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Abstract
Machine learning technology, particularly neural networks, provides useful tools for diagnosing diseases. This study focuses 
on how convolutional neural networks can be implemented to diagnose COVID-19 through the processing of x-ray images. 
This study demonstrates how the convolutional neural networks DenseNet201, ResNet152, VGG16, and InceptionV3 can 
aid healthcare providers in the diagnosis of COVID-19. The models returned accuracies of 98.73%, 97.23%, 91.25% and 
98.38% respectively. The results from these experiments are compared to previous studies by evaluating F1-score, accuracy, 
precision and recall. Additionally, the important problems of hyperparameter tuning and data imbalance are explored and 
addressed. Areas for future research in this area are also suggested.
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Introduction

"The current COVID-19 pandemic is caused by a coronavi-
rus named SARS-CoV-2." [9, 21]. Coronaviruses are a large 
cohort of viruses that spread as viral infections in the res-
piratory system in humans. The viruses cause the common 
cold but can also lead to diseases with severe and debilitat-
ing symptoms that have high mortality rates. Severe Acute 
Respiratory Syndrome (SARS), detected in 2003 and Middle 
East respiratory syndrome (MERS), detected in 2012, are 
examples of such diseases.

Coronavirus (COVID-19) sickness is a highly conta-
gious viral ailment that first appeared in December 2019. 
It is caused by coronavirus-2, which causes severe acute 
respiratory syndrome (SARS-CoV-2). Over 700 million 
confirmed cases of COVID-19 have been reported to WHO 
worldwide since the outbreak of the pandemic (World 

Health Organization 2024). This is a massive number of 
cases in a span of 4 years and demonstrates that the virus 
is highly contagious. The health systems of most nations 
are not adequately equipped to diagnose and treat a virus 
that is spreading in the population at such an unprecedented 
rate. Moreover, while adapting to new human hosts, SARS-
CoV-2 is prone to genetic evolution with the development 
of mutations over time, resulting in mutant variants that may 
have different characteristics from its ancestral strains. Sev-
eral variants of this virus have emerged since its breakout. 
However, WHO considers only five variants to have a relent-
less impact on the population worldwide—Alpha, Beta, 
Gamma, Delta, and Omicron. Out of these five, Delta and 
Omicron are relatively new and considered more fatal and 
contagious, and efforts are still underway to deal with these 
variants effectively. Notwithstanding, COVID-19 should be 
considered as disease that needs immediate attention.

Many methods have been developed to diagnose and 
screen for COVID-19. The paper 'COVID-19 Diagnostic 
Methods and Detection Techniques: A Review' by Rong 
et al. [12] discusses many diagnostic testing methods—PCR-
based testing methods, isothermal nucleic acid amplifica-
tion-based methods, CRISPR-based tests, gene sequencing, 
antibody testing, antigen testing, computed tomography 
(CT), and biosensor-based detection. They put forward the 
fact that RT-PCR-based testing methods have been especially 
effective in diagnosing the disease. However, the supply of 
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RT-PCR kits is not sufficient to commensurate with the ris-
ing cases of COVID-19. Furthermore, the effectiveness of 
these kits depends on the presence of SARS-CoV-2 in the 
collected samples [12]. They suggest a combination of CT 
scan diagnosis along with RT-PCR to achieve more accurate 
results [1]. In the case of CT scan image diagnosis, Rong 
et al. [12] observe that CT scans require operation by pro-
fessional doctors and that artificial intelligence and machine 
learning techniques (Fig. 1) should be used to overcome and 
this drawback by supplementing existing methods [9, 20].

Need for Research

In the event of this pandemic, healthcare workers cannot 
afford to spend their time on the diagnosis of COVID-
19 for a large number of patients. Hence, it is of primary 
importance to develop a robust method to diagnose the 
disease in a short span of time. Researchers, scientists, and 
mathematicians have been working on building automation 
in health systems to achieve better patient health outcomes. 
The rapid evolution in machine learning algorithms, artificial 
intelligence, cloud computing, publicly available annotated 
datasets and persistent efforts by researchers worldwide 
have led to the development of processes that can help 
clinicians achieve effective health outcomes. For example, 
AI algorithms can be used in the field of bowel polyp 
identification to help with decisions over segregating normal 
and abnormal polyps, preventing inappropriate referrals 
which absorb a huge amount of time, or managing treatment 
costs for patient and staff well-being, or monitoring patients' 
conditions in their homes and provide timely interventions 
when their vital signs warrant them.

Aims & Objectives

The focus of this paper is to look at the future of healthcare 
with improved patient health outcomes, where people have 
access to essential health services, and how AI and ML 
can play a pivotal role in achieving this goal. This research 
is centered on evaluating the performance of different 
convolutional neural network (CNN) algorithms in detecting 
the presence of Omicron and Delta variants of the COVID-
19 virus. This paper aims to contribute to the preliminary 
work that can be used as a reference by future researchers 
and healthcare workers to judge the effectiveness and 
suitability of ML methods for the diagnosis of COVID-19.

Additionally, this research also aims to understand the 
evolution of the healthcare system around the world and 
the short-term and long-term demands that health systems 
are required to meet. This can include changes in business 
models and the adoption of new and evolving practices by 
healthcare providers.

Paper Structure

The paper is structured as follows:
Sect.  "Literature Review" provides a comprehensive 

literature review on CNN models, CNN data modeling 
techniques and applications of CNN models in the healthcare 
domain. Sect.  "Methodology" provides a theoretical 
background of the DenseNet201, ResNet152, VGG16, and 
InceptionV3 models explored in the study. Other details 
about the methodology, such as data collection, data 
preprocessing, hyperparameter tuning, and model training, 
are also highlighted in this section. Sect.  "Evaluation, 
Results and Analysis" presents the results, evaluation 

Fig. 1  Depiction of diagnosis by machine learning and a radiologist [9]
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and analysis. Additionally, the best performing model is 
identified, and additional experiments are outlined using 
this model to explore the impacts of data imbalance on the 
model's performance. In Sect. "Discussion and Findings", 
the significance of the results is discussed, and a comparison 
of each model’s results is presented. Sect.  "Research 
Contributions" details the research contributions of the 
study, Sect. "Conclusion" provides a conclusion and Sect. 8 
discusses areas for future research in this area.

Literature Review

Convolutional Neural Networks

Although most characteristics of convolutional neural 
networks (CNNs) are comparable to those of traditional 
artificial neural networks (ANNs), CNNs are mostly 
employed in the field of pattern identification in images. To 
make the network better adapted for image-focused tasks 
while reducing the number of parameters needed to set up 
the model, CNNs enable encoding image-specific properties 
into the architecture. As can be observed in the case of 
complicated ANNs, CNNs also help us address the issue 
of overfitting.CNNs can be broken down into four layers:

1. Input layer- This layer aids the computer's ability to read 
images that are represented by pixel values that are kept 
as integers in three-dimensional arrays.

2. Convolutional layer- The central component of a CNN is 
the convolutional layer, which is also where most of the 
computation takes place. Convolution takes place at this 
layer. In other words, a feature detector—also known as 
a kernel or filter—moves across the image's receptive 
fields to determine whether the feature is there. Usually 
a 3 × 3 matrix, the feature detector is a two-dimensional 
array of weights. The dot product between the input 
pixels and the feature extractor is calculated after the 
filter has been applied to a portion of the image. An 
output array is fed the resultant number. The feature 
extractor navigates from pixel to pixel in the input layer 
and this process takes place until the whole image has 
been processed [7].

3. Pooling layer- This layer conducts the process of 
downsampling, which is essential in reducing the 
complexity by limiting the number of parameters in 
the input. The down-sampling is done by reducing the 
number of dimensions or the number of parameters of 
the input through a pooling operation in which a filter 
sweeps across the entire input (like the process in the 
convolution layer) and applies an aggregation function 
to the values of the input, and finally populates the 
output array (Fig. 2).

4. Fully connected layer- As was noted before while 
describing the previous layers, partially connected 
layers do not have a direct connection between the input 
image's pixel values and the output layer. In contrast, 
every node in the output layer of the fully connected 

Fig. 2  The above image shows the process of convolution [7]
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layer is directly connected to a node in the layer above 
it. Based on the features that were retrieved from the 
preceding layers and their various filters, this layer 
conducts the classification operation. [7]

CNN Data Modeling Techniques

ImageNet Large Scale, from Visual Recognition Challenge, 
is an image classification competition that is held every 
year, and it invites several data scientists and researchers 
from all over the world to present their models. The ILSVRC 
has set the bar for object classification and detection of 
hundreds of object categories from millions of images. 
The research paper submitted by researchers of Stanford 
University, University of Michigan, MIT, and UNC Chapel 
[13] states that the advances in object recognition have 
been possible due to the high number of submissions and 
participation seen every year. They discuss the evolution in 
the submission of various algorithms for the competition, 
such as SIFT and LBP features [23] with two non-linear 
coding representations and a stochastic SVM, improved 
Fisher vector representation Sánchez et al. [14], along with 
PCA dimensionality reduction [6], and data compression 
followed by a linear SVM among other entries winning the 
competition until 2011. However, there was a turning point 
in 2012 with the introduction of large-scale convolutional 
neural networks. The undisputed winner of the classification 
and localization tasks in 2012 was the SuperVision team. 
They trained a large, deep convolutional neural network 
with 60 million parameters on RGB values using an 
efficient GPU implementation and a novel hidden-unit 
dropout trick. Following the success of the deep learning-
based method in 2012 [14], most of the entries in 2013 used 
deep convolutional neural networks in their submission. 
In 2014 and in the following years, all the top contestants 
relied heavily on convolutional neural networks for image 
classification as well as object identification and single-
object localization tasks.

Developing a neural network image classification model 
can require significant architectural engineering. Zoph et al. 
[24], in Learning Transferable Architectures for Scalable 
Image Recognition, endeavor to build a method through 
which they can decide on the best model architecture 
based on the dataset in question. It can be very tedious and 
expensive to find the appropriate architecture when the 
dataset is large, so the researchers suggest developing the 
architectural building block based on a small dataset and 
then expanding it based on the actual larger data. Finally, 
they design and propose a new search space called the 
NASNet search space. The key feature of the NASNet search 
space is that it provides transferability of the learnings from 
the small to the large dataset. They use the small CIFAR-
10 dataset to develop a CNN convolutional layer and then 

apply this layer to the ImageNet dataset by using multiple 
such layers, one above the other. All the layers used on the 
ImageNet dataset are not identical; rather, they have their 
own parameters that are used to design the final CNN. The 
architecture thus obtained is known as NASNet architecture. 
The paper also introduces a new regularization technique 
known as scheduled drop path that improves the ability of 
the NASNet models or architectures to be used across a 
variety of datasets. Finally, the image features learned from 
image classification are generically useful as the layers can 
identify attributes in images, such as edges, which can be 
transferred to other computer vision problems.

CNN Applications in the Healthcare Space

Researchers and scientists from all around the world have 
been working diligently to create scalable and precise 
technologies to identify COVID-19 and its variations. Rapid 
and precise COVID-19 variant detection is urgently required. 
Radiologists examine the picture of the lungs for COVID-
19 using CT scans and X-rays. However, it necessitates 
radiology specialists to review specific reports, which is 
one of the difficulties during the epidemic. This prevents 
the professionals from spending time on the treatment of 
patients. Panwar et al. [10] propose an approach where 
neural networks, particularly nCOVnet, which comes under 
the class of deep-learning neural networks, can be used for 
detecting COVID-19 disease by analyzing the X-ray scans 
of patients. Using the converted rapid screening method can 
be used for detecting the COVID-19 virus by running the 
X-rays of patients through the model. It searches for visual 
indications found in chest radiography imaging of COVID-
19 patients. According to the paper, the proposed nCOVnet 
model can detect a COVID-19 positive patient in under 5 s. 
The researchers were able to achieve a 97.62% true positive 
rate and assert that if the chest X-ray samples in the training 
data are augmented with additional samples, then the model 
can achieve higher accuracy while keeping the same model 
architecture.

In Efficient Framework for Detection of COVID-19 
Omicron and Delta Variants Based on Two Intelligent Phases 
of CNN Models, Ghaderzadeh et al. [5] use a set of CT 
scan and X-ray pictures to demonstrate a general framework 
made up of two models created using convolutional neural 
networks (CNN) implementing the ideas of transfer learning 
and parameter optimization. The suggested model, along 
with all its layers, was tested using the test dataset, and the 
results were impressive. For the first phase, the proposed 
phase achieved detection sensitivity, specificity and accuracy 
of 0.99, 0.986, and 0.988, respectively, and for the second 
phase, the performance measures were 0.997, 0.9976, and 
0.997, respectively.
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A paper by Imaging Biomarkers and Computer-Aided 
Diagnosis Laboratory evaluates the performance of nine 
CNN configurations of CiferNet [1], AlexNet [2], and 
GoogLeNet [17] in randomly initialized transfer learning 
in high or low-resolution settings. They are applied to two 
specific CADe issues, namely, the classification of interstitial 
lung disease and the detection of thoraco-abdominal lymph 
nodes. They discovered that transfer learning regularly 
benefited their experiments. They also draw the conclusion 
that applications of pre-trained deep CNN pictures to CADe 
problems can be enhanced by investigating the performance-
beneficial characteristics of hand-crafted features or by 
creating custom CNNs and better fine-tuning them using 
the target medical image dataset [15].

Ghaderzadeh et al. [4] utilized a NASNet-based algorithm 
in another effort to build an effective computer-aided 
detection system for COVID-19. The local dataset included 
10,153 CT scan pictures of 190 people who were thought 
to have COVID-19. Following the model's fitting on the 
training dataset, hyper-parameter tweaking, and “topological 
changes to the classifier block, the suggested NASNet-based 
model was evaluated on the test dataset and demonstrated 
outstanding performance. Performance metrics for the 
suggested model included detection sensitivity, specificity 
and accuracy, which were each 0.999, 0.986, and 0.99, 
respectively.

Methodology

CNN Models

Since there are several models available for image 
classification, four popular models are trained that were 
found in the literature review: DenseNet201, ResNet152, 
VGG16, and InceptionV3 [11]. The results, findings, and 
comparisons across all four models were also discussed after 
testing.

ResNet152

ResNet152, or Residual Neural Network is a pre-trained 
convolutional neural network that democratized the concepts 
of residual learning. It has been trained on the ImageNet 
dataset with a depth of up to 152 layers. Like DenseNet, 
it has been trained on millions of images and can classify 
1000 + object categories. It is different from other CNNs as 
it relies on residual representation functions for its learning. 
It is better than learning signal representation, allowing the 
programmer to train deeper models. The formula of the 
residual function is defined as

where F(x) defines the residual function, x denotes the input, 
and H(x) is the learned parameter function. By deriving this 
from the standard identity mapping function H(x) = x, the 
residual network can converge quickly and be optimized 
more easily. Figure 3 shows the architecture of the ResNet 
block contained within the model, where the input is defined 
by xl−1 , and the output, after passing through two convolu-
tional layers hl(xl−1) , is computed.

ResNet152 stacks many of these blocks together to form 
most of the model architecture. This deep stacking approach 
can more effectively use the output data transmitted from the 
previous stacks [19]. ResNet152 then makes use of global 
average pooling after the convolution blocks. Each feature 
map is averaged spatially, resulting in a vector of fixed size, 
thus reducing the spatial dimensions. Finally, for image 
classification tasks, the fully connected layer is followed by a 
softmax layer as the final activation function. Given a vector 
z of logits for each class, the softmax function is defined as

DenseNet201

DenseNet201 is a deep architecture with 201 layers. It is a 
pre-trained model that has been trained on the ImageNet 
repository using millions of images collected from a range 
of data sources. Similarly to ResNet, it has blocks of layers 
where the layers are connected to each other. When data is 
fed into the DenseNet CNN, the layers pass the data to each 
other and the dense network of connection within the layers 

F(x) = H(x) − x

softmax(z)i =
ezi

∑N

j=1
e2j

Fig. 3  ResNet block structure
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in a block, and the model can learn and distinguish complex 
patterns. Like ResNet, each convolutional block is connected 
to the others using a feed-forward strategy, ensuring each 
layer receives direct inputs from the following layers, as 
defined by the following equations:

where l is the layer index, H is the non-linear operation and 
xl is the feature of the lth convolutional layer.

DenseNet also implements bottleneck layers to reduce 
the number of input feature maps, thus reducing the 
computational complexity of the model. The bottleneck 
layers are typically made up of 1 × 1 blocks followed by 3 × 3 
blocks. The growth rate hyperparameter determines how 
many feature maps are contributed to the following layers. 
A high growth rate leads to a higher number of feature 
maps and, therefore, increased capacity of the model. This 
parameter can be fine-tuned to optimize the performance of 
the model further. Conversely, a low growth rate leads to a 
lower number of feature maps and lower capacity. Finally, 
DenseNet makes use of global average pooling and a fully 
connected final softmax layer. This is done in the same way 
as ResNet, as explained in Sect. "ResNet152".

VGG16

VGG16, or Visual Geometry Group 16-layer [16] is another 
Convolutional Neural Network that was submitted to the Ima-
geNet Large Scale Visual Recognition Challenge [13]. VGG16 
consists of weighted layers: thirteen convolutional layers and 
three dense layers. Additionally, VGG16 also includes five 
max pooling layers at the end of each convolutional block 
layer. The first layer has 64 filters, the second layer has 128 fil-
ters, and the following layers continue to double the number of 
filters for each subsequent layer. The convolutional layers are 

xl = Hl(xl−1)

xl = Hl

(

xl−1
)

+ xl−1

xl = Hl

([

x0, x1, x2,… xl−1
])

followed by three fully connected layers and a softmax layer, 
in a similar manner to ResNet and DenseNet-derived mod-
els. Figure 4 provides a visual representation of the VGG16 
architecture.

Unlike traditional neural networks, VGG16 forgoes matrix 
multiplication to transition between convolutional layers. 
Instead of using 2-dimensional weight matrices, VGG16 uses 
3-dimensional filter tensors with the addition of a weighted 
bias and ReLU activation functions, which is defined as

where x is the neuron input to the function, the ReLU 
function outputs the input value if x ≥ 0 ; otherwise, the 
function returns 0. This can be expressed mathematically as

InceptionV3

InceptionV3 is a convolutional neural network model that is 
22 layers deep. It has been trained using millions of images in 
ImageNet data and can categorize more than 1000 objects. It is 
available with ImageNet weights. Initially, InceptionV3 started 
as a module for its precursor, GoogLeNet and is based on the 
seminal work by Szegedy et al. [18]. Similarly to VGG16, 
it was first introduced as part of the ImageNet Large Scale 
Visual Recognition Challenge, where it demonstrated a 78.1% 
accuracy on the ImageNet dataset.

Like other CNN models, InceptionV3 mostly uses 
convolutional layers for feature extraction. The convolution 
operation in InceptionV3 works by sliding kernels over the 
feature map and computing the dot product between the kernel 
and the overlapping input region. More specifically, this can 
be defined as

f (x) = max(0, x)

f (x) =

{

x, if x ≥ 0

0, otherwise

(f ∗ w)(i, j) =
∑

m,n

f (m, n) ∙ w(i − m, j − n)

Fig. 4  VGG model architecture
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where f is the input map, w is the convolutional kernel and 
(f ∗ w)(i, j) is the output value at the position (i, j) in the 
feature map.

The convolutional layers are made up of inception 
modules, built up of parallel convolution operations with 
kernel sizes of 1 × 1, 3 × 3 and 5 × 5. Additionally, optional 
1 × 1 kernels can be included if dimensionality reduction 
is required. Similarly to the other models discussed in 
Sect.  "CNN Models", InceptionV3 also utilizes global 
average pooling and the softmax activation function in the 
fully connected layers.

Data Collection

The data required for this study was to collect CT scan 
images of patients classified as having positive or negative 
diagnoses. The dataset is split into training, validation and 
testing groups in the ratio of 20:2:3 where the training and 
validation datasets will go into the training of the model, 
while the testing dataset will be used to evaluate the model 
using a standardized set of performance metrics.

Once the idea is conceptualized, the next step is to 
obtain a data source for CT scan reports along with patient 
outcomes as positive or negative. The CT scans used in this 
research are sourced from a dataset uploaded from a hospital 
in Iran for a paper [3]. This is a large public COVID-19 
(Omicron and Delta Variant) lung CT scan dataset. 
According to Eshraghi [3], "It contains 14,482 CT scans 
which include 12,231 positive cases (COVID-19 infection) 
and 2251 negative ones (normal and non-COVID-19). 
Data is available as 512 × 512px JPG images and has been 
collected from real patients in radiology centers of teaching 
hospitals in Tehran, Iran. The aim of this dataset is to 
encourage the research and development of effective and 
innovative methods such as deep CNNs, which can identify 
if COVID-19 infects a person through the analysis of his/
her CT scans."

The data is imbalanced and appropriate measures need to 
be taken to balance the data before training the model in the 
event of low values of performance measures of the models. 
The dataset has 12,233 COVID-19 images and 2251 images 
of non-COVID patients. The data is imbalanced as the 
number of non-COVID images is far less than the number 
of COVID images. Therefore, oversampling techniques such 
as SMOTE or ADASYN need to be implemented to address 
this shortcoming.

Data Preprocessing

It is important to resize all the images before using them 
for model training so that equal memory is allocated while 
training or processing the images. This helps maintain 
consistency and saves time from memory reallocation. The 

images are resized to a size of 300 × 300 and all images 
are converted to grayscale. Figure 5 shows an example of 
one of the images.

The images in the dataset are divided into several 
groups: (a) train, (b) validation and (c) test sets. Out of 
14,484 images, 80% were used for training, while 8% and 
12% of the images were used for validation and testing, 
respectively.

The images that are present in the train, validation, 
and test sets were transformed using the Keras image data 
generator. Rescale [0,1], vertical flip, horizontal flip, and 
random rotations with a rotation range of 10 degrees were 
used to augment the images in the training set. At the same 
time, only rescale was used for the validation and the test-
ing images because they were not used for the learning of 
the model and should be representative of new diagnostic 
images. An image data generator is used to transform the 
images in the training, validation, and testing datasets on 
a random basis and store the newly transformed images 
in the train generator, valid generator, and test generator, 
respectively. The batch size is set to 32 in all three genera-
tors. The augmented images are used in the training and 
validation set to train and validate the model simultane-
ously. Figure 6 shows random images from the training 
generator. The first row of images shows the COVID-19 
images in the trained generator, while the second row of 
images shows the non-COVID images present in the train-
ing data.

Fig. 5  A COVID positive patient’s CT scan image after balancing
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Model Tuning

This is the most important step in the entire process as the 
architecture of the convolution neural network is defined 
in this stage. The pre-trained CNN is loaded from Keras 
with ImageNet weights. In the first iteration, DenseNet201 
is loaded with ImageNet weights as the pre-trained base. The 
CNN model learns the parameters using a sizable dataset 
to represent the global and local information in the image. 
Each model architecture includes a different kind of layer 
and activation function to better depict characteristics than 
features created by humans (Fig. 7).

A pre-trained base model for image processing 
DenseNet201, which is 201 layers deep, is used for the 
model. DenseNet201 is a pre-trained CNN that is trained 
using more than a million images from the ImageNet 
database. The ImageNet database is a huge repository of 
14 million hand-annotated images indicating the objects 
pictured. More than one million images in ImageNet also 
have bounding boxes. ImageNet is widely used for training 
models in the field of visual object recognition software 
research. It has been trained to classify images into 

1000 + object categories, and the initial and middle layers 
can be reused, with the final layers needing to be added.

A layer of 2-dimensional global average pooling is added 
to reduce the spatial dimension of the tensor by averaging 
all the values across the entire matrix for each input channel. 
In addition, the following layers are added to the pre-trained 
DenseNet201:

1. Dense layer with reLu activation
2. Batch Normalization layer
3. Dropout layer
4. Dense layer with softmax activation

Model Training

The architecture defined above is trained using the train and 
validation generator. The following hyper-parameters are set 
for the initial model training:

1. Number of epochs: 40
2. Steps per epoch: 275
3. Verbose: 2
4. Early callbacks set to avoid overfitting

The batch size is 32 for the trained generator, which 
is used for training the DenseNet201 model. The train 
generator has 11,587 images. Hence, there will be 362 
batches of the training data. The validation data has 1159 
images with a batch size of 32, which means the step size 
for the validation generator is 37 batches. The accuracy of 
the model is tested on the training and the validation data 
after each epoch and the training proceeds to the next epoch. 
This continues until the accuracy of the validation data 
gets saturated and does not show any improvement. In this 
iteration of DenseNet201, the model runs for 13 epochs and 
the accuracy on the training and validation set is 99.74% and 
98.62%, respectively.

Fig. 6  COVID and non-COVID images after applying the Image fata 
generator on the training data

Fig. 7  CNN architecture (A LeNet model) for TB classification [8]
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Evaluation, Results and Analysiss

The model was tested on the test generator, which has 12% 
of the images, i.e., 1738 images. There are 1486 COVID-
19 and 252 non-COVID images in the test generator. The 
performance measures that were used to evaluate model 
performance are F1 score, accuracy, precision (positive 
predictive value), recall (sensitivity, hit rate, true positive 
rate), specificity (true negative rate), negative predictive 
value, Fall out (false positive rate), and false negative rate.

The F1 score is a metric that is calculated by taking the 
harmonic mean of recall and precision, where the recall 
is the number of true positives divided by the total actual 
positive cases, and the precision is the number of true 
positives divided by the total predicted positive cases. An 
F1 score can range from 0 to 1, where a score closer to 1 
indicates better performance and a score closer to 0 indicates 
worse performance.

The accuracy of the model on all the 1738 images in the 
test data was found to be 98.73%. The training and validation 

loss was displayed for the model while training, as shown 
in Fig. 8. Both the graphs seem to converge and become 
parallel after 8 epochs.

The plot for training and validation accuracy is also 
shown in the figure below. As mentioned previously, the 
training of DenseNet201 terminates after 13 epochs when 
the accuracy of the training and validation set reaches 
99.74% and 98.62%, respectively, and the same can be veri-
fied from Fig. 9.

Subsequently, the confusion matrix of the test images 
is computed and shown below in Fig. 10. It can be seen 
clearly that 1485 COVID-19 images in the test set have been 
correctly labeled/predicted as COVID-19, while only one 
image has been incorrectly predicted as non-COVID. From 
the non-COVID set, 231 out of 252 images have been cor-
rectly predicted as non-COVID, while 21 get mislabeled as 
positive COVID-19 infections.

The normalized confusion matrix is shown in Fig. 11 and 
the percentages of correct vs. incorrect prediction in each of 
the COVID and non-COVID buckets can be seen.

Fig. 8  Plot of training vs. vali-
dation loss with the number of 
epochs for DenseNet201

Fig. 9  Plot of training vs. vali-
dation accuracy with the num-
ber of epochs for DenseNet201
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a. 99.93% of the COVID images are correctly predicted by 
the model.

b. 91.67% of the non-COVID images are correctly 
predicted by the model.

The performance of the model seems to be better when 
COVID-19 images are put up for prediction. This could be 
because non-COVID images are the minority class in the 
dataset, i.e., in the training set, there were 11,587 images, out 
of which 9774 images were COVID images, while only 1813 
images were non-COVID. This led the model to be trained 
better for the COVID class of images than non-COVID.

The class weight method to handle imbalanced datasets 
is used to resolve this issue. This will give more weight to 
the minority class of images (which are non-COVID images) 
while training the model, providing a more balanced dataset.

Class‑weight for Addressing Data Imbalance

The initial bias of COVID to non-COVID images is 
computed by dividing the number of COVID images in 
training data by the number of non-COVID images in 
training data and is calculated to be 1.69. Additionally, 
the weight of each class of images is also computed: the 
weight for class 0 (non-COVID) is a lot higher (3.22 for non-
COVID) than the weight for class 1 (0.59 for COVID). This 
is necessary because there are fewer non-COVID images, so 
each non-COVID image will be weighted more to balance 
the data, as CNN models work best when the training data 
is balanced.

The model has been trained once again with the same 
hyper-parameters as before, but this time, the class weight 
argument was added within the model fitting function while 
training the model. The model is trained for 11 epochs 
before the training terminates.

After the training is complete, the accuracy of the model 
is tested on the test set. The model shows an accuracy of 
97.24% on the 1,738 images in the test generator.

Next, the training and validation loss is plotted in Fig. 12, 
which converges after 6 epochs.

Also, the training and validation accuracy of the model 
seems to be parallel and saturated after 6 epochs (Fig. 13).

Furthermore, the confusion matrix is obtained on all 32 
batches or 1,738 images of the test generator.

a. It was found that 1,465 COVID-19 images in the test set 
have been correctly predicted as COVID-19, while no 
image has been predicted as non-COVID.

b. From the non-COVID set, 225 out of 273 images have 
been correctly predicted as non-COVID, while 48 get 
mislabeled as COVID-19 (Fig. 14).

The confusion matrix is normalized to scale the number 
of images in each true label, i.e., COVID and non-COVID, 
between 0 and 1.

a. 100% of the COVID images are correctly predicted by 
the model.

b. 82.42% of the non-COVID images are correctly 
predicted by the model.

All the performance measures were computed from the 
confusion matrices above and shown in the table below 
(Table 1). COVID-19 in the True label is considered a 

Fig. 10  Confusion matrix obtained from test data using DenseNet201

Fig. 11  Normalizing the confusion matrix obtained from test data 
using DenseNet201
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positive outcome, while non-COVID-19 is a negative out-
come (Fig. 15).

Discussion and Findings

The performance of the model is observed when trained 
under two different conditions (with and without the data-
set balancing technique), and it is shown that DenseNet201 
works well with imbalanced data. The F1-score reduced to 
0.94 from 0.97, Accuracy reduced to 97.23% from 98.73%, 
Recall rose to 100% from 99.93%, and Specificity stood at 
82.42%, down from 91.67% (Fig. 16).

The model’s performance did not change massively 
except for some noticeable changes in predicting negative 
outcomes. However, this change is ostensibly counter-intui-
tive because the prediction of negative outcomes turned out 
worse after using class weight to balance the data. Ideally, 
the true negative rate should have improved when class 

Fig. 12  Plot of training vs. 
validation loss with a number of 
epochs for DenseNet201 after 
balancing the minority class

Fig. 13  Plot of training vs. vali-
dation accuracy with a number 
of epochs for DenseNet201 after 
balancing the minority class

Fig. 14  Confusion matrix obtained from test data using DenseNet201 
after balancing of minority class
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weight was used to give more weight to non-COVID images 
while training. The F1-score is indicative of the performance 
of the model in both cases, and it can be ascertained that 
DenseNet201 performed well with imbalanced data with an 
F1-score of 0.97 as against an f1-score of 0.94 when fed 
with balanced data.

It should be noted that the model was trained for 13 
epochs previously. In contrast, when class weight was 
used, it trained for 11 epochs, which could have led to a 
subtle decline in most of the model performance measures 
and a remarkable decline in predicting non-COVID 
images accurately. At this point, it can be concluded that 
DenseNet201 works well with imbalanced data, and one 
should focus on reaching a decent number of epochs while 
training the model. This can be achieved by increasing the 
size of the validation data generator while still having a large 
training data generator.

Table 1  Performance measures 
for DenseNet201 before and 
after balancing the image 
classes

Performance measures
Balanced vs. Imbalanced dataset

DenseNet201 
Imbalanced image 
classes
Training for 13 
epochs

DenseNet201 
Used class weight to handle 
imbalance of image classes
Training for 11 epochs

F1-score (macro avg) 0.97 0.94
Accuracy 98.73 97.23
Precision (positive predictive value) 98.60 96.83
Recall (sensitivity, hit rate, true positive rate) 99.93 100
Specificity (true negative rate) 91.67 82.42
Negative predictive value 99.57 100
Fall out (false positive rate) 0.07 0
False negative rate 8.33 17.58

Fig. 15  Normalizing the confusion matrix obtained from test data 
using DenseNet201 after balancing the minority class

Fig. 16  Comparison of 
F1-score, accuracy, recall, and 
specificity for DenseNet201 
before and after balancing the 
minority class
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Performance of Other CNN Models

There are other CNNs that researchers have developed 
and show remarkable results in applications of image 
classification. Three CNN models were explored, and layers 
were added on top in the same manner as with DenseNet201. 
The evaluation metrics obtained from the models were 
recorded in the table below and a detailed discussion of 
their performance was carried out. Preliminary experiments 
were conducted in each instance using different numbers of 
epochs to determine the optimal number of epochs for each 
model. The results presented in Table 2 show only the best 
results using the determined optimal number of epochs in 
accordance with the preliminary experiments. If the number 
of epochs is too small, the model can suffer from underfitting 
as a result. On the other hand, if the number of epochs is 
too high, the model is at risk of overfitting the training data.

The training, validation, and test data had the same 
number of images across all the models, as the split ratio 
was kept consistent across all the models. It can be clearly 
seen that the accuracy is well above 90% in all the models 
explored in the study (Fig. 17).

Model with Best Performance

DenseNet201, ResNet152 and InceptionV3 models give 
accuracy above 97%. Although this might seem to have a 
very high accuracy, other measures also need to be exam-
ined, which focus on the measures by outcomes, i.e., 
COVID-19 (positive) and non-COVID (negative) outcomes. 
This is important since the model is required to perform well 
for all patients, irrespective of whether they have COVID-
19 or not. Recall is important in this aspect as COVID-19 
patients being identified as COVID-19 positive with high 
accuracy is crucial to model performance. The healthcare 
system cannot really afford to miss out on true positive 
patients being tagged non-COVID by the model. At the same 
time, it is also essential to maintain high enough accuracy 
of true negative or non-COVID patients being predicted as 
COVID-negative. The F1-score is highest in the case of both 
DenseNet201 (0.97) and InceptionV3 (0.97), which indi-
cates that the performances of these models are the best in 
this regard (Figs. 18 and 19).

InceptionV3 does the best in terms of overall accu-
racy (98.38%), precision (99.72%), recall (98.36%), and 

Table 2  Performance measure 
for the four CNNs without 
balancing image classes

Performance measures
Imbalanced dataset

DenseNet201
Trained for 13 
epochs

ResNet152
Trained for 
10 epochs

VGG16
Trained for 
8 epochs

InceptionV3
Trained for 
21 epochs

F1-score (macro avg) 0.97 0.95 0.81 0.97
Accuracy 98.73 97.23 91.25 98.38
Precision (positive predictive value) 98.60 98.34 90.59 99.72
Recall (Sensitivity, hit rate, true positive rate) 99.93 98.34 99.79 98.36
Specificity (true negative rate) 91.67 91.69 50.17 98.54
Negative predictive value 99.57 91.69 98.04 91.83
Fall out (false positive rate) 0.07 1.65 0.20 1.64
False negative rate 8.33 8.30 49.83 1.46

Fig. 17  Comparison of 
F1-score, accuracy, recall, and 
specificity for the 4 CNN mod-
els- DenseNet201, ResNet152, 
VGG16, and InceptionV3
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specificity (98.54%). However, InceptionV3 has also run 
for 21 epochs, which no other model had reached in train-
ing during this research to make it standardized across all 
models to get a fair comparison. DenseNet201 is the model 
with the second highest number of epochs while training, 
i.e., 13 epochs, and shows the high value of overall accuracy 
(98.73%), precision (98.60%), recall (99.93%), and specific-
ity (91.67%).

Comparisons with Existing Work

When compared with existing studies, the work con-
ducted in this study performs well. From the conducted 
experiments in this study, DenseNet201 and Inception 
V3 performed similarly well. Therefore, these two mod-
els are used as a basis for comparison. To get the fair-
est comparison, the chosen models were only compared 
with other studies focused on the implementation of CNN 
models for COVID-19 diagnosis that used lung scans as 
their data source. Most of the work detailed in Table 3 
was highlighted by Ghaderzadeh et al. [4] unless specified 

otherwise. It should be noted that the studies used for com-
parison mostly used a different image dataset than the one 
used in this study. Therefore, a direct comparison between 

Fig. 18  Plot of train vs. valida-
tion loss of DenseNet201 (best-
performing model)

Fig. 19  Plot of train vs. valida-
tion accuracy of DenseNet201 
(best-performing model)

Table 3  Comparison of results between DenseNet201, InceptionV3 
and other studies

F1-score Accuracy Precision Recall

DenseNet201 97.0 98.8 98.6 99.9
InceptionV3 97.0 98.4 99.7 98.3
SqueezeNet 95.2 95.1 94.2 96.2
ShuffleNet 97.5 97.5 96.1 99.0
GoogLeNet 91.8 91.7 90.2 93.5
AlexNet 93.6 93.7 94.9 92.2
ResNet50 95.0 94.9 93.0 97.1
Xception 98.8 98.8 99.0 98.6
AdaBoost 95.1 93.6 96.7 95.1
Decision Tree 79.8 79.4 76.8 83.1
COVID CT-Net [22] 90.0 90.7 88.5 85.0
NASNet [4] 99.5 99.4 99.6 99.8
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these can not be perfect. Nevertheless, it shows that the 
DenseNet201 and InceptionV3 models used in this study 
compare favorably to most other models. Furthermore, 
it may be possible to optimize these two models further 
through better hyperparameter optimization.

Research Contributions

This research aims to discuss the structure of today's 
healthcare and the role of AI and Machine Learning in 
improving the quality and cost efficiency of the system. 
There can be several areas in which ML techniques can be 
incorporated. However, this paper focuses on diagnosing 
patients for a viral infection using CT scan images. Around 
400 research papers and web articles were perused during 
this research, out of which 40 were selected for literature 
review.

It was found that healthcare around the world needs to 
adopt a Primary Health Care (PHC) approach to deliver 
essential health services to every human being. Moreover, 
it is necessary to set up facilities like ambulatory surgery 
centers (ASCs) for specific surgeries or procedures that are 
expensive in hospitals to better manage healthcare costs by 
catering to procedures at a larger scale while maintaining 
the quality and cutting unnecessary inpatient expenses.

ML methods can be used in healthcare by insurance 
companies for claims data processing, by pharma 
companies in the clinical trial phase to test the efficacy 
of drugs, and by providers to understand the clinical 
progression of patients in a disease area and identify key 
opinion leaders in the market. The application of ML does 
not end here, but these are only a few examples of where 
ML is implemented today. It can be used more proactively 
in diagnosing patients, and keeping this in mind, the 
performance of 4 different image identification models 
was tested with pre-trained ImageNet weights. The models 
perform well, and the learnings from this research can be 
used by facilities at a larger scale to tackle the problem of 
diagnosing patients.

This research can be used as a reference by Parent Health 
Systems to understand the direction in which they should 
move to adapt to the future demands of a growing old-age 
population, especially in terms of digitizing systems and 
setting up facilities like ASCs. This research also serves as 
valuable work and proof of using ML models for processing 
diagnostic images for medical technology providers. 
They might choose to use the best-performing model or a 
combination of top-performing models to declare results 
with higher confidence and intervene for patients where the 
result from multiple models is inconclusive.

Conclusion

Summary of Contributions

The Keras library has models available with pre-trained 
ImageNet weights for DenseNet201, DenseNet121, 
DenseNet169, InceptionV3, InceptionResNetV2, 
ResNet152, ResNet152V2, ResNet101, ResNet50, 
Xception, VGG16, VGG19, MobileNet, MobileNetV2, 
and others. From the literature review conducted for this 
research, ResNet152, VGG16, and InceptionV3 were the 
most popular models among researchers and were chosen 
along with DenseNet201 to evaluate their performance 
on the image classification dataset. It was found that 
DenseNet201 worked remarkably well with imbalanced 
images; even when image balancing techniques such 
as class weight were used, the model did not show any 
improvement in performance results. The efficiency and 
performance of other model architectures present within 
the Keras library were also evaluated, showing competitive 
results when compared with existing studies. DenseNet201 
and InceptionV3 performed especially well, achieving 
accuracy scores of 98.8% and 98.4%, precision scores of 
98.6% and 99.5%, and recall scores of 99.9% and 98.3%, 
respectively.

Future Work

The four models used in this research are DenseNet201, 
ResNet152, VGG16, and InceptionV3, and most of these 
demonstrated remarkable results. However, there is scope 
to expand this research and take its findings to the next level.

The split of the train, valid, and test data should be altered, 
and multiple iterations should be run. As discussed earlier, 
the performance of the models was seen to be dependent 
on the number of epochs. The epochs are dependent on the 
training and validation data used to train the model, and 
adding more images to the training and validation set might 
increase the model training time and epochs. Another way 
to achieve the same is by changing the patience number in 
the callbacks rule for early stopping.

Taking a multi-modal approach may also prove 
more effective than focusing solely on CT scan images. 
Combining information from other imaging modalities, 
such as MRI scans and X-rays, could potentially provide 
a more comprehensive understanding of COVID-19 
diagnosis. Training CNN models that can effectively fuse 
multiple image types could improve the effectiveness of 
the models, leading to a more accurate diagnosis.

There is still a dependency on physicians to diagnose 
patients despite positive outcomes and confidence from 
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research, mainly because the healthcare infrastructure 
has been under expectations towards digitalization, 
and patients prefer to physically visit facilities and get 
the personal touch of being examined by a doctor. The 
black-box nature of neural networks makes it challenging 
for doctors to understand how these models operate. 
Designing interpretable CNN models can help provide 
humanlike insights in this regard, improving transparency 
and interpretability. For example, attention mechanisms 
can be implemented into model architecture, allowing for 
the potential to highlight regions of importance in medical 
scans. This would be particularly useful at providing 
healthcare professionals with a deeper understanding 
of how the models operate, as it is unrealistic to expect 
physicians to be experts in machine learning techniques.

Novelty and Adoption

The research conducted in this study provides a 
comprehensive evaluation and comparison of multiple 
CNN models for COVID-19 diagnosis. This provides 
a useful reference or starting point for healthcare 
professionals when choosing which model(s) to implement 
to aid their diagnosis. This approach is targeted at 
countries or regions with fewer resources, so that medical 
researchers can use them more easily and effectively, 
providing an alternative but trusted, convenient, and easy-
to-use method for analysis.

The adoption of CNN models has previously facilitated 
significant technological advancements in medical imaging 
analysis. Researchers have developed innovative algorithms 
and architectures tailored for COVID-19 detection, 
contributing to the state-of-the-art medical image analysis 
and AI applications in healthcare by streamlining the 
diagnostic process.

The adoption of CNN models in COVID-19 detection 
reflects the interdisciplinary nature of research in this 
field, involving expertise from computer science, medical 
imaging, epidemiology, and clinical medicine. This 
interdisciplinary approach has enriched the research 
landscape, fostering synergies between different disciplines 
and driving innovation at the intersection of technology and 
healthcare.
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