembly robot programming in construction
	2.2 LLMs for robot programming
	2.3 Prompt engineering

	3 Methodology
	3.1 User on the loop of assembly robot control
	3.2 API library for LLM prompting in construction assembly
	3.3 Hierarchical robot control program generation
	3.3.1 HRCPG framework
	3.3.2 High-level module generation
	3.3.3 Low-level policy implementation

	3.4 Simulation and optimization

	4 Experiment
	4.1 Assembly task set
	4.2 Setting and metrics
	4.3 Evaluation of results
	4.4 Use case of brick assembly using a fixed robot arm

	5 Discussion
	6 Limitations and future research
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

