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Intrinsic brain activity is organized into large-scale networks displaying specific structural-functional
architecture, known as resting-state networks (RSNs). RSNs reflect complex neurophysiological processes
and interactions, and have a central role in distinet sensory and cognitive functions, making it crucial
to understand and quantify their anatomical and functional properties. Fractal dimension (FD) provides
a parsimonious way of summarizing self-similarity over different spatial and temporal scales but despite
its suitability for functional magnetic resonance imaging (fMRI) signal analysis its ability to characterize
and investigate RSNs is poorly understood. We used FD in a large sample of healthy participants to
differentiate fMRI RSNs and examine how the FD property of RSNs is linked with their functional
roles. We identified two clusters of RSNs, one mainly consisting of sensory networks (C1, including
auditory, sensorimotor and visual networks) and the other more related to higher cognitive (HCN)
functions (C2, including dorsal default mode network and fronto-parietal networks). These clusters were
defined in a completely data-driven manner using hierarchical clustering, suggesting that quantification
of Blood Oxygen Level Dependent (BOLD) signal complexity with FD is able to characterize meaningful
physiological and functional variability. Understanding the mechanisms underlying functional RSNs, and
developing tools to study their signal properties, is essential for assessing specific brain alterations and
FD could potentially be used for the early detection and treatment of neurological disorders.

Keywords: Group ICA Of fMRI Toolbox (GIFT); independent component analysis (ICA); resting state
networks (RSNs); functional magnetic resonance imaging (fMRI); fractal dimension (FD); fractal analysis
(FA).
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1. Introduction

In the last two decades, ongoing brain fluctuations
at rest (i.e. in the absence of external stimula-
tion and response demands) have consistently been
documented to be organized into large-scale net-
works,’™ each of them characterised by specific
structural and functional architectures.>® These are
known as resting-state networks (RSNs), and have
been widely reported in numerous neuroimaging5:%
and electrophysiological® !? studies. The spatial pat-
tern of RSN is stable within individuals, consistent
across healthy subjects and yet also contains consid-
erable characteristic information about individuals’
brain function!®1® making them a powerful tool for
neuroscientific enquiry. Furthermore, alterations to
RSNs have been observed during healthy aging!® as

17,18

well as in many neuropsychiatric and neurologi-

cal disorders.1%-21

Understanding RSNs as an organizational prin-
ciple of brain function is therefore of crucial impor-
tance. RSNs are generally divided into sensory (e.g.
visual, auditory) and cognitive (e.g. default mode,
fronto-parietal) networks based on their anatomical
and functional properties. In this study, we hypoth-
esise that different RSNs studied using the Blood
Oxygen Level Dependent (BOLD) technique might
display different brain dynamics, as already shown
using electroencephalography (EEG) data by our
group.? Specifically, we aimed to investigate how the
dynamics of BOLD activity at rest can be used to
differentiate RSNs and link them to behavioural and
perceptual states.

However, despite the fact that linear methods are
predominantly used in characterizing brain oscilla-
tions in both healthy and pathological conditions,
linear analysis may not be suitable to describe the
irregular and nonperiodic patterns recorded by elec-
trophysiological and neuroimaging techniques.?2:23
To this end, we characterised the specific BOLD sig-
nature of each RSN, using a complexity measure
called Fractal Dimension (FD)?* that has advan-
tages over classical linear methods such as the well-
known fast Fourier transformation (FFT) that are
best suited to conditions where the analyzed sig-
nals are stationary. FD is a general measure of com-
plexity derived from chaos theory, based on the
fact that a simple process that is repeated end-
lessly becomes a very complex process, which is the

basis for the description of fractals in nature.25:26

These complex processes of interactions cause a pat-
tern in brain activity that is self-similar over dif-
ferent spatial and temporal scales. In other words,
neural activity shows similar features over and over
again on a scale-free basis.?"?® Knowing that FD is
an accurate numerical measure no matter what the
properties (stationary, nonstationary, deterministic
or stochastic) of the analyzed signal, it is reasonable
to accept this advantage over widely used FFT based
or other linear methods.?? In addition, recent evi-
dence has demonstrated that in many cases brain sig-
nals considered as belonging to a frequency-defined
class of brain rhythms do not represent sustained
oscillations, but rather brief bouts of activity that
are repeated intermittently (i.e. nonrhythmic).30:3!
Recognition that physiological time series contain
“hidden information” that might be captured by
nonlinear methods such as fractal analysis (FA),
may provide crucial and so far overlooked physio-
logical information in healthy and pathological con-
ditions.3239

We have shown that FD can be used to dissoci-
ate RSNs from EEG data® but, to our knowledge,
no study has used FD in functional magnetic reso-
nance imaging (fMRI)-derived RSNs. To fill this gap,
we used a data-driven approach based on hierarchi-
cal clustering to differentiate RSNs based on their
functional roles.?’ This approach has the advantage
of containing very few assumptions about the data
structure, allowing us to investigate whether FD as a
feature of the data is able to map onto the functional
roles of the RSNs. We were able to show that com-
plexity features derived from BOLD permit the sep-
aration of RSNs into two main clusters, one mainly
consisting of sensory networks, the second was more
related to higher cognitive (HCN) functions.

2. Materials and Methods
2.1. Subjects

Fifty-two right-handed volunteers (age = 25.2 &+
3.5 years, 23 females) participated in a resting-state
fMRI experiment, during which they were asked to
lie still, keep their eyes open and think of noth-
ing in particular. The protocol was approved by the
Research Ethics Board of the University of Birm-
ingham, and written informed consent was obtained
from all participants.
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2.2. fMRI data acquisition and
preprocessing

The experiment was conducted at the Birming-
ham University Imaging Centre using a 3T Philips
Achieva MRI scanner. An eight-channel phased-
array head coil was used to acquire T1-weighted
anatomical image (1 mm isotropic voxels) and whole-
brain T2*-weighted, functional EPI data (3 x 3 x
4mm voxels, 32 slices, TR =2000 ms, TE =35 ms,
SENSE factor=2, flip angle = &80°). In 31
participants, a 6-min (180 volume) resting state
scan was acquired and in the other 21 sub-
jects the scan duration was 5 min (150 volumes).
Data preprocessing was carried out using SPM12
(http: //www.filion.ucl.ac.uk/spm/) implemented in
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MATLAB (version R2016b, MathWorks, Inc., Nat-
ick, MA, USA). Pre-processing of the data included
slice time correction, spatial realignment to correct
for movement artefacts and motion by distortions
interactions, and normalization to the MNI standard
space and spatial smoothing with a Gaussian kernel
of 6 mm full-width at half-maximum. To ensure con-
sistency of results across the group, only the first 150
volumes of data were analyzed for each participant.

2.3. fMRI data analysis
state fMRI data

were analyzed using

After preprocessing, resting
of all

tial independent component analysis (ICA) as

implemented in the Group ICA of fMRI Toolbox

participants spa-
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ICs identified by GIFT — The spatial maps of the eleven ICs that together comprise six large-scale functional

networks: default mode (DMN: ventral IC15 and anterior dorsal IC6 and posterior dorsal 1C19), sensorimotor (SMN:
ventral IC 9 and dorsal IC10), visual (VN: Primary IC16 and Higher IC4), fronto-parietal (FPN: right IC8 and left IC18),
auditory (AN: IC12) and anterior Salience (aSN: IC13) networks based on their anatomical view.
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(GIFT — http://trendscenter.org/software/gift/).
GIFT decomposed the data into functional net-
works that exhibited a unique time course pro-
file within each scan. Two data reductions steps
were carried out using principal component (PC)
analysis, subject-specific and group-level steps.*!
First, subject-specific data were reduced to the 30
PCs explaining maximum variance and then these
subject-reduced data were temporally concatenated.
For the subject-specific data we have selected 30 PCs
following the rule that in this step more PCs need to
be estimated respect to the number of independent
components (ICs).4>*3 In particular, we have used
the number of ICs (#ICs) estimated by the minimum
description length (MDL), see below, and the fol-
lowing formulation: #PCs = #I1Cs+1/2(#I1Cs). Fur-
ther, at the group level, data were reduced to 20

Table 1.

group ICs with the expectation-maximization algo-
rithm, included in GIFT.** The number of ICs was
estimated using the MDL criterion.*>%¢ In our spe-
cific case, 20 ICs were indicated to be estimated
using MDL. Subject-specific spatial maps and time
courses were obtained using the back-reconstruction
approach (GICA).* These time courses were then
used in the subsequent FD analysis (see below).
From the 20 ICs, we identified the relevant RSNs
by applying a previously described procedure.** We
first manually confirmed if the peak activation coor-
dinates were located primarily in the gray mat-
ter, showing low spatial overlap with vascular, ven-
tricular, and edge regions corresponding to arte-
facts.** This process resulted in eleven ICs repre-
senting meaningful RSNs (see Fig. 1 and Table 1)
that together comprised six large-scale functional

Resting State Network (RSNs) activations. For each IC, we presented the anatomical location, corresponding

Bas, volume, and max value with its Montreal Neurological Institute (MNI) coordinates.

Brodmann area

Area (BA)

Volume (cc)

Random effects
max value L/R

MNI (z, vy, 2)

L/R L/R

Default Mode Network (aDMN)

IC6  Medial Frontal Gyrus (MeFG) 6, 8,9, 10, 11 1.0/0.4 15.1/16.0 (—6, 65, 26)/(6, 65, 26)
Superior Frontal Gyrus (SFG) 6, 8,9, 10 9.6/9.3 14.2 /15.5 (—3, 62, 26)/(3, 65, 10)
Anterior Cingulate (ACC) 10, 24, 32 12.7/11.0 14./14.6 (—15, 65, 26)/(6, 62, 30)
Middle Frontal Gyrus (MFG) 8,9, 10 2.9/3.0 12.6/13.4 (-3, 56, 2)/(3, 56, 2)
Supramarginal Gyrus 39, 40 2.8/1.3 12.6 /9.0 (—21, 62, 26)/(27, 62, 26)
Angular Gyrus 39 1.9/1.5 9.8 /8.7 (—57, —67, 30)/(60, —61, 30)
IC15 Precuneus 7, 19, 23, 31, 39 16.3/14.8 19.5 /9.8 (0, —76, 34)/(3, —76, 38)
Cingulate Gyrus 23, 24, 31, 32 6.5/5.6 21.3/21.8 (0, —34, 26)/(3, —37, 26)
Posterior Cingulate 23, 29, 30, 31 2.8/2.6 17.0 /14.9 (0, —46, 22)/(3, —43, 22)
Inferior Parietal Lobule 7, 39, 40 2.2/1.8 8.0 /9.2 (—42, —70, 46)/(48, —70, 42)
IC 19 Posterior Cingulate 23, 29, 30, 31 4.9/4.9 13.5 /13.7 (—3, —58, 10)/(9, —55, 6)
Cuneus 7,18, 30 1.5/0.4 12.4 /10.1 (—12, —61, 6)/(9, —61, 6)
Lingual Gyrus 18, 19, 30 1.5/0.8 12. /10.9 (—12, —55, 2)/(12, —55, 2)
Precuneus 7, 19, 23, 31, 39 8.1/7.6 11.0/11.2 (0, —64, 18)/(3, —61, 18)
Parahippocampal Gyrus 19, 28, 30, 35, 36, 37 3.1/2.4 10.8/11.0 (—12, —49, 2)/(12, —49, 2)
Angular Gyrus 39 1.0/1.4 9.3/10.2 (—42, —82, 30)/(45, —79, 30)
Auditory Network (AN)
IC 12 Superior Temporal Gyrus 13, 21, 22, 38, 41, 42 18.2/19.3 15.7/16.7 (—66, —25, 10)/(63, 8, —6)
Transverse Temporal Gyrus 41, 42 1.5/1.3 13.7 /13.8 (—66, —19, 10)/(69, —19, 10)
Middle Temporal Gyrus 21, 22, 37, 39 5.1/7.7 11. /13.7 (—63, —1, —6)/(63, 5, —10)
Postcentral Gyrus 1, 2, 40, 43 2.4/2.4 10.2 /11.3 (—63, —22, 14)/(69, —19, 14)
aSN
IC13 Middle Frontal Gyrus 6, 8, 9, 10, 11, 46 15.1/11.6 26.6 /19.9 (—33, 56, 26)/(33, 59, 26)
Superior Frontal Gyrus 6, 8, 9, 10, 11 9.6/8.0 26.2 /19.0 (—36, 56, 22)/(36, 59, 22)
Inferior Frontal Gyrus 9, 10, 46, 47 0.4/0.3 8.0 /6.0 (=51, 41, 14)/(51, 47, 14)
Inferior Parietal Lobule 40 4.0/2.8 7.6 /T.1 (—66, —37, 34)/(66, —40, 34)
Cingulate Gyrus 24, 31, 32 1.9/3.4 6.6 /7.4 (0, 26, 34)/(3, 29, 30)
Anterior Cingulate 10, 24, 32 1.3/1.5 6.3 /7.0 (-3, 32, 26)/(3, 32, 26)
Precuneus 7 3.7/2.9 6.5 /6.2 (—3, —64, 58)/(3, —55, 58)
Supramarginal Gyrus 40 1.0/0.5 6.5 /5.9 (—63, —49, 38)/(63, —43, 34)
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Table 1. (Continued)

Area Brodmann area Volume (cc) Random effects MNI (z, y, 2)
(BA) L/R max value L/R L/R

Sensory-Motor Network (SMN)

Ico Precentral Gyrus 4, 6, 13, 43, 44 13.0/16.8 13.5/12.8 (—63, —10, 38)/(51, —10, 58)
Postcentral Gyrus 1, 2, 3, 40, 43 10.0/9.3 12.1/12.6 (—57, —13, 50)/(57, —13, 54)
IC10  Medial Frontal Gyrus 6, 10, 11 5.1/5.4 10.8/11.4 (0, —25, 58)/(3, —19, 70)
Paracentral Lobule 4, 5, 6, 31 4.6/4.5 10.1/10.5 (-3, —37, 70)/(3, —37, 70)
Precentral Gyrus 4,6 7.2/9.9 7.5/10.4 (—27, —28, 70)/(36, —25, T0)
Postcentral Gyrus 1,2, 3, 4,5, 7,40 10.2/10.9 10.2/9.8 (-3, —49, T0)/(6, —46, T0)
Visual Network (VN)
IC 4 Lingual Gyrus 17, 18, 19 8.6/7.9 25.2/25.9 (0, —94, —14)/(6, —100, —10)
Cuneus 17, 18, 19 6.0/8.3 21.6 /25.6 (—3, —100, —6)/(6, —103, —6)
Inferior Occipital Gyrus 17, 18, 19 3.6/3.1 23.5/24.0 (—27, —91, —22)/(27, —91, —22)
Fusiform Gyrus 18, 19, 37 3.6/3.7 20.8/21.9 (—21, —91, —22)/(21, —91, —22)
Middle Occipital Gyrus 18, 19, 37 7.9/10.9 14.7/18.3 (—33, —97, 2)/(9, —103, 10)
IC 16 Cuneus 7, 17, 18, 19, 23, 30 17.3/17.2 19.3/21.6 (—3, —88, 34)/(3, —88, 34)
Lingual Gyrus 17, 18, 19 11.3/9.2 18.5/18.7 (—3, —73, 2)/(12, —61, 2)
Posterior Cingulate 20, 30, 31 2.8/3.4 13.7/18.0 (—18, —67, 6)/(6, —70, 10)
Precuneus 7,19, 31 3.2/4.8 13.1/17.6 (—9, —88, 38)/(9, —88, 38)
Parahippocampal Gyrus 19, 30, 36, 37 2.2/2.7 10.6/13.8 (—12, —46, —2)/(12, —46, —2)
Middle Occipital Gyrus 18, 19 2.8/1.9 11.1/9.7 (—6, —100, 10)/(27, —64, 2)
Fusiform Gyrus 19, 37 1.3/0.8 7.5/9.1 (—21, —70, —14)/(21, —64, —14)
Fronto-Parietal Network (FPN)
IC8  Inferior Parietal Lobule 7, 39, 40 3.4/10.6 6.7/20.7 (—54, —64, 42)/(51, —55, 54)
Middle Frontal Gyrus 6, 8, 9, 10, 11, 46, 47 3.7/30.5 11.0/19.8 (—45, 53, —6)/(45, 56, —6)
Superior Frontal Gyrus 6, 8, 9, 10, 11 0.2/15.2 6.5/16.8 (—30, 62, —6)/(39, 62, 2)
Inferior Frontal Gyrus 9, 10, 45, 46, 47 0.7/6.3 8.3/14.8 (—48, 44, —14)/(48, 53, 2)
Superior Parietal Lobule 7 0.1/1.7 4.1/14.7 (—42, —64, 50)/(42, —64, 50)
Postcentral Gyrus 1, 2,40 0.0/1.3 0/12.2 (0, 0, 0)/(57, —40, 54)
Angular Gyrus 39 0.3/2.2 4.3/12.0 (—57, —64, 34)/(57, —64, 34)
Supramarginal Gyrus 40 0.2/5.4 3.7/11.3 (=57, —52, 38)/(60, —58, 34)
Precuneus 7,19, 39 0.0/2.4 0/11.1 (0, 0, 0)/(42, —76, 42)
Precentral Gyrus 9 0.0/0.7 0/10.0 (0, 0, 0)/(45, 23, 38)
IC18  Middle Frontal Gyrus 6, 8, 9, 10, 11, 46, 47 30.5/2.6 17.0/6.7 (—45, 53, —6)/(54, 41, 18)
Inferior Frontal Gyrus 9, 11, 13, 44, 45, 46, 47  17.7/1.9 14.8/6.8 (—48, 47, 2)/(54, 44, 10)
Inferior Parietal Lobule 39, 40 10.2/0.0 12.6/0 (—51, —55, 54)/(0, 0, 0)
Superior Frontal Gyrus 6, 8,9, 10, 11 14.6/0.0 12.2/0 (—30, 23, 58)/(0, 0, 0)
Superior Parietal Lobule 7 2.6/0.0 11.6/0 (—33, -76, 46)/(0, 0, 0)
Precuneus 7,19, 39 3.2/0.0 10.4/0 (—33, —79, 42)/(0, 0, 0)
Precentral Gyrus 6,9, 44 2.4/0.0 10.3/0 (—45, 20, 38)/(0, 0, 0)

networks, based on the spatial correlation between 3. Characterizations of the BOLD
ICs and the template provided by GIFT Toolbox.** RSNs

The RSNs were identified as: ventral default 3.1. Fractal analysis
mode network (vDMN — IC 15) and both anterior
and posterior regions of the dorsal DMN (adDMN

A fractal is a shape that retains its structural detail
despite scaling and this is the reason why complex

— 1C6; pdDMN — IC19); primary visual (PV —
IC16) and higher visual network (HVN — IC14);
ventral sensorimotor network (vSMN — IC9) and
dorsal SMN (dSMN — IC10); right and left fronto-
parietal networks (rFPN — IC8 and IFPN — IC18);
auditory network (AN — IC12) and anterior Salience
Network (aSN — IC13).

objects can be described with the help of FD.29:47:48
FD is a highly sensitive measure for the detection of
hidden information contained in physiological time
series.?®*? In the time domain, FD represents the
amplitude of the signal under consideration on a
plane as a function of time. As a consequence of this
planar geometry, its dimension is limited between 1
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and 2, since a simple curve has dimension equal to 1,
while a plane has dimension equal to 2. FD will be
equal to 2 for time series with high complexity and
no memory of the signal (i.e. the overall signal can-
not be predicted using an individual portion of the
signal), such as white random noise, while it will be
equal to 1 for time series with low or no complexity in
the signal, such as a ramp line, which is characterised
by full memory (i.e. the overall signal using can be
predicted using a portion of the signal itself). More-
over, it has been demonstrated that higher values of
FD correspond to the presence of higher frequencies
in the signal’s Fourier spectrum and vice versa.>% 52
This relationship might not be linear: in our previous
EEG study,”? we showed that it was rather quadratic.
There are many methods used to calculate FD, but
the widely accepted ones are Katz’s and Higuchi’s
methods, respectively,2453 with the latter considered
the most accurate to estimate FD.>*

3.2. Higuchi’s fractal dimension

Higuchi’'s FD?* is a quantitative measure of sig-
nal dynamics. Linear methods commonly used for
signal analysis, such as the well-known FFT and
wavelet transformation (WT), are good choices if
the analyzed signals are stationary. However, neu-
rophysiological processes are generally nonstation-
ary and nonlinear by nature. Knowing that FD is
an accurate numerical measure no matter what the
properties (stationary, nonstationary, deterministic
or stochastic) of the analyzed signal, it is reason-
able to accept this advantage over widely used linear
methods.??

Higuchi’s FD is a nonlinear measure of waveform
complexity, here applied in the time domain. Discre-
tised functions or signals can be analyzed as segment
of data X (1), X(2),...,X(N), where N is the total
number of samples. From the starting time sequence,
anew self-similar time series X ¥ can be calculated as

XE xz(m), z(m+k), z(m+2k),

r(mm (2

for m = 1,2,...,k where m is the initial time; k is

the time interval, k = 1,2, ..., kmax; kmax 15 a free
parameter, and int(r) is the integer part of the num-
ber 7.

The length, L, (k), of each curve X}, is calcu-
lated as

z‘=1,int(i—kﬂ)

[ X (m + ik)

—X(m+(i—1)k|-imj\(:vj :
k

where N is the length of the original time series X
and (N — 1)/{int[(N — m)/k]k} is a normalization
factor. L, (k) was averaged for all m forming the
mean value of the curve length L(k) for each k =

I:---ukma:: as

Lt Lm(k)
L

An array of mean values L(k) was obtained and the

L(k) =

FD was estimated as
FD =In(L(k))/In(1/k) for
kE=1,2,..., kpax.

In practice, the original curve or signal can be
divided into smaller parts with or without overlap,
called “windows”. Then, the method for comput-
ing FD should be applied to each window where N
should be seen as the length of the window. In that
case, FD values are calculated for each window, with
or without overlap. Individual FD values can be aver-
aged across all windows for the entire curve (or data
timeseries), and the mean FD value can be used as
a measure of curve complexity.

Here, using the single-subject IC timecourses for
each RSN, we calculated FD in nonoverlapping time
windows of 100s (corresponding to 50 of our fMRI
volumes) as a good compromise between windows
length, length of the data and computational time.
The choice of the free parameter &k has a crucial
role in FD estimation. For each window we esti-
mated twenty-four values of FD for k = 2,...,25.
The value 25 was equal to half of the samples within
our 100s window (i.e. 50 volumes and the maxi-
mum that can be chosen, kyax is equal to half of the
window length). There were three windows within
our 150 volume scans, therefore we estimated three
measures of FD at each value of k (e.g. FDy, FD3,
FDy...FD34). These three measures were averaged
to give one mean value of FD for each k, for each
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subject.2? The process was then repeated for every
subject and every RSN.

Additional analysis demonstrated that the FD
measurements were not dependent on the choice of
window length or overlapping windows?® (see sup-
plementary figures in Appendix A — Figs. S1-53).
For the subsequent FD analysis, we set k = 12, which

corresponds to the value just above the median.?2%:38

3.3. Hierarchical clustering

Hierarchical clustering was used to subdivide the
11 ICs based on the similarity of the FD values
derived from their BOLD signal. The relationships
between ICs are represented by a hierarchical tree, in
which branch length reflects the degree of similarity
between the RSNs, as assessed by a pairwise similar-
ity function, between the ICs. Notably, the separa-
tion of ICs into groups might also depend on the met-
ric used to measure the distance between networks
and on the linkage criterion, which specifies the dis-
similarity of networks. Here, the Euclidean distance
of FD values estimated among the ICs was used as
similarity function for clustering the ICs similar to
our previous work.? Given an m-by-n data matrix
X, which is treated as m (1-by-n) row vectors zy,
T9,...,Tm, the various distances between the vec-
tors £, and z; are defined as follows:

d? = (z; — x1) * (x4 — :L't)T

and the inner squared distance calculated by the
minimum variance algorithm was used to mea-
sure the distance between clusters.® The clus-
ter analysis in this study was applied as shown
in the Statistics and Machine Learning Toolbox
(https://it.mathworks.com /help/stats /hierarchical-
clustering-12.html).

3.4. Classification of RSNs based on
BOLD FD: Single-subject level

Two clusters were obtained by hierarchical cluster-
ing analysis: C1 (AN, PV, HVN, vSMN, dSMN,
aSN, and vDMN and C2 (IFPN, rFPN adDMN, and
pdDMN). We then investigated FD at the single sub-
ject level to understand the robustness of the clas-
sification and the consistency with which FD could
identify the type of network, by defining a similar-
ity index for the comparison between the C1 and
C2 clusters, i.e. whether the FD feature was higher

or lower for C1 compared to C2 at the single sub-
ject level. The similarity index was calculated as
(C1-C2)/(C1+4C2). This index is defined between
—1 and +1, and was equal to zero only when the
values of C1 and C2 are identical.

3.5. Statistical analysis

To test for FD differences between each pair of
RSNs, two-sample permutation ¢-tests (10,000 per-
mutations; p < 0.05) were performed. In case of the
point-by-point two-sample permutation t-tests, the
false discovery rate (FDR) was used to correct for

multiple comparisons.®®

4. Results
4.1. fMRI resting state networks

The 11 ICs were grouped into the following six
large-scale networks based on their spatial pat-
terns: default mode (IC6 (adDMN), IC15 (vDMN)
and IC19 (pdDMN)), visual (IC4 (HVN) and
IC16 (PV)), sensorimotor (IC9 (vSMN) and IC10
(dSMN)), fronto-parietal (IC8 (rFPN) and IC18
(IFPN)), auditory (IC12) and anterior Salience (IC13
(aSN)) networks (Fig. 1 and Table 1).

4.2. fMRI-Derived RSNs: Group level
characterization by FD

FD was calculated on the BOLD signal timecourse
of each RSN. Hierarchical cluster analysis (Fig. 2 —
Top, see Fig. S4 for a comparison with fractional
amplitude of low-frequency fluctuations (fALFF)
analysis) using the BOLD FD with £ = 12 pro-
duced a dendrogram with two clusters: C1 (blue: AN,
PVN, HVN, dSMN, vSMN, vDMN, and aSN) and
C2 (red: adDMN, pdDMN, IFPN, and rFPN). C1
mainly consisted of sensory RSNs (with the excep-
tion of vDMN and aSN), whereas C2 was composed
of HCN RSNs (DMN and FPN). The group aver-
age FD for each spatial map is also shown (Fig. 2
— Middle). Mean and standard error (SE) for each
RSN (blue and red) and for the mean of C1 and C2
clusters (black) are also shown, indicating a signifi-
cant difference between C1 and C2, with higher FD
for C1 with respect to C2 (p < 0.01). Finally, we
analyzed FD values of the different RSNs (Fig. 2 —
Bottom).

This demonstrated that there were differences
among RSNs (e.g. vSMN higher FD than any other

2050061-7
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Fig. 2.

(Color online) BOLD signal timecourse characterization by Fractal Dimension — Hierarchical cluster represen-

tation (Dendrogram — Top (left)), grand average and SE (FD values (k = 12) — Top (right)) and permutation ¢-test
(Permutation Test — Bottom) are shown. In the second column are also shown the average values (black square) and SE
for the two clusters identified by the hierarchical clustering C1 (blue: AN, VN (primary and higher VN (HVN)), SMN
(dorsal SMN (dSMN) and ventral SMN (vSMN)), ventral DMN (vDMN) and aSN) and C2 (red: dorsal DMN (dDMN)
and FPN (left and right FPN (IFPN and rFPN)) (**indicate p < 0.01). For the Permutation Test all the T-stat values
that did not reach the significance level (p = 0.05) were set to zero.

RSN), but it was not enough to discriminate each
single RSN and generally FD was consistent within
each cluster. Since the choice of the free parameter
k has a crucial role in FD estimation, we performed
pointwise (for £ = 2,...,25) two-sample permuta-
tion t-tests (10,000 permutations, p < 0.05, FDR
corrected) between C1 and C2. We found that the
values from C1 were higher than those from C2
for all values of k (see Fig. 3) and that the clus-
tering results were consistent at different values of
k. This validated our choice of using &k = 12 to
report all main results. In particular, for k = 12 the

permutation t-test and T-values were: p = 0.0002,
t = 3.886.

4.3. Classification of RSNs based on

BOLD FD: Single-subject level

The similarity index for C1 and C2 (Fig. 4) showed
that for 50 subjects out of 52 the FD derived from
C1 was significantly higher than that from C2, which
led to 96.15% (50/52) accuracy at distinguishing C1
from C2. This finding suggests that it is possible to
distinguish the C1 RSNs from C2 RSNs based on

2050061-8
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Group Level Analysis
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Fractal Dimension

15
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\ J

Fig. 3. (Color online) Group level analysis: C1 versus
C2 — Pointwise two-sample permutation t—test (10,000
permutations) analysis was performed on the averaged
FD values for the C1 (blue curve) and C2 (red curve)
networks. We used FDR, (p = 0.05) to correct for multi-
ple comparisons magenta horizontal line indicate point-
wise difference between C1 and C2). The blue line and
red lines plot the averaged FD values for C1 and C2,
respectively, and the shadowed areas indicate the SE. The
dashed vertical line at k = 12 represents the k value used
in our study.

Single Subject Analysis

(€1-C2)/(C1+C2)

\ J

Fig. 4. Single subject level analysis: C1 versus C2 —
Boxplot and distribution of single subject (circles) C1
and C2 similarity index.

their BOLD activity using FD. More specifically, an
RSN characterised by a higher FD value is likely to
belong to the C1 cluster with respect to the C2 clus-
ter. This emphasises that FD can be used as a robust
and parsimonious marker to define RSNs in patho-
logical conditions.

5. Discussion

In this study, we have investigated how Higuchi’s FD
as a measure of multi-scale signal complexity can
be used to characterise and differentiate the rest-
ing BOLD fMRI signal of RSNs in 52 healthy par-
ticipants. As FD requires very few assumptions to
be made about the underlying structure of the data
(e.g. linearity, stationarity), it is an attractive tool
for analyzing neuroimaging and neurophysiological
data. FD is also a natural way to quantify complex-
ity, and fits naturally with the current conceptual
framework that models the brain as a complex sys-
tem, 56:57

Using FD, we were able to identify two clusters
of RSNs, one mainly consisting of perceptual net-
works (C1, including auditory, sensorimotor and VN)
and the other associated with HCN functions (C2,
including dorsal default mode network and fronto-
parietal networks). These clusters were defined in
a completely data-driven manner using hierarchical
clustering of the FD of RSNs BOLD signal, suggest-
ing that quantification of BOLD signal complexity is
able to identify meaningful physiological and func-
tional variability between RSNs. The differentiation
of these networks is consistent with previous EEG?
and fMRI*? studies, which found a similar dissocia-
tion between perceptual (PN) and HCN networks.

In our previous study” we followed a similar anal-
ysis approach, but we used 256-channel EEG data
instead of fMRI data. Comparing spectral analysis,
Shannon entropy and FD, we demonstrated that FD
was able to provide a clearer dissociation between
RSNs than the other signal analysis approaches. A
very similar overall picture of lower FD in HCN com-
pared to PN was found (see Figs. 2 and 3). The
fact that FD can provide similar differentiation of
RSNs and with the same description of complexity
when based on either EEG or fMRI data is reassur-
ing, and points to its sensitivity to underlying phys-
iological variation. Ding and colleagues,*® working
with fMRI data, differentiated PN from HCN on the
basis of network topology, again supporting the idea
that these networks have different functional prop-

58 were also able to clus-

erties. Wang and colleagues
ter RSNs based on quantification of entropy from
fMRI data, although they did not provide an explicit
comparison between HCN and PN. More work is

needed to understand how complexity measures are

2050061-9
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related to functional connectivity and network topol-
ogy”® but the available data supports the distinction
between HCN and PN on the basis of signal proper-
ties alone.

Furthermore, in our previous research we found
a positive correlation between FD and gamma
power, and a strong negative correlation between
FD and theta power.? Given the putative relation-
ship between gamma band activity and BOLD sig-
nal %61 our findings suggest consistencies between
EEG and fMRI results. In both cases, while using
different neuroimaging modalities, PN showed higher
FD than HCN. Whether this reflects the resting state
data limiting the functional repertoire of HCN, or is a
fundamental property of the networks, remains to be
investigated in further studies. For example, Cottone
and colleagues®® demonstrated an increase in EEG
signal FD with task performance in both motor and
sensory cortices, suggesting that a more active state
is reflected in increased complexity. Using multiscale
entropy, McDonough and Nashiro,*® suggested an
interaction between complexity and time scale such
that, for example, the complexity of DMN activ-
ity was low at short time scales and high at long
time scales. Our data (Fig. 3) would not support
this behavior with FD, which may represent a dif-
ference between the two measures of complexity and
the fact that FD summarizes complexity over all
scales. The clustering of the aSN with PN may also
be related to the resting state. The aSN dynamically
controls changes of activity in other networks, by
mediating sensory and cognitive processing required
for executive control.52 In particular, it has been
found to play a role in coordinating the activity
between task-related networks and executive control
networks, and might be particularly involved in the
rapid and efficient engagement needed for motor con-
trol.%3 Dynamic analysis of FD, similar to ongoing

64,65 as well

work on dynamic functional connectivity,
as comparison of active vs resting state,56 will be
needed to understand more about the utility and
interpretation of FD. This future work will bene-
fit from longer fMRI scan durations than we used,
in order to ensure that more prolonged patterns of
self-similarity can be uncovered (e.g. using the one
hour of fMRI data available as part of the Human
Connectome Project).” Even longer time scales are

only likely to be accessible using ambulatory EEG,

but as we have demonstrated here and in our previ-
ous work? FD is a metric which allows direct compar-
ison across modalities. In addition, given the com-
plexity of the relationship between the BOLD sig-
nal and electrophysiology, future work will be needed
to understand the neuronal and metabolic contribu-
tions to the fractal behaviour that we have used.®®

While the majority of the networks included in
C1 were PN, and those in C2 were HCN, there were
apparently contradictory specific cases (i.e. where an
RSN included in C1 was more obviously a HCN).
In particular, the ventral and dorsal DMN sub-
systems were assigned to different clusters, with the
vDMN being more closely associated with the PN.
The dissociation between DMN sub-systems based
on functional connectivity has been widely demon-
strated,5%™ and it is clear that they have different
functional roles.” For example, dorsal and ventral
posterior cingulate cortices (PCC), which are a pri-
mary component of the vDMN/dDMN we investi-
gated, are differentially impacted by task difficulty in
a working memory task.”® Dorsal PCC has increased
integration with the other DMN regions as task diffi-
culty increases, and a stronger anti-correlation with
cognitive control networks. Ventral PCC shows the
opposite response to increased task difficulty. How-
ever, it has not been suggested that either of these
sub-divisions serves basic PN functions, and hence it
is not at this stage clear why from a FD/complexity
point of view the vDMN would cluster with PN. Ding
and colleagues®? did not examine sub-divisions of the
DMN, so whether a similar differentiation would be
observed from the point of view of network proper-
ties is unknown.

The brain is a complex system close to critical-
ity, which leads to the conclusion that characteriza-
tion and quantification of complexity is likely to be
an important method for understanding it. Higuchi’s
FD is an efficient and accurate method for that pur-
pose, and we were able to demonstrate that it can
dissociate RSNs in a way that is generally consis-
tent with their function. FD represents a relatively
straightforward index of complexity across multi-
ple scales, which can summarize the high dimen-
sionality data routinely acquired as part of neu-
roimaging experiments. We demonstrate consistency
between classification of RSNs using fMRI data, and
a previous EEG study,? supporting the idea that it

2050061-10
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is sensitive to underlying, physiologically meaningful

variability.
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Appendix A. Supplementary Figures
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Fig. S1. (Up) FD values comparisons among different
windows length (150 volumes equal to the entire record-
ing session (300s), 75 volumes (150s), 50 volumes (100 s)
and 30 volumes (60s)). (Bottom) the some compar-
isons as in the left panel but using a 50% overlap win-
dow. Default mode (IC6 (adDMN), IC15 (vDMN) and
IC19 (pdDMN)), visual (IC4 (HVN) and IC16 (PV)),
sensorimotor (IC9 (vSMN) and IC10 (dSMN)), fronto-
parietal (IC8 (rFPN) and IC18 (IFPN)), auditory (IC12)
and anterior Salience (IC13 (aSN)) networks as shown in
Fig. 1.
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Fig. S2.

Superimposition between FD values between overlapped (50%) and nonoverlapped windows (150

volumes = 300s; 75 volumes = 150 s; 50 volumes = 100 s and 30 volumes = 60s). Networks are shown as in Fig. 1.

Appendix B. fMRI-Derived RSNs:
Group Level Characterization by fALFF

A linear measure named fALFFs was also used
to compare with the results obtained by FD. The
fALFF's measures the relative contribution of low fre-
quency fluctuations within a specific frequency band
to the whole detectable frequency range.”® fALFF
allow us to study the amplitude of regional neuronal
activity.™® Here, the low-frequency range was 0.01-
0.1 Hz. All the parameters for the hierarchical cluster
were set as for the FD analysis. We have measured
also the cophenetic correlation coeflicient between
the two hierarchical cluster obtained by FD (0.7501)
and fALFF (0.7177) as an objective measure on the
quality for the clusterization. The closer the value
of the cophenetic correlation coefficient is to 1, the
more accurately the clustering solution reflects the

data.

Appendix C. Data Analysis Pipeline

#data: Subjects x Samples x RSNs
nSubjects= size(data,1);
nRSN=size(data,3);
kmax = 12; %insert the kmax value for
which you want to estimate the FD.
for iSubject=1: nSubjects
for iRSN=1:nRSN
xhfd(iSubject,iRSN)=
hfd(squeeze(data(iSubject,:,iRSN)) ,kmax) ;
end
end
a = mean (xhfd);
Y=pdist(a’);
Y=Y/max(Y);
Z = linkage(Y,’ward’);
figure;
[H, T] = dendrogram(Z);
set(gcf, ’color’, ’w’);
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Fig. S3. Hierarchical cluster representation (Dendro-
gram) for nonoverlapped windows (Up) and for the dif-
ferent windows length. (Bottom) the some comparisons
as in the left panel but using a 50% overlap window.
Networks are shown as in Fig. 1.
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