
Alignment-Free Probabilistic Proteomics:

Patterns to Functionality

Ewa M. Grela

Doctor of Philosophy

Aston University

December 2022

© Ewa M. Grela, 2022

Ewa Magdalena Grela asserts her moral right to be identified as the author of this thesis.

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright belongs to its author and that no quotation from

the thesis and no information derived from it may be published without appropriate

permission or acknowledgement.



E.M. Grela, PhD Thesis, Aston University 2022

Alignment-Free Probabilistic Proteomics:

Patterns to Functionality

Ewa M. Grela

Abstract

Major Histocompatibility Complexes class I (MHC I), known as the Human Leukocyte
Antigen class (HLA I) in humans, are proteins responsible for antigen presentation to T-
lymphocytes. MHCs interact with T Cell Receptors (TCRs). They serve as crucial immune
regulators for vertebrates. The three main sub-classes of the HLA class I proteins (HLA-A,
HLA-B, HLA-C) are encoded in three different loci. Therefore (as genes within MHC I class
are co-dominant), an individual has up to six different alleles of HLA class I protein present
on the surface of their cells. The genetic diversity of HLA class I in the human population
can be linked to the differentiated immunological response.

Based on a combination of established bioinformatic and machine learning tools, we have
addressed the challenge to analyse HLA class I protein data-set in order to determine their
ability to bind to specific antigens. To achieve this, we have created three dimensional
models of HLA class I variants using homology modelling techniques. These have then
been placed in three dimensional grids in order to calculate the electrostatic fields around
the protein domains. The resultant multi-dimensional data were then analysed using the
unsupervised machine learning techniques: both linear Principal Component Analysis (PCA),
and nonlinear ones: the auto-encoder neural network (NLPCA) and the Gaussian Process
Latent Variable Model (GPLVM). The methods used, accomplished the task of distinguishing
between the HLA proteins sub-classes (A, B and C). In addition, the results obtained with
the GPLVM dimensionality reduction suggested, that the electrostatic potential calculation
may add information necessary to identifying HLA super-types. However, this method by
itself, it is not robust enough to be independently conclusive.

The sequence alignments methods are not free from assumptions. Results they provide are
influenced by the choice of a substitution matrix, as the numerical values are assigned to the
differences between compared biomolecules’ primary structures. The increase of the number
of known sequences, related to the development of the Next Generation Sequencing techniques
created additional challenge, that is a computational time required.

As an alternative to the sequence alignment, we implemented the methods from time
series analysis, information and chaos theory, and statistical physics to translate information
from amino acid sequences into numerical vectors, in order to predict the similarity in proteins
structures and functions.

We transformed a data set of 9693 amino acid sequences belonging to 100 protein families
by replacing each amino acid with numerical values representing its physicochemical and
biochemical properties, and based on that, calculated multiple multidimensional vectors of
non-alignment protein descriptors with measures such as approximate and sample entropy
or persistence, Hurst and Lyapunov exponents. The supervised learning Linear Discriminant
Analysis technique, used to assess the ability of the developed protocols to correctly assign
proteins to their functional groups, showed an efficiency up to over 99%.
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The question about the mechanisms governing the functioning of living organisms essen-

tially boils down to a series of questions about the functionality of individual proteins. One

could risk a statement that solving all health related problems could lay in proper under-

standing of the gene-gene (or protein-protein) and gene-environment (or protein-compound)

interaction. And though such a statement would probably still be a oversimplification, the

proper knowledge of molecular mechanisms that governed those interaction cannot be overes-

timated. Understanding in detail protein functionality is the main question that lays before

molecular biology, biotechnology and bioinformatics. The last one of those disciplines often

uses techniques based on finding differences and similarities between genes and, consequently

proteins.

However, differences and similarities in DNA do not translate unambiguously even dif-

ferences in the amino acid sequence, let alone differences in the three-dimensional protein

structure or its function. The extent to which a mutation in a nucleotide chain changes the

activity of the protein encoded by this chain depends not only on the type of mutation, but

also on which particular protein we are dealing with and in what specific region of the chain

this mutation occurred. For example, sequence alignment-based methods are not effective

when either recombination or horizontal transfer has occurred [8]. Recombination is the ex-

change of genetic information between two DNA (RNA) chains, that belong to either one or

more organisms. It results in a new genotype without the increase of the population’s genetic

pool. Horizontal gene transfer is the mechanism allowing the transfer of genetic information

between organisms, that does not involve reproduction. It can occur both between organisms

belonging to the same, as well as to the different species. Therefore, it can and often does

increase the genetic pool. The most well-known example would be the transfer of genes that

are responsible for the antibiotic resistance in bacteria. Another challenge for the sequence

alignment-based methods is the fact that regulatory regions of the DNA chain are, in general,

not highly conserved, except for some functional regions [6, 7, 9].

There are single gene diseases that are caused by a single mutation in the DNA. The

protein product of the faulty gene is faulty itself therefore its functionality is impaired. This

leads to the pathology of the functioning of the whole organism. But this kind of situation is

an exception rather than a rule. Gene expression can be modified by other proteins and by

an environmental factors. In most cases, even if the exact location of the genome mutation

is known, there is no definite way to predict its possible consequences. But it does not

necessarily mean that the information is not there. Statistics show that susceptibility for

countless diseases is inherited, though exact genetic mechanisms are still not known. This

leaves plenty of open questions, essential for our understanding of the functioning of living

organisms, as well as for finding solutions of many problems related to public health (e.g.

antimicrobial resistance, vaccination design, individualized anti-cancer therapy).

Currently, methods based on sequence alignment are mainly used to solve these types
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as a tool for the search of the potential AHTPs (anti-hypertensive peptides), that could be

obtained from natural sources [28]. Two pairs of data sets (913 AHTPs vs 913 not AHTPS and

386 AHTPs vs 386 not AHTPS) were used to validate the designed protocol, and accuracy

of 85.8% and 90.4% respectively was achieved. Methods based on composition and auto-

correlation were applied to the recognition of disease resistance (DR) proteins in plants [29].

The positive data set containing 400 known DR proteins was tested against 100 negative data

sets (containing between 400 and 4000 non DR proteins). The achieved specificity reached

96.9±1.5% and sensitivity 86.4±4.0%. Physicochemical properties of amino acids combined

with the amino acid composition were successfully applied in identifying functional similarities

between the effector proteins belonging to two distinct types of plant pathogens: eucaryotic

and bacterial ones [30]. This is particularly significant result, as these microorganisms are

not evolutionarily closely related and the examined proteins do not show substantial sequence

similarity.

1.1 The Major Histocompatibility Complex class I

The Major Histocompatibility Complex class I (MHC-I) proteins are present on the surface of

most vertebrate nucleated cells. They assume a crucial regulatory role within the organism’s

immune system, by presenting degraded fragments of intracellular proteins (8-10 amino-

acid peptide, referred to as antigen) to T lymphocytes. The T cells present antigens and

subsequently identify them as either threatening or non-threatening. Thus, MHC proteins

serve the role of an immune system guard, alerting the system about any possible intruder.

This can be an intracellular pathogen, or a cancer cell, or even a transplanted cell [31, 32].

MHC class I proteins are widely polymorphic, when it comes to the exact structure of

their active site [31, 32]. Therefore, not only any particular protein can bind with various

antigens, but also antigens can bind with more than one variant of an MHC I molecule.

They are transmembrane proteins built out of three extracellular domains (α1, α2, α3),

a transmembrane region, and a cytoplasmic tail (Figure 3). The α3 domain is non-covalently

bonded to β2 microglobulin (external peptide, not coded inside MHC coding DNA region).

The α1 and α2 form one structural domain, where eight β-sheets support two α-helices to

antigen binding active sites, that interact with the T-cell receptors (TCR) of the T lympho-

cytes. TCRs dock onto a surface formed from the bound peptide and the top surface of the

MHC peptide-binding domain [31, 32].

The human MHC I proteins is known as the Human Leukocyte Antigen class I (HLA I)

complex [31, 32]. This name is related to the fact that they were first discovered in the context

of transplant rejection mechanism research. The three main subclasses of the HLA class I

proteins (HLA-A, HLA-B, HLA-C ) are encoded in three different alleles [32]. Therefore (as

genes within MHC I loci are codominant), an individual has up to six different alleles of HLA

I protein present on the surface of their cells.
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Figure 3: The three-dimensional structure of the HLA class 1 A protein. A: Presentation of
individual atoms. B: Secondary structure.

The Human Leukocyte Antigen (HLA) genetic diversity in the human population can be

linked to differentiated immunity to viral infections [33], vaccination effectiveness [34, 35],

individual susceptibility to cancer or autoimmune diseases [36] and risk of the transplant

rejection [37]. Therefore defining and understanding the functional differences and similarities

between variants of HLA protein is of crucial importance.

1.2 Research goals

In our research we wanted to focus on alternative to sequence-alignment approach, to tackle

problems related to the complex relationship between protein sequence and function.

• Based on a combination of established bioinformatic and machine learning tools, we

addressed the challenge of analysing HLA I protein data-sets in order to determine

their ability to bind to specific antigens. Our goal was to develop an effective protocol,

that starts with probabilistic prediction of similarities and differences in the function

of individual HLA proteins, and then classify them based on that prediction.

• Subsequently, as an alternative to the sequence alignment, we implemented the meth-

ods from time series analysis, information and chaos theory 1 and statistical physics

to translate information from amino acid sequences into numerical vectors, in order to

predict the similarity in proteins structure and function.

We hypothesise that in order to be able to classify a newly discovered protein, there is no

need to compare it with all known and previously classified sequences using the alignment

1A branch of science that looks for patterns that underlie seemingly random and chaotic behavior. It

focuses on systems that are extremely sensitive to even small changes in initial conditions and tries to predict

the outcome of these changes.
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methods. Instead, we can create a multi-dimensional vector for the newly discovered protein,

and then compare it with the previously calculated and stored vectors representing known

proteins, or even with a set of single vectors, each representing a whole protein family. Al-

though the process of computing all the necessary descriptor vectors for a given protein can

be time-consuming, a novelty of this approach lies in the fact that it is enough to do the

calculations only once. The descriptor values can be stored in a database in a way similar

to three-dimensional structures, alongside codes that calculate descriptor values. The com-

putational cost needed to compare descriptor vectors can be substantially lower than the

computational cost associated with alignment-based methods of protein classification, where

each new sequence is compared with sequences of known proteins.
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2 Systems modelling of peptide presentation in immunology

and homeostasis

2.1 Data acquisition and preparation

The template (pdb) files, that represent three-dimensional proteins structures over a range of

conformations, known respectively as follows: 1I4F for subclass HLA-A, 1AGD for HLA-B

and 1IM9 for HLA-C, were taken from the RCBS Protein Data Bank [38] database. The

models of 1I4F and 1AGD proteins contain 275 amino-acids. The 1IM9 subclass contains

276 amino-acids. But only the first 275 ware taken into consideration in further analysis.

The amino-acid sequences of known variations of the HLA class I proteins were down-

loaded from the Immuno Polymorphism Database [39]. The database contained 3489 se-

quences belonging to the subclass A, 4454 sequences belonging to the subclass B, and 3290

sequences corresponding to the subclass C. From these sets, 1163, 1537 and 1153 sequences

were respectively chosen for further analysis (target sequences). The rest of the proteins were

excluded based on results obtain from the BLAST [40] structure alignment to the sequence of

the corresponding template protein. The example of the BLAST structure alignment result

is given in appendix A.

The criterion was to determine if the target aligns to the entire template sequence. For the

sequence, we allowed for up to one missing amino-acid at the beginning and up to two at the

end of the protein sequence. This allowed detection of incomplete molecules and consequent

removal from the data-set. Some of the target sequences had additional Amino acids not

present in the template structure. Those Amino acids were removed from the sequences.

The next step in the data preparation process concerned Protein Homology Modelling.

The process consists of predicting the structure of a protein of known sequence and unknown

three dimensional structure on the basis of similarly sequenced protein and known three

dimensional structure. The Modeller application was used for this part of the analysis [41].

An example of the Modeller input files can be found in Appendix A. Three different homology

models were prepared.

• TYPE 1: Amino-acids from positions 2-182 of the template and corresponding amino-

acids from the target were taken into account (α1 and α2 domains). Only one template

was used for each model. The choice of the template was based on the affiliation of the

target subclass.

• TYPE 2: Amino-acids from positions 2-182 of the template and corresponding amino-

acids from the target were taken into account (α1 and α2 domains). All three templates

were used for each model (multi-template homology modelling).

• TYPE 3: All 275 amino-acids of the template and corresponding amino-acids from the

target were taken into account (α1, α2 and α3 domains). Only one template was used

14



E.M. Grela, PhD Thesis, Aston University 2022

for each model. The choice of the template was based on the target subclass affiliation.

The following three paragraphs summarise a flowchart of data processing using established,

mostly open sourced, software:

1. Homology modelling was used to generate the pdb files containing three dimensional

structures of target HLA class I proteins.

2. The molecular structures obtained from the Protein Data Bank often lack the hydrogen

atoms’ coordinates, as well as some of the parameters required to perform the electro-

static potential calculations. To address these issues the pdb2pqr application[43]] was

used. Firstly, hydrogen atoms were added, then charges were assigned to the individual

atoms depending on which residue they belong to and based on the PARSE force field.

3. The Adaptive Poison Boltzmann Solver (APBS) application was used to perform elec-

trostatic potentials calculations [44]. The target proteins were placed inside a three-

dimensional grid of points focusing on the target area. An example of the APBS input

file is given in Appendix A. Two different grids were used for TYPE 3 models and one

for TYPE 1 and TYPE 2 models. Details can be found in Table 1. APBS generates a

file that contains the electrostatic potential value for each grid point, therefore a mul-

tidimensional vector of those values was assigned to each target protein. Due to the

limitations of computing power, not all grid points were included in the analysis.

The two subsets for GRID I:

• Subset 1: containing points from the gap between the helices, all points in all directions,

4123 points (variables) in total.

• Subset 2: containing points around the helices and between them, every fourth point

in each direction, 4250 points (variables) in total.

Unique subset for GRID II:

• Subset 3: containing every fourth point in each direction, 4913 points (variables) in

total.

2.2 Dimensionality reduction methods

The collected data is multidimensional. The structure and origin of observations gives us

reason to suspect, that at least some of them, could be inter-dependent. The combination of

these two factors makes data visualization, coupled with appropriate multivariate analysis,

imperative.
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GRID I GRID II

Size in Å:
36× 64× 64 48× 32× 32

(x× y × z):

Number of points:
97× 65× 65 = 409825 33× 33× 33 = 35937

(x× y × z = total):

Focus on HLA I domens: α1 and α2 α3

Used for models TYPE: 1, 2, 3 3

Table 1: Grids used in the electrostatic potential calculation.

The statistical protocol combining these two features popularly goes under the name of

dimensionality reduction [45, 46, 47, 48]. The target here is to project high dimensional data

Y ∈ Rd (d is the number of observed variables) into a lower dimensional subspace X ∈ Rq (q

is the number of projected variables, q ≪ d), typically to outline a minimalist representation

of a higher dimensional complex system. Those projected variables xi ∈ X are often called

the latent variables.

The dependencies between observed variables and latent variables can be written as:

yi = γ(xi),

where yi is the d-dimensional vector representing the ith observation and xi is the q-dimensional

vector of latent variables for the i-th observation. The function γ specifies the relation be-

tween data space and latent space.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) has traditionally been the most popular architecture

to analyse such data structures [45]. It has been successfully applied in many scientific stud-

ies, such as face recognition algorithm [49], handwriting recognition protocols [50], genome

sequences analysis [51], and in many others.

The PCA algorithm works by finding the linear projection from a latent space into its

conjugal data space. This necessitates a linear relationship between the explicit and latent

variables:

yi =Wxi,

where W is a d× q matrix.

PCA transforms the observation space in such a way that the hidden variables (principal

components, identified as the eigenvectors associated with the largest eigenvalues) represent

the percentage variability in the data, starting with the highest. It is possible that the
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number of principal components is smaller than the number of observed variables. In that

case, the PCA method can be perceived as an explicit dimensionality reduction problem.

More often, though, the number of principal components is equal to the number of the

observed variables. But some subset of the latent variables reproduces the variability of the

data to an extent sufficient for understanding the observed phenomena or perceiving patterns

which were previously imperceptible [45]. We may add that while PCA is not necessarily the

most accurate dimensionality reduction procedure, often it is used as the first step analysis

due to its inherent simplicity and process linearity.

There are two algorithms that can perform Principal Component Analysis. One is based

on eigenvalue decomposition of the covariance matrix while the other depends on a singular

value decomposition of the observation matrix. In our analysis we used the second algorithm,

as inbuilt within the Matlab architecture [52].

2.3.1 PCA results for TYPE 1 models: The single-template models of α1 and

α2 domains

For the TYPE 1 models, amino-acids from positions 2-182 of the template and corresponding

amino-acids from the target (the α1 and α2 domains) were modelled. Only one template was

used for each model. The choice of the template was based on the target subclass affiliation.

Principal Component Analysis was then performed separately for the different types of

points belonging to subsets 1 and 2 of GRID 1. Figure 4 shows results involving points

positioned outside the Van der Waals sphere, which represents atom surface. A clear division

can be observed for the subset 2 for the two highest ranked PCA components (Figure 4 top

right plot). For subset 1, the clearest division occurs for components 2 and 3, but it still

shows non-zero overlap (Figure 4 left panel).

The PCA visualisation of all points in the subsets, points positioned inside the Van der

Waals sphere and points positioned outside the Van der Waals sphere, but within the 2Å

distance from it, as well as the variance from the first three PCA components can all be

found in Appendix B.

2.3.2 Quantitative measurement of The HLA subclasses separation

Due to a lack of complete separation between variables describing different subclasses of HLA

protein, we measured the overlapping area. First, we divided the two-dimensional results’

subspaces into n×n equal squares. We then defined a separation measure using the following

three-dimensional vector:

Ki,j
n = [KA,KB,KC ],

where i, j are the components considered and
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KX =
Xexclusive

Xinclusive
,

X ∈ {A,B,C}; Xexclusive being the number of squares exclusively comprising points repre-

senting proteins of the chosen subclass (HLA-A, HLA-B, HLA-C); Xinclusive is the number of

squares with points representing the proteins of the chosen subclass.

Note that choosing too large or too small number of squares is likely to cause measurement

errors. In the first case, the separation measure may not be sensitive enough and is likely

to overlook situations where points from the different subclasses are mixed but the density

of points distribution is small. For a too small number of squares, the separation measure

may be too sensitive and may result in situations where points from different subclasses are

separated but close to each other. Therefore the measure K, calculated using parameters

n = 50 and n = 100, will be regarded as our optima to be used to analyse the separation of

the HLA subclasses. The results for the TYPE I model data points, located outside the Van

der Waals sphere (subset 1) can be found in table 2.

PCA Eigenvectors Parameters TYPE 1 models TYPE 2 models
[KA,KB,KC ] [KA,KB,KC ]

components 1 and 2 n=50 0.40, 0.63, 0.83 0.25, 0.47, 0.59
n=100 0.68, 0.80, 0.94 0.59, 0.75, 0.79

components 1 and 3 n=50 0.89, 0.61, 0.42 0.47, 0.61, 0.20
n=100 0.96, 0.81, 0.71 0.67, 0.77, 0.56

components 2 and 3 n=50 0.66, 0.92, 0.78 0.40, 0.48, 0.52
n=100 0.89, 0.97, 0.91 0.61, 0.70, 0.71

Table 2: The separation measurement K for the subset 1; points outside the Van der Waals
sphere.

2.3.3 PCA results for TYPE 2 models: The multi-template models for α1 and

α2 domains

For TYPE 2 models, amino-acids from positions 2-182 of the template and corresponding

amino-acids from the target (α1 and α2 domains) were modelled. All three templates were

used for each model (multi-template homology modelling).

As for TYPE 1 models, PCA was performed separately for the different types of points

belonging to the subsets 1 and 2 of GRID 1. The PCA visualisation of all points in the

subsets, points positioned inside the Van der Waals sphere and points positioned outside

the Van der Waals sphere, but within 2Å distance from it, as well as the degree of variance

indicated by the first three PCA components can be found in the Appendix B.

For points lying outside the van der Waals sphere, (Figure 5) the overlap is even more

pronounced than in case of the TYPE 1 model. This is an unexpected result considering

there are no clear differences in sums of the variances explained by firsts PCA components
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Model Eigenvetors Subset 1 Subset 2

TYPE 1 models component 1 8.5 10.7
component 2 6.5 7.2
component 3 5.9 5.6
sum 20.9 23.5

TYPE 2 models component 1 12.1 10.0
component 2 6.7 6.8
component 3 5.0 4.7
sum 23.8 21.5

Table 3: The percentage of the variance explained by the first three PCA components for
points outside the Van der Waals sphere.

(Table 3). Table 2 shows comparison of the separation measurement K for points outside

the Van der Waals sphere for subset 1 with analogous measurements for TYPE 1 models.

All K values are lower for the PCA analysis results from TYPE 2 models. This compares

favourably with visual comparison of Figures 4 and 5.

2.3.4 Single-template versus multi-template models

There is an undeniable advantage of multi template models in identical data preparation

processes for all HLA class I proteins. However, we observe that the results obtained for

single template models (where each subclass of proteins is modelled on a corresponding

template) gives a much more pronounced separation between proteins belonging to different

subclasses. The level of confidence that can be put in the accuracy of the models obtained by

homology modelling depend on the similarity between the target protein and the template

used.

Figure 6 shows results of the Blast sequence alignment (the number of identical amino

acids) of proteins belonging to subclasses A, B, and C with reference to all three templates.

For proteins belonging to subclass A, template A gives the best alignment. Templates B

and C are equally inefficient. Every single HLA-A protein aligns better to the A template

than to other ones. Similarly for proteins belonging to subclass C, template C gives the best

alignment in general. Also template B gives better alignment than template A. It is worth

noticing that for chains involving two HLA-C proteins only, template B gives better alignment

than template C (167 identical amino acids versus 160 amino acids and 159 identical amino

acids versus 152 amino acids).

For proteins belonging to subclass B, template B gives the best alignment in general. Also

template C gives better alignment than template A. In case of 53 HLA-B proteins, template

C gives equally good alignment when compared with template B. In case of just 6 HLA-B

proteins, template C leads to better alignment than template B (161 identical amino acids

versus 160 amino acids, 161 versus 160, 162 versus 160, 162 versus 160, 163 versus 162 and

167 versus 161).
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TYPE 1 models TYPE 3 models
[KA,KB,KC ] [KA,KB,KC ]

components 1 and 2 n=50 0.40, 0.63, 0.83 0.42, 0.96, 0.48
n=100 0.68, 0.80, 0.94 0.67, 0.99, 0.66

components 1 and 3 n=50 0.89, 0.61, 0.42 0.76, 0.56, 0.67
n=100 0.96, 0.81, 0.71 0.88, 0.81, 0.86

components 2 and 3 n=50 0.66, 0.92, 0.78 0.87, 0.93, 0.91
n=100 0.89, 0.97, 0.91 0.96, 0.98, 0.98

Table 4: The separation measurement K for the subset 1; points outside the Van der Waals
sphere.

(Figure7 left panel). This overlapping looks less distinct than in case of the PCA performed

for TYPE 1 models (Figure 5).

Figure 8 shows the three-dimensional plots visualizing the first three principal components

for points localised outside the Van der Waals sphere for the TYPE 1 and the TYPE 3 models.

The division between subclasses is more obvious here than on any of the two dimensional plots

(Figures 4 and 7) and it appears more distinct for PCA results involving TYPE 3 models.

Table 4 compares the separation measurement K for points outside the Van der Waals

sphere for subset 1 with analogous measurements for the TYPE 1 models. For the principal

components 1 and 2 the subclass HLA-C separates better in the TYPE 1 models than in

the TYPE 3 models. On the other hand the subclass HLA-B separates not only better, but

almost perfectly in case of the TYPE 3 models (KA = 0.99 for n = 100). For the principal

components 1 and 3 the subclass HLA-A separates better in the TYPE 1 models than in the

TYPE 3 models and the subclass HLA-C separates better in the TYPE 3 models than in the

TYPE 1 models (not as good as in case of components 1 and 2 though). For the principal

components 2 and 3 all subclasses separates better for the TYPE 3 models than in case of the

TYPE 1 models. In fact also they separates better than in case of any pair of components

for the TYPE 1 models. (With exception KA = 0.89 in K
1,3
50 for the TYPE 1 models and

KA = 0.87 in K2,3
50 for the TYPE 3 models).

2.3.6 PCA results for TYPE 3 models: The single-template models of α1, α2

and α3 domains; focus on the α3 domain

Principal Component Analysis was performed separately for the different types of points

belonging to subset 3 of GRID 2. The PCA visualisation of all points in the subsets, points

positioned inside the Van der Waals sphere and points outside the Van der Waals sphere

within 2 Å distance from it, as well as the percentage of variance explained by the first three

PCA components can be found in the Appendix B. Figure 9 shows that for points positioned

inside the Van der Waals sphere, the principal components 1 and 2 are the complete division

between HLA subclasses.
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2.4.1 NLPCA results

Nonlinear Principal Component Analysis was performed separately for the different types of

points belonging to subsets 1 and 2 of GRID 1 for TYPE 1, TYPE 2, and TYPE 3 models.

The visualisation of the results, as well as the percentage of explained variance can be found

in the Appendix B.

Tables 5, 6 and 7 compare the separation measurements K for points outside the Van

der Waals sphere for subset 1 against corresponding results for linear PCA. For TYPE 1

models, the maximum difference is 0.02 (e.g. for K2,3
100 for the subclass HLA-C, Table 5). For

TYPE 2 models (Table 6), the maximum difference is 0.07 (for K1,2
100 for subclass HLA-A),

second highest difference is 0.03 (e.g. for K2,3
100 for subclass HLA-A). For TYPE 3 models the

maximum difference is 0.03 (e.g. for K1,3
100 for subclass HLA-A, Table 7).

TYPE 1 models PCA NLPCA
[KA,KB,KC ] [KA,KB,KC ]

components 1 and 2 n=50 0.40, 0.63, 0.83 0.39, 0.61, 0.84
n=100 0.68, 0.80, 0.94 0.68, 0.79, 0.93

components 1 and 3 n=50 0.89, 0.61, 0.42 0.89, 0.60, 0.42
n=100 0.96, 0.81, 0.71 0.98, 0.81, 0.72

components 2 and 3 n=50 0.66, 0.92, 0.78 0.67, 0.91, 0.79
n=100 0.89, 0.97, 0.91 0.90, 0.98, 0.93

Table 5: The separation measurement K for the subset 1; points outside the Van der Waals
sphere.

TYPE 2 models PCA NLPCA
[KA,KB,KC ] [KA,KB,KC ]

components 1 and 2 n=50 0.25, 0.47, 0.59 0.26, 0.48, 0.61
n=100 0.59, 0.75, 0.79 0.66, 0.78, 0.82

components 1 and 3 n=50 0.47, 0.61, 0.20 0.49, 0.60, 0.21
n=100 0.67, 0.77, 0.56 0.67, 0.75, 0.54

components 2 and 3 n=50 0.40, 0.48, 0.52 0.38, 0.48, 0.51
n=100 0.61, 0.70, 0.71 0.64, 0.71, 0.73

Table 6: The separation measurement K for the the subset 1; points outside Van der Waals
sphere.

The NLPCA does not provide any new visual information about our data when compared

to the linear PCA analysis. The visualisation of the data is almost identical. For TYPE 1 and

TYPE 2 models there are no substantial differences in the variances obtained by comparing

the three first components between the linear and nonlinear PCA. A maximum of 0.8%

variation is observed for the TYPE 1 models, typically for the second component for points

inside the Van der Waals sphere in subset 2. There are some noticeable differences in the

explained variances involving TYPE 3 models. For points inside the Van der Waals sphere,
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TYPE 3 models PCA NLPCA
[KA,KB,KC ] [KA,KB,KC ]

components 1 and 2 n=50 0.42, 0.96, 0.48 0.44, 0.95, 0.50
n=100 0.67, 0.99, 0.66 0.67, 0.98, 0.65

components 1 and 3 n=50 0.76, 0.56, 0.67 0.77, 0.56, 0.67
n=100 0.88, 0.81, 0.86 0.91, 0.83, 0.83

components 2 and 3 n=50 0.87, 0.93, 0.91 0.87, 0.92, 0.93
n=100 0.96, 0.98, 0.98 0.97, 0.98, 0.98

Table 7: The separation measurement K for the subset 1; points outside the Van der Waals
sphere.

for subset 1, the variance explained by the two first components is greater for NLPCA than

for the L-PCA (29.5% versus 27.3% and 20.3% versus 16.9%). However, these differences do

not affect the degree of separation between the HLA-A, HLA-B and HLA-C subclasses.

The results of the nonlinear Principal Component Analysis confirms the conclusion derived

from the linear PCA analysis, that some proportion of the data variability is linear, as there

is no substantial difference between results obtain from the linear and the nonlinear versions

of PCA. The NLPCA does not provide any additional inside about the HLA class I proteins

diversity.

2.5 Gaussian Process Latent Variable Model

Apart from its linearity assumption, PCA suffers from other limitations. It does not take into

account that the observed variables, are not just linear combinations of their principal com-

ponents, but also are subjected to the random distortion. To address this limitation, a new

framework encapsulated under the name Probabilistic Principal Component Analysis

(PPCA) was proposed [58]:

yi =Wxi + ηi, (1)

where ηi represents stochastic noise, typically drawn from a spherical Gaussian distribution.

The Kernel Principal Component Analysis (KPCA) is a variation of the PCA where

the search for the principal components is performed in the feature space instead of the ob-

servation space [59]. In some cases, there is a possibility to hypothesise about nature of those

unknown features, however in our research we use the kernel method as the mathematical

tool that allows the search for the nonlinear interactions between variables. The features are

represented by values of a function ψ, and the observations are the function arguments:

fi = ψ(yi), (2)

yi being represented by a d-dimensional vector of the ith observation and fi is an r-dimensional

vector representing r features for the ith observation (r ≥ d). If ψ is a nonlinear function,
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KPCA operforms nonlinear dimensionality reduction.

The classical PCA can be carried out through the eigenvalue decomposition of the covari-

ance matrix C (data is scaled so that it has a zero mean) [59], that is represented as an inner

product involving the variable vectors:

C = yi · yj . (3)

The kernel PCA require the eigenvalue decomposition of the covariance matrix Ĉ:

Ĉ = ψ(yi) · ψ(yj) = k(yi, yj). (4)

The function k is called the kernel function [45, 59].

In order to perform the kernel PCA there is no need to extract the mapping function ψ.

The knowledge of values of kernel function is sufficient enough [45, 48, 59]. The advantage of

this approach is the possibility to significantly reduce the computational power required.

Similarly to the traditional linear PCA, the nonlinear kernel PCA is easy to implement

and the calculations performed gives unambiguous results. There is, however, a substantial

difference between these methods. Conventional PCA does not require any assumption a

priori while for KPCA, the selection of the kernel function has to be done prior to analysis.

The Gaussian Process Latent Variable Model (GPLVM) is a nonlinear, probabilistic

dimensionality reduction method [46, 60], that can be understood as the Probabilistic Kernel

Principal Component Analysis (see Figure 11). As in the case of the kernel PCA, the matrix

of covariance is replaced by the matrix of the kernel function. The observed variables are not

just a combination of latent variables, but the error in the form of the normally distributed

noise is added to the model. That approach acknowledges the probabilistic nature of the

real-life data.

yi = γ(xi) + ηi. (5)

ηi is the noise term, taken as an independent sample from a spherical Gaussian distribution

[46, 48, 61].

A key target of dimensionality reduction methods is to determine how the latent space

representation of the data preserves the distances between data points. Unlike most non-

linear methods (such as NLPCA) or the classical linear PCA, the GPLVM focuses on the

preservation of the long distances (dissimilarities), rather than short ones. This means that

points that are close together in the data space may be not close in the latent space, and this

potentially introduces an error by overlooking some similarities between data points. It is

considered an imperfection of the GPLVM method. However, there is a modification that al-

lows for a compromise. This modification was proposed by the same author who invented the

GPLVM methods [62]. The pure GPLVM algorithm performs mapping from the latent space
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TYPE 1 models TYPE 2 models TYPE 3 models
[KA,KB,KC ] [KA,KB,KC ] [KA,KB,KC ]

Points outside the Van der Waals sphere
Subset 1 n=50 0.95, 0.91, 0.94 0.61, 0.58, 0.69 0.95, 0.84, 0.85

n=100 0.97, 0.97, 0.97 0.77, 0.79, 0.83 0.99, 0.96, 0.96
Subset 2 n=50 0.96, 0.98, 0.97 0.56, 0.74, 0.62 0.98, 0.96, 0.99

n=100 0.99, 0.99, 0.99 0.74, 0.86, 0.78 ≈1, 0.99, ≈1

Points outside the Van der Waals sphere within 2 Å distance from it
Subset 1 n=50 0.98, 0.96, 0.93 0.54, 0.59, 0.58 0.98, 0.96, 0.91

n=100 1, 0.98, 0.98 0.69, 0.74, 0.70 0.99, 0.98, 0.96
Subset 2 n=50 0.98, 0.99, 0.99 0.68, 0.79, 0.68 0.99, 0.98, 1

n=100 0.99, ≈1, 0.99 0.77, 0.86, 0.75 1, 1, 1

Table 8: The separation measurement K for the GPLVM analysis.

subclasses, clusters are difficult to distinguish (e.g. Figure 13 right top and bottom plots).

Therefore, the cluster analysis was performed for each subclass separately.

2.6 HLA-A subclass cluster analysis

In this section we will discuss HLA-A subclass cluster division based on the GPLVM analysis

for points positioned outside the Van der Waals sphere, but within a 2Å distance from it

based on three different GPLVM analysis results. (Figure 14, this choice was based on the

fact that for those results, the cluster division is distinctly visible). Isolated single points

and points in groups of 10 or less are considered not to have a cluster affiliation. Table 9

shows the number of proteins belonging to each cluster and symbols used for their graphical

representation. As was already stated, the visual representation of the GPLVM results may

be misleading, because in some cases what looks like one point in our results’ space, is actually

a group of points lying on top of each other. Therefore table 10 shows the number of proteins

assigned to clusters from one division belong to a cluster from another division.

Red colour indicates cases for which all proteins belonging to a cluster from a given

division belong to one cluster from another division. For example, all twenty two proteins

from cluster 10 from the cluster division based on TYPE 2 models belong to cluster 13 from

the cluster division based on TYPE 1 models.

Blue colour indicates cases in which almost all proteins (except one or two) belonging to

a cluster of a given division belong to one cluster of another division. Proteins of unidentified

clusters affiliation are not taken into account. For example, twenty four out of twenty five

proteins from cluster 16 from the cluster division based on TYPE 2 models belong to cluster

13 from the cluster division based on TYPE 1 models.

Based on Table 10, we may conclude that proteins belonging to clusters created on the

basis of GPLVM analysis do not spread randomly between clusters derived from another

GPLVM analysis. However, cluster division from two different GPLVM analyses are not
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Cluster division based on the TYPE 1 models, subset 1

number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

population 31 16 110 80 11 32 79 54 28 12 22 32 229 367 13

symbol . × ▽ ◦ × ▽ ◦ × ▽ ◦ × ▽ ◦ × ▽

number 15 16

population 22 25

symbol ◦ +

Cluster division based on the TYPE 2 models, subset 2

number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

population 37 12 79 28 105 14 53 11 11 31 244 112 32 382 12

symbol . × ▽ ◦ × ▽ ◦ × ▽ ◦ × ▽ ◦ × ▽

Cluster division based on the TYPE 3 models, subset 1

number 0 1 2 3 4 5 6 7 8 9 10 11

population 39 23 28 134 21 77 24 16 16 518 229 38

symbol . × ▽ ◦ × ▽ ◦ × ▽ ◦ × ▽

Table 9: Clusters population for points positioned outside the Van der Waals sphere, but
within the 2 Å distance from it and symbols used for its graphical representation. 0 denotes
points of the unidentified clusters affiliation.

but also on the shape of the examined molecule.

2.7 Conclusions

The challenge we have addressed in this part of research, was to probabilistically analyse

HLA protein data set in order to determine their ability to bind to specific antigens.

1. Principal Component Analysis results strongly suggest that large proportion of the

analysed data variability is linear. The subclasses division, even if not 100% accurate,

indicate that the chosen data preparation methods based on homology modelling and

electrostatic potential calculations can provide us with vital information about protein

functionality.

2. Although the nonlinear Principal Component Analysis results do not provide any ad-

ditional insight into the HLA class I proteins diversity when compared to linear PCA

results, they tend to affirm the linear structure of the analysed data.

3. The GPLVM dimensionality reduction method performed for electrostatic potential

values data set provide distinct HLA-A, HLA-B and HLA-C subclass divisions. As

to identifying super-types inside separate subclasses, the results are more ambiguous.

Although this method may provide partial information necessary to identify HLA super-

types, it is not robust enough to be independently conclusive.
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Cluster division based on the TYPE 2 models, subset 2
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Table 10: The number of proteins assigned to clusters from one division belong to cluster
from another division.
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3 Standard non-alignment protein descriptors

3.1 Descriptors based on composition

The Amino Acid Composition AAC(i) is the proportion of amino acids of each type in

the protein sequence of a N length. The Dipeptide Composition DC(j) is the proportion

of each pair of amino acids and the Tripeptide Composition TC(k) is the proportion of

each triplet.

p(i) = AAC(i) =
ni

N

p(j) = DC(j) =
nj

N − 1

p(k) = TC(k) =
nk

N − 2

where ni represents the number of the amino acid of type i in the sequence. i ∈ {1, 2, ..., 20};

nj is the number of the amino acid pairs of type j in the sequence. j ∈ {1, 2, ..., 400};

nk is the number of the amino acid triplets of type k in the sequence. k ∈ {1, 2, ..., 8000}.

Descriptor values calculated using the above definitions were obtained with the protr package

[63], software generating numerical descriptors for amino acid sequences, successfully used

among others, in the research of the potential drug-target interactions [25] and population

genomics [64].

3.2 Descriptors based on Shannon Entropy

The concept of Information Entropy was first introduced in 1948 as a measurement of the ”in-

formation content” of a signal [65]. It is defined as the function of the probability distribution

of random variable X, where p(x) is its probably mass function [18, 66].

H[X] = −
∑

x

p(x) log p(x)

We propose set of 6 descriptors based on entropy and conditional entropy definitions. Firstly,

to calculate the entropy of a protein sequence, we treat the descriptors based on composition,

as random variables:

H[AAC] = −

ni∑

i

p(i) log
(
p(i)

)

H[DC] = −

nj∑

i

p(j) log
(
p(j)

)

H[TC] = −

nk∑

i

p(k) log
(
p(k)

)
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where ni = 20, nj = 400, nk = 8000. For our purpose, p(i) is the proportion of ith amino

acid, p(j) is the proportion of jth dipeptide and p(i) is the proportion of ith tripeptide in the

examined protein sequence.

Conditional entropy [66] is calculated as:

H[DC|AAC] = −

ni∑

i

p(i)

nj∑

j

p(j|i) log
(
p(j|i)

)

H[[TC|AAC] = −

ni∑

i

p(i)

nk∑

j

p(k|i) log
(
p(k|i)

)

H[TC|DC] = −

nj∑

i

p(j)

nk∑

j

p(k|j) log
(
p(k|j)

)

where p(j|i) is the proportion of jth dipeptide given the ith amino acid,

p(j|i) is the proportion of kth tripeptide given the ith amino acid,

p(j|i) is the proportion of kth tripeptide given the jth dipeptide.

In order to add possible protein descriptors we proposed calculating the partial conditional

entropy which we define as:

H[DCAAC ] = −p(i)

nj∑

j

p(j|i) log
(
p(j|i)

)

H[[TCAAC ] = −p(i)

nk∑

j

p(k|i) log
(
p(k|i)

)

H[TCDC ] = −p(j)

nk∑

j

p(k|j) log
(
p(k|j)

)

It is calculated analogously to contingent entropy, but omits the first summation, and results

in vectors instead of single values.

3.3 Proximity between amino acids

To assess the proximity between amino acids, we adopted the simplified approach based on

the one proposed in [67]. The proximity is understood as the distance between the amino

acid of type i and the amino acid of type j that is nearest to it, assuming that between the

considered pair of neighbours (i and j), no other amino acid type j exists (see Figure 15).

For each type of ij pair, the average and the standard deviation of proximity was calculated.

The calculations were performed twice. In the first case, the neighbour j of the amino acid

i was searched in both directions; in the second case, only the direction in which the protein

is synthesized was studied.
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Group 1 Group 2 Group 3

Hydrophobicity Polar Neutral Hydrophobicity
R,K,E,D,Q,N G,A,S,T,P,H,Y C,L,V,I,M,F,W

Normalized 0-2.78 2.95-4.0 4.03-8.08
van der Waals Volume G,A,S,T,P,D,C N,V,E,Q,I, L M,H,K,F,R,Y,W

Polarity 4.9-6.2 8.0-9.2 10.4-13.0
L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

Polarizability 0-1.08 0.128-0.186 0.219-0.409
G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

Charge Positive Neutral Negative
K,R A,N,C,Q,G,H,I,L, D,E

M,F,P,S,T,W,Y,V

Secondary Structure Helix Strand Coil
E,A,L,M,Q,K,R,H V,I,Y,C,W,F,T G,N,P,S,D

Solvent Accessibility Buried Exposed Intermediate
A,L,F,C,G,I,V,W R,K,Q,E,N,D M,S,P,T,H,Y

Table 11: The amino acid allocation to the classes based on seven attributes. Source [63].

3.5 Conjoint Triad calculation

The 20 amino acids are clustered into seven classes (see Table 12) [70]. Like in case of

Tripeptide Composition the conjoint triad descriptors regarded any three following amino

acids as a unit. But the different amino acids from any class were treated as identical. As

a result, instead of 8000 descriptors we had we had to deal with only 7 × 7 × 7 = 343.

Descriptor values calculated with definitions presented in this section were obtained with the

protr package [63].

f(i) =
nfi

N − 2

nfi is the number of the amino acid triad of type fi in the sequence. N is the protein sequence

length. i ∈ {1, 2, ..., 343}. Then f(i) is normalised to become independent of N .

CT (i) =
f(i)−min{f(1), f(2), ...f(343)}

max{f(1), f(2), ...f(343)}

3.6 Quasi Sequence Order descriptors

The Sequence Order Coupling Numbers [71] is defined as:

SOCN(d) =
N−d∑

i=1

(disti,i+d)
2,
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1 2 3 4 5 6 7 8 9 10

Amino acid S H S M R Y F F T S V
Position in sequence 1 2 3 4 5 6 7 8 9 10 11

11 12 13 14 15 16 17

Amino acid S R P G R G E P R F I
Position in sequence 12 13 14 15 16 17 18 19 20 21 22

18 19 20 21 22 23 24

Amino acid A V G Y V D D T Q R
Position in sequence 23 24 25 26 27 28 29 30 31 32

Figure 16: Construction of distribution descriptors. Amino acids belonging to group 2 (Neu-
tral) based on attribute Charge (see Table 11) are marked red. There are 24 of them. First

is on position 1 in amino acid sequence, sixth (14
th
) one in position 7, twelfth (middle) one

on position 14, eighteenth (34
th
) one on position 23 and the last one on position 31. There-

fore the subset of distribution descriptors for group Neutral in the attribute Charge will be
{1, 7, 14, 23, 31}.

disti,i+d is the distance between the two amino acids taken from chosen distance matrix.

i and i + d are amino acid positions in the protein sequence separated by d ∈ {1, 2, ..., 30}.

N is the protein sequence length.

First twenty Quasi Sequence Order descriptors [71] are defined as follows:

QSOD(i = 1, 2, ..., 20) =
fi∑20

i=1 fi + w
∑30

d=1 SOCN(d)
,

The next thirty abide the following updating rule:

QSOD(i = 21, 22, ..., 50) =
wSOCN(i− 20)

∑20
i=1 fi + w

∑30
d=1 SOCN(d)

where fi is the frequency of the amino acid of type i, the weight factor being w = 0.1.

Descriptor values calculated with above definitions were obtained with the protr package [63].

Two different distance matrices were used: Schneider-Wrede physicochemical distance matrix

was used as in original work [71, 72] and chemical distance matrix proposed by Grantham [73].

3.7 Descriptors based on Pseudo Amino Acid Composition

The Pseudo Amino Acid Composition (PAAC, also known as type 1 pseudo-amino acid

composition) is a descriptor vector that is calculated based on the values of hydrophobicity
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Dipole Scale Volume Scale Amino acids

1 < 1.0 < 50Å A,G,V
2 < 1.0 > 50Å I,L,F,P
3 > 1.0 and < 2.0 > 50Å Y,M,T,S
4 > 2.0 and < 3.0 > 50Å H,N,Q,W
5 > 3.0 > 50Å R,K
6 > 3.01 > 50Å D,E
7 > 1.0 and < 2.0 2 > 50Å C

1with opposite orientation
2 Cysteine (C) is separated from class 3 because of its ability to form disulfide bonds

Table 12: Classification of amino acids based on dipoles and volumes of the side chains.
Source [63].

(property considered to have a crucial role in the process of proteins folding), hydrophilicity

and side chain masses of the 20 amino acids. Firstly these values were normalised and then

correlation function Θ(i, i + d) between the amino acid values at the positions i an i+ d

were calculated. d is the distance between these two amino acids in the protein chain. The

detailed protocol can be found in [74]. As a next step, the the order-correlated factors of the

sequence were calculated:

δ1(d) =

∑N−d
i=1 Θ(i, i+ d)

N − d

d ∈ {1, 2, ..., 30}. N is the protein sequence length.

Based on this, the first 20 descriptors are calculated sequentially:

PAAC(j = 1, 2, ..., 20) =
fj∑20

j=1 fj + ω
∑30

d=1 δ1(d)

followed by the next 30 descriptors:

PAAC(j = 21, 22, ..., 50) =
ωδ1(j − 20)

∑20
j=1 fj + ω

∑30
d=1 δ1(d)

where fj is the frequency of amino acid of type j and ω is the weight factor that we set at

w = 0.05 [74].

The Amphiphilic Pseudo Amino Acid Composition [74] (APAAC, also known as type

2 pseudo-amino acid composition) is descriptor vector that was calculated based on the

normalised values of hydrophobicity H1(j) and hydrophilicity H2(j) of the amino acids (j ∈

{1, 2, 3, ..., 20} are 20 amino acid types). Firstly the correlation functions H1(i, i + d) =

H1(i)H1(i + d) for hydrophobicity and H2(i, i + d) = H2(i)H2(i + d) hydrophilicity were

calculated. i an i+ d are amino acids on position i and i+ d in the protein chain, while d is

the distance between them. Next step provides values for the order-correlated factors of the
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3.9 AAIndex derived descriptors based on Pseudo Amino Acid Composi-

tion

For the AAIndex derived Pseudo Amino Acid Composition [76] (type I) the order-

correlated factors δ1(d) of the sequence were calculated:

δ1(d) =

∑N−d
i=1 (Pi − Pi+d)

2

N − d

For the AAIndex derived Amphiphilic Pseudo Amino Acid Composition (type II)

the order-correlated factors δ2(d) of the sequence were calculated:

δ2(d) =

∑N−d
i=1 PiPi+d

(N − d)

d ∈ {1, 2, ..., 30}, Pi and Pi+d are the values of i and i + d entry in the examined numerical

sequence. N defines the length of the sequence.

Based on the above formulation, the first 20 descriptors were calculated respectively:

PAACAAIndex(j = 1, 2, ..., 20) =
fj∑20

j=1 fj +
∑30

d=1 δ1(d)

APAACAAIndex(j = 1, 2, ..., 20) =
fj∑20

j=1 fj +
∑30

d=1 δ2(d)

The next 30 sequences can be calculated as follows:

PAACAAIndex(j = 21, 22, ..., 50) =
δ1(j − 20)

∑20
j=1 fj +

∑30
d=1 δ1(d)

APAACAAIndex(j = 21, 22, ..., 50) =
δ2(j − 20)

∑20
j=1 fj +

∑30
d=1 δ2(d)

where fj is the frequency of amino acid of type j.

For both the type I and II PAAC AAIndex derived descriptors, sets of 50 descriptors for each

one of 553 AAIndex scales were calculated.

3.10 Auto-correlation descriptors

Moreau-Broto, Moran and Geary autocorrelation are well established measures commonly

used for a sequence analysis [63]. Calculated descriptor values depend not only on the values

of the physicochemical properties of amino acids, but also on positions of specific amino acids

in the protein chain.

In order to calculate the auto-correlation descriptors all original numerical AAIndexk(j)

(k represents one of 553 scales and j represents one of 20 amino acids) values were centralized

and standardized:
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AAIndexk =

∑20
j=1AAIndexk(j)

20

σk =

√√√√1

2

20∑

j=1

(AAIndexk(j)−AAIndexk)2

Then the original values of AAIndex derived numerical sequences AAIndexk(j) were replaced

with the normalised ones Zk(j) and based on these new values the auto-correlation descriptors

are calculated.

Zk(j) =
AAIndexk(j)−AAIndexk

σ

Moreau-Broto Autocorrelation [63]:

MBA(d) =
N−d∑

i=1

PiPi+d

Normalized Moreau-Broto Autocorrelation [63]:

nMBA(d) =
1

N − d

N−d∑

i=1

PiPi+d

Moran Autocorrelation Descriptors [63]:

MA(d) =
1

N−d

∑N−d
i=1 (Pi − P )(Pi+d − P )

1
N

∑N
i=1(Pi − P ′)2

Geary Autocorrelation Descriptors [63]:

GA(d) =

1
2(N−d)

∑N−d
i=1 (Pi − Pi+d)

2

1
N−1

∑N−d
i=1 (Pi − P )2

Pi and Pi+d are the values of i
th and i+dth entry in the examined numerical sequence studied.

d ∈ {1, 2, ...30}. N is a sequence length. P is the average value of the entries in that sequence:

P =
∑N

i=1
Pi

N
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3.11 Results and Discussion

The data set containing 3872 proteins belonging to 40 protein families (full list can be found

in Appendix C) was analysed in this chapter. They were taken from the well established

Pfam database, containing a large selection of protein families [77]. The descriptors values

were calculated for each of the examined proteins, and multi-dimensional vectors, comprising

descriptor values type were created.

The comparison of the accuracy of calculated statistical descriptor vectors were per-

formed with Linear Discriminant Analysis (LDA) classifier (supervised machine learning

technique) inbuilt in the Matlab software [52]. LDA finds the linear combination of indepen-

dent continuous variables, and in that aspect is similar to Principal Component Analysis.

However, instead of maximising the variance of the data set as a whole, LDA maximises the

differences between data points belonging to the separate classes and minimises the intra-class

variance.

The Linear Discriminant analysis technique is a popular choice in many research fields,

including heart rate analysis[78] and DNA functional motif recognition [79] and cancer re-

search [80, 81]. It was proven effective in the process of differentiation between the cancer

and the healthy tissues based on the gene expression data. Apart from being known for

its effectiveness as a linear technique, LDA requires very little computational power, a key

reason for our choice in dealing with BIG data-sets.

3.11.1 Misclassification Error

Here we propose an algorithm to compute the misclassification error of a given descriptor

vectors set as follows:

1. k (number of errors) to be set equal to 0;

2. first protein from the K element data set to be selected;

3. the LDA classifier inbuilt in the Matlab software to be trained using

a) protein data set as training data,

b) family affiliation as the label;

4. if the classification is deemed correct, the selected protein would be classified as one

belonging to its parent family, the value of k remaining unchanged;

5. if the classification is deemed incorrect, the selected protein would be classified as one

belonging to family that is different to its parent one, then k would be upgraded by a

unit: k = k + 1;

6. steps 2-5 to be repeated across all proteins from the K-elements data set;
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7. the misclassification error would be calculated by dividing the number of errors k

by the number of examined proteins K.

Table 13 presents the results of the misclassification error of various descriptor vectors de-

scribed in this chapter.

misclassification threshold
Descriptor nf error value

Amino Acid Composition (AAC)* 20 1004 (25.93%) 800
Dipeptide Composition (DC)* 400 53 (1.37%) 40
AAC* and DC* 420 49 (1.27%) 38
Entropy and Conditional entropy 6 2128 (54.96%) 2668
H[DCAAC ]

1 20 711 (18.36%) 800
H[TCAAC ]

1 20 639 (16.50%) 800
H[TCDC ]

1 400 300 (7.75%) 40
H[DCAAC ], H[TCAAC ], H[TCDC ] 440 142 (3.67%) 36

Proximity between amino acids:
Mean (one direction) 400 244 (6.30%) 40
SD (one direction) 400 341 (8.81%) 40
Mean (both directions) 400 307 (7.93%) 40
SD (both directions) 400 400 (10.33%) 40
Mean and SD (one direction) 800 22 (0.57%) 20
Mean and SD (both directions) 800 49 (1.27%) 20

Composition* 21 1472 (38.01%) 762
Transition* 21 1461 (37.73%) 762
Distribution* 105 1746 (45.09%) 152
Composition/Transition/Distribution* 147 521 (13.46%) 108

Conjoint Triad (CT )* 343 233 (6.02%) 46

Sequence Order Coupling Numbers (SOCN)* 60 513 (13.25%) 266
Quasi sequence order descriptors (QSOD)* 100 214 (5.52%) 160
Pseudo Amino Acid Composition I (PAAC)* 50 361 (9.32%) 320
Pseudo Amino Acid Composition II (APAAC)* 80 260 (6.71%) 200
SOCN*, QSOD*, PAAC*, APAAC* 290 90 (2.32%) 55

CT*, SOCN*, QSOD*, PAAC*, APAAC* 633 18 (0.46%) 25
1 partial conditional entropy

H[DCAAC ] based on proportions of dipeptides starting with specific amino acid

H[TCAAC ] based on proportions of triprptides starting with specific amino acid

H[TCAAC ] based on proportions of triprptides starting with specific dipeptide

Table 13: The descriptor vectors misclassification error. nf denotes the dimension of the
descriptor vector. Descriptor vectors marked with ∗ had their values calculated using the
protr package[63]. The combinations of the descriptor vectors are marked in gray. The
values of misclassification error that fall below corresponding threshold values are marked
in red.

The number of misclassified protein varied from 18 (0.46%) for a combination of five

different descriptor vectors (CT , SOCN , QSOD, PAAC and APAAC) or 53 (1.37%) for

single descriptor vector (Dipeptide Composition) to 2128 (25.93%) for entropy and condi-

tional entropy. However comparing those results seemed unreasonable as the dimensions of
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the descriptor vectors varied significantly (6 vs. 400 vs. 633). Even a superficial analysis

of the results presented in the Table 13 suggests a negative correlation between the dimen-

sion of the descriptor vector and the misclassification error. That implies that in order to

achieve protein classification closer to the correct one, we need to use the descriptor vectors

with higher dimension. We will also investigate whether considering the larger number of

physicochemical properties of amino acids (using the AAIndex scales) would increase the

classification accuracy.

Figure 18 shows the dependence between the dimension of the single descriptor vector

and the misclassification error for the standard non-alignment descriptors (red crosses). As

expected, the misclassification error decreased with increasing number of descriptors. Even for

the best performing descriptors, this decrease was not linear. We have extrapolated the results

with y = a
x
function, for the value of parameter a ≈ 16011.62. The fitted line (Figure 18)

coincides best with the results obtained for the descriptors that give lowest misclassification

error for any given descriptors number. We propose that the descriptor vectors can be

considered to be better performing than the standard ones if the pairs {xi, yi} (where xi is a

dimension of the descriptor vector, and yi is the number of misclassified proteins) lay below

the fit line. For example, for xi = 50, yi must be lower or equal than the threshold value of

320. The threshold values corresponding to the dimension of the examined descriptor vectors

are presented in the last column of Table 30.

Figure 18: The dependence between the number of used descriptors and misclassification error
shown in Table 13. The combination of the descriptor vectors are not taken into account

For the combinations of descriptor vectors (marked in gray in Table 13), the threshold

values are given in an ascending order: 20 (for xi = 800), 25 (for xi = 633), 36 (for xi = 440),

38 (for xi = 420), 55 (for xi = 290) and 108 (for xi = 147). Only one out of seven examined

combinations of standard descriptors, have the misclassification error that falls below its
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dimension threshold value: CT with SOCN with QSOD with PAAC and APAAC (number

if misclassified protein 18 < 22), while the combination of mean and standard deviation of

proximity between amino acids in one direction is marginally greater (22 vs. 20).

However our expectation for the misclassification error fitting the line y = a
x
may be overly

optimistic, especially for the descriptor vectors characterized by large dimensions. The fit line

consistently lay above the actual misclassification error results in most cases (the exceptions

are marked red in Table 13, ). This observation established that results, obtained for the

combination of CT with SOCN with QSOD with PAAC and APAAC, and the one obtained

for he combination of mean and standard deviation of proximity between amino acids (the

number of misclassified proteins: 22 and 49) are exceptional.

The Figure 19 shows the variation of the proportion of misclassification error divided by

corresponding threshold value against the dimensions of the descriptor vectors. Blue dashed

lines represents y = 1, y = 1.5, y = 2 and y = 4 to highlight the misclassification error results

smaller than corresponding threshold value, greater than corresponding threshold value but

smaller than corresponding threshold value multiplied by 1.5 etc.

Figure 19: The proportion of misclassification error divided by corresponding threshold value
plotted against the dimension of the descriptor vectors. Blue dashed lines represents plots
y = 1, y = 1.5, y = 2 and y = 4.

We used the threshold values obtained from the y = a
x
fit and its re-scaled values to

determine the relative quality of performance of the PAACAAIndex and the Auto-correlation

descriptor vectors. However, we do not suggest that the threshold values can be treated as

an objective measure of any kind.

For all previously defined auto-correlation types, 30 sets of 553-dimensional descriptor vectors

were constructed, and the misclassification errors were calculated (Table 14). The smallest

number of the misclassified proteins was obtained for d = 1 when the auto-correlation was

50



E.M. Grela, PhD Thesis, Aston University 2022

d MBA(d) nMBA(d) MA(d) GA(d)

1 270 (6.97%) 307 (7.93%) 150 (3.87%) 149 (3.85%)
2 307 (7.93%) 371 (9.58%) 179 (4.62%) 169 (4.36%)
3 326 (8.42%) 350 (9.04%) 186 (4.80%) 163 (4.21%)
4 341 (8.81%) 379 (9.79%) 206 (5.32%) 173 (4.47%)
5 413 (10.67%) 455 (11.75%) 230 (5.94%) 197 (5.09%)
6 389 (10.05%) 457 (11.80%) 264 (6.82%) 236 (6.10%)
7 434 (11.21%) 491 (12.68%) 241 (6.22%) 225 (5.81%)
8 405 (10.46%) 482 (12.45%) 307 (7.93%) 259 (6.69%)
9 435 (11.23%) 472 (12.19%) 285 (7.36%) 242 (6.25%)
10 467 (12.06%) 530 (13.69%) 310 (8.01%) 265 (6.84%)
11 474 (12.24%) 520 (13.43%) 337 (8.70%) 258 (6.66%)
12 483 (12.47%) 555 (14.33%) 373 (9.63%) 309 (7.98%)
13 527 (13.61%) 578 (14.93%) 373 (9.63%) 281 (7.26%)
14 513 (13.25%) 583 (15.06%) 340 (8.78%) 255 (6.59%)
15 550 (14.20%) 618 (15.96%) 397 (10.25%) 298 (7.70%)
16 550 (14.20%) 628 (16.22%) 377 (9.74%) 290 (7.49%)
17 560 (14.46%) 636 (16.43%) 387 (9.99%) 289 (7.46%)
18 533 (13.77%) 618 (15.96%) 382 (9.87%) 280 (7.23%)
19 624 (16.12%) 668 (17.25%) 439 (11.34%) 313 (8.08%)
20 570 (14.72%) 677 (17.48%) 453 (11.70%) 314 (8.11%)
21 543 (14.02%) 644 (16.63%) 410 (10.59%) 303 (7.83%)
22 585 (15.11%) 672 (17.36%) 431 (11.13%) 321 (8.29%)
23 563 (14.54%) 643 (16.61%) 468 (12.09%) 329 (8.50%)
24 631 (16.30%) 702 (18.13%) 485 (12.53%) 356 (9.19%)
25 592 (15.29%) 684 (17.67%) 471 (12.16%) 338 (8.73%)
26 645 (16.66%) 707 (18.26%) 484 (12.50%) 314 (8.11%)
27 627 (16.19%) 710 (18.34%) 468 (12.09%) 310 (8.01%)
28 663 (17.12%) 751 (19.40%) 509 (13.15%) 341 (8.81%)
29 651 (16.81%) 785 (20.27%) 512 (13.22%) 372 (9.61%)
30 630 (16.27%) 716 (18.49%) 508 (13.12%) 321 (8.29%)

Table 14: The Auto-correlation Descriptors misclassification error. d is the proximity be-
tween amino acids, MBA(d) denotes Moreau-Broto auto-correlation, nMBA(d) normal-
ized Moreau-Broto auto-correlation, MA(d) Moran auto-correlation and GA(d) Geary auto-
correlation.

calculated for two consecutive values in the numerical sequence. But even the best results

3.87% and 3.85% (150 and 149 misclassified proteins) were still way above 28, the threshold

value for the 553-dimensional descriptor vector. For the larger values of d, the misclassification

error becomes even larger.

For all values of the parameter d, the Geary auto-correlation descriptors performed better

than the Moran auto-correlation descriptors, and the second ones performed better than the

Moreau-Broto auto-correlation descriptors with normalised Moreau-Broto giving the highest

misclassification error of all.

The 50-dimensional vectors of AAIndex derived Pseudo Amino Acid Composition descrip-

tors (Type I and Type II) were analysed separately for each of the AAIndex derived protein
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than or equal to the threshold value, while the following 369 descriptor vectors gave misclas-

sification errors greater than the threshold value, but lower than or equal to the threshold

value multiplied by the scaling factor of 1.5 (480 misclassification protein). The remaining 29

descriptor vectors produced misclassification error lower than or equal to 1.8 × the threshold

value (Table 15) .

From the sets of descriptors calculated for Type II PAACAAIndex, the 11 best performing

were chosen (each having a misclassification error lower than 6.18%; 239 misclassified pro-

tein at most), and then the misclassification error was calculated for the combined vector

of 11 × 50 = 550 descriptors. The obtained misclassification error was 0.88% (34 misclas-

sified proteins). This result is around 17% greater than 29, the threshold value for the

550-dimensional descriptor vector. These results lead us to conclude that AAIndex derived

Pseudo Amino Acid Composition descriptors perform well on average in terms of estimating

the discrimination between protein families, with the Type II performing significantly better.
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4 Amino acids into time series transformation

4.1 Data set

For the main part of the research presented in this thesis, the extended set containing 100

protein families (9693 proteins, full list can be found in Appendix D) were taken from the

established Pfam database, containing a large selection of protein families [77]. The protein

families were chosen randomly, in a way that they either belonged to different clans (Pfam

generated higher-level groupings of protein families), or without any clan affiliation. Initial

analyses shown in the previous chapter were performed for the relatively smaller dataset

containing 3872 proteins belonging to 40 protein families while the clan affiliation was not

taken into account at that preliminary stage of the research.

4.2 Time series prepossessing

As a first step, the amino acid sequence was transformed into a time series by replacing each

amino acid with a numerical value (see Figure 25). Those values were taken from AAIndex

database [75], that contains numerical representations of various physicochemical and bio-

chemical properties of amino acids, derived from published literature. The 553 different scales

(each providing numerical values for all Amino acids, representing different property such as

hydrophobicity or charge) of have been used, therefore each protein is now represented by

553 different time series.

To “smooth out” short term fluctuations, the moving average of the time series was

calculated with Matlab software [52] with the averaging window size 7, the value that was

successfully used in protein-derived time series analysis [82] (the averaging window size is a

parameter, and can be changed in future applications). Three types of moving averages were

calculated (see Figure 22). Firstly, the simple moving average, where each moving average

value depends only on the values of seven consecutive entries of original time series. Secondly,

the modified moving average, where each moving average value depends on all preceding

values from the original time series, with weights decreasing with time. And finally, the

exponential moving average, yet another type of weighted moving average that places even

greater weight to the most recent data point.

To calculate the simple moving average, the arithmetic mean of the first seven values of

the time series was calculated and the time series entry at position one was replaced with the

calculated value. Then the mean of the next seven values was calculated, starting from the

entry at the position two. The result replaced the second entry of original time series. The

calculations continued until the end of the time series.

SMi =
1

7

i+6∑

k=i

xk
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5 Descriptors based on information theory

5.1 Approximate entropy

Approximate entropy is a statistical technique that allows us to quantify the “regularity”

of the examined time series. [83, 84, 85]. As such this provides the means to discriminate

between a “regular” time series, that is characterised by a large proportion of the repeated

segments, and an “irregular” time series, that is characterised with larger unpredictability.

Let’s compare two time series:

A: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

B: 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0

They cannot be distinguished by comparison of their means or variances, as the values 0 and

1 occur in both with the same probability: p = 0.5. Shannon entropy calculated for both of

them will also have the same value: H = 0.5 × log 0.5. Hence the need for a new statistic,

that allows us not only discriminate between time series with different levels of repetition,

but also reliably quantifies the repetition levels.

The value of Approximate Entropy (ApEn) for a given time series depends on the chosen

parameters: tolerance r and the length of a template vector m [83, 84, 85].

Let’s consider time series {x1, x2, x3, ..., xN} of a length of N . The template vector of a

length m is defined as xm(i) = {xi, xi+1, ..., xi+m−1}. All possible template vectors of the

length m, that can be created from a given time series:

xm(1) = {x1, x2, ..., xm}

xm(2) = {x2, x3, ..., xm+1}

xm(3) = {x3, x4, ..., xm+2}

...

xm(i) = {xi, xi+1, ..., xx+m−1}

...

xm(N −m+ 1) = {xN−m+1, xN−m+2, ..., xN}

We calculate the Chebyshev distance between each pairs of template vectors:

d[xm(i), xm(j)] = max
k

|u(k)− v(k)|

where u(k) and v(k) are components of vectors xm(i) and xm(j) respectively; k ∈ {1, 2, ..,m}.

For each template vector xm(i) we calculate Bm(i) defined as the number of template

vectors xm(j) such that Chebyshev distance d[xm(i), xm(j)] < r. In this case i can be equal

to j, so the value of Bm(i) is always equal at least 1 (d[xm(i), xm(i)] = 0). Then we normalize
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the value of Bm(i) by the number of all template vectors of the length of m.

Cm(i) =
Bm(i)

N −m+ 1

Now we define Φm:

Φm =
1

N −m+ 1

N−m+1∑

i=1

logCm(i)

Approximate entropy (ApEn) is defined as:

ApEn = Φm − Φm+1

From the definition, the value of
∑
Bm will always be larger or equal than the value of Bm+1,

and the value of ApEn will always be greater than 0. The smaller the value of the ApEn,

the more regular and predictable the examined data is.

It is worth mentioning a disadvantage of the approximate entropy is that it does not

guarantee the relative relative consistency [85, 86]. This means that if the value of the

approximate entropy calculated for one time series is greater than for another, it may not

necessarily remain larger for different values of the parameters m and r.

Based on 553 protein sequence derived time series (and moving average and/or differ-

entiated time series), the 553-dimensional vectors of ApEn values (later called descriptors)

were assigned to each protein. As in previous chapters, the comparison of the accuracy of

the performance of calculated descriptor vectors was performed with the Linear Discriminant

Analysis classifier inbuilt in the Matlab software [52] and is shown in Table 16.

The recommended value of the parameter m is low (m=2 or m=3) [85]. This is particularly

important for relatively short time series (the length of protein sequence derived time series

in the examined test set vary from 105 to 770 entries). The reason behind it is that for larger

m we may not be able to find enough template vector pairs such that Chebyshev distance

d[xm(i), xm(j)] < r.

The usual recommendation for the value of the parameter r is in the range between

0.1 to 0.25 of the time series standard division (Std) [85]. However in the case of some

protein-derived time series for the r = 0.25 × Std the template vectors were similar only to

themselves (similarity understood as Chebyshev distance between vectors lower than value of

r4). Results influenced by this problem are marked * in Table 16. Therefore we have decided

to use also value of parameter r = 1× Std.

For non-averaged protein-derived time series we see smaller misclassification error for

single time and twice differentiated time series, than for time series without differentiation.

Apart from the values of parameter m = 2 and r = 0.25×Std double differentiation provides
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m = 2 m = 3
r = 0.25× Std r = 1× Std r = 0.25× Std r = 1× Std

time series without differentiation
time series 355 (3.66%) 663 (6.84%) 447 (4.61%)* 504 (5.20%)
simple moving average 310 (3.20%) 536 (5.53%) 353 (3.64%)* 519 (5.35%)
modified moving average 237 (2.45%) 509 (5.25%) 274 (2.83%)* 501 (5.17%)
exponential moving average 289 (2.98%) 351 (3.62%) 251 (2.59%)* 312 (3.22%)

once differentiated time series
time series 269 (2.78%)* 313 (3.23%) 295 (3.04%)* 276 (2.85%)
simple moving average 389 (4.01%)* 432 (4.46%) 372 (3.84%)* 376 (3.88%)
modified moving average 221 (2.28%) 225 (2.32%) 211 (2.18%)* 226 (2.33%)
exponential moving average 270 (2.79%) 238 (2.46%) 222 (2.29%)* 261 (2.69%)

twice differentiated time series
time series 275 (2.84%)* 293 (3.02%) 264 (2.72%)* 264 (2.72%)
simple moving average 399 (4.12%)* 427 (4.41%) 372 (3.84%)* 377 (3.89%)
modified moving average 217 (2.24%) 227 (2.34%) 203 (2.09%)* 230 (2.37%)
exponential moving average 259 (2.67%) 249 (2.57%) 221 (2.28%)* 239 (2.47%)

Table 16: The approximate entropy descriptors misclassification error defined as the number
of misclassified proteins for 553-dimensional vectors (each dimension corresponds with one
scale obtained from AAIndex database). * indicates the results influenced by the fact in case
of some protein-derived time series the template vectors were similar only to them self.

slightly better result than single one. The best result for the undifferentiated simple moving

average time series is achieved for the value of parameters m = 2 and r = 0.25 × Std (310,

3.20%). But still all but one (m = 2, r = 1× Std, the number of misclassified proteins: 313,

the percentage 3.23%) results for non-averaged single and double differentiated time series

are better than the best of simple moving average time series.

For exponential and modified moving average in all cases apart from when m = 2 and

r = 0.25 × Std, the single and double differentiation decrease the misclassification error

in comparison with the undifferentiated time series. This improvement is generally more

pronounced in the case of modified moving average than the exponential one.

The value of the parameter r = 0.25 × Std gives generally better results than the value

of the parameter r = 1 × Std in most cases of the single and double differentiated time

series (averaged and non-averaged). In the case of time series without differentiation the

misclassification error improvement is significant.

Approximate entropy is bias statistic. In general it is heavily dependent on the length N

of the examined time series [85] (See Figure 25 A). Our results shows that this dependence

is not pronounced for relatively (compered to more ”traditional” physical time series) short

protein-derived time series, in case of larger value of parameter r = 1 × Std, that insures

relatively low values of the approximate entropy denoting high self similarity of the time

series (see Figure 25 B).

This result is consistent with what could be expected from the way the approximate

entropy is calculated, and led us to propose an Approximate-entropy-based-descriptor derived
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Let’s put in C1 =
1
k
logBm(k)− log k:

Φm =
k − 1

k
∗

1

k − 1

k−1∑

i=1

logBm(i) + C1

=
k − 1

k

(
1

k − 1

k−1∑

i=1

logBm(i)− log(k − 1) + log(k − 1)

)
+ C1

Let’s put in C2 = C1 + (1− 1
k
) log(k − 1) = 1

k
log Bm(k)

k−1 + log k−1
k

:

Φm =
k − 1

k

(
1

k − 1

k−1∑

i=1

log
Bm(i)

(k − 1)

)
+ C2

In case of time series characterised by a large proportion of the repeated segments (high value

of the conditional probability p(Bm+1(i)|Bm(i)):

Bm(i) ≈ Bm+1(i)

From the definition:

Φm+1 =
1

k − 1

k−1∑

i=1

log
Bm+1(i)

k − 1

Therefore:

Φm ≈
k − 1

k

(
1

k − 1

k−1∑

i=1

log
B+1m(i)

(k − 1)

)
+ C2 =

k − 1

k
Φm+1 + C2

That leads to:

Φm+1 ≈
N −m+ 1

N −m
Φm + C

where C = 1
N−m

log Bm(N−m+1)
N−m

+ N−m+1
N−m

log N−m
N−m+1 , for time series characterized by low

value of the approximate entropy.

Let’s calculate the value of Φm for m ∈ {1, 2, 3, ..., }, according to the definition given for

the approximate entropy calculation. X axis represent {Φ1,Φ2,Φ3,Φ4, .....,Φm−1} and Y

axis represent {Φ2,Φ3,Φ4,Φ5, .....,Φm}. Now we have points with coordinates (xi = Φi, yi =

Φi+1). As can be seen in the Figure 26 A and B, points (Φi,Φi+1) approximate the straight

line (y = ax+ b) more closely in case of r = 0.25× Std than in case of r = 1× Std . As has

been already stated, the larger value of parameter r, insures relatively high self similarity of

the time series, resulting in the values Bm(i) ≈ Bm+1(i), and a = N−m+1
N−m

≈ 1.

Even in cases, where pairs (Φi,Φi+1) cannot be sufficiently approximated by a linear re-
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r = 0.25× Std r = 1× Std

time series without differentiation
time series 462 (4.77%) 424 (4.37%)
simple moving average 292 (3.01%) 437 (4.51%)
modified moving average 258 (2.66%) 316 (3.26%)
exponential moving average 229 (2.36%) 294 (3.03%)

differentiated time series
time series 263 (2.71%) 200 (2.06%)
simple moving average 409 (4.22%) 355 (3.66%)
modified moving average 227 (2.34%) 166 (1.71%)
exponential moving average 270 (2.79%) 182 (1.88%)

twice differentiated time series
time series 261 (2.69%) 193 (1.99%)
simple moving average 437 (4.51%) 377 (3.89%)
modified moving average 229 (2.36%) 163 (1.68%)
exponential moving average 283 (2.92%) 168 (1.73%)

Table 17: The approximate-entropy-based-descriptor vectors misclassification error defined as
the number of misclassified proteins for 553-dimensional vectors (each dimension corresponds
with one scale obtained from AAIndex database).

Figure 27 shows the example of the dependence of the value of the approximate-entropy-

based-descriptor calculated with linear regression formula on the protein length. Not only

the dependence remains (though seems to be slightly weaken) for the value of parameter

r = 0.25 × Std (see Figure 25A and Figure 27A), but also the dependence is much more

obvious in the case of the value of r = 1×Std (see Figure 25B and Figure 27B). Even though

we have chosen an example of protein-derived time series presenting typical behaviour, there

is no guarantee that observed dependence will reappear for all examined proteins.

5.3 Sample entropy

The Sample entropy SampEn [86] is a modification of the Approximate entropy. As in case of

its predecessor, the SampEn value for a given time series, depends on the chosen parameters:

tolerance r and the length of a template vector m [85, 86].

Let’s consider time series {x1, x2, x3, ..., xN} of a length of N and all possible template

vectors of the length m, that can be created from a given time series.

Again we calculate the Chebyshev distance between each pair of template vectors, but

this time i ̸= j:

d[xm(i), xm(j)] = max
k

|u(k)− v(k)|

where u(k) and v(k) are components of vectors xm(i) and xm(j) respectively; k ∈ {1, 2, ..,m}.

Then we define Am as the number of template vector pairs having d[xm(i), xm(j)] < r.

Am is a positive integer or zero. For that reason we have to make sure to choose the value of
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m = 2 Without added length With added length
r = 0.25× Std r = 1× Std r = 0.25× Std r = 1× Std

time series without differentiation
time series 567 (5.85%) 535 (5.52%) 305 (3.15%) 326 (3.36%)
simple moving average 446 (4.60%) 412 (4.25%) 252 (2.60%) 242 (2.50%)
modified moving average 364 (3.76%) 397 (4.10%) 195 (2.01%) 241 (2.49%)
exponential moving average 400 (4.13%) 310 (3.20%) 227 (2.34%) 175 (1.81%)

once differentiated time series
time series * 288 (2.97%) * 172 (1.77%)
simple moving average * 460 (4.75%) * 278 (2.87%)
modified moving average 551 (5.68%) 272 (2.81%) 273 (2.82%) 172 (1.77%)
exponential moving average 550 (5.67%) 250 (2.58%) 303 (3.13%) 159 (1.64%)

twice differentiated time series
time series * 288 (2.97%) * 171 (1.76%)
simple moving average * 459 (4.74%) * 270 (2.79%)
modified moving average 548 (5.65%) 268 (2.76%) 275 (2.84%) 170 (1.75%)
exponential moving average 567 (5.85%) 250 (2.58%) 301 (3.11%) 160 (1.65%)

Table 18: The sample entropy descriptors misclassification error obtained for 553-dimensional
vectors (each dimension corresponds with one scale obtained from AAIndex database). * in-
dicates the missing results that were impossible to obtain due to the sample entropy algorithm
limitation.

bility that two template vectors of the m+1 length have the distance d[xm(i), xm(j)] between

each other lower than tolerance r given that two template vectors of the m length have also

the distance d[xm(i), xm(j)] between each other lower than r.

SampEn will always be greater or equal 0. Smaller value of SampEn means more self

similarity and less noise in examined time series. The value of sample entropy does not

depend on the length of the examined time series [85] (see Figure 25 C and D).

Tables 18 and 19 show the misclassification error results for sample entropy descriptor

calculated for the protein-derived time series. For some of the sample entropy descriptor

vectors results were impossible to obtain due to the sample entropy algorithm limitation. For

the value of parameters m = 2 and r = 0.25 × Std the sample entropy set of descriptors

(that were possible to obtain) give much larger misclassification error than corresponding

approximate entropy sets of descriptors (see Table 16 and Table 18). We can speculate that

the approximate entropy length dependence and sample entropy length independence (see

Figure 25 A and C) may have contributed to this result. For m = 2 and r = 1 × Std

in case of most protein-derived time series the opposite effect (the approximate entropy

larger misclassification error) was observed. For these parameters, again opposite to the

case of r = 0.25× Std and apart from simple moving average time series, single and double

differentiation improve the misclassification error result compared to the undifferentiated time

series.

For m = 3 and r = 1 × Std in most cases (except undifferentiated simple and modified

moving average time series) the approximate entropy sets of descriptors give lower misclassifi-
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m = 3; r = 1× Std Without added length With added length

time series without differentiation
time series 534 (5.51%) 312 (3.22%)
simple moving average 434 (4.48%) 248 (2.56%)
modified moving average 415 (4.28%) 230 (2.37%)
exponential moving average 322 (3.32%) 203 (2.09%)

once differentiated time series
time series 309 (3.19%) 190 (1.96%)
simple moving average 516 (5.32%) 310 (3.20%)
modified moving average 305 (3.15%) 192 (1.98%)
exponential moving average 306 (3.16%) 183 (1.89%)

twice differentiated time series
time series 314 (3.24%) 184 (1.90%)
simple moving average 507 (5.23%) 309 (3.19%)
modified moving average 305 (3.15%) 185 (1.91%)
exponential moving average 304 (3.14%) 186 (1.92%)

Table 19: The sample entropy descriptors misclassification error obtained for 553-dimensional
vectors (each dimension corresponds with one scale obtained from AAIndex database). Re-
sults for the value of parameter r = Std. (Results for r = 0.25 × Std were impossible to
obtain due to the sample entropy algorithm limitation).

cation error the corresponding sample entropy sets of descriptors (see Table 16 and Table 19).

Results for m = 3 and r = 0.25×Std were impossible to obtain due to the sample entropy

algorithm limitation.

Because, as mentioned before the sample entropy, unlike the approximate is an unbiased

statistic, with values not depending on the time series length, we decided to calculate mis-

classification error of the 553-dimensional sets of sample entropy descriptors, with the added

vector of protein lengths as the 554th dimension. As the result, we observe the increase of

protein classification accuracy, Apart from that in most cases (with the exception of single

and double differentiated exponential and modified moving average for values of m = 2 and

r = 0.25× Std) the results of combining the sample entropy with protein length outperform

the results of the approximate entropy for the corresponding descriptor vectors.

5.4 Linear regression application for the sample entropy

Let’s calculate the value of Am for m ∈ 1, 2, 3, ..., n, according to the definition given for the

sample entropy calculation. X axis represent {A1, A2, A3, A4, .....An−1} and Y axis represent

{A2, A3, A4, A5, .....An}. For finite time series, the maximum value of n depends on the

examined time series, because An has to be greater than 0. For infinite time series, there

could be theoretically no maximum possible value of n.

If Y = aX + b (see Figure 26 C and D) then SampEn can be redefined as:

68



E.M. Grela, PhD Thesis, Aston University 2022

SampEn = − log
aX + b

X

Let’s consider the limit value of the sample entropy in case of infinite time series:

lim
X→∞

SampEn = − lim
X→∞

log
aX + b

X
= − lim

X→∞

log(a+
b

X
) = − log(a)

Therefore we define the Sample-entropy-based-descriptor as the negative logarithm of

a (a being the slope of the linear regression fit line and can be understood as the limit of

SampEn).

When we compare the performance of the sample-entropy-linear-descriptor (for r = 0.25×

Std, Table 20) with the traditionally calculated sample entropy descriptors (for r = 0.25×Std

andm = 2, in cases where was possible to obtain, Table 18) we see that using linear regression

is justified by definite decrease of the misclassification error for single and double differentiated

protein-derived time series. Decrease can be also seen for all three types of moving average

for undifferentiated time series, though improvement is less pronounced. In case of the

non-averaged non-differentiated protein-derived time series sample-entropy-linear-descriptors

performs slightly worse than the traditionally calculated one.

Without added length With added length
r = 0.25× Std r = 1× Std r = 0.25× Std r = 1× Std

time series without differentiation
time series 581 (5.99%) 605 (6.24%) 297 (3.06%) 362 (3.73%)
simple moving average 371 (3.83%) 423 (4.36%) 204 (2.10%) 241 (2.49%)
modified moving average 348 (3.59%) 401 (4.14%) 203 (2.09%) 261 (2.69%)
exponential moving average 367 (3.79%) 310 (3.20%) 204 (2.10%) 176 (1.82%)

differentiated time series
time series 420 (4.33%) 318 (3.28%) 232 (2.39%) 166 (1.71%)
simple moving average 569 (5.87%) 440 (4.54%) 319 (3.29%) 289 (2.98%)
modified moving average 355 (3.66%) 228 (2.35%) 181 (1.87%) 153 (1.58%)
exponential moving average 362 (3.73%) 232 (2.39%) 185 (1.91%) 155 (1.60%)

twice differentiated time series
time series 415 (4.28%) 305 (3.15%) 223 (2.30%) 178 (1.84%)
simple moving average 603 (6.22%) 478 (4.93%) 333 (3.44%) 301 (3.11%)
modified moving average 358 (3.69%) 224 (2.31%) 193 (1.99%) 155 (1.60%)
exponential moving average 363 (3.74%) 226 (2.33%) 191 (1.97%) 154 (1.59%)

Table 20: The sample-entropy-based-descriptors misclassification error defined as the number
of misclassified proteins for 553-dimensional vectors (each dimension corresponds with one
scale obtained from AAIndex database).

For sample-entropy-linear-descriptors calculated with r = 1 × Std and the traditionally

calculated sample entropy descriptors with r = 1×Std and m = 2, we do not see a consistent

pattern. For some protein-derived time series the former gives better discrimination between
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protein groups, for other the latter. The differences are not extreme in any of the examined

time series (see Table 18 and Table 20). The sample-entropy-linear-descriptors improve mis-

classification error results (with two exceptions: non differentiated and single differentiated

non-averaged time series) when compared with the traditionally calculated sample entropy

descriptors calculated for r = 1× Std and m = 3 (Table 19 vs. Table 20).

Similarly like in case of the sample entropy, we decided to calculate misclassification

errors of the 553-dimensional sets of sample entropy descriptors, with the added vector of

protein lengths as the 554 dimension. As a result, we observe the definite increase of protein

classification accuracy in all examined cases.

Using the sample-entropy-linear-descriptors is not beneficial while compared to using the

approximate-entropy-based-descriptor (Table 17 vs. Table 20). On the contrary, the latter

proves to be more effective in the task of discrimination between protein groups. However

combination of the sample-entropy-linear-descriptors with the vector of protein lengths im-

proves results beyond the level achieved by the approximate-entropy-based-descriptor.
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Mean Frequency Median Frequency
Type I Type II Type I Type II

time series without differentiation
time series 251 (2.59%) 530 (5.47%) 494 (5.10%) 436 (4.50%)
simple moving average 175 (1.81%) 380 (3.92%) 499 (5.15%) 318 (3.28%)
modified moving average 232 (2.39%) 468 (4.83%) 534 (5.51%) 324 (3.34%)
exponential moving average 199 (2.05%) 418 (4.31%) 514 (5.30%) 335 (3.46%)

once differentiated time series
time series 870 (8.98%) 864 (8.91%) 1024 (10.56%) 1028 (10.61%)
simple moving average 870 (8.98%) 864 (8.91%) 1648 (17.00%) 1663 (17.16%)
modified moving average 796 (8.21%) 824 (8.50%) 1007 (10.39%) 1005 (10.37%)
exponential moving average 838 (8.65%) 845 (8.72%) 1005 (10.37%) 1007 (10.39%)

twice differentiated time series
time series 905 (9.34%) 924 (9.53%) 1125 (11.61%) 1137 (11.73%)
simple moving average 1136 (11.72%) 1143 (11.79%) 1691 (17.45%) 1692 (17.46%)
modified moving average 908 (9.37%) 910 (9.39%) 1063 (10.97%) 1071 (11.05%)
exponential moving average 908 (9.37%) 906 (9.35%) 1066 (11.00%) 1099 (11.34%)

Table 21: The mean and median frequency descriptors misclassification error obtained for
553-dimensional vectors (each dimension corresponds with one scale obtain from AAIndex
database).

.
Mean Period Median Period

Type I Type II Type I Type II

time series without differentiation
time series 253 (2.61%) 571 (5.89%) 683 (7.05%) 649 (6.70%)
simple moving average 189 (1.95%) 413 (4.26%) 500 (5.16%) 370 (3.82%)
modified moving average 212 (2.19%) 462 (4.77%) 514 (5.30%) 391 (4.03%)
exponential moving average 225 (2.32%) 406 (4.19%) 558 (5.76%) 398 (4.11%)

once differentiated time series
time series 928 (9.57%) 929 (9.58%) 1047 (10.80%) 1073 (11.07%)
simple moving average 969 (10.00%) 985 (10.16%) 1449 (14.95%) 1463 (15.09%)
modified moving average 881 (9.09%) 897 (9.25%) 1110 (11.45%) 1066 (11.00%)
exponential moving average 935 (9.65%) 915 (9.44%) 1099 (11.34%) 1098 (11.33%)

twice differentiated time series
time series 967 (9.98%) 971 (10.02%) 1169 (12.06%) 1166 (12.03%)
simple moving average 1206 (12.44%) 1213 (12.51%) 1614 (16.65%) 1618 (16.69%)
modified moving average 969 (10.00%) 968 (9.99%) 1122 (11.58%) 1099 (11.34%)
exponential moving average 967 (9.98%) 956 (9.86%) 1110 (11.45%) 1123 (11.59%)

Table 22: The mean and median periods descriptors misclassification error obtained for
553-dimensional vectors (each dimension corresponds with one scale obtain from AAIndex
database)
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8.21% (Type 1 mean frequency, once differentiated modified moving average time series).

Even though similar statement cannot be given, when comparing maximum error observed

for the once differentiated time series with minimum error observed for the double differen-

tiated time series, still there is certain regularity. With one to one comparison, in all cases,

the misclassification error calculated for the once differentiated time series is lower than the

one for its double differentiated counterparts.

For the single and double differentiated time series the misclassification error is lower

when calculated for frequency descriptor than when calculated for its counterpart: the period

descriptor in almost all cases. The exception is median calculated for simple moving average

time series. In those exceptional cases median frequency vs median period errors are: for

Type 1: 17.00% vs. 14.95% in case of single and 17.45% vs. 16.65% in case of double

differentiation and for Type 2: 17.16% vs. 15.09% in case of single and 17.46% vs. 16.69%

in case of double differentiation. In typical cases, where the misclassification error is lower

for frequency descriptors than for its period counterpart, the maximum difference between

corresponding errors (1.25%) can be observed for Type II Mean descriptors calculated for the

once differentiated simple moving average time series: 8.91% vs. 10.16%

As a summary we can state, that for the differentiated time series period and frequency

descriptors, are outperformed, not only by the same descriptors calculated for the non dif-

ferentiated time series, but also by the many of descriptors analysed in previous part of

this thesis. For example the maximum misclassification error observed for the approximate

entropy descriptor was 6.84% and for sample entropy descriptor 5.85% (see Chapter 3.2).

For the non-differentiated time series, the largest misclassification error difference for the

corresponding frequency and period descriptors can be observed in case of Type 1 (5.10% vs.

7.05%) and Type 2 (4.50% vs. 6.70%) medians calculated for the non-averaged time series.

For the rest of the cases the differences are much lower and do not exceed 0.69%.

For both frequency and period, the best results are obtained for the Type 1 mean calcu-

lated for non-averaged and all three types of averaged time series. The largest misclassifica-

tion error in that category is 2.61% (Type 1 mean period, non-averaged), is lower than the

misclassification error calculated for all Type 2 mean and Type 1 and 2 median descriptor

vectors.

The lowest misclassification error for all calculated frequency and period descriptors 1.81%

was obtained in case of Type 1 mean frequency non-differentiated simple moving average.
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7 Lyapunov exponent – descriptor based on the chaos theory

In the chaos theory the Lyapunov exponent (λ) is a quantitative way to measure the differ-

ences between two paths taken by an object in motion, that both start with almost identical

initial conditions, and after time t are separated by the distance d(t) [87].

eλt ∝ d(t)

The concept, initially applied in dynamical systems calculations, was later adapted for time

series analysis, with the algorithm described below [87]. It is used to compare time series

with itself in order to find a level of self-similarity.

As in case of the approximate and sample entropy calculations, let’s consider time series

{x1, x2, x3, ..., xN} of a length of N . The template vector of a length m is define as xm(i) =

{xi, xi+1, ..., xi+m−1}. We calculate the Euclidean distance between each pairs of template

vectors:

d[xm(i), xm(j)] =

√√√√
(

m∑

k=1

u(k)−
m∑

k=1

u(k)

)2

where u(k) and v(k) are components of vectors xm(i) and xm(j) respectively; k ∈ {1, 2, ..,m}.

For each template vector xm(i), we find its nearest neighbour x′m(i) = xm(j) such us

the distance d between them is minimal:

d[xm(i), x′m(i)] = min
d
d[xm(i), xm(j)],

given that the proximity between ith and jth entries of time series has to be greater than the

mean (or median) frequency of the time series.

The nearest neighbour is searched in both directions. If two values d[xm(i), xm(j1)] and

d[xm(i), xm(j2)] are equal, the template vector that lays in closer proximity to the beginning

of sequence (N-terminus of protein) is chosen as the nearest neighbour. If the mean/median

frequency is larger than N + m − 1, than the first template vector, becomes the nearest

neighbour for all template vectors.

When possible, for pairs containing the template vectors xm(i) and its nearest neighbour

x′m(i) we find the n-dimensional vectors of the Euclidean distances d (the trajectory vectors)

distnm(i) = {d[xm(i+ 1), x′m(i+ 1)], d[xm(i+ 2), x′m(i+ 2)], ..., d[xm(i+ n), x′m(i+ n)]}

Neither template vectors xm(i) nor its nearest neighbour x′m(i) = xm(j) can be one of the n

last template vectors: (i < (N −m+ 1)− n) and j < (N −m+ 1)− n).

We calculate the the average values of the logarithm of the distance between template vectors
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xm(i+ t) and x′m(i+ t), for every t ∈ {1, 2, ..., n}:

Lm(t) =
1

F

F∑

i=1

log(d[xm(i+ t), x′m(i+ t)])

F is the number of template vectors, for which the trajectory vectors were possible to calcu-

late.

The value of Lyapunov exponent can be estimated by the slope of the linear regression

line fitting points {t, Lm(t)} (Figure 29).

Figure 29: The graphical representation of the Lyapunov exponent calculation. Left panel
show the position template vector xm(i) and its nearest neighbour x′m(i) in the time series.
The proximity between them have to be greater than the mean (or median) frequency of
the time series, represented by the red line. In the left panel, the y axis represent Lm(t) the
average value of the logarithm of the distance between template vectors xm(i+t) and x′m(i+t)
and the x axis represents the proximity t between template vectors xm(i) and xm(i+ t). The
linear regression line fitting points {t, Lm(t)} is marked blue.

For each protein-derived time series, the Lyapunov exponent values were calculated with

the Type I and Type II mean and median frequency values calculated with the protocols

described in the Chapter 6, providing 4 separate 553-dimensional persistent exponent vectors

for each of the twelve protein-derived time series type (Table 23), with the Matlab code [88].

We have used value of n = 30, but for the linear regression calculations we only considered

t ∈ {1, 15}. The values that protein derived time series can take are limited by the maximum

and minimum AAIndex scales values, therefore the differences between “trajectories” will

stop increasing at some point (Figure 29, right panel).

For the non differentiated time series, when the values of Type I and Type II mean period

and Type II median period were used, to calculate the Lyapunov exponent values, the non-

averaged time series based descriptor performs better in the task of discriminating between

the protein families than any of moving average ones. This is no longer true for the Lyapunov

exponent descriptors calculated with Type I median period, however the differences between

non-averaged and moving averaged time series are, in this case, much less clear.

For Lyapunov exponents calculated with median period Type I and II, and mean period
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Lyapunov based on
Mean Period Median Period

Type I Type II Type I Type II

time series without differentiation
time series 472 (4.87%) 258 (2.66%) 355 (3.66%) 217 (2.24%)
simple moving average 751 (7.75%) 410 (4.23%) 345 (3.56%) 423 (4.36%)
modified moving average 689 (7.11%) 424 (4.37%) 394 (4.06%) 404 (4.17%)
exponential moving average 635 (6.55%) 396 (4.09%) 332 (3.43%) 386 (3.98%)

once differentiated time series
time series* 512 (5.28%) 512 (5.28%) 512 (5.28%) 512 (5.28%)
simple moving average 744 (7.68%) 741 (7.64%) 743 (7.67%) 740 (7.63%)
modified moving average 495 (5.11%) 494 (5.10%) 493 (5.09%) 495 (5.11%)
exponential moving average 518 (5.34%) 517 (5.33%) 518 (5.34%) 518 (5.34%)

twice differentiated time series
time series* 596 (6.15%) 596 (6.15%) 596 (6.15%) 596 (6.15%)
simple moving average* 856 (8.83%) 856 (8.83%) 856 (8.83%) 856 (8.83%)
modified moving average* 593 (6.12%) 593 (6.12%) 593 (6.12%) 593 (6.12%)
exponential moving average* 620 (6.40%) 620 (6.40%) 620 (6.40%) 620 (6.40%)

Table 23: The Lyapunov exponent descriptor vectors misclassification error obtained for 553-
dimensional sets (each dimension corresponds with one scale obtain from AAIndex database).
*the value of mean/median period used for the Lyapunov exponents calculations are so low
for all protein-derived time series in the examined set, that the choice of the nearest neighbour
is the same irrespectively of the chosen period calculation protocol.

Type II, the single and double differentiated time series provides greater misclassification

error, than corresponding non differentiated ones. The same is not always true in case of

Lyapunov exponent descriptors calculated with Type I mean period. What is worth noting

however, is the fact, that in this case, all descriptors derived based on the time series without

differentiation give much higher misclassification error than all other Lyapunov exponent

descriptors derived based on the same time series.
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.

Persistence exponent Positive Negative Average

time series without differentiation
time series 554 (5.72%) 543 (5.60%) 922 (9.15%)
simple moving average 610 (6.29%) 587 (6.06%) 556 (5.74%)
modified moving average 391 (4.03%) 425 (4.38%) 417 (4.30%)
exponential moving average 292 (3.01%) 290 (2.99%) 301 (3.11%)

once differentiated time series
time series 1017 (10.49%) 1084 (11.18%) 947 (9.77%)
simple moving average 586 (6.05%) 565 (5.83%) 836 (8.62%)
modified moving average 400 (4.13%) 323 (3.33%) 576 (5.94%)
exponential moving average 440 (4.54%) 353 (3.64%) 548 (5.65%)

twice differentiated time series
time series 639 (6.59%) 711 (7.34%) 869 (8.97%)
simple moving average 1121 (11.57%) 1115 (11.50%) 1203 (12.41%)
modified moving average 549 (5.66%) 610 (6.29%) 770 (7.94%)
exponential moving average 520 (5.36%) 596 (6.15%) 679 (7.01%)

Table 24: The persistence exponent descriptors misclassification error obtained for 553-
dimensional sets (each dimension corresponds with one scale obtain from AAIndex database)

(3.11%) for the average one. In all cases, for non differentiated and both, once and twice

differentiated time series, the exponential and modified moving average based descriptors

outperform the descriptors calculated for simple moving average and for non-averaged time

series. There is no obvious advantage of using positive or negative persistence exponent

descriptors, though the negative slightly outperforms the positive one more often than the

other way around. In almost all cases, both positive and negative exponents outperform

the average one (with exception of simple moving average without differentiation, and once

differentiated non averaged time series).

It is not beneficial to use differentiated time series, for the persistence exponent analysis.

Descriptors calculated for modified and exponential moving average, where the values of

each moving average entry depends on all previous entries, provides better division between

protein families, than descriptors calculated for simple moving average.

In three cases, the descriptor vectors calculated for the once and twice differentiated time

series slightly improve the misclassification error results, while compared to time series with-

out differentiation. It happens for the positive and negative persistence exponent calculated

for once differentiated simple moving average and for average persistence exponent in case

of twice differentiated non averaged time series. In all other cases, differentiation increase

the obtained misclassification error. Therefore we can conclude that the persistence expo-

nent, in general, do not outperform the results obtained with the information theory based

descriptors, calculated for the protein derived time series.
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8.2 Sum total of the pick

The relatively short length of the examined protein-derived time series has a consequence

of limited number of points used for the persistence exponent linear regression calculation.

Therefore we have proposed an alternative routines for calculating statistical descriptors,

with algorithm that shares some steps with the previous, and a collective name Sum total

of the pick.

We start by centralizing the values of the time series with respect to its arithmetic mean.

Then, exactly like in case of the persistence exponent, we consider the segments below and

above the mean. This time however sums of the values of positives and negative segments is

also calculated, not just the segments lengths (see Figure 30). Firstly we look at the segment

with the maximum absolute value of the sum, separately in case of positives segments and

the negative ones. If there are two positive (or two negative) segments with the same sums,

we consider the one, that appears earlier in the protein-derived time series (the one that

is closer to the N-terminus of the examined protein sequence). Then we divide the chosen

segment by its length. The value calculated in this way from now on will be called the

Normalized-maximum-sum.

Second type of the Sum total of the pick descriptors: Normalised-grand-total is cal-

culated by summing up all values above (below) the mean. Then absolute value of that sum

is taken and divided by the sum of the lengths of all positive and all negative segments.

Both types of the sum total of the pick descriptor values were calculated separately for

each scale, therefore for each protein sequences the 553-dimensional vectors were constructed.

The misclassification error obtained for the positive and negative Normalized Maximum Sum

vectors can be found in the Table 25 and for the positive and negative Normalised Grand

Total Sum in the Table 26.

The positive and negative normalized-maximum-sum descriptor vectors provides the min-

imal misclassification error for the non averaged time series without differentiation: 6.09%

(590 misclassified protein) and and 6.24% (590 misclassified protein). These values are sub-

stantially greater than minimum ones obtained for the positive and persistence exponent

descriptor vectors (3.01% and 290 2.99%, see Table 24). In fact, with exception of the twice

differentiated simple moving average time series, all normalized-maximum-sum descriptors

perform worse than corresponding persistence exponent descriptors. And the mentioned

exception provides misclassification error above 11% for all normalized-maximum-sum and

persistence exponent descriptors.

The normalised-grand-total descriptor vectors give smaller misclassification errors for the

descriptors calculated based on the double differentiated time series than corresponding ones

calculated for once differentiated time series, or time series without differentiation. What is

more, the best results, meaning the lowest misclassification error, for the normalised-grand-

total descriptor vectors, are obtained, in case of positive descriptor for modified moving
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Normalized-maximum-sum
positive negative

time series without differentiation
time series 590 (6.09%) 605 (6.24%)
simple moving average 639 (6.59%) 613 (6.32%)
modified moving average 628 (6.48%) 585 (6.08%)
exponential moving average 627 (6.47%) 557 (5.75%)

once differentiated time series
time series 1170 (12.07%) 1171 (12.08%)
simple moving average 927 (9.56%) 940 (9.68%)
modified moving average 797 (8.22%) 779 (8.04%)
exponential moving average 865 (8.92%) 874 (9.02%)

twice differentiated time series
time series 670 (6.91%) 650 (6.71%)
simple moving average 1079 (11.13%) 1085 (11.19%)
modified moving average 638 (6.58%) 626 (6.46%)
exponential moving average 619 (6.38%) 637 (6.57%)

Table 25: The misclassification error obtained with Linear Discriminant Analysis classifier
for the 553-dimensional normalized-maximum-sum descriptor vectors. Each dimension cor-
responds with one scale obtain from AAIndex database.

Normalised-grand-total
positive negative

time series without differentiation
time series 1904 (19.64%) 1943 (19.95%)
simple moving average 394 (4.06%) 360 (3.71%)
modified moving average 379 (3.91%) 401 (4.14%)
exponential moving average 309 (3.19%) 321 (3.31%)

once differentiated time series
differentiated time series 643 (6.63%) 685 (7.07%)
simple moving average 419 (4.32%) 406 (4.19%)
modified moving average 382 (3.94%) 345 (3.56%)
exponential moving average 327 (3.37%) 303 (3.13%)

twice differentiated time series
time series 234 (2.41%) 242 (2.50%)
simple moving average 356 (3.67%) 372 (3.84%)
modified moving average 231 (2.38%) 236 (2.43%)
exponential moving average 244 (2.52%) 224 (2.31%)

Table 26: The misclassification error obtained with Linear Discriminant Analysis classifier
for 553-dimensional vectors of the normalised-grand-total descriptors. Each dimension cor-
responds with one scale obtain from AAIndex database.

average: 2.38% (231 misclassified proteins), and for exponential moving average 2.31% (224

misclassified protein) in the case of the negative normalised-grand-total.

Therefore we can conclude that persistence exponent descriptor is more efficient in pro-

tein sequence classification than normalized-maximum-sum descriptor. However, when we
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compare the performance of the normalised-grand-total with persistence exponent, we cannot

derive a similar conclusion. Not only normalised-grand-sum performs better than normalised-

maximum-sum, in all cases except non averaged time series without differentiation, it also,

in most cases, outperforms the corresponding persistence exponent (Table 24 vs Table 26).

8.3 Hurst exponent

Hurst exponent H provides quantified information about the persistence of the examined

time series. Its value for the random walk is 0.5, and t allows us to distinguish between ones

that have a tendency to fluctuate between small and large values (H < 0.5) and the ones in

which the large values are usually followed by a succession of large values, and small values

by a succession of small ones (H > 0.5) [96]. Hurst exponent analysis has been successfully

applied, among others, to protein sequence analysis [97] and logistic map model for DNA

sequence [98].

The Hurst exponent calculations algorithm using the re-scaled range [R/S] [99] method is

presented below.

Let’s divide time series {x1, x2, x3, ..., xN} into a k non overlapping segments of approxi-

mately equal lengths nk ≈ N
k
:

{x11, x
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2, x
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1
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2
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For all segments mean M and standard deviation S are obtained (j ∈ {1, 2, .., k}).
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81





E.M. Grela, PhD Thesis, Aston University 2022

without single double
differentiation differentiation differentiation

time series 1049 (10.82%) 598 (6.17%) 854 (8.81%)
simple moving average 1998 (20.61%) 1708 (17.62%) 1290 (13.31%)
modified moving average 1213 (12.51%) 796 (8.21%) 585 (6.04%)
exponential moving average 1220 (12.59%) 773 (7.97%) 549 (5.66%)

Table 27: The misclassification error obtained with Linear Discriminant Analysis classifier
for 553-dimensional vectors of the Hurst exponent descriptors.

grand-total result: 2.31% (244 misclassified protein, both results obtained for the double

differentiated exponential moving average, Table 27 vs Table 26). It also can be seen that

the Hurst exponent, does not perform as well as the Persistence exponent, for the majority

of cases (see Table 24).

For most protein-derived time series, the value of the Hurst exponent descriptor, calcu-

lated with re-scaled range [R/S], is greater than 1 (Table 28). This result suggests a high

proportion of non-stationary time series [100] within the examined set, with a single differen-

tiation process significantly decreasing that proportion, and double differentiation decreasing

it even more (only the non averaged time series presents partially different behaviour).

without single double
differentiation differentiation differentiation

time series 0.001% 17.65% 15.39%
simple moving average 0% 0.17% 8.15%
modified moving average 0% 0.08% 9.82%
exponential moving average 0% 0.37% 8.15%

Table 28: The proportion of smaller than 1 values for Hurst exponent in the (553x9693)-
elements sets. (553 id the number of used AAIndex scales being the number of time series
calculated for each protein and 9396 is the number of protein in the examined test set).

8.4 Box-counting-algorithm-based descriptors

Fractal dimension D is a measure of self-similarity of a geometric object. While the dimension

of a straight line is 1, and the dimension of square is 2, the dimension of object that has fractal

properties can lay between those two values. To understand the concept of fractal dimension,

firstly we need to divide an object into N identical parts (see Figure 32), and then increase

any chosen part by a scaling factor r to make it the size of the original object. Fractal

dimension is defined as exponent D such that rD = N .

One of the well established methods to calculate the Fractal Dimension of time series

is based on the Hurst exponent value between (0, 1), corresponding with the value of the

fractal dimension D between (0, 1), as D = 2 − H. In case of the examined set of protein-

derived time series this method was unsuccessful, therefore we decided to try a different
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first degree polynomials second degree polynomials
a a2 a1

time series without differentiation
time series 374 (3.86%) 498 (5.14%) 389 (4.01%)
simple moving average 326 (3.36%) 443 (4.57%) 228 (2.35%)
modified moving average 278 (2.87%) 597 (6.16%) 237 (2.45%)
exponential moving average 332 (3.43%) 433 (4.47%) 225 (2.32%)

once differentiated time series
time series 408 (4.21%) 241 (2.49%) 211 (2.18%)
simple moving average 431 (5.44%) 342 (3.53%) 311 (3.21%)
modified moving average 306 (3.16%) 219 (2.26%) 182 (1.88%)
exponential moving average 356 (3.68%) 209 (2.16%) 211 (2.18%)

twice differentiated time series
time series 319 (3.29%) 236 (2.43%) 205 (2.11%)
simple moving average 611 (6.30%) 418 (4.31%) 316 (3.26%)
modified moving average 252 (2.60%) 246 (2.54%) 237 (2.45%)
exponential moving average 254 (2.62%) 240 (2.48%) 207 (2.14%)

Table 29: The misclassification error obtained with Linear Discriminant Analysis classifier for
553-dimensional sets of the Fractal dimension like descriptor. Each dimension corresponds
to one scale obtain from AAIndex database. Moving average calculations were performed
before differentiation.

of the Box Counting Dimension Dbox can be estimated by the negative slope of the linear

regression line y = ax+ b.

logN(r) ∝ −Dbox log r

As can be seen (Figure 33, right panel), for the protein-derived time series, points

(log ri, logN(ri)) they do not approximate to a straight line, therefore the box counting

algorithm is unable to provide the estimate of fractal dimension of the examined numerical

sequence [102]. This observation was repeated for other examined protein-derived time series.

The first y = ax + b and the second degree polynomials y = a2x
2 + a1x + b were fit-

ted to the box-counting-algorithm pairs (log ri, logN(ri)), and the coefficients a, a2 and a1

become the box-counting-derived descriptors. They were calculated separately for each

protein-derived time series (Table 29), therefore the 553-dimensional vectors were created. As

different proteins have different length, the number of repetition of the algorithm (i), as well

as exact box sizes ri differ for each protein from the examined test set. This modification was

necessary to decrease the correlation between the box-counting algorithm-descriptor values

and the protein length (Figure 34). This problem should not exist if the protein derived time

series had an actual fractal dimension.

The box-counting-algorithm-based second degree polynomial descriptors: a2 and a1 per-

form better than the corresponding first degree polynomial descriptor a, when misclassifi-

cation errors are calculated for all single and double differentiated time series. For all non
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Figure 34: The dependence between box-counting algorithm-descriptor values and the protein
length for the standard implementation of the box counting algorithm, and the implementa-
tion adjusted for the differences in the numerical sequence lengths.
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differentiated moving average time series, a1 provides smaller and a2 greater misclassifica-

tion error than a. For the non averaged time series without differentiation, a provides better

discrimination between protein families, than both a2 and a1.

In case of almost all examined protein-derived time series, the box-counting-algorithm-

based second degree polynomial a1 provides lower values of the misclassification error, wile

compared to a2, with difference from around 0.09% (2.45% vs. 2.54%, for the twice differenti-

ated modified moving average) up to around 3.22% (2.45% vs 6.16%, for the modified moving

average without differentiation). The only exception, where a2 performs better, compared to

a1 is once differentiated exponential moving average time series. Here the observed difference

is around 0.02% (211 vs. 209 misclassified proteins).
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9 Discussion

In this thesis, a set of new algorithms for calculating alignment-independent descriptors

was introduced. Methods based on information theory, chaos theory and statistical physics,

although fairly new to the bioinformatics researched area, have a well established theoretical

background, and have been successfully used in many different fields, including life science

research [91, 92, 93, 94, 98, 105]. We postulate that our newly established framework can be

used in combination with existing methods, or as an alternative to them.

In order to compare the effectiveness of the new developed protocols with the existing ones,

we have calculated the values of the standard non-alignment protein descriptors, introduced

in Chapter 3 [63], for the data set used to evaluate the methods described in Chapters 4-8.

Firstly, we are going to compare the numbers of misclassification errors calculated for the

standard non-alignment descriptor vectors for the two data sets, described in detail in

sections 3.11 and 4.1:

• 3872 proteins belonging to 40 protein families, results can be found in the Table 13.

• 9693 proteins belonging to 100 protein families, results can be found in the Table 30.

Figure 35 shows the dependence between the misclassification errors calculated for the

3872-elements data set and the corresponding ones, calculated for the 9693-elements data set

for the same descriptor type. The dependence seems to be linear. The best fit regression line

y ≈ 2.95x− 7.94 is marked blue.

Figure 35: ME (3872) denotes the number of misclassified proteins for 3872 protein data
set and ME (9693) denotes the number of misclassified proteins for 9693-elements protein
data set.

Based on that observation we propose a threshold value ya that can be used to evaluate

the performance of descriptor vectors by looking at the misclassification error calculated for
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misclassification threshold value
Descriptor nf error ya yb YA YB

Amino Acid Composition (AAC)* 20 2780 (28.68%) 2353 2289
Dipeptide Composition (DC)* 400 265 (2.73%) 110 114 375 382
AAC* and DC* 420 290 (2.99%) 104 109 354 366
Entropy and Conditional entropy 6 6369 (65.71%) 7866 7632
H[DCAAC ]

1 20 1874 (19.33%) 2353 2289
H[TCAAC ]

1 20 1637 (16.89%) 2353 2289
H[TCDC ]

1 400 1151 (11.87%) 110 114 375 382
H[DCAAC ], H[TCAAC ], H[TCDC ] 440 492 (5.08%) 98 104 334 349

Composition* 21 3906 (40.30%) 2241 2180
Transition* 21 4033 (41.61%) 2241 2180
Distribution* 105 5886 (60.72%) 440 436 1500 1464
Composition/Transition/Distribution* 147 1459 (15.05%) 310 311 1056 1044

Conjoint Triad (CT )* 343 1140 (11.76%) 127 133 432 446

Sequence Order Coupling Numbers (SOCN)* 60 1445 (14.91%) 777 763
Quasi sequence order descriptors (QSOD)* 100 488 (5.03%) 464 457
Pseudo Amino Acid Composition I (PAAC)* 50 875 (9.03%) 936 915
Pseudo Amino Acid Composition II (APAAC)* 80 620 (6.40%) 582 572
SOCN*, QSOD*, PAAC*, APAAC* 290 260 (2.68%) 154 157 525 527
1 partial conditional entropy

H[DCAAC ] based on proportions of dipeptides starting with specific amino acid

H[TCAAC ] based on proportions of triprptides starting with specific amino acid

H[TCAAC ] based on proportions of triprptides starting with specific dipeptide

Table 30: The descriptor vectors misclassification error obtained for protein data set containing 9693 proteins belonging to 100 protein families. The
nf denotes the dimension of descriptor vector. Descriptor vectors marked with * had their values calculated with protr package[63]. The combinations
of the descriptor vectors are marked gray.
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the 9693-elements data set:

ya(nf ) ≈ 2.95× y(nf )

where nf are the dimensions of descriptor vectors, and y are the threshold values calculated

in the Chapter 3, section 3.11 (Table 13) for the 3872-elements data set.

Figure 36 shows the dependence between the dimensions of the descriptor vector, and the

misclassification error values calculated for the standard non-alignment protein descriptors

for the 9693-element data set (the values can be found in the table Table 30). The trend we

observe is analogous to the one seen for the 3872-elements data set (Figure 18). There is a

definite decrease of misclassification error with increased number of descriptors, and again,

this decrease is not linear. It extrapolates with y = a1
x
, and the rectangular hyperbola (for

a1 ≈ 45797.68) was fitted to the data.

Figure 36: The dependence between the number of used descriptors and misclassification
error.

The threshold values y(nf ), that were used for the ya calculations, were obtained by

fitting the y=a
x
hyperbola to the misclassification error results for the 3872-element data set

(Chapter 3, Figure 18) and a1 ≈ 2.86× a.

Therefore we propose the a threshold value yb, that can be used to evaluate the per-

formance of descriptor vectors for the 9693-elements data set, to be calculated analogically as

the threshold values y calculated for the 3872-elements data set. The descriptors can be con-

sidered to be better performing than the standard ones, if the pair {xi, yi}; (where xi = nf (i)

is a dimension of the descriptor vector, and yi is the number of misclassified proteins) lays

below the y = a1
x

fit line: yi ≤ yb(nf (i))

The threshold values ya and yb can be found in Table 30. ya values are between 94.23%

and 103.07% of the yb values.

90



E.M. Grela, PhD Thesis, Aston University 2022

Figure 37 shows the misclassification error calculated for the standard non-alignment

protein descriptors, divided by corresponding threshold values plotted against the dimension

of the descriptor vectors nf (compare with the Figure 19). Blue dashed lines represents the

averaged values:

〈
y

ya

〉
=

1

18

18∑

i=1

yi

ya(nf (i))
≈ 3.36

〈
y

yb

〉
=

1

18

18∑

i=1

yi

yb(nf (i))
≈ 3.41

to highlight the misclassification error results smaller than average ones.

Figure 37: The proportion of misclassification error divided by corresponding threshold value
ya (left panel) and yb (right panel), plotted against the dimension of the descriptor vectors.

As discussed in the Chapter 3, the expectation that the misclassification error, for the

descriptor vector, will be lower than the corresponding threshold value, may be too optimistic.

The risk of that is particularly strong in case of the high-dimension-descriptor vectors (Figure

37), possibly because all of the standard non-alignment ones, used for the threshold values

calculations, have dimension at most 400, and around half of them lower or equal 60.

We therefore propose more realistic threshold values YA and YB to evaluate the per-

formance of the descriptor vectors characterised by high dimensions:

Y A =

〈
y

ya

〉
× ya ≈ 3.36× ya

Y B =

〈
y

yb

〉
× yb ≈ 3.41× yb

The threshold values YA and YB for the descriptor vectors with the dimension higher

than can be found in the Table 30. YA are between 95.70% and 103.28% of the YB values.

For the 553 dimensional vectors the threshold values are: YA=264 misclassified proteins and

YB=278 misclassified proteins.

When we compared, the results of the misclassification errors for the newly derived protein
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descriptors (Chapter 4-8) with the YA and YB threshold values values calculated for the 553-

dimensional vectors (nf = 553), we can see some regularities:

• Most but not all results that are lower or equal the YA and/or YB thresholds are ob-

tained for the information based theory descriptors, calculated in Chapter 4. and second

degree polynomials box-counting-algorithm-based-descriptors calculated in section 8.4

of Chapter 8.

• The misclassification error lower or equal to YB=278, can be observed for all cases of

once and twice different time series for the following:

– the approximate entropy descriptors calculated for the modified and exponential

moving average time series;

– the approximate entropy descriptors calculated for the non-averaged time series

for the combined values of parameters:

∗ r = 0.25× Std and m = 2,

∗ r = 1× Std and m = 3;

– the approximate-entropy-based-descriptors calculated for the non-averaged and

modified moving average time series;

– the approximate-entropy-based-descriptors calculated for the exponential moving

average time series for the value of parameter r = 1× Std;

– the sample entropy descriptors calculated for the modified and exponential moving

average time series for the value of parameters r = 1×Std and m = 2, even when

protein length data are not considered;

– the sample-entropy-based-descriptors calculated for the modified and exponential

moving average time series for the value of parameters r = 1 × Std even when

protein length data are not considered;

– the second degree polynomials box-counting-algorithm-based-descriptors calcu-

lated for the non-averaged, modified and exponential moving average time series.

• The misclassification error lower or equal to YB=278, can be observed for all cases of

twice (but not once) differentiated time series for the following:

– the approximate entropy descriptors calculated for the non-averaged time series

for the value of parameters r = 0.25× Std and m = 3;

– the first degree polynomials box-counting-algorithm-based-descriptors calculated

for the modified and exponential moving average time series;

– the positive and negative normalised-grand-total descriptors calculated for the

non-averaged, modified and exponential moving average time series.
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• The misclassification error lower or equal to YB=278, can be observed for all cases of

once (but not twice) differentiated time series for the following:

– the approximate-entropy-based-descriptors calculated for the exponential moving

average time series for the value of parameter r = 0.25× Std.

• The misclassification error lower or equal to YB=278, can be observed for non differen-

tiated moving average time series for the following:

– the approximate-entropy-based-descriptors calculated for the exponential and mod-

ified moving average time series for the value of parameter r = 0.25× Std;

– the first degree polynomials box-counting-algorithm-based-descriptors calculated

for the modified moving average time series;

– one of the second degree polynomials box-counting-algorithm-based-descriptors

(a1) calculated for the simple, modified and exponential moving average time

series;

– the Type I mean period and Type I mean frequency descriptors calculated for the

simple, modified and exponential moving average time series.

The obvious conclusion to be drawn from these observations, is that the process of cal-

culating both first and second order derivatives of the examined protein-derived time series

contributes significantly to the efficiency with which descriptors differentiate between proteins

belonging to different families. Additionally, a large proportion of best performing descrip-

tors are calculated for the modified end exponential moving average time series, where the

current value of averaged numerical sequence depends on all previous values of the original

ones, with weights decreasing with time.

The Lyapunov exponent calculated with the Type II mean and median period for the non-

averaged and non-differentiated time series provides misclassification errors lower than the

threshold value YA=264. The same is true for non-differentiated and non-averaged Type I

mean period and Type I mean frequency descriptors calculated for the non-averaged and

non-differentiated time series.

Calculating the misclassification error, for the combination of more than one 553-dimensional

descriptors, for the large (9693-elements) data-set provides a challenge, even with the LDA

low computational costs related to its linearity. Hence the need to apply the dimensionality

reduction, and the LDA technique can be also used as such [106].

Unlike PCA it is a supervised learning technique, and this difference is the reason why

we used it for this part of our research. For the calculations of the LDA components we used

the Matlab code [107]. In order to determine the misclassification error for the combination

of two descriptors vectors, we took the first 2x50 LDA features for the combination of three

vectors we took the first, 3x50 LDA features etc. (Table 31).
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Descriptor The number The number
of LDA components of misclassified proteins

PER 100 67 (0.69%)
SUM 93 (0.96%)
FD2 64 (0.66%)
PER pos + HURST 62 (0.64%)
PER neg + HURST 71 (0.73%)
PER pos + FD1 76 (0.78%)
PER neg + FD1 80 (0.82%)
FD1 + HURST 71 (0.73%)

FD2 + HURST 150 26 (0.27%)
PER + HURST 25 (0.26%)
PER + MEAN 18 (0.19%)
PER pos + HURST + MEAN 12 (0.12%)
PER neg + HURST + MEAN 15 (0.15%)
PER pos + FD2 30 (0.31%)
PER neg + FD2 25 (0.26%)
FD2 + MEAN 16 (0.17%)

PER + FD2 200 10 (0.10%)
PER + HURST + FD1 9 (0.09%)

PER + FD2 + HURST 250 2 (0.02%)
PER + FD2 + MEAN 4 (0.04%)
PER + SUM + HURST 2 (0.02%)
PER + SUM + FD1 2 (0.02%)

PER + FD2 + SUM 300 0 (0.00%)
PER + FD2 + MEAN + HURST 2 (0.02%)

PER – positive and negative persistence exponent; exponential moving average;
time series without differentiation
SUM – positive and negative sum total of the pick;
exponential moving average; second derivative
HURST – Hurst exponent; exponential moving average; second derivative
FD1 –Box-counting-algorithm-based descriptor; first degree polynomials;
exponential moving average; first derivative
FD2 – Box-counting-algorithm-based descriptor; second degree polynomials;
exponential moving average; first derivative
MEAN –Type I mean frequency; simple moving average;
time series without differentiation

Table 31: The classification error obtained with Linear Discriminant Analysis classifier for
different combinations of 553-dimensional sets of descriptors.

The combination of two descriptor vectors provides the misclassification error lower than

1%, and the combination of three lower than 0.5%. For the combination of six descriptor

vectors we were able to achieve the complete reproduction of the protein classification.

Figure 38 shows the average misclassification error calculated for the protein sequences

belonging to a different family. For each comparison the set containing 8 descriptors is con-

sidered: positive and negative persistence exponent calculated for the time series without

differentiation, positive and negative sum total of the pick calculated for the twice differ-
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entiated time series, type I mean frequency and mean period calculated for the time series

without differentiation and second degree polynomials coefficients calculated with the box

counting algorithm for the twice differentiated time series.

Figure 38: The average misclassification error calculated for the protein sequences belonging
to a different families: (A) calculated for the non-averaged time series; (B) calculated for
the simple moving average; (C) calculated for the modified moving average; (D) calculated
for the exponential moving average. The X axis represents the sum of all misclassification
errors obtained for all proteins belonging to an examined family divided by 8 (the number of
descriptors’ types taken into account) and by the number of proteins belonging to the family
in question.

The average misclassification error calculated separately for each protein family varies

from 0 to 11.97% for the descriptors calculated for the non-averaged time series; from 0

to 12.00% for the descriptors calculated for the simple moving average; from 0 to 8.80%

for the descriptors calculated for the modified moving average; from 0 to 7.74% for the

descriptors calculated for the exponential moving average. The expected value of the average

misclassification error is respectively 3.07±2.56%, 3.47±2.80%, 2.53±2.32% and 2.27±2.11%.

Table 32 shows protein families (see also Appendix D) that are characterised by the

largest and smallest average misclassification error. An undeniable tendency can be seen, as

the protein families with relatively large (small) misclassification error calculated for one type

of moving average tends to have also relatively large(small) misclassification error calculated
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for another type. Biological explanation for this type of behaviour is not obvious at this stage

of research and requires further studies.

protein families with the average misclassification error
between 2 and 3 more then 3
Std above the Std above the

equel 0 expected value expected value

time series 90, 95 21, 34, 66 59, 72

simple moving average 11, 19, 35, 9, 16, 58, 21
46, 95 59, 72

modified moving average 19, 25, 46, 9, 16, 21,
65, 79, 85 31, 34, 58,

59, 66, 72

exponential moving average 1, 11, 19 9, 16, 21
25, 46, 65, 31, 58, 59
78, 85, 90, 66, 72

95

Table 32: Protein families that are characterised by relatively largest and smallest average
misclassification error.

The physicochemical properties of amino acids are common [28, 29, 30] and well justified

choice for the search of the alignment independent protocol of protein classification. Many of

previous studies focused on relatively small protein test sets and tailored their approach for

the specific task related to chosen protein group. Examples of such research [26, 28, 29, 30]

have been undeniably successful. That led us to believe in the possibility of creating more

universal protocol that would allow to recreate phylogenetic classification of random and

unrelated proteins. We were able to achieve that goal for a large data set with accuracy

reaching 100% and with the approach that could easily be automatised and applied for any

protein (or DNA/RNA) data. Unfortunately, it was achieved with quite large computational

cost. The number of necessary dimensions of descriptor vector exceed 3000, and the decrease

of accuracy with the increase of the size of the data is a considerable problem, not unlike the

one faced by alignment methods for sequence classification. However, there is a fundamental

difference between alignment-based methods and our approach. Translation of a protein

sequence into a multidimensional vector opens countless possibilities. Firstly, it opens a

door for a search of similarities between proteins having similar function that are not close

in the evolutionary sense [30]. For more general application, it allows the development of

machine learning techniques that would effectively perform the comparison of the newly

discovered protein with a whole group at once, instead of with each element in this group

separately. That could immensely decrease the computation cost related to the classification

task. Also, in some cases, the alignment independent methods could be used as an addition,

not a replacement, for the alignment ones. They could become the first step, highlighting

the possible candidates for phylogenetic relation of the sequence in question.
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9.1 Conclusions

We proposed a new, alignment-independent protocol to discriminate between proteins fam-

ilies. The common feature of all of the used methods is that, in a complex statistical way,

they look for patterns in sequences. Their effectiveness varies to a degree, but even the

least successful ones, indicate promising directions in the search for the ultimate alignment-

independent protein descriptors for function dependent protein classification.

The noticeable increase of dimensions needed to maintain classification accuracy, with

the data size, remains a problem. A possible solution could be the development of a protocol

that allows the use of dimensionality reduction methods that are in no way dependent on the

input data. However, with the increasing number of available protein sequences, this would

still most likely not be enough. Therefore, we postulate the need to select or to develop

an algorithm to be used in place of the LDA, that allows for the hierarchical alignment-

independent classification, and thus limits the size of the data tested at each step.

The alignment independent protocol allowed us to reproduce the already existing clas-

sification based on evolutionary relationship. The next step is to test the methods against

the data, where there is functional similarity without the sequence one; and in parallel, once

again address the question of HLA class I protein super-types.

Ever tried. Ever failed. No matter. 

Try Again. Fail again. 

Fail better.

Samuel Beckett
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from modeller import *

from modeller.automodel import *

log.verbose()

env = environ()

a = automodel(env, alnfile  = ‘../modeller_inputA/A_prot1.ali’, knowns   = ‘1I4F’, sequence = ‘HLA00001’)
a.starting_model= 1
a.ending_model  = 1

a.make()

>P1;1I4F
structureX:1I4F.pdb:   1 :A:+275 :A:MOL_ID  1; MOLECULE  HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, A-2 
ALPHA CHAIN; CH$
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYWDGETRKVKAHSQTHR 

VDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDGKDYIALKEDLRSWTAADMAAQTTKHKWEAA 

HVAEQLRAYLEGTCVEWLRRYLENGKETLQRTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQT 

QDTELVETRPAGDGTFQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWE*

>P1;HLA00001
sequence:HLA00001:FIRST:@:     : :::-1.00:-1.00
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQKMEPRAPWIEQEGPEYWDQETRNMKAHSQTDR 

ANLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYDGKDYIALNEDLRSWTAADMAAQITKRKWEAV 

HAAEQRRVYLEGRCVDGLRRYLENGKETLQRTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQT 

QDTELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE*

The example of the Modeller input files.
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Subset 1 Subset 2 Subset 3

TYPE 1 models All points 4123 4250

Points inside the Van der Waals sphere 899 370

Points outside the Van der Waals sphere 1989 3370

Points outside the Van der Waals sphere 879 459
within 2 Å distance from it

TYPE 2 models All points 4123 4250

Points inside the Van der Waals sphere 1057 441

Points outside the Van der Waals sphere 2082 3452

Points outside the Van der Waals sphere 1051 577
within 2 Å distance from it

TYPE 3 models All points 4123 4250 4913

Points inside the Van der Waals sphere 814 344 627

Points outside the Van der Waals sphere 1947 3319 3338

Points outside the Van der Waals sphere 761 448 721
within 2 Å distance from it

Table 33: Supplementary Table 1: The number of points in subsets.
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Subset 1 Subset 2

TYPE 1 models All points component 1 16.1 19.7
component 2 13.1 18.8
component 3 4.6 2.2
sum 33.8 40.7

Points inside the component 1 23.8 26.7
Van der Waals sphere component 2 19.0 24.2

component 3 3.9 3.0
sum 46.7 53.9

Points outside the component 1 8.5 10.7
Van der Waals sphere component 2 6.5 7.2

component 3 5.9 5.6
sum 20.9 23.5

Points outside the component 1 8.7 11.7
Van der Waals sphere component 2 6.9 7.7
within 2 Å distance from it component 3 5.4 6.1

sum 21.0 25.5

TYPE 2 models All points component 1 8.7 5.5
component 2 6.2 4.0
component 3 5.2 3.7
sum 20.1 13.2

Points inside the component 1 10.7 9.2
Van der Waals sphere component 2 8.5 4.5

component 3 7.7 4.0
sum 26.9 17.7

Points outside the component 1 12.1 10.0
Van der Waals sphere component 2 6.7 6.8

component 3 5.0 4.7
sum 23.8 21.5

Points outside the component 1 12.7 10.7
Van der Waals sphere component 2 6.0 7.1
within 2 Å distance from it component 3 5.0 5.0

sum 23.7 22.8

TYPE 3 models All points component 1 19.1 18.3
component 2 12.0 14.6
component 3 4.3 6.8
sum 35.4 39.7

Points inside the component 1 27.3 24.1
Van der Waals sphere component 2 16.9 18.4

component 3 6.9 9.1
sum 51.1 51.6

Points outside the component 1 9.3 10.2
Van der Waals sphere component 2 6.4 7.3

component 3 4.1 3.2
sum 19.8 20.7

Points outside the component 1 9.7 11.2
Van der Waals sphere component 2 6.5 7.8
within 2 Å distance from it component 3 4.4 3.6

sum 20.6 22.6

Table 34: The percentage of the variance explained by the first three PCA components.
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Subset 3

TYPE 3 models All points component 1 21.6
component 2 13.9
component 3 5.2
sum 40.7

Points inside the component 1 23.1
Van der Waals sphere component 2 11.4

component 3 7.2
sum 41.7

Points outside the component 1 22.7
Van der Waals sphere component 2 14.1

component 3 5.8
sum 42.6

Points outside the component 1 21.1
Van der Waals sphere component 2 15.9
within 2 Å distance from it component 3 5.4

sum 42.4

Table 35: The percentage of variance explained by the first three PCA components.

Subset 1 Subset 2

TYPE 1 models Points inside the component 1 24.0 26.5
Van der Waals sphere component 2 18.7 23.4

component 3 4.0 3.2
sum 46.7 53.1

Points outside the component 1 8.6 10.8
Van der Waals sphere component 2 6.6 7.4

component 3 5.9 5.7
sum 21.1 23.9

TYPE 2 models Points inside the component 1 10.8 9.3
Van der Waals sphere component 2 8.6 4.5

component 3 7.8 3.9
sum 27.2 17.7

Points outside the component 1 12.4 10.0
Van der Waals sphere component 2 6.8 6.8

component 3 5.2 4.7
sum 24.4 21.5

TYPE 3 models Points inside the component 1 29.5 24.4
Van der Waals sphere component 2 20.3 18.4

component 3 7.0 9.4
sum 56.8 52.2

Points outside the component 1 9.3 10.2
Van der Waals sphere component 2 6.4 7.4

component 3 4.1 3.2
sum 19.8 20.8

Table 36: The percentage of the variance explained by the first three NLPCA compo-
nents.
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Points inside the TYPE 1 models TYPE 2 models TYPE 3 models
Van der Waals sphere [KA,KB,KC ] [KA,KB,KC ] [KA,KB,KC ]

Subset 1 n=50 1, 1, 1 0.64, 0.59, 0.50 1, 1, 1
n=100 1, 1, 1 0.80, 0.76, 0.68 1, 1, 1

Subset 2 n=50 1, 1, 1 0.91, 0.63, 056 1, 1, 1
n=100 1, 1, 1 0.96, 0.81, 0.76 1, 1, 1

Table 37: The separation measurement K for the GPLVM analysis.
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Appendix D

the number

Pfam ID Protein family of proteins

1 Abhydrolase 9 N Alpha/beta-hydrolase family N-terminus 103
2 AMNp N Bacterial AMP nucleoside phosphorylase N-terminus 102
3 Aldose epim Aldose 1-epimerase 64
4 Acetyltransf 8 Acetyltransferase (GNAT) domain 196
5 AAA 22 AAA domain 69
6 AhpC-TSA AhpC/TSA family 96
7 ATG27 Autophagy-related protein 27 93
8 Aminotran 4 Amino-transferase class IV 69
9 2 5 RNA ligase2 2’-5’ RNA ligase superfamily 94
10 ADH zinc N Zinc-binding dehydrogenase 87
11 ATG2 CAD Autophagy-related protein 2 CAD motif 95
12 ATG17 like Autophagy protein ATG17-like domain 83
13 ADC Acetoacetate decarboxylase (ADC) 71
14 Alkyl sulf C Alkyl sulfatase C-terminal 82
15 AmiS UreI AmiS/UreI family transporter 50
16 ADH zinc N 2 Zinc-binding dehydrogenase 142
17 2HCT 2-hydroxycarboxylate transporter family 76
18 Asp Glu race Asp/Glu/Hydantoin racemase 44
19 2-Hacid dh D-isomer specific 2-hydroxyacid dehydrogenase, 88

catalytic domain
20 AAA 35 AAA-like domain 59
21 Arabinose bd Arabinose-binding domain of AraC transcription 105

regulator, N-term
22 Antibiotic NAT Aminoglycoside 3-N-acetyltransferase 126
23 Adenosine kin Adenosine specific kinase 97
24 AAL decarboxy Alpha-acetolactate decarboxylase 166
25 AAA 21 AAA domain, putative AbiEii toxin, Type IV TA system 78
26 7tm 1 7 transmembrane receptor (rhodopsin family) 63
27 AAA 31 AAA domain 57
28 AAA 26 AAA domain 42
29 AstB Succinylarginine dihydrolase 57
30 Aconitase B N Aconitate B N-terminal domain 173
31 AAA 16 AAA ATPase domain 124
32 ALIX LYPXL bnd ALIX V-shaped domain binding to HIV 194
33 AbfB Alpha-L-arabinofuranosidase B (ABFB) domain 100
34 AraC binding 2 AraC-binding-like domain 115
35 ATG9 Autophagy protein ATG9 122
36 7TM GPCR Srw Serpentine type 7TM GPCR chemoreceptor Srw 85
37 Autophagy act C Autophagocytosis associated protein, active-site domain 103
38 ApbA C Ketopantoate reductase PanE/ApbA C terminal 85
39 Amidohydro 1 Amidohydrolase family 56
40 Anticodon 1 Anticodon-binding domain of tRNA ligase 161
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Appendix E

the number

Pfam ID Protein family of proteins

1 Abhydrolase 9 N Alpha/beta-hydrolase family N-terminus 103
2 AMNp N Bacterial AMP nucleoside phosphorylase N-terminus 102
3 Aldose epim Aldose 1-epimerase 64
4 ATG27 Autophagy-related protein 27 93
5 Aminotran 4 Amino-transferase class IV 69
6 2 5 RNA ligase2 2’-5’ RNA ligase superfamily 94
7 ATG2 CAD Autophagy-related protein 2 CAD motif 95
8 ATG17 like Autophagy protein ATG17-like domain 83
9 ADC Acetoacetate decarboxylase (ADC) 71
10 Alkyl sulf C Alkyl sulfatase C-terminal 82
11 AmiS UreI AmiS/UreI family transporter 50
12 2HCT 2-hydroxycarboxylate transporter family 76
13 Asp Glu race Asp/Glu/Hydantoin racemase 44
14 2-Hacid dh D-isomer specific 2-hydroxyacid dehydrogenase, 88

catalytic domain
15 Arabinose bd Arabinose-binding domain of AraC transcription 105

regulator, N-term
16 Antibiotic NAT Aminoglycoside 3-N-acetyltransferase 126
17 Adenosine kin Adenosine specific kinase 97
18 AAL decarboxy Alpha-acetolactate decarboxylase 166
19 AstB Succinylarginine dihydrolase 57
20 Aconitase B N Aconitate B N-terminal domain 173
21 AAA 16 AAA ATPase domain 124
22 ALIX LYPXL bnd ALIX V-shaped domain binding to HIV 194
23 AbfB Alpha-L-arabinofuranosidase B (ABFB) domain 100
24 ATG9 Autophagy protein ATG9 122
25 7TM GPCR Srw Serpentine type 7TM GPCR chemoreceptor Srw 85
26 Autophagy act C Autophagocytosis associated protein, active-site domain 103
27 ApbA C Ketopantoate reductase PanE/ApbA C terminal 85
28 Amidohydro 1 Amidohydrolase family 56
29 Anticodon 1 Anticodon-binding domain of tRNA ligase 161
30 2-ph phosp 2-phosphosulpholactate phosphatase 141
31 4HBT 2 Thioesterase-like superfamily 74
32 5-nucleotidase 5’-nucleotidase 97
33 5TM-5TMR LYT 5TMR of 5TMR-LYT 71
34 AA kinase Amino acid kinase family 128
35 ABC2 membrane 4 ABC-2 family transporter protein 48
36 AbLIM anchor Putative adherens-junction anchoring region of AbLIM 51
37 AcetylCoA hyd C Acetyl-CoA hydrolase/transferase C-terminal domain 182
38 Acetyltransf 6 Acetyltransferase (GNAT) domain 141
39 Aconitase 2 N Aconitate hydratase 2 N-terminus 51
40 Acyl-CoA ox N Acyl-coenzyme A oxidase N-terminal 134
41 Adap comp sub Adaptor complexes medium subunit family 46
42 A deamin Adenosine-deaminase (editase) domain 100
43 AdoMet Synthase S-adenosylmethionine synthetase (AdoMet synthetase) 102
44 ADP PFK GK ADP-specific Phosphofructokinase/Glucokinase conserved region 82
45 AIP3 Actin interacting protein 3 97
46 ALG3 ALG3 protein 155
47 Alginate lyase2 Alginate lyase 67
48 Alph Pro TM Putative transmembrane protein (Alph Pro TM) 71
49 Amidase 3 N-acetylmuramoyl-L-alanine amidase 71
50 Aminotran 1 2 Aminotransferase class I and II 48
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the number

Pfam ID Protein family of proteins

51 AMP-binding AMP-binding enzyme 145
52 ANAPC8 Anaphase promoting complex subunit 8 / Cdc23 72
53 AnfO nitrog Iron only nitrogenase protein AnfO (AnfO nitrog) 41
54 ANF receptor Receptor family ligand binding region 74
55 Anth synt I N Anthranilate synthase component I, N terminal region 56
56 AOX Alternative oxidase 121
57 ApbA Ketopantoate reductase PanE/ApbA 81
58 AP endonuc 2 Xylose isomerase-like TIM barrel 180
59 APH Phosphotransferase enzyme family 156
60 Aph-1 Aph-1 protein 54
61 Apolipoprotein Apolipoprotein A1/A4/E domain 117
62 ApoO Apolipoprotein O 115
63 Apyrase Apyrase 56
64 Arabino trans C EmbC C-terminal domain 70
65 Arb1 Argonaute siRNA chaperone (ARC) complex subunit Arb1 54
66 ARPC4 ARP2/3 complex 20 kDa subunit (ARPC4) 45
67 ArsD Arsenical resistance operon protein ArsD 56
68 ASF1 hist chap ASF1 like histone chaperone 84
69 AsmA 2 AsmA-like C-terminal region 73
70 Asparaginase Asparaginase, N-terminal 119
71 Asp Arg Hydrox Aspartyl/Asparaginyl beta-hydroxylase 131
72 Aspzincin M35 Lysine-specific metallo-endopeptidase 71
73 ASXH Asx homology domain 67
74 ATPgrasp YheCD YheC/D like ATP-grasp 107
75 ATP-sulfurylase ATP-sulfurylase 188
76 ATP-synt 10 ATP10 protein 42
77 Autoind bind Autoinducer binding domain 101
78 Auxin canalis Auxin canalisation 48
79 ApoL Apolipoprotein L 44
80 AIRS C AIR synthase related protein, C-terminal domain 132
81 AHSA1 Activator of Hsp90 ATPase homolog 1-like protein 93
82 AXH Ataxin-1 and HBP1 module (AXH) 50
83 ATP11 ATP11 protein 129
84 AIPR AIPR protein 65
85 Arv1 Arv1-like family 82
86 Abi 2 Abi-like protein 197
87 AsnA Aspartate-ammonia ligase 170
88 Apt1 Golgi-body localisation protein domain 160
89 Ada3 Histone acetyltransferases subunit 3 86
90 AMOP AMOP domain 49
91 ArdA Antirestriction protein (ArdA) 73
92 ASD1 Apx/Shroom domain ASD1 47
93 ACC central Acetyl-CoA carboxylase, central region 124
94 AAR2 AAR2 protein 107
95 Amj Alternate to MurJ 51
96 14-3-3 14-3-3 protein 171
97 AbiEii Nucleotidyl transferase AbiEii toxin, Type IV TA system 170
98 Anillin Cell division protein anillin 91
99 AbrB Transition state regulatory protein AbrB 148
100 AUX IAA AUX/IAA family 105
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Appendix E

Persistence exponent Positive Negative Average

simple moving average 584 (6.03%) 580 (5.98%) 854 (8.81%)
modified moving average 341 (3.52%) 301 (3.11%) 530 (5.47%)
exponential moving average 419 (4.30%) 360 (3.71%) 567 (5.85%)

Table 38: The persistence exponent descriptors misclassification error obtained for 553-
dimensional sets (each dimension corresponds with one scale obtain from AAIndex database).
Once differentiated time series, moving average calculated after differentiation.

sum of the maximum sum of the maximum
positive pick / negative pick /

maximum segment length maximum segment length

once differentiated time series
simple moving average 923 (9.52%) 949 (9.79%)
modified moving average 900 (9.29%) 1194 (12.32%)
exponential moving average 1211 (12.49%) 1312 (13.54%)

Table 39: The misclassification error obtained with Linear Discriminant Analysis classifier
for 553-dimensional sets of the sum total of the pick descriptors. Each dimension corresponds
with one scale obtain from AAIndex database. Moving average calculation were performed
after differentiation.

Sum total of the pick sum of all positive picks / sum of all negative picks /
sum of the segment lengths sum of the segment lengths

once differentiated time series
simple moving average 405 (4.18%) 411 (4.24%)
modified moving average 341 (3.52%) 342 (3.53%)
exponential moving average 340 (3.51%) 318 (3.28%)

Table 40: The misclassification error obtained with Linear Discriminant Analysis classifier
for 553-dimensional sets of the sum total of the pick descriptors. Each dimension corresponds
with one scale obtain from AAIndex database. Moving average calculation were performed
after differentiation.
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