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In this paper a formulation of the incompressible Navier-Stokes equations is intro-

duced which allows one to model boundary-layer flows induced by the motion of a

deforming surface. Such a formulation may be used to model flows relevant in a wide

variety of industries from polymer processing to glass manufacturing. We show that

for particular sheet geometries and velocities, similarity solutions may be obtained

that account for sheet thinning (or thickening) and roughness patterns observed in

extrusion-type processes.
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I. INTRODUCTION

Extrusion-type processes are common and are used to produce thin sheets and fibres

for a range of different materials, two primary examples being polymer extrusion and glass

drawing. In polymer extrusion plastic resin is placed in a heated barrel known as an extruder

where it is heated and melts. The extruder contains a rotating screw that pumps the molten

polymer through a wide (∼ 1-10m), narrow (∼ 1mm) slit called a die which determines the

shape of the final product. The molten polymer rapidly cools upon exiting the die where

uniform cooling is required to prevent deformities. This is achieved by winding the sheet

around a series of cooled rollers. These rollers can also serve to control the final dimensions

of the polymer by adjusting their respective speeds. They can also be used to apply a finish

to the sheet since the polymer is often soft enough on exiting the die to mirror the surface of

the rollers. This finish can be aesthetic or functional. The roughness of the surface can be

controlled by having different grades and patterns of roughness on the rollers. The ultimate

use of the finished product depends on its gauge with thinner sheets being thermoformed for

use in packaging and thicker sheets often used as a protective layer or liner for the storage

and transportation of goods. In the analysis that follows we are interested in the boundary-

layer flow induced by these extrusion processes. However, we will briefly discuss sheet and

fibre drawing to highlight issues with many of the current studies focusing on these induced

boundary-layer flows.

Extrusion flows were originally modelled experimentally by Trouton 1 who derived an

empirical relationship between the velocity and thickness of a viscous fibre stretching via

a tensile force. The empirical results of Trouton have been extended by numerous authors

since, primarily using asymptotic expansions predicated on the small thickness-to-length

ratios of the sheet (Howell 2) or fibres (Pearson and Matovich 3). At leading order, the

streamwise velocity component u is found to be independent of the radial (fibres) or wall-

normal (sheets) coordinate and can be characterised by the ratio of inlet to outlet velocities

known as the draw ratio D, such that u = Dx, with x being the streamwise spatial coor-

dinate. Using simple conservation of mass arguments it can be deduced that the sheet or
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FIG. 1. Schematic diagrams of boundary-layer flows developing over (a) a stretching thinning sheet,

and (b) a periodic rough surface. In both cases the profile of the surface is denoted by s(x), the

surface has a wall velocity denoted by Uw(x), and it is this non-constant wall velocity that results

in the development of a boundary-layer profile denoted by u(x, y).

fibre must have a thickness s defined as follows (using the notation of Fig. 1):

s(x) =

D
−x (sheets),

D−x
2 (fibres).

In spite of this analysis the majority of studies considering boundary-layer flows induced by

stretching surfaces neglect the dynamics of the sheet. Instead, it is often assumed that the

sheet is flat, and the stretching rate is imposed as a boundary condition, as, for example, in

Crane 4 , where a linear stretching rate is stipulated. While mathematically convenient, this

type of formulation may have important consequences for identifying instabilities that may

arise in industrial practices. For instance in Bhattacharyya and Gupta 5 a linear stability

analysis on the flat, linear stretching sheet was conducted where it was concluded that the

flow was linearly stable to Görtler type disturbances. However, this may not be the case

in practice and such instabilities may be apparent should the thinning deformation of the

sheet be taken into account.

It should be noted that this is not the first study to attempt to account for the dynamics

of a sheet. In Al-Housseiny and Stone 6 , the momentum equations for both viscous and

elastic sheets are coupled to the momentum equations for the ambient fluid above. In doing

so similarity solutions are obtained under a limiting set of constraints on the physics of

both the sheet and the fluid. Similarly, Rees and Pop 7 considered boundary layer flows and
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heat transfer over a wavy surface moving tangentially to itself with a constant velocity. In

this article, a sinusoidal surface profile was assumed, profiles such as these have been used

by others to model small-amplitude periodic surface roughness (see, for example, Yoon,

Hyun, and Park 8 , and Garrett et al. 9). The resulting boundary layer equations were solved

numerically and physical quantities such as the skin friction coefficient and rate of heat

transfer were reported.

This paper follows a similar formulation to that presented by Rees and Pop 7 and bridges

the gap between the analysis of flows induced by flat stretching surfaces, and the coupled

sheet fluid system studied by Al-Housseiny and Stone 6 . To achieve this we effectively treat

the sheet as a solid object with both its shape and velocity being prescribed in a manner that

permits the existence of self-similar flow profiles. Using this formulation we also show that

boundary layer flows induced by surface thickening processes, such as those observed during

textile compaction, can also be modelled. Such a process is essentially the converse of the

sheet-thinning processes discussed previously, whereby a material is fed into a compactor at

a greater speed than it is extracted. These types of processes exploit the fact that fibrous

materials exhibit viscoelastic behaviour10. Here this is manifested as an increase in stress

within the fibre after a compaction-relaxation cycle which prevents the fibre from recovering

to its initial volume. There is a wealth of literature attempting to explain this phenomenon

and an overview of different modelling approaches is provided in Kelly 11 . Furthermore, our

formulation can also be used to model boundary-layer flows generated by the extrusion of

small-amplitude rough surfaces where here we consider a periodic roughness profile similar

to that discussed by Yoon, Hyun, and Park 8 .

The remainder of the paper is structured as follows. In Sec. II the boundary-layer equa-

tions for flows induced by deforming surfaces are derived. This is achieved by first perform-

ing a coordinate system transformation to “flatten” the sheet before applying the usual large

Reynolds number boundary-layer scaling. In Sec. III we look at particular combinations of

surface shapes and wall velocities in order to model sheet thinning or thickening processes

as well as boundary-layer flows generated by the extrusion of rough surfaces. We show that

under certain limiting assumptions, analytical boundary-layer solutions may be derived. As

one would expect, these results are dependent on the physics of the system being considered,

those being the exact profile of the deforming surface and the wall velocity of said surface.

The analysis that we present is generalised. However, all the solutions can be tailored to
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model flows that are observed in practice given sufficient knowledge of the above physical

constraints. To conclude, in Sec. III, we present a numerical validation of our analytical

thinning sheet solutions using a finite element approach. Lastly, in Sec. IV, we present a

discussion regarding both our findings and the potential for future work.

II. PROBLEM FORMULATION

Consider the steady flow of an incompressible, Newtonian fluid over an impermeable,

semi-infinite plate. The streamwise coordinate is x∗, and the wall-normal coordinate is

y∗ (asterisks denotes dimensional quantities). This flow is governed by the continuity and

Navier-Stokes momentum equations,

∇∗ · u∗ = 0, (1a)

ρ∗(u∗ · ∇∗)u∗ = −∇∗p∗ + µ∗∆∗u∗. (1b)

The fluid density is ρ∗, the dynamic viscosity is µ∗, the pressure is p∗, and the velocity

field is u∗ = (u∗, v∗), where u∗, and v∗ are the velocity components in the streamwise and

wall-normal directions, respectively. In what follows we consider boundary-layer flows over

non-flat surfaces for x∗ ∈ [0,∞), as such, it proves useful to introduce a change in coordinate

system with ξ∗ = x∗, and η∗ = y∗ − s∗, where s∗(x∗), is the function that describes the

variation of the surface height of the plate. The transformed governing equations are then

∂u∗

∂ξ∗
+
∂ṽ∗

∂η∗
= 0, (2a)

u∗
∂u∗

∂ξ∗
+ ṽ∗

∂u∗

∂η∗
= − 1

ρ∗
∂p∗

∂ξ∗
+ ν∗L∗

1u
∗ +

1

ρ∗
ds∗

dξ∗
∂p∗

∂η∗
, (2b)

u∗
∂ṽ∗

∂ξ∗
+ ṽ∗

∂ṽ∗

∂η∗
+

d2s∗

dξ∗2
u∗2 = −σ

∗2

ρ∗
∂p∗

∂η∗
+ ν∗L∗

1ṽ
∗ +

1

ρ∗
ds∗

dξ∗
∂p∗

∂ξ∗
+ ν∗L∗

2u
∗, (2c)

where ν∗ = µ∗/ρ∗ is the kinematic viscosity, and the differential operators are

L∗
1 =

∂2

∂ξ∗2
− d2s∗

dξ∗2
∂

∂η∗
− 2

ds∗

dξ∗
∂2

∂ξ∗∂η∗
+ σ∗2 ∂2

∂η∗2
, (2d)

L∗
2 = 2

d2s∗

dξ∗2

(
∂

∂ξ∗
− ds∗

dξ∗
∂

∂η∗

)
+

d3s∗

dξ∗3
. (2e)

In the ξ-η coordinate system the wall-normal velocity is defined as

ṽ∗ = v∗ − ds∗

dξ∗
u∗, (2f)
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and the function σ∗ is expressed as

σ∗ =

√
1 +

(
ds∗

dξ∗

)2

. (2g)

We note that function σ∗ is related to the curvature of the surface κ∗ as follows:

κ∗(ξ∗) =
1

σ∗2
dσ∗

dξ∗

(
ds∗

dξ∗

)−1

.

System (2) is solved subject to the wall conditions u∗ · t̂ = U∗
w(ξ

∗), and u∗ · n̂ = 0, where

U∗
w ≥ 0, is the dimensional wall velocity. In this transformed coordinate system, in the

absence of any oncoming flow, the relevant boundary conditions for this problem are then

u∗(η∗ = 0) = U∗
w(ξ

∗)/σ∗(ξ∗), ṽ∗(η∗ = 0) = 0, u∗(η∗ → ∞) → 0. (3)

These conditions ensure that there is always no flow normal to the surface (no penetration),

and that the surface moves tangentially to itself with velocity U∗
w. We consider the develop-

ment of a boundary-layer due to the non-constant wall velocity [U∗
w = U∗

w(ξ
∗)] of the plate.

For example, the case when U∗
w = C∗ξ∗, corresponds to linear stretching of the surface with

the constant C∗ having units s−1. This problem, in the non-deformed frame of reference, has

been well studied and was first considered by Crane 4 . We will show that it is not possible

to determine self-similar solutions when the plate is subject to a constant wall velocity and

is not flat.

The problem is non-dimensionalised as follows:

(ξ, Y, s) =
(ξ∗, η∗, s∗)

L∗ , (u, ṽ, Uw) =
(u∗, ṽ∗, U∗

w)

U∗ , p =
p∗

ρ∗U∗2 ,

where U∗, and L∗, are reference velocity and length scales, respectively. In order to

then arrive at the relevant boundary-layer equations the following scalings are introduced
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η = Re1/2 Y , and v = Re1/2 ṽ, where Re = U∗L∗/ν∗. Therefore system (2) reduces to

∂u

∂ξ
+
∂v

∂η
= 0, (4a)

u
∂u

∂ξ
+ v

∂u

∂η
= s′ξ Re

1/2 ∂p

∂η
− ∂p

∂ξ
+ σ2∂

2u

∂η2

− 1

Re1/2

(
s′′ξξ

∂u

∂η
+ 2s′ξ

∂2u

∂ξ∂η

)
+

1

Re

∂2u

∂ξ2
, (4b)

1

Re

(
u
∂v

∂ξ
+ v

∂v

∂η

)
+
s′′ξξu

2

Re1/2
=

s′ξ

Re1/2
∂p

∂ξ
− σ2 ∂p

∂η
+
σ2

Re

∂2v

∂η2

− 1

Re3/2

(
s′′ξξ

∂v

∂η
+ 2s′ξ

∂2v

∂ξ∂η

)
+

1

Re2
∂2v

∂ξ2

+
1

Re

[
2s′′ξξ

(
1

Re1/2
∂u

∂ξ
− s′ξ

∂u

∂η

)
+
s′′′ξξξu

Re1/2

]
, (4c)

where the primes with associated subscripts denote differentiation with respect to the sub-

script variable and σ2 = 1 + (s′ξ)
2. In order to determine the correct leading order balance

the following expansions are introduced:

u(ξ, η) =u0(ξ, η) + Re−1/2 u1(ξ, η) + · · · ,

v(ξ, η) =v0(ξ, η) + Re−1/2 v1(ξ, η) + · · · ,

p(ξ, η) =p0(ξ) + Re−1/2 p1(ξ, η) + · · · ,

where, to leading order, the pressure is a function of ξ only [this can be directly inferred

from (4c)]. Thus, the leading order boundary-layer equations for these classes of problems

are as follows

∂u0
∂ξ

+
∂v0
∂η

= 0, (5a)

u0
∂u0
∂ξ

+ v0
∂u0
∂η

+ σ−1σ′
ξu

2
0 = −σ−2(p0)

′
ξ + σ2∂

2u0
∂η2

. (5b)

This system is the Newtonian equivalent of the non-Newtonian equations derived, for ex-

ample, by Pop and Nakamura 12 . In the case when the plate is flat, i.e., s is constant, the

above reduces to the familiar 2D boundary-layer equations. Outside the boundary layer the

flow must match with the far-field stationary flow, U∞ = 0. By considering the behaviour

of equation (5b) at a large distance from the surface of the plate the pressure, to leading
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order, is determined to be constant. Thus,

∂u0
∂ξ

+
∂v0
∂η

= 0, (6a)

u0
∂u0
∂ξ

+ v0
∂u0
∂η

+ σ−1σ′
ξu

2
0 = σ2∂

2u0
∂η2

. (6b)

The above system is then closed subject to the following conditions:

u0(η = 0) = Uw(ξ)/σ(ξ), v0(η = 0) = 0, u0(η → ∞) → 0. (6c)

This system of boundary-layer equations is general in the sense that one is not restricted by

any of the dynamics of the deforming surface. In what follows we seek to extend previous

analyses and wish to determine self-similar solutions of (6) subject to (6c) without a priori

knowledge of either the deforming surface profile or the wall velocity.

III. SELF-SIMILAR FLOWS

Assuming that (6) admits self-similar solutions we introduce the similarity coordinate

ζ =
η

g

√
Uw

ξσ
,

and the streamfunction ψ = g
√
Uwξ/σf(ζ), where g is a yet to be determined function of ξ.

These expressions for ζ and ψ are informed by standard boundary-layer scalings13 and also

the need to ensure that u0 is proportional to both the wall velocity and the inverse of the

function σ. We note that in the case when the wall velocity is constant and the surface is

flat the unknown quantity g can be removed from these expressions and the analysis follows

identically that of Tsou, Sparrow, and Kurtz 13 .

Given the preceding definitions it follows immediately that

u0 =
∂ψ

∂η
= (Uw/σ)f

′
ζ ,

v0 =− ∂ψ

∂ξ
= g
√
Uwξ/σ(ζf

′
ζX− − fX+),

where

X± =
g′ξ
g
+

1

2ξ
± 1

2

[
(Uw)

′
ξ

Uw

−
σ′
ξ

σ

]
.

Therefore (6b) reduces to

ξg2[−X+ff
′′
ζζ + U−1

w (Uw)
′
ξ(f

′
ζ)

2] = σ2f ′′′
ζζζ .
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In order to be able to determine similarity solutions it must then be the case that

ξg2X+ = c1σ
2, (7a)

ξg2U−1
w (Uw)

′
ξ = c2σ

2, (7b)

where c1 and c2 are arbitrary constants that ensure self-similarity. The instances when one

of these constants is set equal to zero, with the other being non-zero, are considered in

Appendix A. Rearranging (7b) gives g2 = c2σ
2Uw[ξ(Uw)

′
ξ]
−1. Substituting this form for g2

into (7a) one then removes the unknown function g from the problem and arrives at the

following second order ODE

Uw
d2Uw

dξ2
+ γ

(
dUw

dξ

)2

− SUw
dUw

dξ
= 0, (8)

where S = [ln(σ)]′ξ, and γ = 2(c1 − c2)/c2. We note that the above equation is identically

satisfied when Uw = constant. However, (7b) would then imply that c2 = 0. This special

case is considered in Appendix A. Given the form of (8) there are two distinct cases to

consider, when γ = −1, and when γ ̸= −1. In the first case, the substitution R = [ln(Uw)]
′
ξ,

reduces the order of (8) such that

dR
dξ

− SR = 0.

Therefore R = Kσ, where K is a constant of integration, and it follows immediately that

(Uw)
′
ξ = KUwσ. (9)

In the second case, when γ ̸= −1, the substitution R = (1 + γ)U1+γ
w [ln(Uw)]

′
ξ, leads to the

same first order ODE. Therefore, in these cases

(Uw)
′
ξ =

Kσ

(1 + γ)Uγ
w
. (10)

This ODE can be rewritten as such

W ′
ξ = Kσ, (11)

where W = U1+γ
w . Thus, irrespective of the value of γ, in order to be able to determine

similarity solutions, one may choose either to specify the wall velocity, Uw, and calculate

the variation of the height of the plate, s, or specify s and determine the required form for
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Uw. With s fixed the determination of Uw transpires to be a relatively simple procedure.

Integrating (9) and (11) respectively we have that

Uw =

C eKI when γ = −1,

(C +KI)
1

1+γ when γ ̸= −1,
(12)

where C is a constant of integration and I is simply the arc length of the surface,

I =

∫
σ(ξ) dξ =

∫ √
1 + (s′ξ)

2 dξ. (13)

Therefore, for any fixed s it is possible to determine Uw, for any value of γ, simply by

integrating the function σ. It is clear from the above analysis that the value of the constant

γ dictates the form of the wall velocity. In cases when γ ≥ −1 the deforming surface will be

accelerating whilst the inverse is true when γ < −1. As an example, a deforming surface that

is being thinned as it is being stretched would, by mass conservation, have to be accelerating.

Now, by writing f̂(Z) =
√
c1f(ζ), where Z =

√
c1ζ, then f̂ ′

Z = f ′
ζ , and the ODE that

governs the base flow is then given by

f̂ ′′′
ZZZ + f̂ f̂ ′′

ZZ −
(

2

2 + γ

)
(f̂ ′

Z)
2 = 0. (14a)

The case when γ = −2 is considered separately in Appendix A. The preceding ODE must

be solved subject to

f̂(Z = 0) = 0, f̂ ′
Z(Z = 0) = 1, f̂ ′

Z(Z → ∞) → 0. (14b)

It is worth noting that (14) admits exact analytical solutions for two specific γ values. In

the case when γ = 0, then f̂ = 1− e−Z , whilst when γ = −4, then f̂ =
√
2 tanh(Z/

√
2). A

derivation of these solutions using a similar approach to those employed in Ackroyd 14 and

Sachdev, Bujurke, and Pai 15 may be found in Appendix B. In what follows we will highlight

three specific case studies that make use of these exact solutions and a numerical solution

of (14), although we note that the choice of the value of the constant γ would, in practice,

be informed by experimental conditions.

In order to verify the previous analysis we consider Crane’s problem. Crane’s problem

corresponds to the linear stretching of a flat plate, as such, s is a constant and (11) reduces

simply to (Uw)
′
ξ = K. Thus when K = 1, and stipulating that Uw(ξ = 0) = 0Uw = 0,

we recover the expected linear stretching result; Uw = ξ. In order to be able to visualise
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FIG. 2. Plots of the streamwise and wall-normal velocity components for the case when γ = 2

and Uw =
√

0U2
w + 2ξ/3 = σ. In this case both u0 and v0 are independent of ξ. Given that no

exact analytical solution for f̂ exists in the case when γ = 2, a shooting method that makes use of

a fourth-order Runge-Kutta integrator, twinned with a secant root finding scheme, was employed

to solve (14). As part of this solution process we determine that f̂ ′′
ZZ(Z = 0) ≈ 0.8300, and that

f̂(Z → ∞) = f̂∞ ≈ 1.0625. In the limit as Z → ∞, then v0 → −
√
2/3f̂∞.

the solutions for both u0 and v0 one needs to recall the unknown function g such that the

similarity coordinate Z, and streamfunction ψ, can be written in terms of known functions.

Irrespective of the value of γ we have that

g =

√
2c1ασU

1+γ
w

Kξ
,

where

α =

1 when γ = −1,

(1 + γ)(2 + γ)−1 when γ ̸= −1.

In order to ensure that g is solely real then, given that c1 > 0, the constant K would have

to be negative in the cases when −2 < γ < −1. Given the form of (12), with γ in this

range and K being less than zero, one would then determine complex solutions for the wall

velocity. Therefore, physical solutions are derived only in the cases when γ < −2, and

γ ≥ −1. For convenience we now fix K equal to unity but note that the following analysis

holds for any K > 0. Having done so we determine that ψ = ςUwf̂(Z), where Z = η/(ςσ),

11



and ς =
√
2αUγ

w. Thus

u0 =
∂ψ

∂η
=

(
Uw

σ

)
f̂ ′
Z ,

v0 = −∂ψ
∂ξ

=
ς

2

{[
2Uwσ

′
ξ

σ
+ γ(Uw)

′
ξ

]
Zf̂ ′

Z − (2 + γ)(Uw)
′
ξf̂

}
.

There is clearly a special case to consider when Uw is directly proportional to σ. In this

case then both u0, and v0/ς are functions of Z only. In addition to this, setting γ = 2, and

fixing Uw = σ ensures that u0 = f̂ ′
Z , and v0 =

√
2/3(Zf̂ ′

Z − f̂), i.e., the wall-normal velocity

is then identically independent of the streamwise coordinate ξ (see Fig. 2). Recalling (11)

it must then transpire that (Uw)
′
ξ = 1/(3Uw). Thus, imposing the condition that the initial

wall velocity is equal to 0Uw, then Uw =
√

0U2
w + 2ξ/3 = σ. Given this form for σ, and

stipulating that s(ξ = 0) = s0, it must therefore be the case that s(ξ) = s0 − (0U
2
w − 1)3/2 +

(0U
2
w − 1 + 2ξ/3)3/2. Practically, it is perhaps unphysical to consider a case whereby the

variation of the surface height of the plate is increasing in such a manner. However, given

the preceding analysis we are now in a position to consider a number of cases that closely

resemble physical boundary layer flows.

A. Surface Thinning

In order to capture the realistic thinning nature of a sheet that is being extruded from a

cast die we fix the dimensional surface height of the plate such that

s∗(ξ∗) = a∗1 e−(ξ∗/a∗2).

Given this form for s∗, we define our non-dimensionlaising length scale L∗ as the inlet sheet

height a∗1, so that s(ξ) = e−aξ, where a = a∗1/a
∗
2, and σ =

√
1 + a2e−2aξ. Therefore we have

that

I =
arcsinh(a−1eaξ)− σ

a
.

Thus an analytical expression for Uw can be determined directly from (12). In practice one

would choose the free constants (a, γ) such that the wall velocity profile matched closely

with physical observations. In the absence of experimental data we are free to choose

mathematically convenient values for these constants. If we set a = γ+1 = 1, and stipulate

that Uw(ξ = 0) = 0Uw = 0, then it follows that

Uw = ξ + ln

(
1 + σ

1 + σ0

)
+ σ0 − σ,
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FIG. 3. In (a) the wall velocity Uw, the approximate wall velocity Uapprox
w = ξ + 0.2260, and the

exponentially thinning sheet profile: s(ξ) = e−ξ, are plotted against ξ. In (b) the wall velocity,

given an identical thinning sheet profile, is plotted for a range of γ values. In both plots the dashed

black line corresponds to the wall velocity result for a sheet undergoing linear stretching.

where, in this case, σ0 = σ(ξ = 0) =
√
2. This expression for Uw is reasonably close to the

result owing from Crane’s linear stretching problem (Uw = ξ). Aside from the region close

to ξ = 0, we find that Uw can be approximated in the following fashion

Uapprox
w = ξ + ln

(
2

1 + σ0

)
+ σ0 − 1 ≈ ξ + 0.2260.

This result, presented graphically in Fig. 3, is perhaps not surprising given that the sheet

is thinning exponentially. As such, we would expect to recover a result for the wall velocity

similar to that of Crane 4 in all regions where the plate is locally flat. However, we note

that the analysis presented here is general enough that one could consider a plethora of

different thinning sheet profiles dependent on the value of the constant a, or the rate of

sheet acceleration depending on the value of γ.

The results presented in Fig. 4 show the discrepancy between the solutions obtained under

the assumption of a flat stretching sheet when compared to those obtained under the correct

assumption that the sheet will thin as it is accelerated and stretched. We observe that the

streamwise velocity component is always under-predicted by Crane’s model. Furthermore,

near to the point where the sheet is being extruded, when ξ = 0, we observe that the gradient

of the wall-normal velocity component is significantly shallower under the assumption that

the surface does not deform as it stretches. The disparity of these results at the surface
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FIG. 4. Plots of the streamwise (a) and wall-normal (b) velocity components for a range of ξ values.

In this case the sheet is thinning exponentially: s(ξ) = e−ξ. Crane’s flat plate solutions are given

by the dashed black curves.

of the sheet leads to a significant under-prediction of the magnitude of the flow that, via

mass conservation, is directed towards the stretching surface. We note that these effects

are exacerbated when the constant a decreases in value. Irrespective of the value of this

constant, at a sufficiently large enough distance downstream, the wall-normal velocity profile

will, however, always tend towards Crane’s solution since the plate is locally flat as ξ → ∞.

Similar qualitative results are obtained if one assumes that the sheet deforms in either a

polynomial or a logarithmic manner.

B. Surface Thickening

Theoretical studies of textile compaction processes11 have sought to model the stress

within a fibre over a compaction relaxation-cycle. Here our aim is to propose a shape which

captures the resulting reduction in volume fraction and hence determine a sheet velocity

profile which facilitates a self-similar boundary layer solution for the ambient fluid. While

this approach represents a simplification of the underlying physics governing such processes,

it is warranted by the observed tendency of compaction-induced defects to manifest in tex-

tile manufacturing. These defects are commonly ascribed to micro-mechanical phenomena

arising from the closure of interstitial gaps between individual fibres in a composite sheet,

as described in Thompson et al. 16 . However, an examination of the stability characteristics
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FIG. 5. In (a) the wall velocity Uw, the approximate wall velocity Uapprox
w = (ξ + 1.1819)−

1
3 , and

the logarithmically thickening sheet profile, s(ξ) = ln(e + ξ), are plotted against ξ. In (b) and (c),

respectively, solutions for the streamwise velocity u0 and wall-normal velocity v0+s′ξu0 are mapped

back to the unscaled boundary-layer coordinate system (ξ, η+ s). The solid black line indicates the

surface of the thickening decelerating sheet.

of the induced boundary layer might provide insights into the potential mitigation of such

defects.

If we consider a deforming surface with a profile defined as such, s∗(ξ∗) = b∗1 ln(e+ξ∗/b∗2),

where e is the exponential constant chosen such that s∗(ξ∗ = 0) = b∗1, then such a profile can

be used to model a thickening, decelerating surface such as those observed in compaction

processes. We again set L∗ = b∗1, the initial sheet thickness, so that s(ξ) = ln(e + bξ) with

b = b∗1/b
∗
2. Irrespective of the value of b, in order to determine similarity solutions we first

compute

I =
(e + bξ)

b
σ − arcsinh(s′ξ).
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Here we choose the convenient parameter value b = 1, such that via (12) we have, for γ ̸= −1,

that

Uw = [C + (e + ξ)σ − arcsinh(s′ξ)]
1

1+γ .

Setting γ = −4, to ensure that the sheet is decelerating, and fixing the value of C such that

0Uw = 1, we have that

Uw =

[
ξσ + ln

(
1 + eσ0
s′ξ + σ

)
+ e (σ − σ0)

]− 1
3

,

where, in this case, σ0 = σ(ξ = 0) =
√
1 + e−2. At first inspection, this expression for the

wall velocity appears to be reasonably intricate. However, away from the region of the sheet

inlet, this expression can be well approximated as follows

Uapprox
w = [ξ + ln(1 + eσ0) + e (1− σ0)]

− 1
3 ≈ (ξ + 1.1819)−

1
3 .

Given that, in the case when γ = −4, we have an analytical solution for (14), with Uw

calculated as above, we are then able to use our stream function definitions for u0 and v0 to

visualise the flow in terms of the unscaled boundary-layer coordinate, ςσZ+s = η+s. These

results are depicted in Fig. 5 where we observe that both the streamwise and wall-normal

fluid velocities are at a maximum in the vicinity of the inlet (ξ = 0). As one would expect,

as both the curvature of the sheet and the velocity of the sheet decrease, the magnitude of

these velocities also decreases.

C. Surface Roughness

Given our generic problem formulation we are also able to consider the development of

boundary layer flows over small-amplitude rough surfaces. Taking inspiration from Yoon,

Hyun, and Park 8 , if we assume a surface roughness profile of the form

s∗(ξ∗) = A∗[1− cos(2πξ∗/λ∗)],

then s0 = 0. Here A∗ and λ∗ are the amplitude and wavelength of the surface roughness,

respectively. Consistent with the analysis of Yoon, Hyun, and Park 8 we set L∗ = λ∗ so that

s(ξ) = ε[1− cos(2πξ)], where ε = A∗/λ∗.

In what follows we will consider the case when ε≪ 1. Although the analysis itself is not

necessarily restricted by the value of ε, we find that our solutions are fully parameterised

16



0 1 2 3 4 5
0

1

2

3

4

5

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

FIG. 6. In (a) the wall velocity Uw, the approximate wall velocity Uapprox
w = (0U

γ
w + Mξ)

1
1+γ ,

and the small-amplitude rough profile: s(ξ) = ε[1 − cos(2πξ)], are plotted against ξ. In (b) the

cyclical velocities U0 and V0 are plotted against the boundary-layer coordinate Z. The solid curves

correspond to the solutions at 2ξ = (n − 1), the dotted curves are the solutions at 2ξ = (n − 1
2),

for n = 1, 2, 3, . . . . In both instances ε = 1/5, 0Uw = 2, and γ = 2.

by the constant ε, i.e., our boundary-layer flow profiles are invariant upon changing A∗ and

λ∗, given that their ratio, ε, is itself fixed.

Given the sinusoidal form for s(ξ) it follows that σ = [1 + (2επ)2 sin2(2πξ)]1/2. Thus

I =
1

2π
E

(
2πξ

∣∣∣∣−(2πε)2
)
,

where E(ϕ | k) is the incomplete elliptic integral of the second kind (see Abramowitz and

Stegun 17). In the cases when ε ≪ 1, this integral can be very well approximated in the

following manner:

I ≈ max(σ) + min(σ)
2

ξ =

√
1 + (2επ)2 + 1

2
ξ =Mξ,

where M is the mid-range of the function σ. In fact, for flows generated by small-amplitude

rough surfaces, the difference between the exact form of Uw determined via (12), and the

form based on the approximate value of I is graphically indistinguishable. This fact is

evidenced in Fig. 6 for the case when ε = 1/5, 0Uw = 2, and γ = 2. Having set γ = 2

we observe that the sheet undergoes only very moderate acceleration. Indeed, as γ → ∞,

irrespective of the form of the surface profile, the wall velocity tends to a constant value.

By appropriately scaling the streamwise and wall-normal velocity components one finds
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FIG. 7. In (a) a 3D-plot of the streamwise velocity u0 against ξ and Z. In (b) the solution for

u0 has been mapped back to the unscaled boundary layer coordinate system (ξ, η + s). In both

plots the roughness parameter, ε, has been set equal to one-fifth; the initial wall velocity, 0Uw, is

set equal to 1; and the surface is moderately accelerating with γ = 2. In (b) the solid black line

indicates the surface of the rough sheet.

that the velocity profiles are cyclical in nature and have the following properties:

(U0, V0) =



(
f̂ ′
Z ,

√
1

2α

(
γ

(2 + γ)
Zf̂ ′

Z − f̂

))
, when ξ =

(n− 1)

2
,

(
f̂ ′
Z√

1 + (2επ)2
,

√
1 + (2επ)2

2α

(
γ

(2 + γ)
Zf̂ ′

Z − f̂

))
, when ξ =

(n− 1
2
)

2
,

for n = 1, 2, 3, . . . , with U0 = u0/Uw, and V0 = U
γ/2
w v0. These self-similar flow profiles are

depicted in Fig. 6 where we observe that at the points where |s′ξ| is at a maximum, i.e.,

when 2ξ = (n− 1
2
), the value of the streamwise velocity at the wall decreases to a minimum.

In order to compensate for this, the magnitude of the vertical velocity component at the

far-field attains a maximum value at these points. Given that no exact analytical solution

for f̂ exists in the case when γ = 2, a shooting method that makes use of a fourth-order

Runge-Kutta integrator, twinned with a secant root finding scheme, was employed to solve

(14).

In order to better visualise the downstream development of the streamwise velocity com-

ponent, u0, we plot, in Fig. 7, the flow in both the scaled (ξ, Z), and unscaled (ξ, η + s)

coordinates systems. The sinusoidal nature of the surface roughness profile is evidenced in

18



the development of the streamwise flow where we observe that the velocity attains local

maximums at the respective locations of maximum roughness amplitude.

The solutions presented within this subsection serve to highlight how our formulation can

be used to model flows developing over small amplitude rough surfaces. Indeed, this analysis

could readily be extended to incorporate a random surface roughness model whereby the

function s(ξ) is defined, for example, via a Fourier series composed of a randomised phase

spectrum as per the work of Lu et al. 18 .

D. Numerical Validation

The primary motivation for this study is the determination of boundary-layer flows in-

duced by stretching surfaces, as presented in Sec. IIIA. As such, we chose to validate the

analytical solutions presented in Fig. 4 for the case of an exponentially thinning sheet against

a suitable numerical scheme. To solve the governing system of PDEs numerically we use the

finite element software FEniCS (Logg, Mardal, and Wells 19). It is convenient to rewrite our

equations in terms of the the divergence of the stress tensor τ ∗, such that

∇∗ · u∗ = 0, (15a)

ρ∗(u∗ · ∇∗)u∗ = ∇∗ · τ ∗. (15b)

We apply the same coordinate system transformation and nondimensionalisation as before,

with the exception that we scale the pressure by a factor of Re1/2. This difference in the

pressure scale can be attained by referring to (4c), where it is seen that the pressure term is

O(Re1/2) larger than the next largest term in the η-momentum equation. This fact, twinned

with the free stream boundary condition, U∞ = 0, allowed us to deduce that pressure in the

boundary layer was constant to leading order. However, rescaling our pressure as p ∼ Re−1/2

allows the pressure to vary and results in us being able to numerically determine the non-

constant pressure correction. Note that this is in contrast to the corresponding flat stretching

sheet analysis of Crane 4 where p ∼ Re−1, which would be the case in (4c) if s′ξ = 0. Thus,
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we have that

∂u

∂ξ
+
∂v

∂η
= 0, (16a)

u
∂u

∂ξ
+ v

∂u

∂η
=

{
∂

∂ξ
− Re1/2 s′ξ

∂

∂η

}
τξξ +Re1/2

∂

∂η
τξη, (16b)

Re−1/2

(
u
∂v

∂ξ
+ v

∂v

∂η

)
= −s′ξ

(
u
∂u

∂ξ
+ v

∂u

∂η

)
− s′′ξξu

2

+Re−1

{
∂

∂ξ
− Re1/2 s′ξ

∂

∂η

}
τξη +Re1/2

∂

∂η
τηη, (16c)

where the components of the stress tensor are given by

τξξ = −Re−1/2 p+ 2Re−1

(
∂u

∂ξ
− Re1/2 s′ξ

∂u

∂η

)
, (16d)

τξη = +Re−1

{
Re1/2[1− (s′ξ)

2]
∂u

∂η
+Re−1/2 ∂v

∂ξ
+ s′ξ

(
∂u

∂ξ
− ∂v

∂η

)
+ s′′ξξu

}
, (16e)

τηη = −Re−1/2 p+ 2Re−1

(
∂v

∂η
+Re1/2 s′ξ

∂u

∂η

)
. (16f)

System (16) is then solved subject to the following boundary conditions:

u = u0, v = v0, at ξ = 0 and ξ = ξ∞, (17a)

u = Uw/σ, v = 0, at η = 0, (17b)

u = 0, τ · n = 0, at η = η∞. (17c)

We apply our normal and tangential velocity conditions at the wall and the condition that

the streamwise velocity component decays in the far-field, as per the solution of our boundary

layer equations (6). In solving the full Navier-Stokes equations we need to impose additional

constraints on the system. Here we use our boundary-layer solutions as inlet and outlet con-

ditions. We also impose a no stress condition at the outlet. This choice of free stream

condition allows us to measure convergence by means of evaluation of the wall-normal veloc-

ity component at the far-field, v0|η=η∞ , for any fixed ξ, since we have not explicitly forced this

value. Indeed, this can be seen in Fig. 8, where the difference in the absolute value between

the boundary-layer and numerical wall-normal velocity solutions decrease as the Reynolds

number grows larger. In the transformed coordinates our boundary-layer solutions are given

by

u0 =
Uw

σ
e−η/σ,

v0 =
Uwσ

′
ξ

σ2
η e−η/σ − (Uw)

′
ξ(1− e−η/σ).
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FIG. 8. In (a) we plot the absolute value of the difference between the numerical solutions for

the streamwise velocity component at ξ = 2.5, with the corresponding boundary-layer solution at

the same point, for a range of values of the small parameter Re−1/2. In (b) we plot an identical

comparison for the wall-normal velocity component.

It is these solutions that we compare, respectively, to the numerical results for u and v. The

domain [ξ, η] ∈ [0, 5] × [0, 10] was triangulated using a 200 × 200 mesh with the originally

uniformly spaced mesh mapped via

ηnew = η
exp (η/η∞)− 1

exp(1)− 1
,

to accurately resolve the boundary layer near the surface of the sheet. To ensure the mesh

was properly resolved the problem was also solved on a 100 × 100 and 50 × 50 mesh, with

|v − v0|η=η∞ , at ξ = 2.5, being used to measure the errors for a range of different mesh

densities and Reynolds numbers. The errors were determined to be a function of the size

of the Reynolds number with the mesh density playing almost no role at all, giving us

confidence that our mesh is sufficiently refined.

The choice of η∞ was further validated by solving the problem on incrementally larger

domains, where it was found that η∞ = 10, was appropriate provided the Reynolds number

was sufficiently large. Plots comparing the difference between our self-similar and finite

element solutions are presented in Fig. 8 for a range of Reynolds numbers. Given that our

boundary-layer analysis hinges on an asymptotic expansion with small parameter Re−1/2, it

is logical for us to present results for a range of values of this small quantity. As expected

we observe that the difference between the large Reynolds number analytical solutions and
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FIG. 9. Comparison between the finite element and boundary-layer solutions across the computa-

tional domain for (a) Re−1/2 = 0.05 and (b) Re−1/2 = 0.04. The same colourbar scale is used in

both instances so that the reduction in error may be easily observed.

the numerical solutions decreases as the Reynolds number increases.

In Fig. 9 we present a comparison of the boundary-layer and finite element solution for

the streamwise velocity component across the entire (ξ, η + s) domain. It is clear that our

analytical boundary-layer solutions provide an excellent approximation to the full numerical

solutions. Indeed, upon decreasing our small parameter Re−1/2, one observes a notable

decrease in the absolute difference between the two sets of solutions.

IV. DISCUSSION AND CONCLUSIONS

We have shown that it is possible to obtain self-similar boundary-layer solutions over

deforming surfaces and have investigated a number of specific case studies. Our analysis

is primarily focused on flows that are generated from extrusion-type processes, whereby

surfaces accelerate and thin as they are extruded. The vast majority of studies in the

literature fail to account for this surface curvature and instead assume that the sheet is flat,

following the analysis of Crane 4 . We show that in order to accurately describe boundary

layer flows over stretching surfaces one needs to account for the curvature of the surface.

Failing to do so results in incorrect predictions for both the streamwise and wall-normal

velocity components. Most notably, near to the extrusion inlet, we find that the magnitude

of the wall-normal velocity at the far-field is significantly increased when compared to the
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corresponding flat-plate results. Our analytical results have been verified numerically using

an appropriate finite element scheme and we observe excellent agreement between the two

sets of solutions.

Our formulation has been shown to be general enough that it can be extended to consider

both flows over thickening, decelerating surfaces and also the development of boundary-layer

flows over periodic rough surfaces. Our analysis stipulates that the exact form of the wall

velocity is dictated by the shape of the deforming surface. However, we have shown that,

at least for the case studies considered here, these expressions for the wall velocity can be

very well approximated by simple expressions involving only the streamwise coordinate ξ.

In practice, one would measure the velocity of the deforming sheet and stipulate the value

of the constant γ to ensure that the predicted wall velocity closely matched experimental

observations, and, indeed, our analysis allows for exactly this procedure. Our analysis

could easily be extended to consider other types of flows generated from extrusion processes

including those over bounded domains. In these cases, one would replace the analytical

calculation the arc length of the surface, I, with a numerical integration scheme with the

limits of integration dictated by the bounds of the domain.

In a sense the current study is somewhat related that of Crane 20 , where similarity solu-

tions for the boundary-layer flow induced by a stretching cylinder were derived. However,

these solutions are only valid when the ratio of cross-sectional areas of the boundary layer to

the cylinder is large. Both the velocity and shape of the cylinder are prescribed in a manner

that ensures that mass is conserved within the cylinder i.e., the density is constant. In much

the same way as the corresponding flat plate study4 the cylinder wall is not treated as a

deformable quantity. The approach we have presented here would be capable of describing

more general boundary-layer solutions in other such non-Cartesian geometries, and, as such,

could remove the limitations of the studies relating to flows induced by stretching cylinders.

Recent research has shown that Crane’s flow is linearly stable to Görtler type distur-

bances (Davis and Pozrikidis 21) but is linearly unstable to Tollmien-Schlichting (TS) type

disturbances (Griffiths, Stephen, and Khan 22). However, both analyses centre on the fact

that the sheet is not deformed as it is stretched. Given that we have shown that the basic

flow solutions are significantly altered when surface deformation is accounted for, it would

seem natural to re-pose questions regarding the linear stability of these types of flows to ei-

ther non-propagating (Görtler) or propagating (TS) disturbances. Indeed, we are currently
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pursuing this avenue of investigation and hope to report on this in due course.
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Appendix A: Self-similar solutions in the limit as ci → 0

In the first instance we consider the case when c1 = 0. This is directly equivalent to the

case when γ = −2. From (7a) it is immediately apparent that if c1 = 0, then it must be

the case that X+ = 0. Solving this resulting ODE we determine that g = k
√

(ξUw)−1σ,

where k is a constant of integration. Thus from (7b) it follows that Uw = −c−1
2 k2I−1. Given

that we consider only cases where the wall velocity is positive we fix c2 = −k2. Now, by

writing f̂(Z) = kf(ζ) = ψ, where Z = kζ = σ−1ηUw, we have that u0 = σ−1Uwf̂
′
Z , and

v0 = Zf̂ ′
Z [σ

−1σ′
ξ − U−1

w (Uw)
′
ξ]. The ODE that governs the flow is then

f̂ ′′′
ZZZ + (f̂ ′

Z)
2 = 0,

which must be solved subject to

f̂(0) = 0, f̂ ′
Z(0) = 1, f̂ ′

Z(∞) = 0.

The ODE in question can be integrated to give

1

2
(f̂ ′′

ZZ)
2 +

1

3
(f̂ ′

Z)
3 = 0.

The right-hand side of the above must be equal to zero to ensure that the far-field condition

is satisfied. In the limit as Z → 0 it then follows that

1

2
[f̂ ′′

ZZ(0)]
2 = −1

3
.
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Clearly, this cannot be true and, as such, we determine that no real solutions exist in the

case when γ = −2 (c1 = 0). This result is analogous to that associated with the Falkner-

Skan problem in the limit as m → −1. In that case one is unable to determine the flow

in a diverging channel due to the very rapid deceleration of the free-stream velocity. We

interpret our result in much the same way, given that Uw is inversely proportional to I we

conclude that the rapid change of the wall velocity to zero is such that a boundary-layer

cannot be accommodated by this analysis.

In the second instance we consider the case when c2 = 0. This is directly equivalent to the

case when γ → ∞. From (7b) it is immediately apparent that if c2 = 0, then it must be the

case that Uw = constant. Given this result we determine, from (7a), that g = k
√
ξ−1J σ,

where k is a constant of integration fixed such that 2c1 = k2, and J = C+I. Now, by writing

f̂(Z) = kf(ζ) = ψ/
√
JUw, where Z = kζ = σ−1η

√
J −1Uw we have that u0 = σ−1Uwf̂

′
Z ,

and

v0 =
σ

2

√
Uw

J

{[
2J σ′

ξ

σ2
+ 1

]
Zf̂ ′

Z − f̂

}
.

The ODE that governs the flow is then

f̂ ′′′
ZZZ +

f̂ f̂ ′′
ZZ

2
= 0,

which must be solved subject to

f̂(0) = 0, f̂ ′
Z(0) = 1, f̂ ′

Z(∞) = 0.

The above ODE and boundary conditions are identical to those presented by Tsou, Sparrow,

and Kurtz 13 who considered purely the case when s(ξ) = 0. Thus, in all cases when the

wall velocity is constant, the boundary-layer flow over non-flat surfaces can be determined

from the solutions associated with the flow over a flat smooth boundary.

There is a special case to consider when σ/
√
J = d1 = constant. In this case v0 is a

function of Z only. It follows that

σ =
d1
2
(d2 + d1ξ),

where C = d22/4. Stipulating that s0 = 0, and fixing d1/2 = d2 = 1, gives

s(ξ) =
σ
√
I

2
− 1

2
ln

(√
σ − 1

2
+

√
σ + 1

2

)
.

Then σu0/Uw = f̂ ′
Z , and v0/

√
Uw = (2Zf̂ ′

Z − f̂).
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Appendix B: Derivation of the exact solutions

Consider equation (14). For convenience we define q = 2/(2 + γ) so that now we seek

solutions to

f̂ ′′′
ZZZ + f̂ f̂ ′′

ZZ − q(f̂ ′
Z)

2 = 0,

subject to

f̂(0) = 0, f̂ ′
Z(0) = 1, f̂ ′

Z(∞) = 0.

Following the same approach as Sachdev, Bujurke, and Pai 15 we suppose that

f̂(Z) = b+ b
∞∑
n=1

Anân e−bnZ where A =
a1
b

and â1 = 1. (B1)

The constants a1, ân and b need to be determined. Note f̂ ′
Z(∞) = 0 is already satisfied.

Substituting this expression for f̂ into the ODE gives

∞∑
n=2

Ane−bnZ

(
−ânn2(n− 1) +

n−1∑
j=1

âj ân−j(n− j)[n− (q + 1)j]

)
= 0.

To satisfy this we require that

ân =
1

n2(n− 1)

n−1∑
j=1

âj ân−j(n− j)[n− (q + 1)j] for n ≥ 2. (B2)

The first few values are given by

â2 =
1− q

4
, â3 =

1− q

72
(5− 4q), â4 =

1− q

1728
(34− 53q + 21q2),

â5 =
1− q

172800
(968− 2235q + 1741q2 − 456q3), . . . .

Using f̂(0) = 0 we obtain
∞∑
n=1

Anân = −1, (B3)

which is a polynomial in the unknown A. By truncating this to a finite series we can

numerically obtain the value of A. The condition f̂ ′
Z(0) = 1 yields

b =
1√

−
∞∑
n=1

nânA
n

. (B4)

With A and b known, we can determine a1 using a1 = Ab.
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Special case: q = 1

If q = 1, then ân = 0 for n ≥ 2 and therefore

f̂(Z) = b+ a1 e−bZ .

Applying our boundary conditions yields a1 = b = 1. Hence

f̂(Z) = 1 + e−Z .

Special case: q = −1

If q = −1, then equation (B2) reduces to

ân =
1

n(n− 1)

n−1∑
j=1

âj ân−j(n− j) for n ≥ 2.

With â1 = 1, the solution is given by ân = 21−n. Thus one finds that

f̂(Z) = b+ 2b
∞∑
n=1

(
A

2
e−bZ

)n

= b
2 + Ae−bZ

2− Ae−bZ
.

Substituting this solution into f̂(0) = 0 gives A = −2. Further f̂ ′
Z(0) = 1 gives b2 = 2, and

hence

f̂(Z) =
√
2
1− e−

√
2Z

1 + e−
√
2Z

=
√
2 tanh

(
Z√
2

)
.
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