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A B S T R A C T

Root Cause Analysis (RCA) of product defects is crucial to improving manufacturing quality and productivity.
However, current efforts to localize root causes are prone to limitations in the aspect of robustness, causality
discovery, knowledge representation, stochasticity, and sample size. Therefore, we propose a product-wise
Ensemble Bayesian Network (EBN) to provide a robust, intelligent and human-interpretable probabilistic
reasoning method for RCA. BN is adopted to enable interpretable probabilistic reasoning under uncertainty.
We developed various structure learning algorithms, a parameter learning algorithm, and a Bayesian inference
algorithm for BN to learn the root causes of product quality issues from historical product defect records. Our
Ensemble Learning (EL) techniques enhance BN base learners with bootstrapped re-sampling and combine the
predictions from multiple structure learning algorithms, ensuring a robust performance of BN. The framework
structure is modularized by products to reduce the sample size and achieve high efficiency. We proved
our method achieved good performance in acquiring causal knowledge, identifying the root cause with
probabilities, and predicting quality risks in production, from implementation and extensive experimental
testing on real-world data collected from the plastic industry.
1. Introduction

Root Cause Analysis (RCA) is essential to identifying product quality
issues and improving manufacturing excellence. However, RCA is a
difficult and time-consuming engineering problem [1]. The current
CA methods, including statistical and machine learning methods, are
rone to various limitations, such as heavy reliance on human knowl-
dge, lack of interpretability, inefficiency, lack of causality discovery,
nd coverage of uncertainty. While Bayesian Network (BN) seems to
ridge the gaps with its probabilistic reasoning ability to discover the
oot cause under uncertainty [2–4], BNs could be computationally
expensive [3] and unrobust due to data size, data sparsity [5], and the
selection of BN structure learning algorithms [6]. Inspired by the suc-
cess of ensemble learning in machine learning, we believe that fusing
multiple learning algorithms with ensemble learning techniques could
provide more robust RCA results. Besides, adopting a product-wise
framework to build BN models per product type could help improve
BN model accuracy as product defect root causes may vary between
product types.

Therefore, we present a product-wise Ensemble BN (EBN) where BN
is adopted as the fundamental learner for RCA to accommodate the
stochastic nature of manufacturing process variations [3] and to predict
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the probability of the potential product defect root causes. Ensemble
learning techniques are integrated to address the lack of robustness
in single BN learners. The framework is modularized by product type
to reduce the size of BN, increasing computational efficiency. Our
contributions are fourfold:

1. Developed an interpretable, data-driven, and probabilistic rea-
soning solution for RCA using BN, allowing manufacturers to
engage the causal knowledge visually and efficiently.

2. Incorporated ensemble learning methods to address the robust-
ness issues in existing BN models, via aggregating multiple BNs
learned from bootstrapped samples.

3. Designed a quantitative performance evaluation method for as-
sessing probabilistic reasoning results

4. Compared the performance of our model against individual
structure learning algorithms under different knowledge sources.
The results offer a direction for model strengthening and model
selection.

The rest of the paper is as follows. Section 2 summarizes knowledge
gaps in the literature. We detail the RCA problem to be solved and
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present our overall Ensemble BN solution in Section 3. Section 4
resents the detailed methods and algorithms. Section 5 verifies the
ffectiveness of our solution via real-world case studies. Section 6
oncludes the work.

. Related work

This section reviews RCA methods and identifies the knowledge
aps. Root cause analysis of product defects refers to investigating
he causal factors that lead to quality deviations [7] [8]. The purpose
f RCA is threefold: (a) to identify the root cause of a problem, (b)
o learn and understand the underlying mechanics of the issue, and
c) to identify appropriate corrective action to rectify the situation
ystematically [9]. The typical challenges and enablers of RCA have
een thoroughly investigated in [10,11]. Generally, RCA methods can
e categorized into two groups — statistical techniques and machine
earning methods.

.1. Statistical techniques

Statistical approaches exploit the statistical features in the data
o assist the RCA process, including Principal Component Analysis
PCA) [12], Partial Least Squares (PLS) [12], Fisher Discriminant Anal-
sis (FDA) [12], Dynamic Principal Component Analysis (DPCA) with
inimax distance classifier [13], and Discriminant Partial Least Squares
DPLS) [12]. However, these methods alone are not sufficient to per-
orm sophisticated RCA; they often need to integrate with other clas-
ifiers [13], such as multivariate statistical control charts [14,15] or
eature selection techniques [16]. Moreover, as the data size decreases,
heir performance deteriorates [13]. A statistical method that fuses
ynamic Principal Component Analysis (DPCA) and minimax distance
lassifier was implemented to simultaneously monitor and diagnose an
utomatically controlled process, though undesired performance was
bserved with smaller data samples [13]. In the meantime, DPLS was
sed for RCA on the failure in the Tennessee Eastman chemical plant by
aximizing covariance between the predictors [12]. The root cause was
uccessfully detected, whereas the assumption of multivariate Gaussian
istribution for the control limits of the PCA or PLS-based monitoring
ndices restricted their validity and adaptability to realistic process
ata [17]. Abdelrahman and Keikhosrokiani [18] applied a statistical
CA on assembly line anomaly detection by studying the minimum and
aximum values of each attribute in the data. They used Pareto chart
o visualize the frequency of the possible causes and its cumulative
ccurrence. Though the level of impact of each individual root cause
as calculated, their complex interdependencies were not analyzed.
n application of FDA for RCA in the chemical processing industry
evealed FDA’s shortcoming in capturing nonlinear behavior in the
ata [16]. It led to poor performance with an overall misclassifica-
ion rate of 38%. With the aid of feature selection algorithms, the
isclassification rate dropped to 17% [16].
Statistical RCA approaches can generally assist RCA in a short run

ime. However, their performance is not the most competitive [12].
hey struggle with non-linear relationship modeling [16], the require-
ent of large data size [13] and support algorithms [7,16,19] and
ack of interpretability. Therefore, more integrated and automated RCA
ethods are required.

.2. Machine learning methods

Machine learning techniques enable automated RCA by pattern
apping and knowledge acquisition from historical product defect
ecords. Algorithms, such as decision tree, Support Vector Machine
SVM), Artificial Neural Network (ANN) and BN, have been leveraged
o automatically identify the root cause from the historical production
ata under faulty situations [20]. Decision tree is popular thanks to
ts nature of generating human-interpretable results [21]. Chen [22]
103
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resented a decision tree learning approach to diagnose failures in large
nternet sites. Detzner proposed an improved method of the interactive
ecision tree to combine experts’ domain knowledge into the pattern
ecognition process in the automotive industry [21]. However, decision
ree did not seem to be a well-performed classifier as it required a
onger sampling time [1] and was incompetent in handling scarce
atasets [22]. Other research has shown that SVM outperforms conven-
ional classification technologies on root cause diagnosis. Chiang [16]
sed SVM to determine the root cause of the observed out-of-control
tatus in the chemical processing industry, outperforming FDA by three
imes on the misclassification rate. SVM also tends to run faster [23]
nd to have a stronger generalization capability with small sample
earning problems [24]. Unfavorably, the recognition accuracy of SVM
egrades severely when the two crucial structural parameters, penalty
actor, and kernel function parameter, are not tuned desirably [16,23].
NN has proven effective for RCA to recognize patterns in the data
asily, even over distorted inputs whilst yielding relatively high ac-
uracy [18] and flexibility [25] in classifying the root causes. On the
lip side, ANN is subjected to a long training time and the risk of poor
onvergence with increasing layers [26]. It is also criticized for its black
ox feature, omitting a logical explanation between inputs and outputs
27]. Accordingly, manufacturers are reluctant to employ it in the real
orld.
In general, the aforementioned machine learning methods face var-

ous issues, such as prediction accuracy, data scarcity, and causality
iscovery. Moreover, most methods model the RCA problem as a classi-
ication problem in determining whether the reason for defects belongs
o a class. Such approaches do not account for the probability of
ultiple root causes nor the distinct strength of their causal influ-
nces on product quality. However, probabilistic reasoning explains
he causal influence of the potential root causes with stochasticity. It
s an important attribute for RCA in industrial practice as it includes
ncertainty and supports decision-making for on-site staff.
Another common limitation among the existing RCA methods is

he lack of interpretability. Even though the final root causes are
dentified, it is intractable to explain the causality of the root cause
i.e., why the identified root cause contributes to the issue) without
human-interpretable knowledge representation. For example, Lee
t al. [28] developed an attention mechanism-based LSTM model for
CA in semiconductor yield enhancement considering the order of
anufacturing processes. Relying solely on data and deep learning
ethod, their approach showed obvious limitations in interpreting the
ausality of the root causes due to lack of knowledge integration.
his limits the manufacturer’s ability to find corresponding actions to
olve the problem in the real-world scenario, as the results are not
xplainable and not visualized. Therefore, there is an urgent need for a
obust, intelligent, human-interpretable probabilistic reasoning method
or RCA.
BN [4,29–31] has emerged with sheering benefits [7,32], in par-

icular for addressing uncertainty [2,3] where multiple root causes
an contribute to the occurred product failure with various probabil-
ties. The probabilities of different root causes inferred from BN can
lso quantify the strength of their causal influences on the quality
ssue. Causal relationships can be discovered in BN through model-
ng conditional dependencies between different variables, making it
owerful for reasoning in RCA [7,32,33]. BN is also a powerful tool
or knowledge representation as it displays the relationship amidst
ifferent features [4]. Acceptable results can be obtained by BN even
ith incomplete data [4]. For example, Kirchhof et al. [34] devel-
ped a large-scale, cross-process Bayesian Failure Network for RCA in
ithium-ion battery production based solely on knowledge from process
xperts. Though acceptable prediction results were obtained, the lack
f integration of production data on failures has significantly limited
heir model’s performance. Every coin has two sides; implementation
f BN is an NP-hard problem. The computational expense increases,

s the network size goes up [3]. Furthermore, BN’s performance can
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be worsened without any prior knowledge [2]. The robustness of BN
is sensitive to data sparsity [6], and the choice of structure learning
algorithms [35]. BN models tend to lose robustness for big datasets. The
sparsity from big data can make BNs have low independent validation
accuracy and be overfit [6]. Moreover, the prediction accuracy of
an individual BN model has been demonstrated to be dependent on
the selection of the BN structure learning algorithm [35]. This means
that BN learned from a single structure learning algorithm can be
insufficient and unrobust for identifying root causes. Comparatively,
fusing multiple learning algorithms via ensemble learning [36,37] can
improve the robustness of the models. Thus, we are inspired to develop
a more robust and accurate BN-based RCA framework by incorporating
an ensemble learning philosophy, as the first of its kind for solving
product defects issues via learning from historical production signals.

In summary, while statistical techniques and traditional machine
learning methods have enhanced the accuracy and efficiency of RCA,
they often treat RCA as a simplistic classification problem, typically bin-
ning outcomes into ‘defect’ or ’no defect’ categories. This approach fails
to account for the complex interplay of multiple root causes and their
probabilistic impacts on product quality. Furthermore, such methods
often lack the interpretability needed for practical application in real-
world manufacturing settings. In contrast, BN has the ability to perform
human-interpretable probabilistic learning, dynamically incorporating
new data to update its understanding of root causes, and effectively
modeling causal relationships that reveal how various factors interact
to impact product quality. This approach not only supports the inte-
gration of expert knowledge alongside data-driven insights but also
provides a flexible and responsive framework suitable for the variable
conditions of real-world manufacturing. However, the robustness of
BNs can be sensitive to the availability of data and the selection of
appropriate structure learning algorithms. Therefore, there is an urgent
need for an enhanced BN approach that integrates ensemble learning to
mitigate data scarcity and overfitting issues, thereby providing a more
accurate, interpretable, and robust RCA method.

3. Problem formulation and solution

This section formulates the RCA problem to be solved and our EBN
method Table 1.

3.1. Problem formulation

Fig. 1 shows the overall RCA problem via learning causal relations
from historical production records. Generally, a factory monitors each
job’s key production status and product defects along the process.
Given a factory, during the past period, has produced 𝑀 distinct
types of products 𝑃𝑑 = {𝑃𝑑1, 𝑃 𝑑2,… , 𝑃 𝑑𝑀} from 𝑁 production jobs
𝐽 = {𝐽1, 𝐽2,… , 𝐽𝑁}, resulted in a historical production dataset 𝐷.
This dataset tracks 𝐼 features — production-related factors that may
signal product defect issues (such as the operator, equipment used,
and cycle time), in 𝑋 = {𝑋1, 𝑋2,… , 𝑋𝐼}. Each feature is indexed as
𝑋𝑖 or (𝑋𝑖, 𝑋𝑗 ) in a pair. Let 𝑅𝑛 be the product quality of job 𝐽𝑛. It is
a binary variable, 𝑅𝑛 ∈ {0, 1}; 1 indicates that job 𝐽𝑛 is problematic
with quality issues; and 0 indicates no quality issue. The occurred
root causes, 𝑌 = {𝑌1, 𝑌2,… , 𝑌𝐶} where 𝐶 denotes the total number
of occurred root causes, in the records are regarded as the root-cause
candidates leading to product quality issues (i.e., 𝑅 = 1). Each root
cause 𝑌𝑐 has a corresponding probability 𝑃𝑐 implying the likelihood of
root cause 𝑌𝑐 causing the identified quality issues.

With all the elements involved in RCA defined, the three questions
in RCA can be formulated mathematically as follows.

Q1. Given a historical production data 𝐷 with features 𝑋 =
{𝑋1, 𝑋2,… , 𝑋𝐼}, find a function ℎ, such that it satisfies all the com-
ponents in (1), where ‘‘1’’ represents there is causality between the
pair and ‘‘0’’ otherwise. ℎ is developed to detect the existence of causal
relationships between job feature 𝑋 and 𝑋 , ℎ(𝑋 ,𝑋 ) → {0, 1}; the
104

𝑖 𝑗 𝑖 𝑗
Table 1
Table of notations.
Symbol Definition

Indices
𝑚 Index of produced product types
𝑛 Index of jobs
𝑖 Index of job features
𝑐 Index of root cause variables
𝑘 Index of structure learning algorithms
𝑠 Index of bootstrapped samples
Sets
𝑃𝑑 Set of products, 𝑃𝑑 = {𝑃𝑑1 , 𝑃 𝑑2 ,… , 𝑃 𝑑𝑀}
𝐽 Set of jobs, 𝐽 = {𝐽1 , 𝐽2 ,… , 𝐽𝑁}
𝑋 Set of job features, 𝑋 = {𝑋1 , 𝑋2 ,… , 𝑋𝐼}
𝑌 Set of root cause variables, 𝑌 = {𝑌1 , 𝑌2 ,… , 𝑌𝐶}
𝑌 ′ Set of root cause variables, 𝑌 ′ = {𝑌1 , 𝑌2 ,… , 𝑌𝐶 ′ } for given job 𝐽𝑛
𝑃 Set of probabilities for root cause variables, 𝑃 = {𝑃𝑌1 , 𝑃𝑌2 ,… , 𝑃𝑌𝐶′ }
𝑃𝑚,𝑘 Set of root cause probabilities for BN structure 𝑚,𝑘
𝑋𝑖 Job features for job 𝑖
𝐷 Set of historical job records for all given product types 𝑃𝑑,

𝐷 = {𝐷1 , 𝐷2 ,… , 𝐷𝑀}
𝐴 Set of structure learning algorithms, 𝐴 = {𝐴1 , 𝐴2 ,… , 𝐴𝐾}
 Set of vertices in a BN structure 
 Set of arcs in a BN structure 
𝑝 Set of conditional probabilities for vertices  in a BN structure 
𝐸 Set of evidence of a to-be-predicted job 𝐽𝑛 to be input into a BN

structure  for Bayesian inference, 𝐸 ←← 𝑋𝑛
Constants
𝑀 Number of product types
𝑁 Number of jobs
𝐼 Number of features
𝐶 Number of total occurred root causes
𝐾 Number of implemented structure learning algorithms
𝑆 Number of total bootstrapped samples
Variables
𝐽𝑛 𝑛th production job
𝑋𝑖 𝑖th production feature of the jobs
𝑌𝑐 𝑐th root cause contributing to the quality issues of the jobs
𝑃𝑐 The probability of root cause 𝑌𝑐 contributing to quality issues of the

jobs
𝑅𝑛 Binary variable: 1 indicating job 𝐽𝑛 has quality issues; 0 otherwise
𝐷𝑚𝑠

𝑠th even subset of historical production data for 𝑚th product
𝑚𝑠 ,𝑘 The learnt BN structure from subset 𝐷𝑚𝑠

via algorithm 𝐴𝑘
𝑚,𝑘 The aggregated BN structure for 𝑚th product via algorithm 𝐴𝑘
𝑣𝑖 A vertex in a BN structure , 𝑣𝑖 ∈ 
𝑒𝑣𝑖 ,𝑣𝑗 An arc connecting vertex 𝑣𝑖 and 𝑣𝑗
𝑤𝑚,𝑘

The weight assigned to algorithm 𝐴𝑘 for product 𝑃𝑑𝑚 in for fusing
predictions from different BN models

𝑓𝑘 The optimal frequency for algorithm 𝐴𝑘 in RCA predictions
MAE The mean of absolute difference between predicted and observed

probabilities for a group of root causes
𝜀𝑟𝑎𝑛𝑘 The ranking difference between prediction and observation on an

ordered sequence

existence of causal relationships between job feature 𝑋𝑖 and root cause
𝑌𝑐 , ℎ(𝑋𝑖, 𝑌𝑐 ) → {0, 1}; the existence of causal relationships between job
feature 𝑋𝑖 and the observation 𝑅, ℎ(𝑋𝑖, 𝑅) → {0, 1}; and the existence
of causal relationships between root cause 𝑌𝑐 and the observation 𝑅,
ℎ(𝑌𝑐 , 𝑅) → {0, 1}.

ℎ(𝑋𝑖, 𝑋𝑗 ) → {0, 1};ℎ(𝑋𝑖, 𝑌𝑐) → {0, 1};ℎ(𝑋𝑖, 𝑅) → {0, 1};

ℎ(𝑌𝑐 , 𝑅) → {0, 1}, 𝑋𝑖, 𝑋𝑗 ∈ 𝑋, 𝑖 ≠ 𝑗, 𝑋𝑖, 𝑌𝑐 ∈ 𝑌
(1)

Q2. Given a finished job 𝐽𝑛 with quality issues 𝑅𝑛 = 1, what are
the non-empty set of root-cause variables 𝑍 = {𝑌1, 𝑌2,… , 𝑌𝐶′} for 𝐶 ′ ≤
𝐶,𝑍 ⊆ 𝑌 , and what are their corresponding probabilities 𝑃 = {𝑃𝑌1 , 𝑃𝑌2 ,
… , 𝑃𝑌𝐶′ } based on its job feature vector 𝑋𝑛?

Q3. Given a job 𝐽𝑛′ that has not been operated yet, what is the value
of 𝑅𝑛′ , 𝑅𝑛′ ∈ {0, 1}?

3.2. Proposed solution

This section presents the proposed product-wise Ensemble BN for
solving the above three RCA problems.
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Fig. 1. Overall learning task from raw production records to answering three root cause analysis questions.
𝐴

I
B
a
a
i
g
a
𝑆
d
i

s
o
o
i
𝑝
𝑣
i
b
(

Our method employs a product-wise Ensemble BN model to find the
causal relationships between job features 𝑋, potential root causes 𝑌 ,
and observation of product quality 𝑅 for a product 𝑃𝑑𝑚 based on its
historical production data 𝐷𝑚. Once the causal network is discovered,
the job features of the to-be-predicted job 𝐽𝑛, 𝑋𝑛 will be introduced
as external evidence 𝐸 into the causal network to allow probability
inferencing and risk prediction. The proposed framework consists of
three steps outlined in Fig. 2: (I) — Modularize data by products, (II)
— Construct bagged BN models, and (III) — Combine BN predictions
using the Weighted Average Ensemble Learning (WAEL) technique.

In the first step, given a job 𝐽𝑛 producing product 𝑃𝑑𝑚, the proposed
method modularizes the historical data 𝐷 into 𝑀 (i.e., the number of
product types) small product-wise data samples {𝐷1, 𝐷2,… , 𝐷𝑀}. Each
dataset captures the historical job records that produce the correspond-
ing product. This strategy reduces the sample size for BN. Hence, it
increases BN learning efficiency and avoids sparsity that often occurs
in big datasets. As a result, the historical data sample for job 𝐽𝑛 will be
𝐷𝑚 according to its product 𝑃𝑑𝑚.

Based on the modularized historical record 𝐷𝑚, in the second step,
the structures of BN will be learned using a structure learning algorithm
𝐴𝑘 with bagging ensemble technique. In total, there are 𝐾 different
structure learning algorithms, {𝐴1, 𝐴2,… , 𝐴𝐾}, implemented to learn
BN models. Initially, 𝐷𝑚 is bootstrapped evenly into 𝑆 subsets for
all the 𝐾 algorithms as shown in Part II of Fig. 2, with each subset
105
being 𝐷𝑚𝑠
, 𝐷𝑚𝑠

⊆ 𝐷𝑚. Then, the structure learning algorithm 𝐴𝑘,
𝑘 ∈ {𝐴1, 𝐴2,… , 𝐴𝐾}, will learn a BN model 𝑚𝑠 ,𝑘 for each subset 𝐷𝑚𝑠

,
resulting in a total of 𝑆 models {𝑚1 ,𝑘,𝑚2 ,𝑘,… ,𝑚𝑆 ,𝑘} for algorithm 𝐴𝑘.
mplementing different structure learning algorithms 𝐴𝑘 for learning
N model 𝑚𝑠 ,𝑘 will be illustrated in Section 4.2, where the directed
cyclic graphs (DAG) properties of the learned BN structures 𝑚𝑠 ,𝑘 are
lso defined. At the end of Step 2, 𝑆 learned BN models are aggregated
nto one BN structure 𝑚,𝑘 using bagging ensemble technique. The bag-
ing ensemble technique is integrated to account for sample variations
nd to reduce the risk of scarce data by fusing the models from the
bootstrapped samples, enabling robust BN structure learning. The
etailed implementation of model aggregation using bagging ensemble
s shown in Section 4.1.
After the bagged BN structure 𝑚,𝑘 is constructed with distinct

tructure learning algorithm 𝐴𝑘, parameter learning and inferencing
f BN structure 𝑚,𝑘 need to be conducted in Step 3 to infer a set
f root-cause probabilities, 𝑃𝑚,𝑘 = {𝑃𝑚,𝑘1 , 𝑃𝑚,𝑘2 ,… , 𝑃𝑚,𝑘𝐶 }. As shown
n Part III of Fig. 2, Step 3 starts with BN parameter learning where
(𝑣𝑖) for each 𝑣𝑖 from all the vertices 𝑚,𝑘 in model 𝑚,𝑘 is estimated,
𝑖 ∈ 𝑚,𝑘. The explicit parameter learning method will be elaborated
n Section 4.3. Then, inference introduces the job features of the to-
e-predicted job 𝐽𝑛 as external evidence 𝐸 into the BN model 𝑚,𝑘
i.e., 𝐸 ← 𝑋 ). Bayesian inference then updates the belief distribution
𝑛
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Fig. 2. The proposed product-wise Ensemble BN framework for finding the root cause relations between job features 𝑋, potential root causes 𝑌 and the observation of product
quality 𝑅 for product 𝑃𝑑𝑚 based on its historical data 𝐷𝑚.
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𝐵𝐸𝐿(𝑣𝑖) for each 𝑣𝑖 ∈ 𝑚,𝑘, based on the new evidence 𝐸 using junc-
ion tree algorithms (explained in Section 4.4). 𝐵𝐸𝐿(𝑣𝑖) contains the
robability of root cause 𝑌𝑐 contributing to quality failures, 𝑃𝑐 , when
𝑖 corresponds the root-cause variable 𝑌𝑐 . Similarly, the probabilities
an be inferred for a set of potential defect root causes 𝑌 , obtaining
𝑚,𝑘 = {𝑃𝑚,𝑘1 , 𝑃𝑚,𝑘2 ,… , 𝑃𝑚,𝑘𝐶 } in the context of using structure learning
lgorithm 𝐴𝑘 based on dataset 𝐷𝑚. Finally, the sets of predicted prob-
bilities {𝑃𝑚,1,… , 𝑃𝑚,𝐾} from different BN models {𝑚,1,𝑚,2,… ,𝑚,𝐾}
earned by distinct algorithms {𝐴1, 𝐴2,… , 𝐴𝐾} are fused into a single
et of root-cause probabilities 𝑃𝑚 = {𝑃𝑚1

, 𝑃𝑚2
,… , 𝑃𝑚𝐶

} through WAEL
echnique to enhance prediction accuracy and robustness, which is
urther explained in Section 4.5. The resulting root-cause probabilities
𝑚 can answer Q2 for RCA. The same procedures are taken to predict
he quality risk 𝑅𝑛′ , of a job 𝐽𝑛′ to answer Q3.
In summary, the proposed solution comprises two functional mod-

les, BN models and ensemble learning techniques. BN is the funda-
ental model of our proposed method. It is a probabilistic graphical
odel for reasoning under uncertainty [23]. BN development process
oes through three procedures, namely, structure learning, parameter
earning, and inference, to provide probabilistic graphical reasoning.
tructure learning algorithms for BN uncover the causal relationships
etween the variables  ⊆ {𝑋, 𝑌 ,𝑅} from the historical data 𝐷 and
onstruct human-interpretable graphical networks. Parameter learning
stimates the conditional probability tables (CPT) for each vertex 𝑣𝑖,
hich is an important attribute for inference. Inference updates the
106
elief in the network by passing messages regarding probability distri-
utions throughout the network to infer the probabilities of different
oot causes leading to the event of interest. As a result, intelligent
nd human-interpretable probabilistic reasoning is achieved by BN. On
he other hand, ensemble learning techniques are incorporated to rein-
orce the robustness of the constructed BN models. Bagging ensemble
echniques are applied during BN structure learning to counter BN’s
ensitivity to data sparsity. The weighted average ensemble learning
echnique is integrated after the BN inferencing. It fuses the predic-
ions from the structures of BN models learned by different learning
lgorithms to alleviate the deficiencies in the accuracy and stability of
single BN model, ensuring robustness.

. Methods

This section presents all the required methods and algorithms, in
he sequence of bagging ensemble learning, BN structure learning,
arameter learning, Bayesian inference, and WAEL, which follows the
orkflow of the proposed RCA solution in Section 3.

4.1. Bagging ensemble learning

Bagging ensemble learning technique is developed first so that it
can be used to reinforce the structure learning process of BN in the
following section. Bagging technique, also known as bootstrap aggre-
gating, accounts for sample variations and reduces the chance of a
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Algorithm 1: Bayesian Network Structure Learning with Bagging
Ensemble
Input : Training data for product 𝑃𝑑𝑚, 𝐷𝑚, Structure learning

algorithm 𝐴𝑘; Bootstrap rounds
utput: Bagged Bayesian Structure 𝑚,𝑘

for each 𝐷𝑚𝑠
in {𝐷𝑚1

, 𝐷𝑚2
,… , 𝐷𝑚𝑆

} do
𝑚𝑠 ,𝑘 = 𝐴𝑘(𝐷𝑚𝑠

)
end
𝑚,𝑘 = 1

𝑆
∑𝑆

𝑠=1 𝑚𝑠 ,𝑘

poor BN model induced by sparse data, enabling robust BN structure
learning. As shown in Algorithm 1, it resamples the original data with
eplacement and implements homogeneous learners on the varying
esulting samples.

.2. Structure learning

The structure of BNs will then be learned by adopting the bagging
nsemble technique. This sub-section presents all the different knowl-
dge sources and structure learning algorithms used to learn the BN
tructures in our work.

.2.1. Knowledge sources
This sub-section discusses different knowledge sources from which

he BN structures are learned. The learned BNs are DAG, defined as
= ( , ).  denotes vertices (𝑣𝑖, 𝑣𝑗 ∈ ), corresponding with the
ariables selected from the historical job records, including job features
, root-cause variables 𝑌 and quality risk indicator 𝑅,  ⊆ {𝑋, 𝑌 ,𝑅}.
denotes a set of arcs 𝑒𝑣𝑖 ,𝑣𝑗 in , signifying the conditional dependency
etween the connected random variables (𝑣𝑖, 𝑣𝑗). If a causal relation-
hip exists between 𝑣𝑖 and 𝑣𝑗 , an arc linkage 𝑒𝑣𝑖 ,𝑣𝑗 is established in the
orresponding BN model, also referred to as causal knowledge. If the
rc linkage 𝑒𝑣𝑖 ,𝑣𝑗 in the network is known ahead of structure learning,
𝑣𝑖 ,𝑣𝑗 is called prior knowledge. They are normally discovered by human
nstinct or experience. Structure learning is the process of deducing the
tructure of BN from the dependency relations in the data, aided by
ny prior knowledge as constraints. Our solution injects three different
nowledge sources for BN structure learning, namely ‘‘Data’’, ‘‘Hybrid’’
nd ‘‘Human’’. When a structure is purely learned from the data without
ny prior knowledge, its knowledge source is labeled as ‘‘Data’’; When
he entire structure is solely built on human knowledge without any
tructure learning algorithm, it is classified as ‘‘Human’’ knowledge
ource; When structure learning algorithms learn the BN structure with
rior knowledge, it is defined as a ‘‘Hybrid’’ knowledge source as it
nvolves both prior knowledge obtained from human and structure
earning from the data. In our study, prior knowledge is derived from
combination of sources in the case factory. While data analysts
lay a crucial role in identifying and structuring this knowledge, it is
lso significantly enriched by surveys conducted with operators. These
urveys capture valuable firsthand observations and experiences of the
perators, providing insights into causal influences from job features
o the root-cause variables. This collaborative approach ensures that
ur analysis integrates both the detailed analytical perspectives of the
ata analysts and the practical, operational insights of the operators,
eading to a more accurate and comprehensive understanding of the
anufacturing processes.
As a result, we will build BNs using these three different knowledge

ources. Particularly, ‘‘Data’’ and ‘‘Hybrid’’ knowledge sources can be
ntegrated with different structure learning algorithms.

.2.2. Structure learning algorithms
In BNs, predicted probabilities are inferred based on a causal struc-

ure. However, the structure of a BN is not often known. In manufactur-
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ng, normally, only a few arcs, representing causal relationships, in the
etwork could be established based on expert knowledge. Therefore,
utomatic structure learning is needed to deduce the structure of BN
rom the dependency relations in the data, aided by any prior knowl-
dge as constraints. The structure learning task for a dataset of 𝐷𝑚 for
product 𝑃𝑑𝑚 can be defined as determining a set of directed arcs  for
the DAG to achieve some criterion used for evaluating the goodness of
fit of the model. We adopted hill-climbing (hc), tabu search, pc.stable,
grow-shrink (gs), incremental association Markov blanket (iamb), max–
min hill-climbing (mmhc) and chow.liu algorithms as the base learners
for learning the BN model. Hill-climbing and tabu search allow a
greedy search without trapping in local optimum. However, they tend
to overfit for large datasets. Grow-shrink and incremental association
Markov blanket converge quickly, but they are subject to poor node
connection with sparse or small data sets. Hybrid learning offers a
sound skeleton identification process and parameter tuning. Chow.liu
algorithm is time efficient, whereas its spanning tree structure and
direction assigning method limits its use on non-tree network. Due to
the varying practicality of different learning models in different cases,
the learned models will then be aggregated via (6).

4.3. Parameter learning

After the structures of BN are learned, the strength of the condi-
tional dependency between each pair of connected variables in BN
needs to be obtained through CPTs to allow probability inferencing.
Parameter learning entails computing the CPTs of each node given its
parent nodes. We apply Bayesian parameter estimation to estimate the
values of CPTs. 𝑝(𝑣𝑖) denotes the probability density function of an
observable variable 𝑣𝑖, reflecting its contribution to a quality issue.
With its distribution depending on the unknown parameter 𝜃, 𝑝(𝑣𝑖|𝜃)
represents the prior probability density function for variable 𝑣𝑖, given
𝜃. When new evidence 𝐸 = {𝑣1, 𝑣2,… , 𝑣𝑛} is found for variable 𝑣𝑖 in
the experiment, the goal of parameter learning is to compute 𝑝(𝑣𝑖|𝐸)
so that its value approaches the unknown 𝑝(𝑣𝑖) as close as possible. It
is noted that 𝜃 is modeled as a random variable following distribution
𝑝(𝜃). Then the probability density function of 𝑣𝑖 given a set of evidence
𝐸 can be inferred as follows:

𝑝(𝑣𝑖|𝐸) = ∫ 𝑝(𝑣𝑖, 𝜃|𝐸) 𝑑𝜃

= ∫ 𝑝(𝑣𝑖|𝜃, 𝐸)𝑝(𝜃|𝐸) 𝑑𝜃

= ∫ 𝑝(𝑣𝑖|𝜃)𝑝(𝜃|𝐸) 𝑑𝜃.

(2)

As 𝑝(𝑣𝑖|𝜃) is known before obtaining new evidence 𝐸, the posterior
probability density function for parameter 𝜃 after 𝐸, 𝑝(𝜃|𝐸), needs to
be obtained. This is achieved by adapting Bayes’ theorem as shown in:

𝑝(𝜃|𝐸) =
𝑝(𝐸|𝜃)𝑝(𝜃)

𝑝(𝐸)
=

𝑝(𝐸|𝜃)𝑝(𝜃)
∫ 𝑝(𝐸|𝜃)𝑝(𝜃) 𝑑𝜃

, (3)

where 𝑝(𝜃) is the prior distribution, and 𝑝(𝐸|𝜃) is the likelihood func-
ion. 𝑝(𝜃) represents the knowledge of the parameter before engaging
he information from the data, while 𝑝(𝜃|𝐸) updates the distribution
succeeding the introduction of new evidence. Consequently, the prob-
ability distribution of node 𝑣𝑖 can be estimated. For a node 𝑣𝑖, 𝑣𝑖 ∈  ,
if 𝑣𝑖 has a parent, its CPT will be conditional probability distribution
based on the states of its parent nodes 𝑝(𝑣𝑖|𝑝𝑎(𝑣𝑖)); else, its CPT will
be its own probability distribution 𝑝(𝑣𝑖). These conditional probabilities
also embody the strength of causal dependency relations between a pair
of variables (𝑣𝑖, 𝑣𝑗 ). These learned CPTs can now be used in Bayesian
inference to infer the probabilities of reject root causes.

4.4. Inference

Once the parameters of the BN models are learned, Bayesian infer-

ence then needs to be performed to obtain the root-cause probabilities
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from the learned BN models. The purpose of a Bayesian network is to
enable the efficient computation of updated probability distributions
for a set of events in the Bayesian network, given the evidence of
the newly observed cases. If our Bayesian network is a tree structure,
then Belief Propagation (BP) can be applied to infer the probability
of interest automatically. However, most learned structures are more
complicated than trees. Therefore, Junction Tree (JT) algorithm needs
to be implemented in our study to infer the probability of each reject
cause from the complex structures that are learned previously. The core
idea of the junction tree algorithm is to turn a graph into a tree of
clusters amenable to Belief Propagation. We start with a Bayesian struc-
ture with its corresponding parameters learned from above, and then
undergo the following steps for a JT inference: (a) Moralize the graph
(b) Triangulate the graph (c) Build a junction tree (d) Apply Belief
Propagation. For presentation purposes, a simplified Bayesian network
 = ( , ) is used for demonstrating the process of JT algorithm, as
shown in Fig. 3.

(a) Moralization connects each node’s parents and drops the di-
rectionality of the arcs to allow a uniform treatment of directed and
undirected graphs. (b) Triangulation adds chords into the moral graph
𝑀 such that any cycle of more than three vertices short in the graph
is cut short. (c) Junction tree is built by forming a maximal spanning
tree from the cliques. When two cliques intersect, they are joined in
the junction graph by an edge labeled with their intersection, called
separators. A junction tree 𝐽𝑇 is then extracted from the junction
raph such that the tree contains all the cliques (spanning tree) and
atisfies the running intersection property: For each pair of clusters 𝑐(𝑖),
𝑐(𝑗), every cluster on the path between 𝑐(𝑖), 𝑐(𝑗) contains 𝑣(𝑖)𝑐 ∩ 𝑣(𝑗)𝑐 .

Finally, the probability distributions of the cliques (nodes) and
eparators (edge labels) in the junction tree 𝐽𝑇 need to be transferred
rom the conditional probability distribution of the original Bayesian
etwork  using potentials. The process is carried out as follows. For
ach (conditional) distribution from the BN, create a node potential:

(𝑣𝑖|𝑝𝑎𝑟(𝑣𝑖)) ⇒ 𝜙𝑖(𝑣𝑖, 𝑝𝑎𝑟(𝑣𝑖)), (4)

here 𝑝𝑎𝑟(𝑣𝑖) is the parent of node 𝑣𝑖, 𝜙𝑖 signifies the potential between
he nodes. Assign each node potential to its associated clique 𝐶, and
ompute the clique potential 𝜙𝐶 for 𝐶 as the product of its assigned
ode potentials:

𝐶 =
∏

𝜙𝑣𝑖

𝜙𝑣𝑖 , (5)
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uch that {𝑣𝑖} ∪ 𝑝𝑎𝑟(𝑣𝑖) ⊆ 𝑣𝐶 .
Fig. 4. Belief propagation graph for Bayesian Network inference.

(d) Belief Propagation, also known as sum–product message passing,
is a message-passing algorithm for inference on tree-like structures.
Since the learned Bayesian networks have been converted into tree
structures by JT algorithms, BP can be used to infer the probability of
each reject reason from the junction trees, conditional on any observed
nodes with the external evidence. In addition, belief propagation is a
generalization of the Forward–Backward method and consists of two
passes with Pass 1 (Upward Pass) from the leaf nodes to the root node,
and Pass 2 (Downward Pass) from the root node to the leaf nodes, as
shown in Fig. 4.

Pass 1 takes the evidence at node 𝑣𝑖 and computes the message 𝜆(𝑣𝑖)
from its child node if there is any. Then the message is passed upwards
to its parent node with matrix multiplication on the conditional proba-
bility matrix𝑀𝑣𝑖 , generating information 𝜆𝑣𝑖 (𝑝𝑎𝑟(𝑣𝑖)) until it reaches the
oot node, following the logic in Fig. 5. On the other hand, Pass 2 starts
n the opposite direction. It takes the prior distribution of the current
ode 𝑣𝑖 and the message from its parent nodes to compute the message
(𝑣𝑖) to pass it downwards to its child nodes. Since the node 𝑣𝑖 has
already captured both messages from its children and parents, the belief

probability 𝐵𝐸𝐿(𝑣𝑖) can be calculated by combining these messages,
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Fig. 5. Messages passed in pass 1 and pass 2 in belief propagation.
𝜆(𝑣𝑖) and 𝜋(𝑣𝑖). 𝐵𝐸𝐿(𝑣𝑖) encapsulates the conditional distribution for a
node 𝑣𝑖, given all the associated evidence in the network. The message
containing the belief probabilities keeps being passed down to its child
nodes with the elimination of duplicate information to update the belief
of its child nodes. Once it reaches all the leaf nodes, all the belief
probabilities 𝐵𝐸𝐿(𝑣𝑖) in the network have been inferred.

When the inferred variable is a root-cause variable (i.e., 𝑣𝑖 ⇒ 𝑌𝑐),
𝐵𝐸𝐿(𝑣𝑖) expresses the probability of a root cause 𝑌𝑐 leading to quality
failures, given all the evidence in the network, which is our probability
of interest for Q2. If the variable is the quality risk indicator 𝑣𝑖 ⇒ 𝑅, the
belief probability 𝐵𝐸𝐿(𝑣𝑖) encodes the probability of the quality risk
indicator 𝑅 being ‘‘1’’, implying whether the job will have quality issues
or not. If the probability exceeds a predefined classification threshold,
the job is predicted to be problematic with quality issues. Otherwise,
the job is projected to be normal. In this way, Q3 can also be solved. In
our case, instead of using predictions from a single BN model to answer
Q2 and Q3, we fuse the predictions from a library of BN models into
aggregated results using WAEL to answer the research questions.

4.5. Weighted average ensemble learning

To provide a robust and accurate RCA solution, we fuse the pre-
dictions from different BN models, using WAEL. WAEL is a voting
ensemble method that combines the predictions from multiple models
by taking the weighted sum of the predictions for regression models or
selecting the class with the largest weighted sum of predicted proba-
bilities for classification models. As an important factor, the choice of
weight needs to reflect each model’s skill. We chose the weight based
on their robustness, which is reflected by their likelihood of being the
best classifier. The likelihood is computed as the number of times that a
BN model outputs the most accurate prediction (optimal frequency) in
ratio to the total number of times that a prediction has been performed
(total frequency), as shown in:

𝑤𝑚,𝑘 = 𝑓𝑘∕
𝐾
∑

𝑖=1
𝑓𝑖, (6)

where 𝑤𝑚,𝑘 is the weight assigned to Bayesian learning algorithm
𝐴 for Product 𝑃𝑑 , 𝑓 is the optimal frequency for algorithm 𝐴 ,
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𝑘 𝑚 𝑘 𝑘
and 𝐾 is the total number of BN learning algorithms. The optimal
frequency of each model can be obtained from experiments on all
the BN models learned by different structure learning algorithms and
knowledge sources on the entire dataset.

Subsequently, the WAEL technique follows Algorithm 2 to obtain
the fused predictions for Ensemble BN. It first gathers the BN struc-
tures learned by different learners. Then the predictions are performed
through parameter learning and inference on the collected distinct
structures. After that, each prediction is weighted according to (6).
Lastly, the weighted predictions are summed up to obtain the aggre-
gated results. In this way, WAEL combines the predictions from distinct
BN models into one set of root-cause probabilities and a single risk
prediction for a job.

4.6. Answering the RCA questions

Now since the predictions from different BN models have been fused
into a robust aggregated solution, the three RCA questions raised in 3.1
can be answered. For Q1, the casual relationships have been discovered
from the historical production data. For Q2, the parameters of the
BN models are learned. For a given problematic job, we can input
its job features into the learned BNs for inference. By following the
procedures of the junction tree algorithm, the probabilities of potential
reject causes can be inferred from different BNs. Then the root-cause
probabilities predicted from different BN models are fused into an
aggregated set of probabilities using WAEL to output a robust solution.

Algorithm 2: Bayesian Network Prediction with Weighted Average
Ensemble Learning
Initialise Testing data for product 𝑃𝑑𝑚, 𝐷𝑚;
Initialise {𝑚,1,… ,𝑚,𝐾} for 𝑃𝑑𝑚;
Initialise weights of each bagged model, {𝑤𝑚,1 ,… , 𝑤𝑚,𝐾 };
for each 𝑚,𝑘 in {𝑚,1,… ,𝑚,𝐾} do

𝑃𝑚,𝑘 = 𝑚,𝑘(𝐷𝑚)
end
𝑃𝑚 =

∑𝐾
𝑘=1 𝑤𝑚,𝑘𝑃𝑚,𝑘
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Table 2
Dataset variables.
Variable name Variable type Data description

jobRun Feature The number of operations performed for a job
jobStartTime Feature The timestamp the job starts
Tool Feature The tool a job runs with
Equip Feature The machine a job runs on
jobStartUser Feature The operator who starts the job
jobStopUser Feature The operator who stops the job
ProductionTime Feature The time it takes to complete a job
DownTime Feature The downtime rate of a job
CycleTime Feature The cycle time of a job
jobPLCSetupTime Feature The time it takes to set up a job
RejWeight_kg Feature The weight of rejected products in kg
rrnDescription Root cause The names of the potential reject reasons
isRejectFail Observation Binary; 1 indicates a job with quality issues, 0 otherwise
For Q3, the job features of a future job are input into various BN models
to predict the likelihood of it being a problematic job.

5. Experimental results

This section presents an experimental study on a real-world factory
to validate our solution performance, with discussions on the dataset,
performance evaluation metrics, and comparative results.

5.1. Dataset

The case company is a plastic manufacturer specializing in pro-
ducing drug packages. In their production, a combination of manual
data logging and factory monitoring system tracks all the production
processes for each production batch. Information such as machines, raw
material, operators, production parameters, and job quality signals are
tracked. Our dataset includes all this information for 6791 production
jobs across 199 product types. Table 2 lists all the tracked parameters
n the raw dataset. Note that the BN topology developed based on this
ataset is presented in Fig. 1, reflecting the complex interdependencies
mong variables detailed in Table 2. This visualization serves as a
oundational component of our methodology, illustrating how each
ariable within the network is intricately connected to facilitate a
omprehensive understanding of the manufacturing processes.

.2. Evaluation metrics

We design the below evaluation metrics for assessing our model’s
erformance for predicting the probabilities of the reject causes for a
iven job and classifying the quality risk of scheduled future jobs.

.2.1. Evaluation methods for root cause prediction
Q2 is to identify a list of potential reject causes and their corre-

ponding probabilities for a job with quality issues. This means that
he predicted result of an instance will be a sequence of probabili-
ies. The ordering of the root causes in the sequence is important,
ndicating which reject causes are the dominant reasons. Therefore,
oth the accuracy of each predicted probability and their ranking in
he sequence need to be evaluated to have a comprehensive judgment
n the predicted lists of probabilities. Therefore, our prediction error
etric includes Mean Absolute Error (MAE) and ranking error. MAE is
o quantify the difference between the predicted and observed proba-
ilities for a group of root causes on average, and ranking error is to
dentify the ranking difference between prediction and observation as
equences. MAE is calculated by

AE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|, (7)

where 𝑦𝑖 is the predicted probability for root cause 𝑖 in the sequence,
𝑦𝑖 is the observed probability, and 𝑛 is the length of the probability list
(i.e., the number of identified root causes in the list for a job).
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Before computing the ranking error of the predicted sequence, all
the noises in the probabilities need to be removed so that the ranking
metric will not be oversensitive toward considerably small probabil-
ities. This is achieved by truncating the probabilities to 2 significant
figures. Then, each probability in the list is assigned a rank according
to the magnitude of the predicted probabilities. The ranking differ-
ence between the observed and predicted sequences can be quantified.
Eventually, the ranking difference in ratio to the possible maximum
ranking difference is computed as ranking error. The ranking error can
be obtained via:

𝜀𝑟𝑎𝑛𝑘 =

⎧

⎪

⎨

⎪

⎩

∑𝑘
𝑖=1 |𝑟𝑎𝑛𝑘𝑖−𝑟𝑎𝑛𝑘𝑖|

𝑘2∕2 , if 𝑘 is even
∑𝑘

𝑖=1 |𝑟𝑎𝑛𝑘𝑖−𝑟𝑎𝑛𝑘𝑖|
𝑘2∕2 , otherwise;

(8)

where 𝑘 is the length of the predicted list. Then, MAE and ranking error
are combined by a weighted sum to comprise the prediction error, as in
(9). The parameter 𝑤 can be used to interpolate between the accuracy
of predicted root cause probabilities and their ranking in sequence. In
this study, we set 𝑤 = 0.5.

𝜀 = 𝑤 ×𝑀𝐴𝐸 + (1 −𝑤) × 𝜀𝑟𝑎𝑛𝑘 (9)

5.2.2. Evaluation methods for risk prediction
Q3 is a classification problem where the jobs with quality issues

must be predicted before execution. We adopt common classification
problem metrics, i.e., accuracy, sensitivity, and specificity together.

In manufacturing, we are more concerned with Type I Error (False
Positives). Since the system should not distract the staff often with
a false alarm, it needs to guarantee all the alarms that went off are
correct and worth taking note of. Otherwise, the alert system will lose
its credibility among the factory workers. As a result, the evaluation
system will emphasize False Positive Rate (FPR), which is the pro-
portion of identified positives (i.e., jobs predicted to be problematic)
among the normal jobs. This is also defined as 1-specificity. The Re-
ceiver Operating Characteristics (ROC) curve provides a good way to
visualize the true positive rate (or sensitivity on the y-axis) against
the false positive rate (or ‘‘1-specificity’’ on the x-axis). It also gives
a picture of the classifier’s performance across all possible probability
thresholds. Additionally, the Area Under the ROC Curve (AUC) provides
an aggregate measure of performance across the whole spectrum of
classification thresholds. One way of interpreting AUC is the ability of
a classification model to distinguish 1s from 0s. Lastly, the robustness
of different algorithms will be assessed by the likelihood of generating
the worst predictions.

5.3. Data preparation and experimental setup

It is well known that correlated features in regression analysis
can lead to an inflation of Type I Error, whereas such an issue is
inclined to persevere in BN [38]. Therefore, we carried out a pair-

wise correlation test against all the features to eliminate the highly
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Fig. 6. Correlation matrix of all job features.
orrelated feature ‘‘Tool’’. Fig. 6 presents the correlation matrix of all
he 19 job features (shown in the diagonal, including: isRejectFail,
rnDescription, jobPk, jobRun, matID, ToolID, equID, jobStartUserPk,
obStopUserPk, RejWeight, rejContributor, ActCycleTime, ActRejectPC,
ctDowntimePC, Season, Shift, ActCycleTime, ActDowntimePC, job-
LCSetupTime), which includes both numerical correlation coefficients
nd visual scatter plots. The upper right half of the matrix displays the
orrelation coefficients, ranging from −1 to 1, indicating the strength
nd direction of the linear relationships between pairs of features. A
trong positive correlation (values near 1) suggests that as one feature
ncreases, the other tends to increase as well; whereas a strong negative
orrelation (values near -1) indicates that one feature tends to decrease
s the other increases. Values near 0 imply little to no linear correlation.
onversely, the lower left half of the matrix shows scatter plots for
ach pair of features, providing a visual insight into the nature of their
elationships. These plots help to identify not only linear but also poten-
ial non-linear relationships or distributions without clear trends, which
re critical for structuring our BN in root cause analysis, ensuring that
t captures the true interactions and dependencies between variables
ffectively. In the case study, we performed 10-fold cross validation on
he 6791 data samples with 90% for training BN algorithms and 10%
or testing RCA and defect risk prediction, for each of the folds across
99 product types. When calculating the worst model frequency, the
ied models are counted multiple times for each sample which causes
he total to be greater than the sample size.

.4. Predicted probabilities of reject causes for RCA

This section shows the results for question Q2, predicting the prob-
bilities of each root cause for each job. The ground truth for defect
auses in this work was established through a collaborative effort with
ndustry experts, who brought extensive practical experience to the
rocess. This process involved detailed discussions where each poten-
ial defect instance was thoroughly validated and categorized, ensuring
he reliability and applicability of our ground truth. Such a method
ot only strengthens the validity of our analysis but also ensures that
ur BN model is grounded in accurately categorized real-world data.
ig. 7 shows the predicted probabilities of reject causes against the
round truth for all the tested knowledge sources and structure learning
lgorithms. The table in Fig. 7 lists the Averaged prediction error
f all tested methods. While hc and tabu methods exhibit slightly
111

ower prediction error of 0.018, our WAEL method shows the second
lowest prediction error of 0.035. Notably, the WAEL method does not
necessarily achieve the lowest error but distinguishes itself significantly
in other crucial aspects. The clustering of probabilities at the spectrum’s
ends, particularly noted in the compared structure learning methods,
indicates a strong model confidence in cases where defects are either
very likely or unlikely. This polarization suggests that those methods
are effectively distinguishing clear cases of defects and non-defects.
Conversely, the more evenly distributed clustering observed in our
WAEL method is attributed to its integration of ensemble techniques
and diverse knowledge sources, which moderate model predictions
to reflect a wider range of probabilities. This distribution pattern,
especially closer alignment to the identity function (red dashed line),
indicates higher prediction accuracy as it indicates that predictions
closely match actual observations. The visual proximity of points to the
identity function shown in our WAEL approach highlights its effective
calibration in predicting probabilities that mirror real-world outcomes.
This visualization not only supports the robustness and accuracy of
WAEL but also highlights the beneficial impact of our ensemble learn-
ing strategy in providing a balanced predictive performance across the
spectrum of probabilities. Such balanced outputs are crucial in RCA,
where understanding the likelihood of defect causes can significantly
aid in decision-making and prioritization of corrective actions.

By shifting the focus onto the effect of different knowledge sources
on RCA performance (Table 3), we found a distinctive favor on the
models learned with hybrid knowledge as their mean prediction error
is significantly lower than models with other knowledge sources. This
aligns with the expectation that extra knowledge provides insights
and guidance to structure learning so resulting in a better predic-
tion. However, BN constructed purely from expert knowledge exhib-
ited poorer predictive performance compared to those developed from
hybrid knowledge. This finding contrasts with the conventional ex-
pectation that more expert guidance would inherently lead to better
predictions. The root of this discrepancy lies in the inherent design
limitations of networks created solely based on human expertise. Such
networks often rely on established theories and experiences and tend
to miss critical features and causal relationships that are only evident
through detailed data analysis. This rigidity restricts the network’s
ability to learn from new data, limiting both parameters learning and
the inference processes. Therefore, the performance of these networks
is often poorer than expected.

Conversely, hybrid models, which blend empirical data with expert

insights, demonstrate better performance in RCA. These models mine
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Fig. 7. Faceted scatter plots of predicted vs observed probabilities for different reject reasons by distinct knowledge sources and structure learning methods. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Comparison of root cause analysis over different structure learning methods and different knowledge sources
on testing dataset.
Structure learning method Knowledge source Avg prediction error Worst model frequency

hc Data 0.039 440
hc Hybrid 0.018 535
tabu Data 0.038 433
tabu Hybrid 0.018 534
mmhc Data 0.102 878
mmhc Hybrid 0.071 912
pc.stable Data 0.104 740
pc.stable Hybrid 0.078 838
gs Data 0.101 912
gs Hybrid 0.069 999
iamb Data 0.105 857
iamb Hybrid 0.072 944
chow.liu Data 0.078 732
chow.liu Hybrid 0.071 944
manual Human 0.080 970
WAEL WAEL 0.035 0
causal relationships primarily from the data, while still incorporating
crucial expert knowledge. This approach allows hybrid BNs to maintain
the interpretability of human insights while also adapting to new
information and complex data interactions, thus leading to improved
predictive accuracy and robustness.

Residuals are also inspected to check if the model is appropriate and
trustworthy for the data. They are the estimates of experimental error
obtained by subtracting the observed probabilities from the predicted
probabilities for the root cause. Fig. 8 illustrates the faceted residual
histogram plot for different structure learning methods. From the plot,
we can see that the overall patterns of the residuals for all the models
112
approach a bell shape, signifying a normally distributed variance. Thus,
the normality assumption is likely to be true.

To assess the robustness of the models, we counted the occurrence of
each model generating the worst prediction for each job in the testing
dataset. Table 3 shows that the proposed WAEL method is the most
stable technique among all the algorithms. It has never appeared to
be the worst model for any job instance. This is mainly due to its
voting nature of putting more weight on the more stable algorithms.
This weighting method alleviates the risk of the existing deficiencies in
accuracy and stability in stand-alone algorithms. As a result, it achieves
our goal of providing a robust RCA model.
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Fig. 8. Residual histogram plot for RCA over different structure learning methods from different knowledge sources.
Table 4
Comparison of job risk prediction over different structure learning methods and different knowledge sources
on testing dataset.
Structure learning method Knowledge source Prediction accuracy Worst model frequency

hc Data 0.97 225
hc Hybrid 0.97 227
tabu Data 0.97 216
tabu Hybrid 0.97 212
mmhc Data 0.92 536
mmhc Hybrid 0.92 552
pc.stable Data 0.89 613
pc.stable Hybrid 0.88 635
gs Data 0.94 371
gs Hybrid 0.93 482
iamb Data 0.94 384
iamb Hybrid 0.92 491
chow.liu Data 0.89 714
chow.liu Hybrid 0.89 718
manual Human 0.87 873
WAEL WAEL 0.97 140
5.5. Defect risk prediction

This section shows the results for question Q3, predicting whether
a scheduled job will be a risk in the aspect of product quality. Table 4
hows the accuracy of defect classification using different structure
earning algorithms based on different knowledge sources. All methods
xhibit a high prediction accuracy, among which WAEL is the highest.
he overall accurate predictions of all the algorithms also contribute
o the excellent performance of the WAEL method as it applies the
eighting to the probabilities of the predicted class obtained by various
lgorithms and determines the riskiness of the job using the weighted
um of the likelihood against the classification threshold of 0.5.
The ROC curve (Fig. 9) reveals the performance of Bayesian net-

ork classifiers developed by different structure learning methods and
113
knowledge sources at all discrimination thresholds. Similar to the out-
come from the accuracy chart, the networks built solely from data
bring about more excelling performance than other knowledge sources,
except for score-based algorithms. In addition, tabu search and hill-
climbing continue to dominate the model performance amid all struc-
ture learning methods across all possible classification thresholds with
an AUC of 0.994. Whilst human-built model leads to poor performance
at an AUC of 0.672. Peculiarly, WAEL rises a relatively large AUC of
0.988 following the score-based algorithms. This hints that WAEL is
an accurate and robust classifier across a wide range of classification
cut-offs.

Surprisingly, hybrid knowledge source and data knowledge con-
tribute similar prediction accuracy. Such a phenomenon occurs possibly
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Fig. 9. ROC over different structure learning methods from different knowledge sources for risk prediction.
ecause of the lack of evidence during inferencing for the nodes in
he added knowledge substructure (prior knowledge) from the hybrid
nowledge source. In the case of risk prediction, the jobs are yet to
e run, so there will be no external information introduced to the
bservational variables, such as the occurrence of reject cause reasons.
his makes the added links (i.e., knowledge) from the reject cause
odes to job failure nodes redundant in the hybrid models.
To assess the robustness of the models, the models of interest are

ut through vigorous testing across the data sample. Here, the model
obustness is reflected in the number of times each model produces an
ncorrect classification. As shown in Table 4, WAEL remains the most
robust model.

6. Conclusions

This paper addresses the problem of root cause analysis of product
quality from historical production data. We proposed a product-wise
Ensemble Bayesian Network to learn the causal relationship between
job features, root causes and defect signals from big unstructured
historical production data, with high accuracy and robustness while
providing human-interpretable probabilistic reasoning capabilities. Our
methods overcame the lack of robustness, sensitivity to data distribu-
tion, and ignorance of prior knowledge in existing Bayesian network-
based work, using ensemble learning techniques. From comprehensive
experiments on a sample of 6791 real-world production jobs from a
case company, it has been proven that our model exhibits sound accu-
racy and robustness amidst all the models in inferring the probabilities
of root causes for problematic jobs and predicting future high-risk jobs.
In summary, our work provides a robust, accurate, and interpretable
probabilistic reasoning method for RCA to support manufacturers with
data-driven decision-making under the circumstance of quality failures.

In the context of our case study at a plastic manufacturer, the
114

implementation of the developed EBN model has shown significant
practical impacts. The integration of this model into the manufacturer’s
daily operations has facilitated a more nuanced understanding of the
production processes, particularly in identifying and addressing root
causes of defects. The use of the EBN, developed from both expert
knowledge and empirical data, has enabled the manufacturer to more
precisely predict potential failures and inefficiencies. As a result, proac-
tive measures can be taken to mitigate issues before they escalate
into more significant problems. This proactive approach has not only
reduced downtime but also improved the overall quality of products
by decreasing the occurrence of defects. Moreover, the insights gained
from the model have led to more informed decision-making processes
at the company. For instance, the data-driven nature of the model
provides clear indicators of which aspects of the production process are
most likely to benefit from adjustments or upgrades. This has guided
the manufacturer in allocating resources more effectively, targeting
areas that yield the highest returns in terms of quality improvement and
cost savings. The successful implementation of this model at the plastic
manufacturing site serves as a testament to the potential of advanced
data analytics in industrial settings. It highlights how integrating so-
phisticated data analytics techniques with traditional manufacturing
processes can significantly enhance operational efficiency and product
quality.

Future work can be focused on introducing additional sensors to
enrich more direct quality signals, thereby enhancing the comprehen-
siveness of knowledge incorporated into our model. Currently, our
sensors primarily capture basic operational metrics which may not de-
tect subtle anomalies that may cause defects. Implementing additional
sensors such as vibration and acoustic emission sensors could allow
for earlier detection of potential machine/process failures, thus sig-
nificantly enhance our model’s sensitivity. These enhancements would
enable our BN to more accurately model complex interactions between

variables, leading to more effective root cause analysis and predictive
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maintenance strategies. More delicate parameter calibration models
can also be explored to fine-tune the parameters for BN and ensemble
learning techniques such as the resampling time of bagged BN and the
weights of WAEL.
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