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A B S T R A C T   

With over a billion adults worldwide currently affected, presbyopia remains a ubiquitous, global problem. 
Despite over a century of study, the precise mechanism of ocular accommodation and presbyopia progression 
remains a topic of debate. Accordingly, this narrative review outlines the lenticular and extralenticular com-
ponents of accommodation together with the impact of age on the accommodative apparatus, neural control of 
accommodation, models of accommodation, the impact of presbyopia on retinal image quality, and both historic 
and contemporary theories of presbyopia.   

1. Overall aims 

Despite the ubiquitous, global problem of presbyopia [1], the precise 
mechanism of ocular accommodation and presbyopia progression re-
mains a topic of debate. Therefore, this narrative review aimed to 
outline the lenticular and extralenticular components of accommoda-
tion together with the impact of age on the accommodative apparatus, 
neural control of accommodation, models of accommodation, the 
impact of presbyopia on retinal image quality, and both historic and 
contemporary theories of presbyopia. 

2. Mechanism of accommodation 

Accommodation is a dynamic process that increases the dioptric 
power of the eye’s optical system to maintain images in sharp focus on 
the retina as fixation changes from far to relatively near distances. When 

the eye fixates on a distant (for example at > 6 m) object, the refractive 
system of the eye is focused at an optical infinity, so parallel rays of light 
entering the eye form clear images on the retina. As the fixation distance 
reduces towards the cornea, the diverging rays entering the eye come to 
a focus behind the retinal plane creating hyperopic retinal image blur, 
which serves as the primary dioptric stimulus to accommodation [2,3]. 
In response to this stimulus, the crystalline lens, ciliary body, and zon-
ules undergo various structural alterations to produce an accommoda-
tive response that restores image focus and maintains clarity of vision. 
Collectively, these components constitute the accommodative apparatus 
[4], and a coordinated response between them is central to the dynamic 
process of maintaining clear vision at a range of viewing distances. 

The accommodative response begins with the contraction of the 
ciliary body which uses a sphincter-like muscle to fulfil its role of 
maintaining image clarity. As fixation distance varies, contraction or 
relaxation of the ciliary muscle produces changes in the tension of 

Abbreviations: AC/A, accommodative convergence to accommodation ratio; AoA, amplitude of accommodation; DoF, depth of focus; GRIN, gradient refractive 
index; OCT, optical coherence tomography; MRI, magnetic resonance imaging; MTF, modulation transfer function. 
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zonular fibres that are attached to the lens capsule near the equator of 
the crystalline lens [3]. Alteration of the zonular tension results in 
modulation of the outward pulling force exerted by the zonular fibres on 
the crystalline lens [5]. Consequently, the curvature of the lens surface 
changes, modifying the power of the eye’s optical system and restoring 
image clarity (Fig. 1). 

2.1. Crystalline lens 

The crystalline lens enables the young human eye to optimize image 
clarity as the eye modifies its structures to alter fixation between objects 
at various distances in the visual field. In the absence of accommodation, 
the crystalline lens contributes approximately one-third (approximately 
20 D) of the eye’s total dioptric power (approximately 60 D). A 
remarkable feature of the crystalline lens is that it has a capsular sur-
rounding, and is suspended in fluid (the aqueous humour) by a network 
of surrounding zonular fibres [6]. The bulk of the crystalline lens is 
formed by proteins, which play a critical role in maintaining its trans-
parency [7,8]. Indeed, the crystalline lens has the highest protein con-
centration of any biological tissue (approximately 300 mg/ml) [9,7]. 
Besides proteins, the crystalline lens is composed of long, thin fibres 
arranged in concentric orientation giving a flattened (oblate) spheroid 
shape to the lens [10]. When viewed in cross-section, the crystalline lens 
has an onion-like structure, containing several layers of fibres sur-
rounding the central core [11]. This arrangement of lens fibres is a 
consequence of crystalline lens growth as older fibres are located toward 
the nucleus, surrounded by the younger cortical fibres [12]. The crys-
talline lens nucleus has no apparent anatomical demarcation with the 
surrounding cortex. The equator of the crystalline lens separates the 
anterior and posterior surfaces whose geometrical centres form the 
anterior and posterior poles, respectively. 

On the anterior surface, the crystalline lens has a single layer of 
epithelial cells which serve as the progenitor for new lens cells [13]. The 
entire meshwork of lens fibres and the epithelial cells are enclosed 
within the lens capsule which, near the equator, serves as the attach-
ment site for the zonular fibres extending from the pars plana of the 
ciliary body. This attachment site is not constant, however. While zon-
ular fibres are distributed uniformly from the anterior to the posterior of 
the lens equator at early stages, the distribution becomes densest ante-
rior to the equator as the crystalline lens ages, and this redistribution 
continues throughout life [14,15]. 

With increasing accommodation, the crystalline lens becomes opti-
cally stronger to maintain retinal image focus. To facilitate this, several 
structural changes occur that contribute to the increase in its overall 
dioptric power [16–18]. The most prominent change is the steepening of 
the lens surfaces with both anterior and posterior lens surfaces become 

more curved with accommodation leading to an increase in dioptric 
power [19,17,20,21]. The increase in curvature of the anterior surface is 
greater causing it to become hyperbolic [22,23]. However, the change in 
curvature is insufficient to account fully for the increase in power 
required for the accommodative demand. It is hypothesized that changes 
in the curvature of the interior optical zones of the crystalline lens 
[24,25] or changes in the refractive index distribution [26,27] account 
for the remainder of the lens power increment. 

Accompanying changes in surface curvatures, the thickness of the 
crystalline lens also increases along the polar axis with accommodation 
[19,28,17,29]. This increase in sagittal lens thickness is mainly due to 
the anterior shift in the position of the anterior pole [30]; however, the 
displacement of the lens pole appears somewhat dependent on refractive 
status, as the posterior pole has been found to move backward in myopic 
eyes [31]. The increase in the thickness of the crystalline lens is pro-
duced primarily by the thickening of the lens nucleus [25] that occurs at 
the same rate in both the anterior and posterior halves [28]. The 
thickening of the crystalline lens slightly decreases its overall dioptric 
power, but the forward movement of the lens also causes the anterior 
chamber (distance between the posterior corneal surface and the ante-
rior lens surface) to become shallower [19]. This reduction in anterior 
chamber depth increases the effective power of the cornea and lens 
combination and offsets the slight power reduction brought about by the 
thickening of the crystalline lens [32]. The net result is a positive in-
crease in the overall dioptric power of the crystalline lens that supple-
ments the increase in power due to changes in the curvature of the lens 
surfaces. The increase in lens thickness with accommodation is greater 
than the decrease in anterior chamber depth, suggesting that there is 
some backward shift in the position of the posterior pole [22,31]. While 
the lens surface area has been found to decrease with greater accom-
modative demand, the lens volume appears to remain constant [33,34], 
although inconsistency exists [18]. It has been suggested that 
accommodation-induced change in lens shape could be due to redistri-
bution of tissue within the capsular bag without significant compression 
of the lens contents or fluid exchange through the capsule [33]. 

The crystalline lens has an internal microcirculation system that 
creates circulating flow of ions, water and nutrients that maintain the 
transparency and refractive properties of the lens. Through this active 
regulation of water content, the microcirculation system controls lens 
geometry and the gradient of refractive index; together these key pa-
rameters determine the refractive properties of the lens. In addition, by 
delivering antioxidants and nutrients to the lens nucleus, the microcir-
culation system maintains lens transparency through preventing crys-
tallin aggregation. The ability of crystallin proteins within the lens to 
dynamically bind water can also modulate their solubility, intra-
molecular packing and refractive index [8]. 

Fig. 1. Schematic outline of the principal structures involved in accommodation. Left, shows the eye in the relaxed state; right, illustrates the accommodated state. 
Arrows indicate relative movement of structures. 
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2.2. Lens capsule 

The lens capsule is a thin, highly elastic, transparent membrane of 
5–30 µm in thickness, that forms a capsular bag and encloses the 
concentric shells of lens fibres and the anterior epithelium of the lens 
[35–37]. The capsule serves to maintain the shape of the crystalline lens 
and transmits forces from the zonular fibres to the lens substance. Since 
elastin fibrils are absent in the lens capsule, its viscoelasticity is attrib-
uted mainly to the flexible, mesh-like arrangement of the collagen fibrils 
[35,38]. These fibrils are primarily type IV collagen lying within the 
glycosaminoglycan matrix [39,40]. Owing to its viscoelasticity, the 
capsule can mould the internal lens during accommodation [41,42]. 

During embryonic development, the capsule forms as the basement 
membrane of the epithelium on the lens vesicle [38]. As the lens grows, 
new material is deposited onto the anterior capsule, which causes a 
gradual shift of the capsular parts posteriorly. The capsule in the pos-
terior pole, therefore, is the thinnest measuring 2–3 µm [43]. 

2.3. Zonules 

The zonule fibres, 1–2 µm in diameter and thousands in number, 
originate from the dentate processes of the pars plana with the valleys of 
the ciliary processes on pars plicata serving as the anchoring sites of the 
lens [44]. Adjacent to these anchoring sites are the circular portion of 
the ciliary muscle. As a result, the force generated by the contraction or 
relaxation of the ciliary muscle is directly communicated across to the 
zonules and then to the crystalline lens. The zonular fibres run radially 
from the valleys of the ciliary processes to extend over the lens capsule 
and ultimately fuse with the capsular collagen via attachment proteins. 
This complex system of zonular fibres helps maintain the centration of 
the crystalline lens within the visual axis and serves physiologically to 
transmit forces generated by the ciliary muscle to produce changes in 
lens dimensions during accommodation [45]. 

Structurally, the zonules are composed of 10–12 nm wide microtu-
bules arranged as long strands [46,47], which collectively form bundles 
that connect the basement membrane of the unpigmented epithelium of 
the ciliary body to the crystalline lens capsule [47]. These microtubules 
are embedded in a polysaccharide matrix with adjacent elastin fibrils, 
which provide elasticity for the zonules, so they can readily stretch and 
modify their inherent tension [48]. Because the zonular bundles are 
transparent in their physiological state, thin and concealed behind the 
iris, they are visible only with imaging techniques such as ultrasound 
biomicroscopy [45]. The site of attachment of the zonules on the lens 
capsule is broadly around the equator of the lens. They attach to the 
anterior surface, posterior surface, or to the equator of the lens [49,45]. 
However, the distribution of these zonules changes with age (see section 
9.2). 

2.4. Ciliary body 

The ciliary body is a ring of tissue interfacing outwardly with the 
sclera’s inner surface and extending anteriorly from the uveal tract [50]. 
Its three principal functions are to produce and secrete aqueous humour 
via its non-pigmented ciliary epithelium [51], to facilitate accommo-
dation by contracting and relaxing the ciliary muscle contained within 
[52], and to provide an outflow drainage route for aqueous humour 
[53]. 

The ciliary body can be broadly subdivided into: the anterior section 
or pars plicata and the posterior section termed the pars plana [54]. The 
pars plicata consists of a series of vascular ridges of non-pigmented 
ciliary epithelium on its inner surface, which are responsible for 
aqueous humour secretion against a concentration gradient to maintain 
intraocular pressure [55]. They are arranged radially around the equator 
of the crystalline lens, each ridge orientated approximately tangential to 
the pupil plane. The pars plana extends from the ciliary processes to the 
ora serrata and is in contact with the vitreous body. It contains smooth 

muscle fibres forming the ciliary muscle, which sits beneath the ciliary 
processes and forms the bulk of the ciliary body [56]. 

2.4.1. Ciliary muscle 
The ciliary muscle is an anulus of smooth muscle cells without 

spontaneous activity surrounded by connective tissue [57]. The fast 
multi-unit smooth muscle is primarily involved in accommodation and 
the regulation of aqueous humour flow into Schlemm’s canal [58]. The 
ciliary muscle differs from other types of smooth muscle cells as it 
comprises both smooth and striate muscle cells [59]. Ciliary muscle 
bundles can be histologically delineated into three fibre types: longitu-
dinal, radial and circular. The longitudinal fibres run from the scleral 
spur to the posterior visible limit of the ciliary muscle, parallel to the 
sclera. The radial fibres run broadly perpendicular to these longitudinal 
fibres, while circular fibres encircle the ciliary muscle aperture, lying in 
the closest proximity to the crystalline lens [60]. Histochemical exam-
ination of the primate ciliary muscle suggests that longitudinal fibres are 
similar to rapid type-II skeletal muscle fibres, whilst radial and circular 
fibres resemble slow type-I fibres [57]. 

In its relaxed state, the ciliary muscle’s maximum thickness is 
approximately 0.9 mm [61], thicker temporally than nasally [62], with 
an overall length of approximately 4.6 mm [62] and a ring diameter of 
11.8 mm [61]. Once stimulated, the ciliary muscle’s contractile action 
during accommodation moves the ciliary body forward and inward [63], 
increasing in thickness at a rate of approximately 0.026 mm per dioptre 
of stimulus demand at the muscle’s thickest point in the horizontal plane 
[61], whilst the ciliary ring diameter decreases at a rate of between 
−0.063 and −0.105 mm per dioptre of stimulus demand [64]. 

2.5. Choroid and axial length 

It is well established that the primary correlate of myopia and its 
progression is an increase in axial length [65], which is typically 
quantified as the distance between the anterior corneal surface and the 
retinal pigment epithelium [66]. Similarly, a growing body of evidence 
suggests that axial length measurements along the visual axis are 
modified by changes in accommodation [67]; these may be influenced 
further by differences in an individual’s baseline refractive error, with 
greater accommodation-induced axial length changes detected in both 
emmetropes [68] and myopes [69], although this phenomenon is often 
dependent on the level of accommodative demand [70] and it has not 
been observed universally [71]. 

In terms of the underpinning mechanism for the increase in axial 
length as a function of accommodative response, recent studies have 
converged on the hypothesis that a corresponding decrease in choroidal 
thickness plays an important role. Indeed, a recent study suggested that 
choroidal changes account for approximately 60 % of the overall axial 
length increase observed during active accommodation [72]. Further-
more, studies have shown choroidal thinning with accommodation in 
the subfoveal [73], macular [74], peripapillary [75], and peripheral 
regions [72]. It has been suggested that axial elongation during ac-
commodation may be a consequence of the force applied to the equa-
torial choroid during ciliary muscle contraction, requiring posterior pole 
elongation to maintain a constant ocular volume [68,70]. It is likely, 
therefore, that more than one factor produces this axial stretch. 

3. Neural control of accommodation 

The ciliary muscle is innervated principally by the antagonistic ac-
tion of the autonomic nervous system [76]. Here, parasympathetic 
innervation of the ciliary muscle is facilitated by the neurotransmitter 
acetylcholine on muscarinic receptors [77]. Activation of the para-
sympathetic system induces contraction of the ciliary muscle, which, in 
turn, leads to relaxation of the zonular fibres that suspend the crystalline 
lens, enabling the crystalline lens to assume a more convex shape and, 
thus, increase the accommodative response [30]. Withdrawal of 
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parasympathetic innervation reverses this mechanism, leading to a 
decrease in the overall accommodation response [78]. In parallel, 
inhibitory sympathetic input to the ciliary muscle is mediated by 
noradrenaline on adrenoceptors [79]. 

Since early work elucidated that parasympathetic (cholinergic) 
innervation to the ciliary muscle facilitates accommodation for near 
targets [80], much evidence regarding the autonomic control of ac-
commodation has been gathered by measuring accommodative re-
sponses to pharmacological [81–83] and physiological [84–86] 
manipulations of the autonomic nervous system. Additionally, the 
parasympathetic response has been found to be rapid (1–2 s) when the 
oculomotor nerve is stimulated via the Edinger-Westphal nucleus in 
primates [87]. 

In terms of the sympathetic (adrenergic) nervous system’s role in 
accommodation control, early work showed that stimulation of the pre- 
ganglionic cervical sympathetic nerves of primates produces a negative 
accommodative effect [88]. Furthermore, non-selective beta-blockers 
(e.g., propranolol) eliminate this negative accommodation response, 
indicating that a beta-adrenergic inhibitory mechanism exists in the 
control of ciliary smooth muscle. In contrast to the parasympathetic 
response, the negative sympathetic response is slow, reaching a maximal 
effect after 10 to 40 s [89], far too slow to have any impact on viewing a 
dynamic visual environment [90]. 

Evidence of inhibitory sympathetic input to accommodative control 
has been demonstrated in both in vitro work and functional in vivo 
studies [91]. In addition to the presence of the predominant M3 subclass 
of muscarinic receptor found in the anterior segment of the human eye 
[92], studies have also identified the presence of the alpha-1 and beta-2 
subclass of adrenoceptors in human ciliary body tissues [93–95]. 

Functional studies of in vivo accommodation have shown that the 
gain of closed-loop responses to a sinusoidal accommodative stimulus 
increases following instillation of the alpha-1 adrenoceptor agonist 
phenylephrine hydrochloride [96]. In terms of sympathetic ubiquity, 
however, work using the beta-adrenoceptor antagonists timolol maleate 
and betaxolol hydrochloride showed that only a third of individuals 
have access to a sympathetic inhibitory facility in accommodation 
control [82,97]. Since sympathetic inhibition of accommodation may 
aid relaxation of ciliary smooth muscle following cessation of a near task 
and, therefore, expedite the distance refocus response, it is conceivable 
that access to this inhibitory facility may improve accommodative ac-
curacy. To explore this concept further, previous work used the phe-
nomenon of nearwork-induced transient myopia as a measure of post- 
nearwork relaxation of accommodation [98]. They combined this with 
manipulation of sympathetic innervation of ciliary muscle using topical 
timolol maleate to inhibit beta-2 adrenoceptors, together with a betax-
olol hydrochloride control agent acting on beta-1 receptors only. Of 
their 20 participants, 7 (35 % of the cohort) demonstrated access to an 
inhibitory branch of accommodation control, mediated by the sympa-
thetic autonomic nervous system branch. Those with access to sympa-
thetic facility showed a significant increase in nearwork-induced 
transient myopia duration following the instillation of timolol maleate; 
however, no such change was observed following instillation of betax-
olol hydrochloride owing to the selectivity of this agent for beta-1 
adrenoceptors. 

4. Components of the functional accommodative response 

A variety of factors influence the accommodative response achieved 
when the eyes are presented with a near object of interest [99]. It has 
previously [100] been suggested that the response has several 
components: 

(i) Reflex accommodation, a quasi-automatic involuntary adjust-
ment of refractive state to maintain a sharp retinal focus, of 
maximal luminance contrast and smallest blur-circle diameter, of 

the object of regard [78,101,102]. There are, however, some 
doubts as to whether a true involuntary reflex is present.  

(ii) Proximal or conscious-driven accommodation triggered by 
knowledge of the distance of the object, without requiring a 
change in the target size [103,104]. It is considered that volun-
tary accommodation is a form of proximal accommodation [100], 
as many individuals can train themselves to deliberately suppress 
or enhance the normal accommodative response under specific 
circumstances [105–107]. 

(iii) Convergence accommodation, driven by fusion disparity ver-
gence, which offers additional cues for accommodation under 
binocular viewing conditions [108].  

(iv) Tonic accommodation, the slightly myopic refractive state of 
around 1.00 D, to which the system reverts in the absence of an 
adequate accommodative stimulus [109–113], which has also 
described as empty-field myopia [114,115], dark focus [116,117] 
or dark accommodation [118]. A closely related phenomenon is 
that of instrument myopia, the alternation in focus when viewing 
a target within or through a measurement system [99,109,119]. 
These observations lead to the concept that this slightly myopic 
refractive state, also known as the resting state of response, forms 
the equilibrium level between parasympathetic and sympathetic 
innervations to the system [118]. As mentioned previously, this 
could imply that innervation of the parasympathetic system re-
sults in changes in accommodation from this level to view near 
targets, while innervation of the sympathetic system results in 
accommodative changes to view distant targets. However, it is 
more widely believed that sympathetic innervation acts relatively 
slowly and inhibits existing parasympathetic activity. Thus, its 
major role may be in the maintenance of sustained responses, 
rapid response changes being governed by changes in the excit-
atory parasympathetic activity [120]. 

Different individuals may use different cues, and they may switch to 
use other signals in conditions when the cue that they normally use is 
absent [121]. For example, experiments on monocular accommodation 
show that although chromatic aberration is useful [122], participants 
soon learn to use other cues as alternatives, such as small amounts of 
uncorrected astigmatism or higher order aberrations [122–124]. In real- 
world situations, binocularity provides disparity cues, while a variety of 
proximity and other perceptual cues become available [121]. In addi-
tion, it has been shown in studies of monocular accommodation that 
some participants fail to accommodate at all to changes in real space 
vergence stimuli, despite having clinically normal values of accommo-
dation [124,125]. This suggests that accommodation may demand a 
voluntary input, and the lack of any true involuntary reflex 
accommodation. 

5. Amplitude of accommodation 

Subjective amplitude of accommodation (AoA) is a measure of the 
maximal focusing range of the eye, the dioptric difference between the 
far point (optical infinity for emmetropes or fully corrected ametropes) 
and the near point where an object (usually an optotype) is focused 
clearly, and there is no noticeable image blur; in other words it is the 
maximum potential dioptric increase in optical power that an eye can 
achieve in adjusting its focus. In young eyes, it is usually interpreted as 
an index of maximum accommodation effort, which declines progres-
sively with age [126,127]. Subjective AoA tend to exceed the corre-
sponding objectively-measured amplitudes (range of the actual 
accommodative response or change in power of the eye), due mostly to 
the inclusion of ocular depth of focus (DoF; see section 6.1) [128–132]. 
This effect is most pronounced beyond the age of 45–50 years, when age- 
associated pupillary miosis increases DoF [112,133]. The few longitu-
dinal studies of objective accommodative response suggest that, for any 
individual presbyope, objective amplitudes fall almost linearly with age 
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to reach zero at about the age of 50–55 years [127,128,134,135]. 
Since real-world activities are usually performed binocularly, normal 

proximity cues are expected to allow more natural convergence 
[104,108]. This is confirmed in Fig. 2, [126], which show that the 
average difference between binocular vs. monocular conditions is about 
0.6 D to 0.7 D for ages up to 18 years, 0.5 D for ages between 18 and 30 
years, and 0.4 D for ages between 30 and 50 years. The higher difference 
in young eyes is possibly due to extra convergence-driven accommo-
dation, when stimuli vergence is quite high. This is not so evident in 
older eyes, since the target is only clear to about half a meter and there is 
little convergence demand. Increased demand in convergence may also 
result in further pupil constriction and a corresponding increased DoF 
[136]. 

5.1. Clinical measurements of AoA 

Various subjective techniques have been developed to assess AoA. 
They are not comparable [137–139] and the protocol followed can in-
fluence the results, so they need to be carefully conducted (see BCLA 
CLEAR Presbyopia: Evaluation and diagnosis report [140]. 

6. Accuracy of the steady-state accommodative response 

While AoA is of obvious clinical importance, it gives only partial 
information on the overall static characteristics of the accommodation 
system [128,130]. These are more fully illustrated by accommodation 
response/stimulus curves, which involve measurements of accommo-
dation performance over its full dioptric range, rather than just at the 
near and far points. Since the accommodative control system generates a 
signal to minimise retinal image blur [78,121], it would be expected that 
optimal accommodative performance, resulting in an in-focus retinal 
image, would automatically be achieved for the full range of distances 
within the objective AoA. However, the response/stimulus curves typi-
cally show steady-state errors in focus (for a review, see [141]), such 
that the response exceeds the stimulus magnitude for far objects 
(accommodative lead) and is too small for near objects (accommodative 

lag) [120,142,143]. When the mean steady-state response is plotted as a 
function of accommodative demand, then a quasi-linear response/ 
stimulus curve is recorded (Fig. 3). 

This response/stimulus curve can be divided into four different re-
gions, summarised as: 1) initial non-linear zone characterised by a lead 
of accommodation (higher accommodative response than stimulus) 
primarily influenced by tonic accommodation 2) linear manifest zone 
characterised by a lag of accommodation with response lower, but 
proportional to the accommodative stimulus and with the slope 
decreasing with age; 3) soft saturation zone characterised by increas-
ingly smaller changes in accommodative response (increase lag) for 
progressively greater increases of accommodative stimulus and 4) hard 
saturation zone that is non-linear and characterised by an accommo-
dative response no longer capable to follow the accommodative stimulus 
(considered as the limit of AoA) [144,145]. Although the magnitude of 
the lag of accommodation can be as high as 2.00 D at high stimulus 
vergences, this error in focus, may not lead to noticeable subjective 
image blur, since it is within the individual’s DoF tolerance [146,147]. 
This observation also explains the lower levels of the objective AoA 
compared to the subjective measurement [128–130,132]. 

Fig. 3 also depicts that the response/stimulus slope varies substan-
tially between individuals of the same age, and is affected by inherent 
ocular characteristics, such as higher order aberrations (for example 
spherical aberration [120,148,150]) and pupil size [135,151], and the 
nature of the stimulus (its contrast, form [such as a letter compared to a 
Grating], spatial size and colour) [141]. All of these factors are known to 
influence ocular DoF. Accuracy of accommodative response is also 
increased with binocular viewing [152]. Increased accommodative lead 
is associated with small reductions in visual acuity in young adults 
viewing letters at optical infinity [153]. Likewise, higher levels of 
accommodative lag lead to small reductions in visual acuity for a 4.00D 
stimulus. 

Active accommodation is less effective at low lighting levels since it 
depends on cone activity [115,154]. It has been shown that the errors in 
accommodative response become progressively higher as luminance is 
decreased, such that the response/stimulus curve becomes flatter; when 

Fig. 2. Comparison of binocular (BIN, blue dots) and monocular (MON, red 
dots) amplitudes of accommodation (upper) and their difference (lower) as a 
function of age (replotted data from Duane et al 1922 [126]). 
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Fig. 3. Accommodation response/stimulus curve from thirteen young partici-
pants (age range: 23 to 33 years) under constant photopic conditions. The 
dashed line represents the ideal one-to-one relationship. Accommodation was 
measured monocularly using a wavefront analyzer (COAS, Wavefront Sciences 
Ltd) in conjunction with a purpose-built Badal optometer. Analysis was per-
formed for natural pupils. Note, the high inter-subject variability (data 
adopted from Plainis et al., 2005 and Plainis et al., 2009) [120,148,149]. 
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only the rods are active, the accommodative system ceases to function 
[154]. 

The changes in AoA with age are accompanied by changes in the 
extent and form of the static response/stimulus curve [128,155]. Fig. 4 
presents response/stimulus curves and the associated errors of focus for 
the same individual at different ages [134]. Here, the slope of the linear 
portion of the accommodation response/stimulus curve diminishes with 
age, to reach zero at an age around 50 years [112,155]. Such behaviour 
appears to result from the ageing accommodation system adapting its 
characteristics to make optimal use of the available objective AoA, in the 
form of the effective range of crystalline lens change, pupil diameter 
miosis [133,156] and DoF, to ensure the retinal image is of satisfactory 
(rather than perfect) image quality over as large a range of stimulus 
vergence as possible. 

Pupil diameter decreases with accommodative demand (near miosis) 
and its decrease continues up to the age of 50 years, when true ac-
commodation has declined to near zero, suggesting the existence of a 
reserve of ciliary effort [135,157,158]. Pupil constriction at near has the 
advantage of decreasing out-of-focus retinal image blur [129] and 
improving visual acuity in the presence of accommodation errors in 
focus [159]. Ocular spherical aberration may also play a role 
[120,150,156]. Thus, it is thought that the retinal image blur associated 
with the larger lags of accommodation found at higher stimulus levels is 
reduced by pupillary constriction and the resultant lower levels of 
spherical aberration [135]. 

6.1. Depth of focus (DoF) 

As already alluded to, subjective DoF in human vision is a complex, 
multifactorial concept influenced by various parameters such as test- 
object characteristics, pupil size, spherical aberration, perceptual 
discrimination, endpoint criteria, binocular summation and age 
[112,129,131,132,160,161]. This complexity renders its impact on the 
measurement of the AoA relatively unpredictable. Fundamentally, DoF 
is the range of an object’s vergence at the eye without any objectionable 
blur being detected by the observer [162]. Blur is a perceptual phe-
nomenon that can be impacted by neurological and perceived tolerance, 
while retinal defocus is an optical phenomenon whereby there is a 

reduction in the retinal-image contrast gradient [132,163]. Neverthe-
less, a disparity exists between normative AoA values and those obtained 
with reduced DoF effects, highlighting the potential for DoF to inflate 
AoA measurements. Standardisation of AoA measurement methodolo-
gies that consider DoF, and its influencing factors could enhance the 
reliability and comparability of results across studies (see BCLA CLEAR 
Presbyopia: Evaluation and diagnosis report) [140]. This understanding 
is vital for accurate clinical refraction and would inform future research 
into improving refractive error measurements and treatments. 

Refractive error impacts DoF because spectacle correction increases 
the accommodative stimulus for hyperopia compared with emmetropia 
and myopia [164]. The literature on the critical evaluation or applica-
tion of this principle in routine clinical work is sparse. Therefore, it is 
crucial to develop novel methods for AoA measurement that effectively 
eliminate DoF while being suitable for routine clinical use. 

6.2. Pupil diameter 

Regulating pupil size is challenging in a clinical setting, as it is highly 
susceptible to swift alterations due to an array of factors such as ageing 
[165], the process of accommodation itself [166], and cognitive effort 
[167]. 

Accommodation is typically coupled with a reduction in pupil size 
(miosis) and binocular convergence. Importantly, since the constriction 
of the pupil diminishes the extent of the blurred image, accommodative 
miosis is crucial for maintaining satisfactory retinal image quality. This 
pupillary response also allows for an accommodative response less than 
the accommodative stimulus [168,169]. Studies have examined age- 
related changes in accommodative miosis [156].The outcomes of 
studies on accommodative miosis appear to be inconsistent, contingent 
on whether the studies were monocular or binocular. On average, the 
alteration in pupil diameter during accommodation was notably less in 
infants and children compared to adults and was also significantly less in 
monocular compared to binocular observations [156]. Accommodative 
miosis influences the subjective accommodation response by modifying 
the depth of field and can also impact the objective response through 
alterations in higher-order aberrations [150]. Pupil miosis also impacts 
the eye’s aberrations, with lower aberration seen with smaller pupil size. 

Fig. 4. Age-related changes in accommodative response (left) and errors in focus (right) as a function of stimulus vergence under photopic conditions for a single 
subject. Accommodation was measured using a wavefront analyzer (COAS, Wavefront Sciences Ltd) in conjunction with a purpose-built Badal optometer, Analysis 
was performed for a pupil diameter of 3.5 mm [135]. 
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However, these ocular aberrations affect the measure of the eye’s 
objective refractive state, and subsequently the measured accommoda-
tive response. 

6.3. Spherical aberration 

Primary spherical aberration is a refractive error where light rays 
entering the eye (or optical system) off-centre are refracted more or less 
than those entering near the optical axis. The presence of primary 
spherical aberration with a different sign and amount has an effect on 
the accommodative accuracy and on the slope of the accommodation 
response curve; negative values improve its accuracy (reducing the lag 
of accommodation), enhancing the slope of the curve and increasing the 
subjective AoA [170], while positive values reduce its accuracy 
(increasing the lag of accommodation) which depress the slope of the 
curve [171]. In younger eyes, the process of accommodation results in 
changes in ocular spherical aberration shifting from positive to negative 
values reducing the lag of accommodation [120] affecting the eye’s 
measured objective refractive state, and subsequently the measured 
accommodative response. In eyes of individuals older than 40 years, 
measures of spherical aberration are more variable with some eyes 
retaining positive spherical aberration, while others even increase in 
spherical aberration with the reduced AoA available [172]. This 
different behaviour may be related to changes of the gradients of 
refractive index within the ageing lens [173]. 

Meanwhile, other higher-order aberrations are impacted by accom-
modation and gaze direction. Studies have shown that while horizontal 
gaze changes minimally affect the eye’s optics, downward gaze can in-
crease the eye’s total optical power [174,175]. This could be due to 
biomechanical forces and gravity. Accommodation typically affects 
astigmatism and comatic aberrations and combined with a downward 
gaze (i.e., reading), can induce changes in other higher order aberrations 
such as coma, trefoil, tetrafoil, likely due to eyelid forces on the cornea. 

6.4. Ethnicity 

Research has shown that the AoA varies among different ethnic 
groups [176], although it is unclear whether this is a function of study 
methodologies or ethnicity [177]. For example, some studies did not 
describe the methods used to obtain or derive AoA, while others also did 
not describe the selection criteria for participants, nor did they provide 
information on gender distribution. 

Some studies have found that the clinical standard for AoA among 
Chinese participants in Hong Kong was lower compared to age-matched 
Caucasian participants, while another noted that presbyopia onset 
occurred at 35 years and absolute presbyopia by 42 years in Southeast 
Asian participants, significantly lower than the typical onset at 40 years 
and absolute presbyopia at 51 years for Caucasians [126,178,179]. 
Again, issues related to measurement technique may be driving these 
results, but alternative suggestions have also been made. For example, 
some have suggested environmental factors to be associated with in-
dividuals with lower AoA. Specifically, it has been postulated that in-
dividuals residing near the equator and exposed to high solar radiation 
or temperatures may need near-addition lenses sooner [180]. The dy-
namics of accommodation have been shown to be greater in those in-
dividuals who have been protected from ultraviolet radiation, regardless 
of global location [181]. However, this result is not consistently found in 
similar environments, so environmental factors might not explain the 
observations [182]. An alternative hypothesis which has been proposed 
is based on the differences in pupil sizes between participants, postu-
lating the role of the iris in accommodation, and different working 
distances associated with varying arm lengths [183]. However, working 
distance is not always associated with arm length [184,185], con-
founding the interpretation of this issue. Additional factors such as the 
refractive error distribution and correction accuracy are likely impor-
tant, whereby variations exist even within the same ethnicities [186]. 

6.5. Direction of gaze 

The Hess-Gullstrand theory posits that the AoA should increase in a 
downward gaze due to gravitational influence on the lens, with this 
effect being more prominent in older individuals [187]. Early studies 
investigated the validity of this theory by examining the influence of eye 
gaze direction and head posture on AoA across two distinct age brackets 
− 18 to 25 and 35 to 45 years [187]. The study observed minor, yet 
significant, shifts in near points in the direction of the eye when altering 
the head position or eye gaze from an upward to a downward orienta-
tion, but solely in the younger cohort. The maximum average disparity 
among test conditions was 1.10 D, compared to a mean accommodation 
level of 9.80 D in the younger group. Although the changes aligned with 
the directionality posited in preceding research, they were of signifi-
cantly lower magnitude. The authors concluded that the variations were 
sufficiently diminutive to negate the necessity for special attention to 
head position and eye gaze during clinical appraisals of accommodative 
amplitude [187]. 

Given the neural connectivity between the accommodative system 
and vergence system, and the interplay between them, it should be 
anticipated that the accommodative function will exhibit variation in 
multiple gaze positions, notably in the vertical direction. Another study 
found significant differences in near point of convergence across gaze 
positions and significant disparities in the AoA between upward, 
downward, and primary gazes, but not between temporal, nasal, and 
primary gazes; however, no substantial variations were observed in 
monocular accommodative facility [188]. The findings demonstrate the 
existence of variations in convergence and accommodation reflex 
functions in different gaze positions, with more pronounced changes in 
the convergence system [188]. 

6.6. Binocular vision 

AoA is larger with binocular vision compared with the monocular 
condition. These differences, induced by the contribution of conver-
gence accommodation in binocular conditions, have been measured 
both subjectively and objectively using a binocular Shack-Hartmann 
wavefront sensor [189,190]. The interaction between the accommoda-
tion and vergence systems affects the accommodative response, 
inducing changes from measurements done in monocular and binocular 
vision conditions. For example, in exophoric participants, the near 
accommodative response is higher under binocular compared to 
monocular visual conditions, while in esophoric participants it was 
lower [191]. Overall, phoria measurements may impact the near 
binocular accommodative response [192], with higher levels of ver-
gence accommodation, resulting in differences in lag under monocular 
and binocular conditions. 

7. Stability of the steady-state accommodative response 

Under all viewing conditions, the accommodation response is not 
static. Rather, small oscillations in focus are observed, called micro- 
fluctuations, having an amplitude of about 0.10 D to 0.50 D 
[123,193]. Spectrally, they can be classified into a low-frequency 
component for fluctuations with a frequency between two peaks 
below 0.6 Hz and in high-frequency component for fluctuations with a 
frequency between 1 to 2.5 Hz. The low-frequency component has been 
related to neurological control [194] and the high-frequency component 
has been associated with factors such as heartbeat and arterial pulse 
[195,196]. Although a significant inter-subject variability is observed, 
the magnitude of the fluctuations increases in conditions in which 
perceived contrast is decreased, such as at low luminance or with low or 
high spatial frequency targets, and as the target approaches the eye 
[120,197]. The increased level of micro-fluctuations for very near 
stimuli may result from the increased instability of the lens as the lens 
zonules relax during accommodation [120]. In addition, under the same 
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stimulus conditions, micro-fluctuations are slightly reduced in older as 
compared to younger eyes, perhaps because of reduced elasticity in the 
lens zonules and/or capsule [198]. 

It is thought that the low-frequency component of these fluctuations 
may have a role in helping to maintain the steady-state response, by 
providing an essential feedback signal, which is used by the accommo-
dation control system [193,199]. Fluctuations of higher magnitude are 
expected to maintain the system at higher levels of accommodative 
response when moderate errors in accommodation are typically present, 
by producing temporal changes in the contrast of the retinal image 
[120,142,200]. Note, that oscillations in pupil diameter may also 
contribute to the micro-fluctuations of accommodation, especially for 
near targets, as pupil noise is increased for small diameters, while in-
dependent of the mean accommodation response level [201]. 

7.1. Time constant and peak velocity 

Dynamic monocular accommodation components (latency, time 
constant, peak velocity/amplitude relationship, and micro-fluctuations) 
were objectively assessed using an infrared optometer within the linear 
accommodation region in 30 visually normal human participants aged 
21–50 years [202]. The time constant and the peak velocity/amplitude 
relationship did not change with age. However, latency progressively 
increased, and micro-fluctuation amplitude and frequency progressively 
decreased with age. The invariance in the time constant suggests that the 
gross biomechanical aspects of the lens and related structures in the 
remaining linear region are relatively unaffected by age. The time 
constant and peak velocity/amplitude relationship of accommodation 
did not change with age in visually normal human participants, but la-
tency increased, and micro-fluctuation amplitude and frequency 
decreased with age. This suggests that while the gross biomechanics of 
the lens remain relatively unchanged, there are changes in the dynamic 
components of accommodation with age [202]. Another investigation 
revealed age-related changes in the dynamics of accommodation and its 
relaxation in participants aged 14–45 years. Specifically, the latency of 
accommodation did not change with age, but the latency of its relaxa-
tion increased; while the time constant of accommodation increased, 
and peak velocity decreased with age, no changes were observed in the 
time constant or peak velocity of its relaxation [203]. 

7.2. Dynamics of accommodative response to different stimuli 

Under normal conditions, the accommodative response must change 
from far to near or from near to far to adapt to rapid fixation changes or 
to follow objects during changes of distances. To evaluate these be-
haviours, sinusoid stimuli (stimuli with dioptric changes sinusoidally 
with time), pulse stimuli, step stimuli and ramp stimuli have been used 
[204–207]. Only studies using step and ramp stimuli will be discussed 
further because they are more commonly used by the accommodative 
response in the real world. An example of step stimulus is encountered in 
situations where accommodation response must change abruptly to 
focus objects at different distances. The induced step accommodative 
response is composed of two different components: the first is a fast 
open-loop component associated with large dioptric changes and the 
second is a refining component using a slower closed-loop retinotopic 
system. Using step stimuli the reaction time for far to near conditions has 
been found to be between 226 to 360 ms [208,209], while for near to far 
conditions it has generally sound to be higher and ranging from 231 ms 
to 400 ms [209,210]. 

Compared with reaction time, the response time, or the time neces-
sary to induce and to reach a stable response, was longer (640 ms to 
1060 ms for far to near condition and from 560 ms to for near to far 
condition) [208,211]. If the required response lies within the available 
accommodation range (in the linear response region) the response time 
is unaffected by age, up to approximately 40 years of age [212]. Another 
characteristic of the dynamic of accommodative response measured 

using step stimuli is the peak velocity, which is influenced by the 
dioptric starting point and by the direction of accommodation [213], 
and in a lesser way, by the AoA [209]. It reduces roughly linearly with 
age for the far to near condition [158], although no changes were found 
for the near to far condition [203]. Ramp stimuli are used to evaluate the 
characteristic of accommodative response to maintain in focus objects 
moving smoothly with linearly dioptric changes. The velocity of dioptric 
change influenced the accommodative response; with slow dioptric 
change velocities the accommodative response follows the stimulus with 
a ramp behaviour, but when the velocity increases, the accommodative 
response presents a step behaviour [214]. 

8. Fatigue and dynamic accommodative response 

Accommodative fatigue related to extended near tasks has been 
examined through subjective and objective [215–217] methods. Early 
studies mainly used reduced accommodative amplitude as a subjective 
measure, while recent studies have objectively analysed different pa-
rameters of accommodation. For example, a study found a decrease in 
the area under the accommodative stimulus/response curve after three 
hours of near work, indicating a reduction in accommodative accuracy 
[218]. In contrast, other studies did not find significant differences in the 
accommodative stimulus/response function between symptomatic and 
asymptomatic individuals [219,220]. Meanwhile, changes in tonic ac-
commodation following repetitive lens flipping tasks have been 
observed, suggesting fatigue-induced alterations in baseline neural ac-
tivity to the ciliary muscle [221]. 

Further research recorded objective accommodative responses in 
college students with and without near work-related symptoms. They 
noted increased accommodative lag at higher dioptric levels in symp-
tomatic individuals, which correlated with the severity of symptoms 
[222]. Others have highlighted that a high-discomfort group exhibited 
an accommodative lag comparable to the low-discomfort group in the 
initial phase, but showed a progressive increase thereafter [223]. The 
accommodative dynamics in visually normal young adults did not show 
a reduction in peak velocity, implying no fatigue based on this criterion, 
during repeated accommodative step tracking across a continuous 30- 
minute period [224]. Finally, using tasks of differing congruency in 
terms of the accommodative and vergence stimulus demands, one study 
found no significant differences in the initial response amplitude, peak 
velocity and time constant of accommodation across tasks; however, 60 
% of study participants reported visual fatigue for the non-congruent 
task, whereby the accommodation and vergence demands were 
altered. These findings together suggest that fatigue from repetitive 
accommodative tasks is mainly reflected as an increase in the steady- 
state accommodative response level and its variability. 

9. Changes to the components of the accommodative system 
with age 

9.1. Crystalline lens and capsule 

The lens weighs about 65 mg at birth, then grows to 160 mg by age 
10 years. After that, the growth is slow, reaching about 250 mg by age 90 
[225]. Male lenses are significantly larger than female lenses [226]. 
Evolution has maintained this never-ending growth process in multiple 
species [227]. 

The crystalline lens grows throughout adulthood by adding new 
shells from cells produced by the anterior epithelium [228]. This pro-
duces a continual change in the dimensions of the crystalline lens with 
age [10]. As the lens ages, equatorial diameter remains invariant [229] 
whilst its thickness [229–232] increases at a rate of 2–3 µm per year and 
the lens becomes thicker and rounder [233–235]. The thickening of the 
lens cortex is approximately 7 times greater than that of the nucleus 
[173]. While both anterior and posterior cortices increase in thickness, 
the thickening is 1.5 times greater in the anterior cortex [173]. The 

L.N. Davies et al.                                                                                                                                                                                                                                



Contact Lens and Anterior Eye xxx (xxxx) xxx

9

posterior lens pole moved backward by 0.002 mm, and the lens centre 
moved forward by 0.0025 mm [232]. With age, the number of lens fibres 
also increases [233]. This age-related thickening of the lens results in a 
reduction of the anterior chamber depth causing an increase in the 
effective power of the cornea and lens combination. However, there is 
no displacement of the crystalline lens, and the distance between the 
cornea and lens sulcus (centre of the nucleus) remains constant [173]. 

The anterior and posterior radii of curvature increase with age, with 
the anterior increase more significant than the posterior [236]. The 
steepening of the anterior surface of the lens suggests that an increase in 
the dioptric power should occur as the lens ages, leading to a progressive 
myopic shift, but this is not necessarily the case [230,237]. Rather, 
ageing in general seems to produce a hyperopic shift [238–240]. This 
discrepancy between changes in lens geometry and refractive power 
with age, also known as the lens-paradox [230], cannot be explained by 
changes in corneal power, vitreous chamber depth, or axial length as 
these components are relatively independent of age [28,241–244]. 
Changes in the refractive index of the crystalline lens are the likely 
contributing factor [245]. The gradient refractive index of the lens de-
creases with age [235,246,247], presumably due to an increase in water 
content and a decrease in protein content of the lens [8]. This age- 
related change of the lens refractive index gradient leading to the 
reduction in its optical power likely compensates for the dioptric power 
increment caused by the age-related increase in the curvature of the 
anterior lens surface [248]. 

The maximum refractive index in the lens centre decreases slightly 
with age, with considerable scatter in the data and age-related variations 
in sagittal thickness and equatorial height [249]. Varying concentra-
tions of proteins in successive cell layers create a gradient refractive 
index (GRIN). The refractive index of the young lens is higher centrally 
and has a low modulus. Eventually, a tipping point is reached when 
protein aggregation increases light scatter, inevitably leading to the 
iconic protein condensation-based disease, age-related cataract [250]. 

The shear modulus at the lens centre increases with age while it re-
mains nearly constant in the cortex [251–253]. It has been proposed that 
the stiffness increase of the lens with age is mediated through glycation 
inter-protein crosslinking promoted by chaperone-client complexes of 
α-crystallin. This happens through the formation of advanced glycation 
end products [254]. In a study of post-mortem lenses, all capsules were 
thicker anteriorly, continuously increasing with age at the anterior lens 
pole [43]. The mid-peripheral zone stabilises or slightly decreases after 
the seventh decade. The mechanical properties of an empty lens capsule 
ex vivo show constant stretching properties with age [255]. As the lens 
capsule ages, the mechanical strength of the capsule decreases [37]. As 
the lens ages, the lens cortex and nucleus increase in stiffness [38]. The 
young cortex is stiffer than the nucleus, but near the typical clinical 
presentation of presbyopia, the nucleus becomes stiffer [256]. The 
shifting of the capsular parts, as well as the zonular insertions with 
ageing, causes regional variations in the thickness of the capsule. In 
early adulthood, the capsule is thickest (approximately 19 µm) at the 
anterior portion of the lens equator, gradually decreasing in thickness to 
the anterior (approximately 11 µm) and posterior poles (approximately 
3 µm) [43]. With age, the capsule increases in thickness throughout the 
anterior surface as new material is deposited [43]; this causes an ante-
rior shift in the region of the maximal capsular thickness. 

In the seventh decade of life, the thickest capsular region is located 
halfway between the anterior pole and the equator [257]. Contrary to 
the change in anterior surface capsular thickness, ageing appears to have 
little effect on the biomechanical properties of the lens capsule [36,257] 
as well as its thickness at the posterior pole and much of the posterior 
lens surface [43,257]. 

The magnitude of astigmatism in the anterior lens surface decreased 
with age. Posterior surface astigmatism and lens astigmatism were not 
age dependent. The presence of GRIN did not significantly alter the 
magnitude or axis of the lens astigmatism [258,259]. Lens power de-
creases with age [260–262]. The total refractive power and surface 

refractive power both showed a biphasic age dependency; up to the age 
of 50 years, younger participants had lower lens power than older par-
ticipants, but after age 50 years, older participants had lower lens power 
[263]. The total lens power decreased at a rate of 0.41D/year between 
ages 6 and 58 years and increased at 0.33D/year between ages 58 and 
82 years; this decrease in power is mainly due to a decrease in the GRIN 
[260]. 

9.2. Zonules 

Young’s modulus of the zonules is approximately 350 kPa [253]. 
Some researchers have stated that zonular structure and elasticity do not 
change before the age of 45 years, while others have found that the 
zonules are thinner, fewer, or less elastic with age [14,48]. 

The human vitreous zonule and lens equator move forward (anteri-
orly) during accommodation, and their movements reduce with age 
[264]. With age, there is a forward shift in the zonule insertion point on 
the lens [14,265]. In early life, zonular fibres are distributed uniformly 
from the anterior to the posterior side of the lens equator [14]. As the 
lens ages, zonular fibres shift anteriorly, and the distribution becomes 
highest on the anterior surface near the equator [14,15]. This trend of 
zonular redistribution continues throughout life. However, the separa-
tion from the zonular attachment to the anterior and posterior poles 
remains relatively constant, suggesting that zonular redistribution is 
likely a consequence of changes in the thickness of the lens capsule over 
the years [43]. Stiffening of the vitreous zonular system may also 
contribute to age-related loss of accommodation [266]. This shift in 
insertion, and the changes in lens size and ciliary apex position with age, 
mean that the angle, and the amount of force applied to the lens, may 
diminish with increasing age. 

9.3. Ciliary body 

9.3.1. Ciliary muscle 
Changes in the contraction of the ciliary muscle with age were first 

examined ex vivo, where the results indicated that an increase in 
maximum ciliary muscle contraction up to about 45 years of age and a 
decrease thereafter [267]. Other studies have demonstrated that ciliary 
muscle tissue contracts to pharmacological stimulation well beyond the 
age of presbyopia [60,268]. Impedance cyclography was used in the first 
published human in vivo study of ciliary muscle [269], but has since been 
challenged for measuring blood flow, not necessarily muscle contraction 
[270]. Magnetic resonance imaging (MRI) provides compelling in vivo 
evidence that the ciliary muscle can contract well beyond the onset of 
presbyopia [64,271]. More recent, higher resolution MRI studies went 
on to show that the ciliary body ring diameter remained relatively un-
changed with age and confirmed ciliary muscle contraction beyond 
clinical presbyopia [61]. The ciliary muscle ring diameter decreased 
only 0.015–0.037 mm/year [20,61,271], were linearly correlation with 
the accommodative response and remained relatively consistent across 
age groups beyond presbyopia [61,271]. This suggests that ciliary 
muscle contractile activity remains throughout life [271]. This result 
supports the Hess-Gullstrand theory of presbyopia, which proposes that 
the degree of ciliary muscle contraction for each dioptre of accommo-
dative response remains consistent with ageing and that there is an 
increasing latent amount of ciliary muscle force with age that does not 
result in accommodative output. 

MRI is the only technique that allows visualization of the entire 
ciliary body ring; however, measurement of fine changes in the ciliary 
muscle dimensions are limited by the resolution of even ultra-high MRI. 
Ultrasound biomicroscopy and optical coherence tomography (OCT) 
allow cross-sectional imaging of the ciliary body. Ultrasound bio-
microscopy has been used to demonstrate a shift in the centre of gravity 
of the muscle with pharmacological stimulation [272,273]. This move-
ment decreased with age but may be restored after cataract extraction. 
Anterior segment OCT was used to visualize micron level anterior 
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thickening and posterior thinning of the ciliary muscle with accommo-
dation [62,274]. With age, the ciliary muscle shortens, and the apex is 
displaced slightly inward [275]. Histological studies reported that, with 
age, both the longitudinal and radial portions of the ciliary muscle 
decrease in size while the circular portion increases [276]. This may be 
the cause of the decrease in length and inward movement of the apical 
edge [60]. Therefore, the shape and configuration of the ciliary body in 
older age may resemble that of the young, accommodated eye. 

9.3.2. Ciliary body elasticity 
While there is no age-related loss of the contractile response, dete-

rioration of the elastic components of the ciliary body and choroid is 
known to occur throughout adulthood [277–279]. In the posterior re-
gion, the elastic tendons appear to become thicker and to have more 
microfibrils and collagen fibrils with ageing causing a decrease in elas-
ticity [277]. This deterioration can restrict the forward movement of the 
ciliary muscle, affecting lens thickening and steepening [58]. The limi-
tation can be partially relieved through enzymatic lysis of the posterior 
vitreous zonule, resulting in enhanced mobility of the ciliary muscle 
with accommodation [266]. 

At the ciliary muscle tips, the sheaths of the elastic-like fibres and the 
elastic-like tendons thicken with age [280]. On the inside, the spaces 
between the ciliary muscle bundles decrease with time. It is more visible 
in the reticular portion facing the anterior chamber. The connective 
tissue in that region of the ciliary muscle increases significantly by the 
age of 60 years. 

9.3.3. Ciliary stroma and epithelium 
The ciliary stroma is located between the muscle and the epithelium 

of the ciliary body. It is composed of highly vascularised, loose con-
nective tissue that form the core of each ciliary processes. There are 
multiple age-related changes in the stroma. The stromal layer widens in 
the ciliary processes and in the ground plate between the ciliary valleys 
and ciliary muscle [281]. Moreover, there is an increase of collagenous 
fibre diameter accompanied by a decline in stromal cell density [281]. 
Other changes include a gradual widening of the perivascular space 
between capillaries and an increase in number of fenestrations in the 
capillary endothelium [281]. The ciliary process seems to decrease in 
length and increase in density with age [282]. 

Significant changes occur in non-pigmented epithelial cells during 
the ageing process [280]. These include an increase in the number of 
mitochondria, more fenestrations in capillary endothelium near the 
ciliary epithelium and an increased presence of vacuoles containing 
lipid granules within the cytoplasm [280]. 

9.4. Choroid 

The choroid is a tissue located between the retina and the sclera 
primarily composed of vascular layers supplying the outer retina. It also 
contains secretory cells that are probably involved in the modulation of 
vascularization and in the growth of the sclera [50]. The choroid is 
composed of the Bruch membrane, the choriocapillaris, the Sattler layer, 
the Haller layer, the choroidal stroma and the suprachoroidal lamina. 

9.4.1. Bruch’s membrane 
Bruch’s membrane is the innermost layer of the choroid composed of 

an acellular extracellular meshwork separating the retinal pigment 
epithelium from the choriocapillaris. Bruch’s membrane is known to 
increase in thickness with ageing, following a linear correlation with age 
[283]. This thickening starts earlier in life in the periphery, followed by 
a macular thickening at around 45 years old [284]. A reduction in 
Bruch’s membrane elasticity accompanies this thickening [285]. The 
thickening of Bruch’s membrane can lead to an increase in hyalinisation 
spreading into the choroidal intercapillary pillars with age [286]. It has 
been proposed that a thickened membrane could mechanically compress 
the choriocapillaris and cause a decrease in choriocapillaris diameter 

[287]. 

9.4.2. Choriocapillaris 
The choriocapillaris is a dense network of capillaries, bordered by a 

layer of fenestrated endothelial cells and supported by connective tissue. 
It nourishes the outer retina composed of the retinal pigment epithelium 
and the overlying photoreceptors. 

In animal and human models, the choriocapillaris decreases in 
diameter and density with age [288,289]. Ageing is also associated with 
a decrease of the perfusion of this tissue, where the reduction is higher in 
the foveal area compared to the parafoveal and perifoveal regions [290]. 
This decrease of perfusion is explained by a reduced vascular calibre, not 
by a reduction in the number of capillaries [289,290]. 

9.4.3. Choroidal thickness 
The choroidal thickness decreases with age [75,291,292], particu-

larly in adults older than 40 years of age, with a greater change in the 
temporal region [293]. When adjusted for axial length, the negative 
correlation between the macular choroidal thickness and age increases 
[294], and remains across different ethnicities [295]. The negative 
correlation is present in the resting and accommodated state [75]. The 
subfoveal choroidal thickness change per decade is 14 to 20 µm 
[291,296–298]. It has been proposed that the relation between the 
decrease in thickness and age is not linear, with a faster decrease noted 
between 50 and 70 years old [299–303] for the central foveal, parafo-
veal and the perifoveal regions [302]. The reduction in choroidal 
thickness is usually related to a decrease in the density and supply of 
blood, leading to a weakened ability of the choroid to deliver oxygen 
and nutrients to the retinal pigment epithelium and retina [304,305]. It 
has been suggested that the reductions in choroidal blood flow and its 
adaptive control could be explained by the decline in their neural con-
trol and the vessel diameter with ageing [306]. 

Early work on a cohort of incipient presbyopes considered whether 
transient axial length changes during accommodation attenuate with 
age [307]. Based on the hypothesis that ciliary muscle contractility and 
mobility persists into advanced presbyopia [271,275], 20 participants 
(aged 34–41 years) were recruited and reviewed at 6-monthly intervals 
over a 30-month period, during which time a range of biometric mea-
sures, including axial length, were taken in response to accommodative 
stimuli up to 4.50 D. A significant axial length elongation with accom-
modation was observed, proportional to the magnitude of the accom-
modative stimulus. The change in ocular biometry per dioptre of 
accommodation exerted remained invariant between the ages of 18 to 
44 years; however, beyond the age of 43 to 44 years, the study revealed 
negligible axial length changes with a concurrent reduction in data 
variance, perhaps associated with age-related elasticity changes in the 
choroid and sclera shown elsewhere [58,308]. 

9.4.4. Choroidal stroma 
The choroidal stroma is a loose collagenous tissue composed of 

elastic and reticulum fibres. It contains pigment and plasma cells. The 
collagen fibres increase in thickness with age. The elastic fibres lose their 
elastin core and appear more electron dense with age [309]. In a thick 
choroid, the network of bundled collagen is loosely packed and sepa-
rated by cellular elements and ground substance compared to a thin 
choroid presenting a much higher density of collagen and elastin [310]. 

9.4.5. Suprachoroidal lamina 
The suprachoroidal lamina is a thin membrane located next to the 

sclera, composed of condensed collagen fibre, melanocytes, and fibro-
blasts. It contains components of both the sclera and the choroidal 
stroma. The elastic-like fibres contained in this layer increase in thick-
ness and in cross-linked microfibers. The thickened sheaths of those 
elastic fibres can merge to form dense plates of cross-linked fibrillar 
material [311,312]. 
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9.4.6. Change in choroidal biomechanics with ageing 
The choroidal tissue increases in stiffness with age. The stability of 

the choroid is influenced by two key functional aspects: its sponge-like 
characteristics, and the elastic counterforce during accommodation 
[313]. The first aspect is explained by a structurally stable network of 
collagen fibres and nonvascular smooth muscle cells that maintain 
consistency with ageing [314,315]. The second aspect is supported by 
elastic fibres within Bruch’s membrane and choroidal stroma, with age- 
related irreversible changes such as calcification of Bruch’s membrane 
elastic fibres [316]. In addition to tissue stiffening, the accumulation of 
extracellular debris can affect the choroid. While highly vascularized, 
there is no dedicated lymphatic drainage in this tissue, leading to the 
accumulation of debris toward Bruch’s membrane causing an increase in 
thickness [317]. 

9.4.7. Mechanical reciprocal influence of the choroid and the ciliary body 
The ciliary body and the choroid form an elastic network influencing 

each other. The ciliary muscle contraction pulls the entire choroid and 
retina forward during the accommodative response, creating tension on 
the posterior pole [318]. With accommodation, the choroid moves for-
ward at the optic nerve head [75]. As individuals age, the elastic 
choroidal network becomes stiffer [277]. Although there is a decrease in 
forward muscle movement, centripetal muscle movement remains 
intact, and the muscle’s contractile force is sustained. 

The change in elasticity with age can influence the movement of the 
ciliary muscle and indirectly the accommodative function. As described 
in section 9.3.1, the elasticity of the ciliary muscle’s posterior attach-
ments is crucial for its mobility, as the muscle’s forward and inward 
movement during contraction pulls the elastic network of the choroid 
forward [268,276,277,319]. The core dynamics of the accommodative 
mechanism involve the antero-inward movement of the ciliary muscle 
during contraction, allowing relaxation of the anterior zonula and sub-
sequent lens rounding in concert with other factors [75]. It can be 
affected by the change in tissue biomechanics with ageing. Age-related 
thinning of the choroid may result from alterations in the ciliary muscle/ 
lens complex geometry, since the lens thickens with age due to cellular 
expansion [75]. This increased tension on the zonular/muscle complex 
results in the stretching and thinning of the choroid to which it is 
attached. The close relationship between the thickness of the choroid 
and the lens, in contrast to accommodative amplitude, is accounted for 
by the connection between the choroid and lens through the zonula/ 
ciliary muscle complex and potential variations in the lens [75]. 
Notably, while accommodating, the choroid thinning was significant as 
the lens thickened. The negative correlation between lens and choroidal 
thickness is not solely due to age-related co-variation. Instead, a direct 
relationship can be observed, particularly when the lens thickens during 
accommodation, thus resulting in an additional thinning of the choroid 
[75]. 

9.5. Vitreous 

The vitreous body is a highly hydrated viscoelastic extracellular 
matrix. It contains type II collagen, type IX collagen that coats the type II 
fibrils, type V/XI collagen, and type VI collagen that bind hyaluronan 
[320]. The concentration of collagen does not vary significantly with 
ageing [321]; however, the vitreous humour undergoes a natural and 
irreversible process known as liquefaction, which decreases its viscosity. 
Liquefaction is thought to result from enzymatic degradation of pro-
teoglycans, resulting in collagen aggregation. The subsequent retraction 
of the gel-like vitreous leaves spaces within the vitreous known as 
lacunae, which become filled with liquid [322]. As the vitreous ages, the 
volume of collagen becomes smaller, and the space is filled with a liquid 
from depolarizing acid hyaluronic. This process of gradually separating 
the vitreous into a collagen gel and liquid phase is called vitreous 
liquefaction [321,323]. At 45 years of age, nearly 95 % of type IX 
collagen has degraded, exposing type II collagen to the fibril surface and 

predisposing the vitreous collagen fibrils to fusion [324]. The vitreor-
etinal adhesion is weakened with age at the vitreoretinal interface due to 
biochemical changes. 

During accommodation, the vitreous allows or facilitates a small 
amount of posterior movement of the posterior pole of the lens and the 
capsule. This movement declines with age [325]. The vitreous may play 
a role in accommodation. Specifically, the differential pressure between 
the aqueous and vitreous humours may promote forward movement of 
the lens during accommodation [326,327]. While accommodation is 
associated with a decrease in intraocular pressure, the contribution of 
the vitreous may be trivial, as accommodation still occurs in patients 
post-vitrectomy [328]. 

10. Effect of presbyopia on retinal image quality 

During the progression of presbyopia there are several factors which 
collectively interact to drive the attainable image quality of the eye. 
Among these are AoA, accommodative gain, pupil diameter and primary 
spherical aberration. All these factors change with age (Fig. 5), but 
interact. 

Although results differ, generally as age increases, the AoA decreases 
(on average by 0.30 D per year [126]) (Fig. 5a). Related to the AoA is the 
accommodative gain (Fig. 5d) [172,329], the ratio of the accommoda-
tive response to that of the stimulus. 

Together AoA and accommodative gain characterise the accommo-
dative response (Fig. 5b) [330]. A typical 10-year-old young eye (solid 
green line) has an accommodative response that nearly matches that of 
the stimulus (approximating the 1:1 line), but with only a slight lag at 
near target vergences. However, as an eye ages it can no longer 
accommodate to view the target (e.g., solid red line representing a 55- 
year-old eye) and becomes presbyopic. Any deviation from the 1:1 
(stimulus: response) line, introduces defocus which will decrease image 
quality with larger deviations decreasing image quality more so than the 
lower deviations seen with young eyes and small accommodative lags. 

Age, light level, accommodation, and target vergence affect the size 
of the pupil (Fig. 5e) [332] which plays a significant role in the image 
quality of the eye. Pupil miosis occurs with near viewing. The muscles 
that control the pupil lose elasticity with ageing, causing pupils to not 
only remain a smaller size and less reactive to light [133,165], but also 
remain smaller during accommodation in comparison with younger 
eyes. For example, a typical 10-year-old eye (Fig. 5e, solid green) has at 
least a 1 mm larger pupil at distance (approximately 5 mm) compared to 
a 55-year-old (solid red) in photopic conditions. As target vergence in-
creases, near pupil miosis typically occurs [65,332] expanding the eye’s 
DoF [333]. Notice that the 55-year old’s pupil remains smaller than the 
10-year-old’s pupil at all target vergences; however, pupil constriction is 
limited to approximately 2 mm [165]. 

Human eyes inherently have many optical defects, including not only 
defocus (such as myopia) and astigmatism, but also higher order aber-
rations. Although higher order aberrations only encompass about 3 to 5 
% of the eye’s total aberration, these aberrations can be visually detri-
mental to the optical image, with more total aberration corresponding to 
more visual detriment [334]. The aberration structure of each eye is 
unique but averaging across the population (across all ages) most higher 
order aberrations average to 0 µm with some eyes having slight positive 
or negative magnitude, with one exception. The average unaccommo-
dated eye has around +0.15 µm of primary spherical aberration over a 6 
mm pupil [335]. Both positive and negative primary spherical aberra-
tion can negatively impact peak image quality, but are known to expand 
the DoF [336], so are commonly incorporated into contact [337,338] or 
intraocular lens [339,340] designs. Primary spherical aberration of the 
eye, however, changes as a function of age, generally becoming more 
positive with age as the human lens changes in structure (Fig. 5c) 
[331,341]. A typical unaccommodated 10-year-old eye (Fig. 5c, solid 
green line) may have close to 0 µm spherical aberration, whereas an 
equivalent 55-year-old eye (solid red line) may have closer to 0.25 µm. 
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As the 10-year-old eye accommodates (Fig. 5c, solid green line), due to 
the changing lens shape, the eye gains negative spherical aberration. 
The 55-year-old eye, which can only minimally accommodate, shows 
very little change in spherical aberration (Fig. 5c, solid red line). 
Spherical aberration is also pupil size dependent, so to model what 
happens to spherical aberration as a function of age, near miosis must 
also be incorporated (Fig. 5f). Younger eyes always have less spherical 
aberration, even with larger pupils. 

All these factors play an intricate, interrelated role in generating the 
retinal image of the eye. Through-focus optical modelling systematically 
demonstrates the impact of each of these factors in isolation and then in 
combination as occurs clinically. Figs. 6 to 9 each highlight the predicted 
image quality of three different theoretical eyes (10-year-old in solid 
green, 35-year-old in dashed dark green, and 65-year-old in dashed red). 
The normalized mean modulation transfer function (MTF) or image 
quality at 15 cycles per degree (6/12) is graphed for each theoretical eye 

Fig. 5. Summary of several factors which drive image quality as a function of age and target vergence during the emergence of presbyopia. (a) Accommodative 
amplitude as a function of age [172,329], (b) accommodative response as a function of target vergence for several different ages [330], (c) spherical aberration as a 
function of target vergence for the same different ages as in (b) for a fixed 6.0 mm pupil diameter [331], (d) accommodative gain as a function of age [329], (e) pupil 
diameter as a function of target vergence for the same ages as shown in (b)[332], and (f) spherical aberration as a function of target vergence for the same ages as 
shown in (b) using the physiological pupil diameters shown in (e)[331]. 

Fig. 6. Top: Through-focus plot with target vergence (D) ranging from 0 (distance) to −6 D (17 cm) on the x-axis and normalized modulation transfer function (MTF) 
image quality on the y-axis shown for three theoretical eyes (10-year-old in solid green, 35-year-old in dashed dark green, and 65-year-old in dashed red). The lines 
represent the normalized mean MTF at 15 cycles per degree (6/12). The semi-transparent regions indicate the mean MTF between 30 (6/6) and 5 cycles/degree (6/ 
60) to provide a representation of image quality across a range of target sizes. Bottom: The predicted simulated 6/12 (small) and 6/60 (large) letter image quality for 
the same young (left), pre-presbyopic (middle), and fully presbyopic (right) eyes when viewing at 50 cm. Data simulated are for age-appropriate aberration-free eyes 
with their age-appropriate accommodative response, and assuming a 4.5 mm pupil size which remains constant across target vergence (e.g., no near miosis with 
accommodation). 

L.N. Davies et al.                                                                                                                                                                                                                                



Contact Lens and Anterior Eye xxx (xxxx) xxx

13

across target vergences ranging from 0 (corresponding to distant 
viewing) to −6 D (approximately 17 cm focal demand). This type of 
through-focus approach is commonly used [342] and allows comparison 
of individuals or optical devices. 

Using this graphical approach, Fig. 6 demonstrates the impact of 
accommodative response on the three theoretical eyes. The accommo-
dative response incorporates both the age-appropriate amplitude 
(Fig. 5a) and gain (Fig. 5d) of accommodation. To allow comparison 
across the three eyes with differing accommodative responses, pupil 
diameter (4.5 mm) and spherical aberration (0 µm) are assumed con-
stant. All eyes exhibit similar image quality at distance (0 D) which 
decreases with closer viewing distances. As expected, the young eye 
(solid green line) has little decrease in image quality until very close 
target vergences, corresponding to an easily distinguishable simulated 
retinal image (lower left). Alternatively, the fully presbyopic eye 
(dashed red line) has an immediate drop-off in image quality at only 
0.50 D target vergence, and correspondingly the simulated retinal image 

is not distinguishable (lower right). The pre-presbyopic eye falls in the 
middle, with sufficient accommodative response to provide only a 
somewhat degraded simulate retinal image. It is apparent that 
decreasing accommodative response leads to the expected decreased 
image quality at near target vergences, in the absence of the pupil miosis 
and spherical aberration which typically occur clinically. 

Fig. 7 shows the same three eyes with the accommodative responses 
as shown in Fig. 6, but now with age-appropriate pupil miosis. In all 
three participants, relative to when no pupil miosis was included there is 
slight increase in image quality with closer target vergences due to the 
reduced aberration and increase in DoF a smaller pupil provides. 
However, only a slight improvement in image quality is attained relative 
to that shown in Fig. 6. This is largely due to the 4.5 mm pupil size 
chosen in Fig. 6, as it roughly approximates the average pupil diameter 
of the eyes modelled. 

As highlighted above, spherical aberration also typically changes as a 
function of accommodation and pupil size. Fig. 8 includes the age- 

Fig. 7. As shown in Fig. 6, data now represent simulated results of eyes of three different ages, with age-appropriate accommodation, no aberration, now with a pupil 
size and near miosis appropriate to their age (e.g., no longer fixed at 4.5 mm). 

Fig. 8. As shown in Fig. 7, data now represent simulated results of eyes of three different ages, with age-appropriate accommodation, age-appropriate pupil size and 
pupil miosis, with the addition of age-appropriate primary spherical aberration. 
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appropriate spherical aberration magnitude and change toward nega-
tive spherical aberration with accommodation along with the age- 
appropriate accommodative response and pupil size change shown in 
Fig. 7. The age-appropriate positive spherical aberration helps expand 
the DoF, but does so at the expense of peak image quality. This result is 
more noticeable on the young eye modelled with a lag of 
accommodation. 

Common presbyopic corrections often utilise spherical aberration to 
extend the DoF for the wearer. Fig. 9 builds on the analysis presented in 
Fig. 8, but assumes an additional a pupil-size scaled (from 6 mm) + 0.2 
µm of primary spherical aberration added to the eyes shown in Fig. 8. 
This is a level of primary spherical aberration which may occur from a 
distance centre multifocal lens. Due to the presence of large amounts of 
eye and lens primary spherical aberration, there are some reductions in 
the potential image quality of far objects in all eyes. However, at near, 
all eyes benefit from the increased primary spherical aberration. At 2D 
target vergence, there is high quality near vision in the young and pre- 
presbyopic eyes, and the targets are more, yet not fully, resolvable in 
the fully-presbyopic individual. 

The above sequential analysis at a simplistic level briefly highlights 
the complex, dynamic situation experienced by all presbyopic eyes both 
in static and dynamic conditions. Decreased pupil and increased primary 
spherical aberration can both expand the DoF of an eye with limited 
accommodative response. However, the situation is more complex in 
absolute presbyopic eyes with no accommodative reserve. Primary 
spherical aberration expands the DoF, but at a consequence of reducing 
peak image quality. This, however, is the current state of many pres-
byopic designs, providing insight for potential future optimizations 
leading to enhanced image quality. 

11. Presbyopia theories 

One longitudinal study of the presbyopic process [307] was con-
ducted on twenty adults aged 34 to 41 years, which were examined 
every six months for 2.5 years using ocular biometry and measurement 
of the accommodative responses to various stimuli. The change in 
anterior chamber depth, crystalline lens thickness and axial length per 
dioptre of accommodation exerted remained invariant after 2.5 years, 
consistent with previous cross-sectional studies [343]. Furthermore, the 
increase in non-accommodated crystalline lens thickness with age was 
not significantly associated with the reduction in accommodative 
response, leading to the conclusion that an increase in lenticular stiffness 

and not changes in lenticular geometry alone are responsible for the 
onset of presbyopia. 

One characteristic of the proponents of the various geometric the-
ories of presbyopia is their assertion that no other factors play a role, for 
example, claiming that age-related mechanical changes in the lens ma-
terial are a consequence, not a cause, of presbyopia [344]. In contrast, 
others in the field are willing to entertain that several factors may play a 
role. For example, with ageing, alterations in the geometric alignment 
between the ciliary muscle and the lens might hasten the decrease in 
accommodative ability associated with the advancement of presbyopia. 
This occurs despite the fact that the underlying cause may be lens 
stiffening [20]. 

11.1. Lenticular theories 

The facility of the crystalline lens to change shape is central to the 
mechanics of accommodation. It therefore seems obvious to suspect any 
ageing changes which may alter lens shape, size or structure, or inhibit 
its pliability, as potential factors in presbyopia development. 

One apparent candidate could therefore be the lens capsule, given its 
role in transmitting zonular force to the lens matter [43] and that its 
flexibility is known to reduce with age [345]. Nonetheless, lens 
stretching experiments [255] demonstrated that the age-related changes 
in capsular elasticity and thickness do not appear to significantly impact 
its performance. 

Senescent stiffening of the crystalline lens itself is a more likely 
origin, due to lens-fibre sclerosis [346,347] and proliferation in protein 
cross-linking [348–350]. The increasing rigidity and thickness of the 
lens means it becomes more resistant to imposed stretching forces with 
age [267] and more impervious to the moulding forces of the capsule 
[255,351]. 

Indeed, presbyopia theories with lenticular bases have evolved to 
become the most widely accepted. Of these are two classical stances: 
Hess–Gullstrand presbyopia and Duane–Fincham presbyopia, the key 
difference being the purported behaviour of the ciliary muscle’s 
contraction and its resulting ability to manipulate lens shape. Each 
theory has been supported with experimental findings, however, neither 
is accepted as a definitive explanation. 

11.1.1. Hess–Gullstrand model of presbyopia 
This model, from works of the 1900s [347,352] is an extension of 

Helmholtzian accommodation theory and postulates that the ciliary 

Fig. 9. As shown in Fig. 8, data now represent simulated results of eyes of three different ages, with age-appropriate accommodation, age-appropriate pupil size and 
pupil miosis, age-appropriate primary spherical aberration, with the addition of pupil size scaled 0.2 µm of primary spherical aberration. 
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muscle is not a key factor in presbyopia development as it maintains its 
contractile strength with age (such that it produces the same contraction 
force relative to the accommodative stimulus). However, an increasing 
proportion of this contraction becomes latent: that is, incapable of 
causing lens shape change [99,202,270,347,352] as a direct result of the 
lens becoming increasingly inelastic [271]. 

This theory is supported by contemporary, in vivo cross-sectional 
studies of human eyes using OCT and/or MRI which have found that 
the anterior [62] and centripetal [61,62,64,271] contractile response of 
the ciliary muscle is maintained despite the structural changes it un-
dergoes with age [61,62,64,271,344,353]. Although a slight reduction 
in contractile ability of the ciliary muscle has been observed in early 
presbyopes, a considerable contraction is still evident in eyes with 
advanced, established presbyopia where there is no accommodative 
response [271]. 

Interesting observations have also arisen from studies of pseudo-
phakic eyes, where ciliary muscle movements resemble those of young 
pre-presbyopic eyes [273,344]. Additionally, constriction of the ciliary 
muscle ring diameter is evident during accommodation despite lens 
exchange, with no significant differences compared to the fellow, phakic 
eye [64]. 

Biometric responses of other ocular structures during accommoda-
tion have also provided clues. Despite there being significant biometric 
changes observed in non-accommodating eyes as they age, a longitudi-
nal study of incipient presbyopes found that changes in biometry per 
dioptre of accommodation exerted did not vary with age [307]. Key 
amongst these biometric parameters is the transient increase in axial 
length observed with accommodation, as it is thought to be a structural 
corollary of ciliary muscle contraction [68–71,354–357]. The invariance 
with age further supports the notion that lenticular stiffness is likely to 
be the main factor responsible for the onset of presbyopia, rather than 
ciliary muscle attenuation [307]. Similarly, continued pupil miosis (an 
element of the near-vision triad) has been observed when accommoda-
tive demand exceeds a patient’s maximum AoA [270,358]. This again 
seems to indicate that the contractile response of the ciliary muscle may 
continue despite it becoming less capable of instigating changes in 
crystalline lens shape in advanced presbyopia [270]. 

11.2. Extra-lenticular theories of presbyopia 

The extra-lenticular theories of presbyopia assign the loss of ac-
commodation to parts of the accommodative system other than the 
crystalline lens. These theories [270] include (a) the ciliary muscle 
weakened with age [126], and (b) presbyopia is a result of a change in 
elasticity of the zonules [14] or choroid [359]. 

11.2.1. Duane–Fincham model of presbyopia 
In the 1920s, an alternative theory of presbyopia was produced 

which, in stark contrast to Hess-Gullstrand, placed the responsibility for 
presbyopia largely on the ciliary muscle [360,361]. This rooted from 
observations that older eyes, where the ciliary muscle had been phar-
macologically weakened with atropine, showed a much more rapid 
reduction in maximum AoA [361,362]. This was marked as evidence of 
a depleted reserve of ciliary muscle contraction at the limit of accom-
modation in older eyes and therefore a clear sign that it must weaken 
with age [361]. Indeed, this finding does seem to contradict the Hess- 
Gullstrand model, given that by the very nature of a latent region 
there should be a degree of muscle weakening possible without the 
infliction of corresponding lens shape changes [271]. 

A modified theory has been offered which proposed that Duane’s 
findings could be justified as in accordance with an essentially 
Hess–Gullstrandian lenticular mechanism if the latent portion of the 
ciliary muscle does eventually atrophy due to reduced use [363]. In this 
scenario muscle weakness remains collateral to, rather than a contrib-
utor to lens immobility [270]. Critically, however, this explanation 
seems contradicted by ex vivo experiments that demonstrate that the 

ciliary muscle does not attain its maximum force of contraction until the 
age of 45 years and then declines slowly thereafter [267]. 

By 1937, a more complex explanation was proposed, reasoning that 
lenticular and capsular ageing changes are ultimately responsible for 
presbyopia, but the ciliary muscle contractile strength required to ach-
ieve a unit change in accommodation increases throughout life [351]. 
This works on the assumption that greater capsular pressure, which is 
needed to mould a more resistant, older lens, can only be achieved by a 
further release of tension on the capsule [351]. 

Despite the two concepts discussed fundamentally contradicting 
each other with regards to whether the lens or the muscle is the origin of 
presbyopia, what stands in common is the same expected relationship 
between ciliary muscle contraction and accommodative response. Both 
postulate a degree of lens response from contraction, and both state the 
accommodative response is always achieved via the maximum muscle 
effort, with maximal contraction at the near point of accommodation 
[270,271]. However, the fact that monocular push-up AoA is generally 
lower than binocular responses [360,361,364,365] would suggest that 
the ciliary muscle does not fulfil its potential for contraction when 
viewing a near target, monocularly. Nonetheless, it has been suggested 
[270], that the superior binocular response may merely be collateral to a 
convergence/miosis linked increase in DoF. 

Experimental study of accommodative convergence: accommodation 
(AC/A) ratio was hoped to help elucidate the true mechanism given that 
the Hess-Gullstrand and Duane-Fincham models should show different 
characteristics. If Hess–Gullstrand theory applies, the accommodative 
responses of the manifest region should be unaffected owing to normal 
accommodative motor processes [270]. The reverse should be true of the 
latent region as responsiveness is negligible, and the AC/A stimulus ratio 
should be very large [270]. However, investigations in presbyopic eyes 
have provided mixed data [366–369], though few studies [370,371] 
have provided convincing evidence that the response AC/A ratio in-
creases by roughly a tenth of a prism dioptre a year between 30 and 45 
years of age, which is suggestive that the ciliary muscle effort required to 
produce a unit change in accommodation increases with age and most 
consistent with the Hess–Gullstrand model [270]. These study designs 
do not account for age-related changes in tonic accommodation and 
vergence, therefore their use for directly inferring ciliary muscle per-
formance is unclear [112,128,270,370,372–374]. 

11.3. Geometric theories of presbyopia 

The crystalline lens continues to grow throughout life. The primary 
change is an increase in axial thickness, at a rate of around 0.02 mm per 
year [29], and a steepening of the anterior radius of curvature [22]. 
Posterior radius of curvature [20,61] and equatorial diameter are un-
changed [61], although authors have reported a small increase in the 
latter [20]. Furthermore, the increase in lens thickness results in a for-
ward shift in the anterior surface with little or no change in the position 
of the posterior surface. The axial thickening alone might be expected to 
play a role in that a thicker elastic band requires more force to stretch it 
than a thinner band. 

The zonules insert into both the anterior and posterior surfaces of the 
capsule and these insertion points become further apart with age, 
resulting in the zonular fibres becoming more divergent. Subsequent 
studies showed that the distance between the lens zonular insertion and 
the equator increases [14,15], while the distance between the insertion 
ring and the ciliary body remains relatively constant. These changes are 
accompanied by a decrease in the circumlental space and are most 
pronounced in the fifth decade of life [14]. 

11.3.1. Geometric theory of presbyopia 
The development of presbyopia was partially attributed to the 

change in the geometry of the lens suspensory apparatus and the change 
the lens curvature [14]. Subsequently, it was proposed that these 
changes were largely, if not solely, responsible for presbyopia [375]. 
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Their geometric theory of presbyopia proposed that the shift in zonular 
insertion, associated with crystalline lens thickening with age, changes 
their angle of insertion such that they apply tension more parallel to the 
lens capsule, thereby reducing their effectiveness. Consequently, the 
relaxation of the zonular tension will have a diminishing impact on 
crystalline lens shape with age and ultimately an immobilisation of 
ciliary muscle movement. 

The theory lost traction based on several observations. First, a 
scanning laser technique was used to measure focal length of 27 human 
cadaver lenses (ages 10 to 87 years), while the lenses were subjected to 
stretching forces applied through the ciliary body-zonular complex 
[376]. Younger lenses underwent significant changes in focal length 
with stretching, whereas lenses older than 60 years of age showed no 
such changes. Thus, no amount of extension or relaxation of the zonule 
caused a change in power of the older lenses. The authors concluded that 
changes in zonular insertion angle are unlikely to cause presbyopia 
[376]. 

Second, the theory was originally supported by observations in 
rhesus monkey eyes, where ciliary muscle excursion reduces to zero with 
age [319], but subsequent studies in humans have shown that ciliary 
muscle contraction is largely unaffected by age. MRI was used to collect 
high-resolution images from 25 participants, between 22 and 83 years, 
while viewing binocular accommodative stimuli of 0.1D and 8D [271]. 
Muscle contraction was present in all participants and decreased only 
slightly with age. This result was confirmed in another group of both 
phakic and pseudophakic individuals [64]. 

11.3.2. Modified geometric theory of presbyopia 
A modified geometric theory was proposed that still attributes 

presbyopia to a change in the geometric relationship among ocular 
structures while acknowledging that the ciliary muscle remains capable 
of contraction [377]. The theory attributes a decrement of zonular 
tension to thickening and forward movement of the crystalline lens, but 
considers the influence of the pupillary margin. The anteroposterior 
movement of the lens causes anterior and inward curvature, and 
movement of the uvea, with a concomitant reduction in the circumlental 
space (between the ciliary muscle inner apex and the crystalline lens 
equator) and thus reduced zonular tension. The observed reduction in 
the circumlental space in the relaxed eye with age was cited [378], 
although, ironically, this may be compensated for by the axial move-
ment of the zonular attachments cited in support of the original geo-
metric theory [14,15]. 

It is unclear whether the asserted reduction in the circumlental space 
is sufficient to support the modified geometric theory. MRI was first used 
to measure the human ciliary muscle ring diameter in humans in vivo, 
and an age-related decrease of 0.025 mm per year was found in 40 
participants aged 22 to 91 years [64,271]. A higher resolution MRI in 91 
adults aged 30–50 years found no statistically significant change in 
ciliary muscle ring diameter with age [61,229]. The circumlental space 
can also be impacted by an increase in equatorial lens diameter, but two 
groups found no change in lens equatorial diameter [61,64,271], while 
another report reported [20] a slight increase of 0.01 mm per year. 

11.3.3. Alternative geometric theory 
An alternative geometric theory which is contrary to the widely held 

Helmholtzian theory, states accommodation is mediated by increased 
zonular tension which, in turn, causes an increase in lens equatorial 
diameter and a steepening of the central anterior crystalline lens surface 
[379]. This theory is opposed to a range of studies that have demon-
strated that ciliary muscle diameter decreases during accommodation 
resulting in reduced zonular tension and a decrease in lens equatorial 
diameter [20,52,61,64]. 

In line with the aforementioned geometric theories, it was hypoth-
esised that that presbyopia is a result of normal crystalline lens growth 
[380,381]. Consistent with the modified geometric theory, this results in 
a reduction in circumlental space and thus a weakening of zonular 

tension rendering them ineffective at imparting the required force to 
change the shape of the lens. 

Based upon this alternative theory, the surgical correction of pres-
byopia by scleral expansion was devised and championed [380], see 
BCLA CLEAR Presbyopia: Management with scleral techniques and 
pharmaceutical therapies report [382], wherein bands are sutured 
overlying the ciliary muscle to induce a radial outward stretch of the 
sclera in an attempt to restore zonular tension. Outcome measures were 
largely based on subjective measures of accommodation and near vision. 
Evaluation using an objective measure of accommodation in patients 
who had undergone the procedure found no evidence of objective ac-
commodation [383,384]. 

Unfortunately, no single theory can fully account for the early onset, 
almost perfectly linear decline, and complete loss of accommodative 
function at such a young age. Thus, as suggested, presbyopia is likely to 
be the additive insult of multiple changes occurring in the human eye 
with age [385,386]. Nonetheless, the prevailing wisdom is that changes 
in lenticular elasticity are the dominant cause of presbyopia. 

12. Recommendations and future directions 

Although great strides have been made in understanding the struc-
ture and function of the accommodative system with age, the literature 
remains fragmented, with researchers focusing on either lenticular or 
extra-lenticular factors, but failing to provide a comprehensive view of 
the entire accommodative system with age. The notion that accommo-
dation occurs solely via the lens and ciliary body is an oversimplification 
of a very intricate system. The lens and ciliary muscle are key players, 
but the supporting roles of the iris, vitreous, zonules, and choroid should 
not be ignored. It is certain that there are age-related changes in the 
entire accommodative system. 

The youthful accommodation system allows the eyes to vary their 
focus to obtain reasonably clear retinal images of objects at different 
distances. Nevertheless, such focus is rarely exact (lags and leads of 
accommodation occur), nor is it stable (micro-fluctuations). Accuracy in 
static accommodation response decreases with age at almost all dis-
tances, with the changes being greatest for higher vergences. 

The optics of the presbyopic eye and dynamic AoA are complex and 
multifactorial attributes of the human visual system. Ethnic differences 
in AoA are acknowledged, although the exact mechanisms remain un-
certain, implicating the need for further multi-ethnic population-specific 
studies. The influence of gaze direction is apparent, yet the practical 
implications for standard clinical measurements are deemed negligible. 

The dynamic nature of the accommodative response is an underex-
plored domain with evidence pointing towards a myriad of influencing 
factors including target characteristics, age, task demands, and even 
fatigue from extensive near work. The understanding of these dynamics 
is essential for comprehending how the accommodative system main-
tains clear vision and offers avenues for managing vision-related issues 
associated with accommodative fatigue. Moreover, studies examining 
the time constant, peak velocity, and dynamic response of accommo-
dation provide valuable insights into the changes in the accommodative 
system with age, suggesting a mix of preserved and altered attributes. 

In terms of clinical evaluation of AoA, several subjective and objec-
tive methodologies exist, each with its strengths and weaknesses. Dis-
crepancies across methods are often observed, emphasizing the need for 
standardization in measurement techniques and cautious interpretation 
of results. A reliance on age-expected normative values, although useful, 
might not capture the full individual or population-specific variability in 
AoA. 

Understanding the various factors influencing accommodation is 
vital for a comprehensive understanding of the ageing eye, as well as for 
developing more effective strategies for correcting and better managing 
age-related vision changes. Future research should continue to delve 
into the complexities of accommodation dynamics and strive towards 
enhancing the accuracy and consistency of AoA measurement 
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techniques. 
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