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Abstract

Aston University

Enhancing Linear B-Cell Epitope Prediction Through Organism-Specific Training

Jodie Sylvia May Ashford

Doctor of Philosophy in Computer Science, 2023

B-cell epitopes play a crucial role in immune responses, with their identification being

a vital activity for numerous medical endeavours, including developing diagnostic tests,

therapeutic antibodies, and vaccines. Linear B-cell epitopes (LBCE) are often prioritised

as targets for epitope predictors over conformational epitopes due to the availability

of data, lower experimental complexity for determination and their stability in various

conditions, facilitating easier storage and transport. Despite advancements in computational

techniques, existing LBCE prediction methods still exhibit suboptimal performance. This

thesis explores the efficacy of organism-specific training in improving the accuracy and

efficiency of linear B-cell epitope prediction models.

Most LBCE prediction tools adopt a generalist approach, training models on large het-

erogeneous data sets from numerous organisms to develop predictors that are applicable

across a wide variety of pathogens. In contrast, this work investigates the training of

bespoke, tailored, organism-specific LBCE prediction models. The main hypothesis posits

that using smaller, but potentially more directly relevant, organism-specific data sets for

training could yield predictors that demonstrate superior predictive performance for new

epitopes of the target organism over a single generalist model.

The main research objectives of this work were: to investigate whether training linear

B-cell epitope prediction models using organism-specific data leads to improved prediction

performance compared to models trained on heterogeneous or hybrid data, and against

well-established epitope predictors from the literature; And to investigate the limits of this

organism-specific training approach by systematically quantifying the effect of the amount

of training data on the performance of the models developed.

Results indicate that organism-specific training significantly enhances the prediction perfor-

mance of linear B-cell epitopes, even for organisms with limited training data. Comparative

analysis demonstrates the superiority of organism-specific models over heterogenous, hy-

brid and other conventional predictors, highlighting the potential of tailored modelling

approaches in epitope prediction.

Key Words: Epitope Prediction, Machine Learning, Computational Biology
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ªI may not have gone where I intended to go,

but I think I have ended up where I needed to be.º

- Douglas Adams, The Long Dark Tea-Time of the Soul

J. S. M. Ashford, PhD Thesis, Aston University, 2023
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Introduction

An important part of the human immune system’s ability to recognise and combat pathogens

is dependent on the identification of regions on antigens known as epitopes [1]. Among

these, linear B-cell epitopes play a crucial role in triggering the body’s adaptive immune

response [2]. Accurately predicting the location of linear B-cell epitopes on proteins

is a fundamental task in immunoinformatics, with far-reaching implications in vaccine

development, disease diagnosis, and antibody therapeutics [3, 4]. Numerous tools exist

to predict linear B-cell epitopes from biological data, with a recent emphasis on the

development of computational tools and techniques for epitope prediction. These methods

leverage various protein features and machine learning techniques to identify potential

epitope regions within protein sequences. Although computational techniques have led to

significant advancements in epitope prediction, it still remains a complex challenge with

considerable scope for improving the accuracy of epitope prediction tools.

In the pursuit of more accurate and reliable linear B-cell epitope prediction, this thesis

explores a novel approach: organism-specific training for epitope prediction. Traditionally,

many prediction models have been trained on large, diverse datasets that encompass

epitopes from a wide-variety of organisms. While these models can provide valuable

insights into epitope prediction, they may not fully capture the distinct characteristics of

linear B-cell epitopes across different pathogens. The organism-specific training hypothesis

is that by tailoring prediction models to the potentially unique epitope patterns of individual

organisms, we can significantly enhance prediction accuracy.

This thesis proposes a series of organism-specific training strategies for linear B-cell

epitope prediction. Its goal is to investigate the advantages of organism-specific training

through a systematic comparison of its performance with conventional heterogeneous

prediction models. This work employs an array of machine learning techniques, feature

engineering methods, and performance indicators to comprehensively assess this approach.

The investigation spans a diverse range of organisms, including viruses, bacteria, and

eukaryotes, shedding light on the adaptability and versatility of organism-specific training.

The objective is to further the progress of epitope prediction by exploring how organism-

specific training can enhance the performance of linear B-cell epitope prediction.

J. S. M. Ashford, PhD Thesis, Aston University, 2023
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Research Aims and Questions

The main research aims and questions of this thesis are as follows:

Research Aims

■ To investigate the potential of organism-specific training in improving the predictive

performance of linear B-cell epitope prediction models.

■ To compare the effectiveness of organism-specific training with conventional hetero-

geneous training for epitope prediction.

Research Questions

■ Can training linear B-cell epitope prediction models using organism-specific data

enhance prediction performance in comparison to models trained on heterogeneous

or hybrid data?

■ How do organism-specific models compare to well-established epitope predictors

from the literature?

■ How does the quantity of available organism-specific training data impact prediction

performances?

■ What is the minimum amount of organism-specific data required for organism-

specific models to outperform generalist predictors?

0.1 Thesis Structure Overview

The remainder of this thesis is split into 6 chapters:

Chapter 1 (The Epitope Prediction Problem) introduces the challenge of epitope prediction.

It defines what a linear B-cell epitope is; where epitope data may be obtained and presents

an overview of epitope prediction techniques.

Chapter 2 (Feature Engineering for Epitope Prediction) will explore the intricacies of

feature engineering for epitope data, investigating how features may be extracted from

epitope data; highlighting the types of features currently used for epitope prediction;

looking at the role of feature selection for epitope feature sets; and finally presenting

a carefully crafted feature set designed specifically for the prediction of linear B-cell

epitopes.

J. S. M. Ashford, PhD Thesis, Aston University, 2023
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Chapter 3 (Machine Learning Techniques for Epitope Prediction) provides an exploration

of current machine learning (ML) techniques employed in epitope prediction. Additionally,

it introduces prevalent performance indicators used to assess epitope predictors and selects

the most suitable ones for this study.

Chapter 4 (Organism-Specific Modelling for Linear B-Cell Epitope Prediction) introduces

the concept of organism-specific modeling for linear B-cell epitope prediction. It outlines

the organism-specific hypothesis; proposes a structured pipeline for organism-specific

training; evaluates the models’ generalisation performance; conducts comparative analyses

with generalist and hybrid models, and with well-established models from the scientific

literature.

Chapter 5 (Exploring the Limits of Organism-Specific Training for Linear B-Cell Epitope

Prediction) explores the boundaries of organism-specific training in the context of linear

B-cell epitope prediction. It assesses the influence of the quantity of organism-specific

training data on prediction performance and seeks to identify the minimum amount of

organism-specific data required to achieve superior performance compared to models

trained on extensive and diverse datasets.

Chapter 6 (Discussion) concludes the thesis, revisiting the research questions posed

throughout the study. It also conducts a retrospective comparison between this work and

existing approaches from the literature, emphasising the growing importance of more

specific training for epitope prediction. Furthermore, this chapter critically discusses the

limitations of this work and suggests potential future research avenues that may further

advance the field of epitope prediction.

J. S. M. Ashford, PhD Thesis, Aston University, 2023
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1. The Epitope Prediction Problem

1.1 Defining Epitopes

The immune system exists to protect the body against infection. In many species, including

humans, the immune system may be divided into two categories: the innate immune

system and the adaptive immune system. The innate immune system, present in the

body from birth, gives rise to quick, non-specific immune responses against invading

pathogens via proteins, chemicals and cells within the body. The adaptive or acquired

immune system, involves pathogen specific responses that take much longer to execute

than the fast acting innate immune responses. These specific responses give rise to

‘immunological memory’which enables the immune system to respond more rapidly to

previously encountered pathogens [1, 2, 5].

Adaptive immunity is vital in the fight against infection with pathogens like bacteria,

viruses and parasites. Adaptive immunity can be further categorised into humoral and cell-

mediated immunity. Cell-mediated immunity recruits immune cells to destroy infected cells

within the body. Humoral immunity involves the production of antigen specific antibodies

by B-cells, which are released into the circulatory system to aid in the destruction of

extracellular pathogens [2, 6]. This antigen-antibody recognition is a vital process in

protecting the body against pathogens and B-cells are key cells in this process.

Figure 1. Antibody-Antigen Recognition. Antibodies recognising epitopes on an antigen.

Adapted from "Antigen Recognition by Antibodies", by BioRender, August 2020 [7].

J. S. M. Ashford, PhD Thesis, Aston University, 2023
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An epitope, or antigenic determinant, is the exact portion of an antigen that the antigen-

binding site of an antibody recognises and binds to [1, 8]. The portion of the antibody that

binds the epitope is known as the antigen-binding site or paratope. Figure 1 shows two

different antibodies recognising and binding to two different epitopes on an antigen. B-cell

and T-cell receptors (BCR, TCR), are simply membrane-bound antibody molecules present

on the outer surface of these cells. A B-cell epitope (BCE) is an epitope that is recognised

by a B-cell receptor. Once a BCR recognises its epitope B-cell activation begins. The

high specificity of antibody-antigen interactions is key to immunity and can be exploited

and used in experimental biology, medical diagnostics, immunotherapies and many other

medical and research applications.

1.1.1 Linear vs. Conformational Epitopes

Epitopes can be divided into two categories depending on how their primary amino acid

(AA) sequence is recognised by a paratope. The two types of epitopes are linear (or

continuous) epitopes and conformational (or discontinuous) epitopes. Figure 2 highlights

the difference between linear and conformational epitopes: Linear epitopes are recognised

by antibodies by a continuous stretch of amino acids in the proteins primary sequence.

Conformational epitopes, on the other hand, are made up of amino acid residues that

are separated in the primary sequence but are brought together by protein folding [9][10,

Chapter 3], these epitopes are recognised by antibodies by their folded conformation.

Figure 2. Linear vs. Conformational Epitopes. Conformational epitope shown on the

left of the antigen in green, linear epitope on the right in red. Adapted from "Antigen

Recognition by Antibodies", by BioRender, August 2020 [7].

J. S. M. Ashford, PhD Thesis, Aston University, 2023
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Figure 2 shows two different antibodies recognising two different epitopes on the same

antigen. The epitope recognised by the antibody on the left-hand side of the diagram is

a conformational epitope: here the folded conformation of the protein is important for

epitope recognition. The amino acid residues necessary for antigen binding are separated

in sequence. The epitope recognised by the antibody on the right-hand side of the diagram

is a linear epitope: the AA residues recognised by the antibody are next to each-other in

the protein’s primary sequence. It has been estimated that the majority of B-cell epitopes

are conformational epitopes with approximately ∼ 90% of epitopes on native proteins

being conformational BCEs [11±13]. Further details on this are discussed in Section 1.5.1.

1.2 Introduction to B-Cell Epitope Identification

B-cell epitope identification is a crucial process for a number of medical and immuno-

logical processes including in vaccine development, therapeutic antibody production and

disease prevention and diagnosis [3, 4, 14]. In vaccine development, traditional vaccines,

containing live attenuated or inactivated microorganisms, were expensive to manufacture

and often carried the risk of creating unwanted immune responses within the patient [4].

Epitope vaccines allow for a more specific and potent immune response [4, 12, 15]. In

medical diagnostics epitope arrays have helped to improve the specificity of diagnosis

[16], and in therapeutic antibody production epitope prediction has been used to improve

antibody quality and utility [17].

Traditionally, experimental methods have been used to identify B-cell epitopes, including:

X-ray crystallography, peptide arrays, enzyme-linked immunosorbent assay (ELISA)

and phage display [18±20]. These experimental identification methods are often time

consuming, resource intensive and technically difficult to execute [14, 18]. In silico

epitope prediction methods can significantly reduce the cost of epitope identification over

experimental methods. In silico prediction methods use protein sequence or structural data

to predict epitope regions on a target. The type of data required for prediction depends on

the category of epitope(s) being predicted. Linear epitopes can be predicted from protein

sequence data alone whereas conformational epitope prediction usually requires additional

3-Dimensional structural data for prediction. B-cell epitope identification is also highly

context-dependent. Whether or not a peptide (short chain of amino acids) is an epitope

depends on the host organism (where the immune reaction occurs), the source organism

(where the peptide came from) and other specific biological contexts [21]. This context

should be taken into account when considering epitope prediction methods.

J. S. M. Ashford, PhD Thesis, Aston University, 2023
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1.3 Epitope Data Introduction

Since the mid 2000’s, access to high throughput DNA sequencing techniques (Next-

Generation Sequencing) has greatly accelerated the number and diversity of available

protein sequences. Numerous publicly available protein sequence databases currently exist

[22±25], many of which are simple protein sequence repositories containing sequences

from different sources with little or no storage structure. However, many are expertly

curated databases that compile non-redundant sequence data and contain specific metadata

for each deposited sequence [25]. In addition to storage of sequence data, many protein

structure databases now exist containing numerous experimentally determined or predicted

protein structures [26, 27].

Several epitope datasets were curated for this work, the data used for these came from:

UniProt [22], the National Center for Biotechnology Information’s (NCBI) GenBank

and Protein database [23], and the Immune Epitope Database (IEDB) [28]. UniProt (the

universal protein knowledgebase) is "a comprehensive, high quality and freely accessible

resource of protein sequence and functional information." [22], it provides users with high-

quality protein sequences annotated with functional information. As of the 12/10/2022 the

UniProt Knowledgebase contained 229,928,140 protein sequence entries from 1,291,297

different organisms [29]. The Genetic Sequence Data Bank (GenBank) is the National

Institutes of Health’s (NIH) genetic sequence database, "an annotated collection of all pub-

licly available DNA sequences." [23]. As of 15/10/2022 GenBank contained 240,539,282

nucleotide sequences [30]. The Immune Epitope Database (published by the National

Institute of Allergy and Infectious Diseases: NIAID [31]), contains experimental data on

both antibody and T-cell epitopes. As of the 04/12/2022 the IEDB contained information

relating to 1,551,124 different epitopes [32]. For each of these epitopes key metadata

is also provided including, the source organism (following NCBI taxonomy), and the

source protein/antigen. Information is also provided regarding the assay used to detect the

immune response (e.g. what assay was used and how the response was induced) and on

any immune processes associated with the response [21].

The Immune Epitope Database (IEDB) was chosen as the source for epitope data in this

thesis as it is one of the most widely-recognised, comprehensive and specialised resources

for epitope-related data [33]. It is specifically designed to collect and curate immune

epitope data, including labeled linear B-cell epitope data. The IEDB contains high-quality

data that has been experimentally verified from a wide variety of pathogens, including

viruses, bacteria and eukaryotes (which aligns with the research objective of exploring

organism-specific epitope prediction). The data in the IEDB is continually being updated

with new literature and data submissions, ensuring that it remains up-to-date with the latest

discoveries [34]. The IEDB also provides open access to its data; data is readily available
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and easy to obtain, again making it a fitting choice for research on epitope prediction. For

this work, epitope data was retrieved from the IEDB and further taxonomic and protein

sequence data related to these entries were retrieved from NCBI and UniProt databases.

Both NCBI and UniProt are two of the most comprehensive protein databases globally.

They provide detailed information, including sequence data, relating to an extensive range

of proteins. These resources are known for their high data quality and reliability, curating

data from the scientific literature including experimental studies and other trusted sources.

Like the IEDB these databases are also continually updated providing access to the most

up-to-date protein data. These resources also cross-reference with each-other allowing for

IEDB epitope data to be easily linked with its protein data from these sources, making

them an ideal choice for accessing protein data for epitope and bioinformatics research.

1.4 Defining the Epitope Prediction Problem

The main focus of this work is to provide a novel organism-specific framework/pipeline

for linear B-cell epitope prediction. The epitope prediction problem that this work sets

out to solve is: given protein sequence data, predict regions in the data that have a high

likely-hood of containing a linear B-cell epitope.

1.5 Epitope Prediction Tools

The first linear epitope prediction method was presented in 1981 by Hopp and Woods

[35]. Their method worked by assigning every amino acid residue a hydrophilicity score

(numerical value), these values were then averaged along the sequence of the target protein

to find the point of greatest local hydrophilicity. An epitope was predicted to be at, or

immediately adjacent to, this point [35]. Since 1981, numerous epitope prediction methods

have been developed (Table 1). Many of these methods use simple rules like amino

acid propensity scales for epitope prediction [9, 36], while others use more complicated

techniques like training machine learning algorithms for prediction [37±39].

Generally speaking, epitope prediction methods can be split into two categories: sequence-

based prediction methods and structure based prediction methods. Structure-based methods

examine the protein’s three-dimensional (3D) structure and use this information to make

predictions, whereas, sequence-based methods make predictions from sequence data alone.

The type of prediction method used is often influenced by the type of epitope being

predicted. Sequence-based methods are regularly used to predict linear B-cell epitopes

and structure-based methods for conformational epitopes, however, this is not always the

case. Though it has been estimated that conformational epitopes make up 90% of all B-cell

epitopes on native proteins [13, 40, 41], the majority of current B-cell epitope predictors

are designed to predict linear epitopes.
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Name / Descriptor Year Feature Set Method / Model

Greatest Hydrophilicity [35] 1981 Hydrophilicity Scores Propensity Scale Propensity Scale

Hydrophilicity Scale [42] 1986 Hydrophilicity Scale Propensity scales

Antigenic [36] 1990 Hydrophilicity, accessibility, flexibility, AA counts Propensity scales

PREDITOP [43] 1993 Hydrophilicity, accessibility, flexibility, secondary structure Propensity scales

People [44] 1999 Hydrophilicity, accessibility, flexibility, secondary structure Propensity scales

Bepitope [45] 2003 Accessibility, flexibility, turns, amphiphilicity Propensity scales

Bcepred [46] 2004 Hydrophilicity, flexibility/mobility, accessibility, polarity, exposed sur-

face, turns

Propensity scales

Söllner/Mayer [37] 2006 AA propensity scales, neighborhood propensities, sequence complexities kNN and Decision Trees

ABCpred [38] 2006 Amino acid composition Recurrent Neural Network (RNN)

Chen [47] 2007 AA pair (AAP) antigenicity SVM

BCPred [48] 2008 AA composition, composition-transition-distribution descriptors, AAP

propensity scale

SVM

FBCpred [48] 2008 AA composition, composition-transition-distribution descriptors, AAP

propensity scale

SVM

LEPD [49] 2008 Hydrophilicity, flexibility, b-turn, surface accessibility, polarity Mathematical morphology

Epitopia [50] 2009 Ratio between AA frequencies, polarity, flexibility, antigenicity, hy-

drophilicity

Naïve Bayes classifier

COBEpro [51] 2009 AA similarities to positive epitope set SVM

BayesB [52] 2010 Bayes feature extraction-based bi-profile (statistical features) SVM

LEPS [53] 2011 (2-4) Amino-acid segment features SVM

BEOracle [54] 2011 Sequence composition, evolutionary information, secondary structure

and solvent accessibility

SVM

SVMTriP [55] 2012 Similarity and propensity of tri-peptide subsequences SVM

BEST [56] 2012 Secondary structure, solvent accessibility, dipeptide-based antigenicity,

conservation and similarity scores.

SVM

LBtope [57] 2013 Dipeptide composition SVM and kNN

BeePro [58] 2013 Physiochemical properties, AA ratio and evolutionary information

(PSSM)

SVM

EPMLR [59] 2014 AA composition, hydrophilicity, hydrophobicity, side chain mass Multiple Linear Regression

DMN-LBE [60] 2015 Dipeptide composition Deep Maxout Network

LBEEP [61] 2015 Dipeptide deviation from expected mean AdaBoost-Random Forest

APCpred [62] 2015 AA anchoring pair composition SVM

Bepipred 2.0 [63] 2017 Computed volume, hydrophobicity, polarity, relative surface accessiblity,

secondary structure, overall volume of antigen

Random Forest

DRREP [64] 2017 AA composition (subsequence similarities) Deep Neural Network

iBCE-EL [39] 2018 AA composition, dipeptide composition, transition-distribution, physio-

chemical and biochemical AA properties

Ensemble model: extremely ran-

domized tree (ERT) + gradient

boosting (GB)

EpiDope [65] 2020 Long Short-Term Memory (LSTM) neural network embeddings Deep Neural Network

Epitope Vec [66] 2021 AA composition, di-peptide composition, K-mer representation, anti-

genicity scales & Deep protein sequence embeddings

SVM

BepiPred 3.0 [67] 2022 Protein language model (LM) embeddings Feed Forward (FFNN), Convolu-

tional (CNN) and Long Short-Term

(LSTM) neural networks

Table 1. Summary of Epitope Prediction Tools. Listing the names, publication years,

utilised feature sets, and prediction methods of various well-established epitope predictors

reported in the literature.
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1.5.1 Linear vs. Conformational Epitope Prediction Methods

Linear B-cell epitopes are often predicted from protein sequence data alone whereas

conformational epitope prediction usually requires 3-Dimensional structural data. Thanks

to recent advances in high throughput DNA sequencing, there is currently a large amount

of available protein sequence data. On the other hand, the amount of available real

experimentally determined 3D antigen protein structure data is comparably limited (Epitope

Data Introduction 1.3) [68]. This is a contributing factor to the popularity of linear B-cell

epitope prediction methods over conformational epitope predictors. In silico prediction

methods have significantly reduced the cost of epitope identification over experimental

methods. However, using 3D structures to predict conformational epitopes is still generally

more computationally expensive and time consuming than computational sequence-based

linear epitope prediction methods [68]. Additionally, linear epitopes are stable in a wide

range of conditions, meaning they are easier to transport and store, making them ideal

candidates for peptide vaccines. Conversely, discontinuous epitopes are more easily

disrupted by alterations in protein structure caused by factors such as protein-protein

interactions and variations in temperature, pH and salinity [69]. Furthermore, it is generally

easier to estimate the impact of mutations on linear epitopes, as they are often only affected

by amino acid changes in one region, whereas conformational epitopes may be affected by

AA changes in many regions of a protein (that result in conformational changes), which

are harder to predict and model [70]. For these reasons many epitope prediction studies,

including this one, focus on linear B-cell epitope prediction.

1.6 Chapter One Conclusion

Epitope prediction is a crucial step in many medical and immunoinformatic processes.

In recent years, the rapid surge in available genomic and proteomic data, coupled with

computational advances in machine learning, has revolutionised epitope prediction. This

thesis aims to enhance the field of linear B-cell epitope prediction by advocating for a shift

towards training epitope predictors on tailored organism-specific training datasets. This

work will explore the realm of linear B-cell epitope prediction, navigating through the

current state, trends and potential future of the field. The following chapter will explore

the intricacies of feature engineering for epitope data and will present a carefully crafted

feature set designed specifically for the prediction of linear B-cell epitopes.
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2. Feature Engineering for Epitope Prediction

2.1 Amino Acid Propensity Scales

Early epitope prediction methods relied solely on measures of physiochemical features to

predict the likelihood of epitopes being present in a given antigen sequence. These features

were usually based on properties such as amino acid composition, hydrophobicity, charge,

and solvent accessibility, and were used to make simple predictions of linear epitope

locations.

The first epitope prediction method by Hopp and Woods (1981) utilised a hydrophobicity

score to predict epitope locations in amino acid sequences. In their work, the authors

proposed that charged amino acids may be more likely to be part of an epitope as these

residues are mainly located on the surfaces of proteins [9, 35]. Other examples of early

prediction methods that use physiochemical measures for prediction include works such

as: Parker, Guo, and Hodges’ hydrophilicity scale (1986) [42]. This method utilised three

measures, including surface accessibility, hydrophilicity, and flexibility, to predict B-cell

epitopes. A few years later, Kolaskar and Tongaonkar’s semi-empirical method (1990)

[36] found that specific hydrophobic residues (cysteine, leucine, and valine) were more

likely to be present at an antigenic site if located on the protein surface. Using these, along

with other physiochemical properties the researchers claimed to predict epitopes with an

accuracy of approximately 75 % on a set of 34 proteins. Despite their reported success,

these methods are not without their limitations. For instance, Hopp and Woods also noted

that not all known epitopes of a protein were located in the most hydrophobic regions [35],

highlighting that simple scales may not be able to capture the full complexity of epitope

prediction as there are likely many factors that determine epitope location.

Amino acid propensity scales, like the ones mentioned above, are commonly utilised

in epitope prediction methods to facilitate accurate prediction. Such scales indicate

the likelihood of each amino acid residue to associate with specific properties, such as

hydrophilicity and solvent accessibility. These scales work by assigning individual values

to each of the 20 amino acid residues based on their relative propensity to possess a specific

property. In 1991, Pellequer, Westhof and Regenmortel published a review looking at

the effectiveness of different amino acid propensity scales at predicting linear epitopes

from primary protein sequences. This study reported prediction accuracies of around

51-57 % for hydrophobicity scales, 46-52 % for accessibility scales and 53-61 % for
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β-turn scales [9]. These results demonstrate that none of these scales yield highly accurate

epitope predictions. Additional studies have also investigated the performance of these

and other simple scale methods on epitope datasets. Saha and Raghava (2004) evaluated

the performance of several propensity scales (including [36, 42, 71]) on a dataset of 1029

B-cell epitopes [46]. They reported that the accuracy of the predictions made using these

scales varied between 52.92 % and 57.53 % [46]. Blythe and Flower (2005) reported

that single amino acid propensity scale methods perform only a marginally better than

random at predicting the location of linear epitopes [72], and Kulkarni-Kale, Bhosle and

Kolaskar (2005) investigated conformational epitope prediction methods and reported that,

for this type of prediction, the accuracy of most propensity scale prediction algorithms

lies between 35 % and 75 % [73]. Researchers have also combined multiple propensity

scales to create more complex predictors. One such method is Pellequer and Westhof’s

PREDITOP program, which predicts the location of epitopes using 22 normalised scales

corresponding to hydrophobicity, flexibility, accessibility and secondary structures [43].

This study reported an accuracy in correctly predicted epitopes of around 70%. These

works indicate that, while amino acid propensity scales are commonly used in epitope

prediction methods, relying solely on scale methods based on physiochemical features

alone, is not enough to achieve highly accurate predictions.

2.2 Machine Learning Feature Sets for Epitope Prediction

The relatively poor performance of propensity scale methods motivated an increased

interest in more sophisticated methods for epitope prediction, such as machine learning

(ML) techniques. Machine learning methods are generally considered better than simple

propensity scale methods based on physiochemical features alone for epitope prediction

[8, 74]. One advantage that these methods have over propensity scale methods is that

they can make use of more complex features and patterns that may not be captured by

a single or small set of physiochemical properties. Machine learning methods can often

handle high-dimensional feature spaces, allowing them to process more data and extract

potentially more meaningful patterns than propensity scale methods. They can be trained

on large epitope datasets to identify non-linear relationships and dependencies between

amino acid residues and their antigenic properties. Machine learning methods are also able

to continually learn and adapt to new data, potentially improving their accuracy over time

as more epitope data is made available.

Machine learning approaches for epitope prediction typically utilise extensive feature

sets, usually extracted from amino acid sequences, to make predictions [37, 39, 54].

The selection of appropriate features for these approaches plays a crucial role in the

accuracy of prediction. Features used in machine learning for epitope prediction can be
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derived from different sources, the most common ones being statistical or physiochemical

properties directly derived from the amino acid sequence of the target protein. Several

physiochemical properties can be easily extracted such as the hydrophobicity, size and

charge of the individual amino acids that make up the sequence. Numerous other properties

can also be calculated using amino acid propensity scales, like solvent accessibility and

flexibility, these properties can be used as features for machine learning models. Higher-

level sequence patterns can also be extracted from AA sequences, such as motifs (short

patterns frequently found in related proteins that often relate to structure or function) and

domains (larger structurally and functionally conserved regions of a protein).

In addition to sequence-based features, structural features of proteins are also used for

epitope prediction. These attributes may provide information about the conformational and

spatial properties of proteins. Examples of structural features used for epitope prediction

include: the secondary structure of a protein [75, 76], of which the most common types are

the alpha helix (α-helix) and beta sheets (β-sheet). The surface accessibility of residues

within a protein can also be calculated from a protein’s 3D structure. Surface accessibility

scores calculated from sequence data are often predictions based on the physiochemical

properties of the amino acid and it’s neighbouring residues, whereas those calculated from

structure take into account the 3D arrangement of the atoms in the protein. Similarly

the solvent accessibility of residues within a protein can also be calculated from the 3D

structure.

By using large and diverse feature sets, machine learning models can capture complex

patterns in protein data that may not be apparent from a small set of physiochemical

properties alone. By leveraging this information, machine learning models are often able

to achieve higher accuracy epitope predictions than other prediction methods.

2.2.1 Machine Learning Feature Sets for Epitope Prediction:

Examples

Examples of machine learning pipelines for epitope prediction that utilise large feature sets

include Söllner and Mayer’s "Machine learning approaches for prediction of linear B-cell

epitopes on proteins" (2006) [37]. This study employed several amino acid propensity

scales (including the 55 single amino acid propensity scales from ProtScale [77], and the

secondary structure scale proposed by Mayers et al., [78]), and neighborhood descriptors

(neighborhood matrices, probabilities & likelihoods and neighborhood complexities) to

create a feature set comprising of 18,920 features from each peptide sequence. These

features were then utilised along with machine learning algorithms to identify antigenic
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determinants (epitopes) on proteins. Feature reduction was performed to generate features

sets of between 11 and 164 dimensions. These sets were then passed to 6 different

classification models, three k-nearest neighbor (IBk) models and three C4.5 decision trees

for classification. These classifiers achieved reported cross-validation accuracies ranging

from 62 % to 73 % at classifying peptides as ‘epitopes’or ‘non-epitopes’.

Another example of a large feature set used for epitope prediction is a study by Wang et al.

"Determinants of antigenicity and specificity in immune response for protein sequences"

/ B-Cell Epitope Oracle (BEOracle) (2011) [54]. Here, a feature set consisting of a

combination of sequence composition measures, evolutionary information, predicted

secondary structure and solvent accessibility measures was used along side a Support

Vector Machine (SVM) classifier to predict linear B-cell epitopes. This study utilised a

feature set of 53,633 features to train multiple support vector machine models; the highest

5-fold cross-validation prediction accuracy reported was 82.2 % with an F1-measure of

81.37 %. These results were said to outperform classical epitope prediction methods based

on propensity [54].

A third machine learning B-cell epitope predictor that utilises a large collection of fea-

tures extracted from protein sequences is iBCE-EL (2018): "A new ensemble learning

framework for improved linear B-cell epitope prediction" [39]. This study explored nu-

merous composition measures including: amino acid composition, dipeptide composition,

chain-transition-distribution, amino acid index [79] and other physiochemical properties

together with six binary profiles as feature sets for ML epitope predictors. The final

model (iBCE-EL) is an ensemble predictor that combines two different ML classifiers an

Extremely Randomised Tree (ERT) and Gradient Boosting (GB) classifiers to predict linear

B-cell epitopes. The reported 5-fold cross-validation accuracies and Matthew’s Correlation

Coefficients (MCC) of iBCE-EL on a bench-marking and independent dataset are: 73 %

accuracy, 0.45 MCC and 73 % accuracy 0.46 MCC respectively.

The examples given above evidence the widespread use of large feature spaces for epitope

prediction. As shown, features that are widely extracted from protein sequences include

composition measures, physiochemical properties, propensity scales, other statistical

properties and occasionally structural features.
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2.2.2 Widely Used Features for Computational Epitope Prediction

One set of physiochemical properties that have been used in a number of works are the

amino acid index (AAindex) indices [79, 80]. The AAindex is "a database of numer-

ical indices representing various physiochemical and biochemical properties of amino

acids and pairs of amino acids" [79]. The indices in the AAindex consider both the

physiochemical properties of single amino acids and the properties of different amino acid

pairs. They have been used for many protein sequence prediction activities [80] including

in using SVM’s to predict the protein sub-cellular localisation [81], for predicting the

immunogenicity of MHC class I binding peptides [82] and in epitope prediction works

[39, 72]. Epitope prediction works that have made use of the AAindex include Blythe

and Flower’s "Benchmarking B-cell epitope prediction" study [72] and Manavalan et al.’s

ensemble learning framework for B-cell epitope prediction [39].

Another commonly used technique in protein sequence mining is the n-gram extraction

method. The n-gram extraction method was first used by Cherkassky and Vassilas in

1989 for associative database retrieval [83]; it is used to extract contiguous sequences

(e.g. multiple consecutive amino acids in sequence) from a given text. The n refers to the

number of items to be extracted, for example, considering only two consecutive amino

acid residues is known as the 2-gram method. Choosing a small value for n allows very

local patterns and dependencies to be captured from the sequence. This n-gram extraction

method has been used by several epitope prediction works to extract features from protein

sequences [39, 84].

The Conjoint Triad descriptors [85] are another set of feature descriptors that consider

consecutive amino acids. These descriptors consider the properties of an amino acid in a

sequence together with the properties of the amino acids either side of it; the three continu-

ous amino acids are considered as a unit (triad). Conjoint Triads are based on structural

neighbours: amino acids are assigned to one of 7 classes based on their physiochemical

properties, resulting in 343 (73) possible combinations. The groups are as follows: Group

0 {A, G, V}, Group 1 {C}, Group 2 {F, I, L, P}, Group 3 {M, S, T, Y}, Group 4 {H, N,

Q, W}, Group 5 {K, R} and Group 6 {D, E}. These features have been used for many

protein sequence mining and prediction activities, including for predicting protein-protein

interactions [86], RNA-protein interactions [87], predicting nuclear receptors [88] and in

epitope prediction works [20].
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2.3 The Curse of Dimensionality

Many epitope prediction pipelines make use of high-dimensional feature sets for epitope

prediction. Datasets are often referred to as ‘high-dimensional’when the number of features

present is significantly higher than the number of entries in the dataset. While utilising large

feature sets for epitope prediction may potentially enhance prediction performance, there

exist several challenges when employing such high-dimensional feature sets with machine

learning algorithms. Large feature sets can pose challenges in terms of storage space

and processing time requirements, which can be costly. Storing and managing extensive

feature sets may require substantial storage capacity, especially when dealing with high-

dimensional data. Additionally, when processing these data, significant computational

resources and processing time may be needed. This can result in high infrastructure costs,

as hardware or cloud computing resources with greater processing power may be required

to handle the data efficiently. Therefore, the expense associated with storing and processing

large feature sets should be considered when implementing machine learning pipelines for

epitope prediction.

Extensive feature sets may potentially hinder model development in several ways. Large

feature sets containing numerous highly correlated features can adversely impact classifier

performance [50]. Moreover, feature sets comprising a large number of features and

comparatively few data points may lead to overfitting, reducing a model’s ability to

generalise effectively [89]. The inclusion of too many features can also contribute to

overfitting of models due to increasing sparsity of data in high-dimensional feature spaces.

This challenge of dealing with an abundance of features in a dataset is often referred to

as ‘The Curse of Dimensionality’: a term coined by Richard E. Bellman in 1966 [90].

To mitigate these issues, dimensionality reduction techniques, such as feature extraction

and selection, are commonly employed. Many machine learning pipelines for epitope

prediction incorporate these techniques to enhance model performance [37, 54, 62].

2.4 Optimising Feature Spaces: Dimensionality Reduction and Fea-

ture Selection in Epitope Prediction

Dimensionality reduction is a critical process that involves transforming high-dimensional

data into a more manageable and meaningful lower-dimensional representation. This

reduction in dimensionality serves several crucial purposes, including conserving storage

space, speeding up computational processing, and addressing the challenges posed by the

curse of dimensionality, where the performance of machine learning models deteriorates

as the number of features increases significantly [91, 92]. The following section delves

into various dimensionality reduction techniques, some of which have been used in epitope
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prediction pipelines. The section will explore the advantages and disadvantages associated

with these methods, shedding light on their role in enhancing the accuracy and efficiency

of epitope prediction models.

2.4.1 Principal Component Analysis and Kernel PCA

Principal Component Analysis (PCA) is a linear feature extraction technique first described

by Pearson in 1901 [93]. Since then it has been used widely for a variety of data mining

applications [94], including computational biology [95]. PCA is a linear transformation

that reduces the dimensionality of a dataset while retaining important patterns and trends

in the data. This reduction is achieved by projecting the data onto lower dimensions known

as principal components (PCs). These principal components represent linear combinations

of the original data variables and are arranged in order of decreasing variance [96]. The

first PC captures the largest variance, the second PC accounts for as much of the remaining

variability and so on [94, Chapter 8.3]. The objective of PCA is to select a limited number

of principal components that offer the most informative summary of the data.

PCA, as a feature extraction and dimensionality reduction technique, has found application

in various epitope prediction pipelines [20, 37, 97]. For instance: Söllner and Mayer [37]

employed PCA alongside other feature reduction methods to reduce a substantial feature

set (comprising 18,920 features) into several smaller datasets, each ranging from 11 to 164

dimensions. These reduced datasets were then used as input for k-nearest neighbor and

decision tree models for classification. Liu, Yang, and Cheng [97] also demonstrated the

effectiveness of PCA as a dimensionality reduction technique in enhancing the prediction

quality of B-cell epitopes. While PCA has proven to be a valuable tool for dimensionality

reduction in epitope prediction, it’s important to note that this method primarily captures

linear relationships between features and is sensitive to data scaling.

Traditionally, dimensionality reduction primarily relied on linear techniques, such as

Principal Component Analysis (PCA). However, linear methods struggle when dealing

with complex, nonlinear data structures. To address this limitation, Kernel Principal

Component Analysis (Kernel PCA) emerged as an extension of PCA that harnesses the

power of kernel methods to extract principal components. Kernel PCA is a non-linear

dimensionality reduction technique that operates in a different space compared to standard

PCA and uses kernel methods to find principal components. Unlike standard PCA, kernel

PCA is capable of identifying non-linear relationships between features [98]. Though

kernel PCA’s capability to uncover non-linear data patterns is advantageous, it comes at the

cost of increased computational complexity. Nonetheless, this computational investment

can be particularly worthwhile when dealing with high-dimensional feature sets, such as

those commonly encountered in B-cell epitope prediction tasks.
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2.4.2 Autoencoders

Autoencoders [99] are neural networks that can be used for dimensionality reduction of

data. Autoencoders compress given input data into a lower dimensional representation

and are then able to reconstruct the input from this reduced dimensional representation

[94, Chapter 10.4]. Commonly, autoencoders have an encoder-decoder architecture: the

encoder maps the input data onto a lower dimensional space and the decoder reconstructs

the input from the reduced representation. This hidden reduced ‘encoded’representation

should represent the most important features from the input data (as these features alone

are capable of reconstructing the data). This ‘hidden layer’can be extracted from the model

and each node can be treated as a new feature similar to the principal components extracted

from PCA [94, Chapter 10.4].

Mathematically the encoder stage can be represented as:

z = σ(Wx+ b),

where z is the learned reduced data representation, σ is an activation function, W is a

weight matrix, x is the input features and b is a bias vector. And the decoder stage can be

represented as:

x̂ = σ̂(Ŵz + b̂).

This maps the encoded representation z to the reconstruction x̂. x̂ is the reconstruction (the

same shape as x) and σ̂, Ŵ and b̂ are another activation function, weight matrix and bias

vector respectively.

Like kernel principal component analysis autoencoders are also capable of modelling

complex non-linear functions; they do this by using non-linear activation functions. Again,

this process is generally more computationally expensive than standard PCA. Additionally,

optimising the weights of non-linear autoencoders is often difficult [100±102] and autoen-

coders can be prone to overfitting data due to the high number of parameters that they

can have. On the other hand, unlike both standard PCA and kernel PCA, the reduced data

representation produced by autoencoders retains all of the information from the original

dataset. Autoencoders have been used as a form of dimensionality reduction for mass

spectrometry imaging, where they are preferred over PCA as they require less human

interaction in the analysis [103]. They have also been used for anomaly detection where

they have been shown to be able to detect subtle anomalies that linear PCA could not detect

[104]. Additionally, autoencoders have been shown to outperform PCA as tasks like image

reconstruction [102, 105]. For these reasons, autoencoders could also present a promising

avenue for dimensionality reduction for epitope prediction.
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2.4.3 Mutual Information

Feature selection is a type of dimensionality reduction that involves selecting a subset

of relevant features to use with machine learning systems. Its primary objective is to

eliminate ‘irrelevant’attributes within datasets, in order to conserve storage space, reduce

processing time, and potentially enhance the predictive capabilities of machine learning

models [94, Chapter 8.1]. Mutual information is a common measure that is often used

for feature selection, it measures the dependency between variables. Two variables are

considered independent of each other if they have a score of zero, otherwise, the higher the

mutual information score the higher the dependency is between the variables. Similar to

dimensionality reduction by kernel PCA or autoencoders, feature selection using mutual

information allows non-linear dependencies to be captured from the data [106]. In the

context of epitope prediction this feature selection method could prove advantageous for

capturing intricate patterns critical for accurate predictions.

2.4.4 Minimum-Redundancy-Maximum-Relevance (MRMR)

Minimum-redundancy-maximum-relevance [107] is a feature selection technique designed

to find the smallest relevant subset of features for a machine learning task. It is a minimal-

optimal feature selection method. It is often desirable as a feature reduction method

as it can help to reduce the memory required and training time to develop ML models

and, can help to improve the explainability of the models by only focusing on a small

subset of highly relevant features. MRMR has been used as a feature selection method in

many bioinformatics contexts, such as in filter-based feature selection for temporal gene

expression data [108].

2.5 The Epitope Dataset

Having explored various dimensionality reduction techniques and their potential impact

on epitope prediction models, we now turn our attention to the practical aspect of data

retrieval. This section outlines the general pipeline for data retrieval used to generate all

epitope datasets used in this work. Where methods differ from this routine it will be clearly

stated in the text.
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All epitope datasets are based on the full Extensible Markup Language (XML) export of

the Immune Epitope Database (IEDB) [28]. The database export was filtered according to

the following criteria:

■ Only peptides marked as linear B-cell epitopes or non-epitopes were selected. The

filtering criteria used to isolate peptides marked as linear B-cell entries were:

± Those with one or more assays containing a ‘BCell’ field name in the Assay

fields of the XML export document.

± Those containing the field ‘FragmentOfANaturalSequenceMolecule - LinearSe-

quence’ in the EpitopeStructure field of the XML export document.

Peptides marked as either ‘Exact Epitope’ or ‘Epitope-Containing Region’ in the

EpitopeStructureDefines field were included.

■ Only epitopes of lengths between 8 and 25 AA’s long were selected. The upper

length limit (25) was imposed to prevent overly long sequences labelled as ‘Epitope-

containing region’ from adding too much noise to the training data. The lower limit

(8) was selected to prevent excessive redundancy due to short windows (See below

section 2.6.1).

■ Record labels ‘Positive’, ‘Positive - High’, ‘Positive - Intermediate’ and ‘Positive -

Low’ were grouped under a single label, ‘Positive’.

■ Peptide entries with multiple assay results that had conflicting class labels (Positive

versus Negative/Non-Epitope) were assigned a class label determined by simple

majority. Ties were removed from training datasets.

Each record in the IEDB contains a protein ID, referencing the protein that the peptide

entry is a part of/belongs to. For each entry, these IDs were retrieved and used to query

NCBI’s protein database [109] and UniProt [110]. The entire protein sequence (of which

the record peptide belongs to) was then linked to the record. Observations with missing,

invalid or inconsistent protein identification information (protein ID or peptide position on

the protein) were removed.

Figure 3 shows an overview of the sequence mapping process performed for each filtered

IEDB entry. The databases (UniProt & NCBI) are queried using the protein ID retrieved

from each IEDB entry. Once the full protein sequence is recovered from a database, the

entry peptide (sub-sequence) can then be mapped onto the full protein sequence. Mapping

the labelled peptide onto it’s full protein sequence is useful as it allows information to

be extracted regarding the surrounding local chemical environment of the peptide. Once

each entry in a curated dataset has been mapped onto it’s full protein, the entries are then

windowed and several features are extracted from each peptide window to form the epitope

feature set.
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Figure 3. Protein Sequence Mapping Overview. Full protein sequence retrieved from

UniProt or NCBI and positions of target peptide on the full sequence are recorded. Created

in BioRender, March 2023 [7].

2.6 The Epitope Feature Set

This work makes use of a relatively large feature set comprised of numerous features

calculated from the amino acid sequence alone. 845 simple features are calculated for each

amino acid residue in a given peptide, based on the local neighbourhood of every position

extracted using a 15-AA sliding window representation with a step size of one.

2.6.1 Representing Protein Sequences - Sliding Window

In this work a fixed-width sliding window (15 AAs long) is applied over every peptide

entry, with a step size of one. The technique of windowing protein sequences is often used

in epitope prediction pipelines [9, 38, 45, 56, 64, 66, 111] as it enables the extraction of

relevant local features from micro-environments within the protein sequence, which can

be informative for predicting the location of epitopes in the sequence. This is especially

important for linear epitopes, which are typically composed of a short stretch of amino

acids within a larger protein sequence. By sliding windows of a specific size across the

protein sequence, relevant information regarding the local amino acid composition and

physicochemical properties of the protein can be extracted.

As mentioned, in this work every record in a collated epitope dataset if first mapped onto

the protein sequence that it comes from (Figure 3). This allows for each target residue, in a

labelled peptide entry, to be positioned in the centre of the sliding window; enabling the

local chemical neighbourhood of that residue to be captured. Figure 4 shows a fixed-width

sliding window, size 15 AAs long, being moved across a peptide with a step size of 1.
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Figure 4. Protein Sliding Window. Fixed-width sliding window, 15-AA long, is applied

over the target peptide, with the target residue positioned in the centre of the window.

Created in BioRender, February 2023 [7].

For each peptide, length n, the resulting windowed dataset will be comprised of exactly n

windows, with each window becoming a single example in the new dataset. The choice

of window length 15 was based on the smallest peptide length of interest of the epitope

datasets being investigated, namely 8. A window length of 15 AAs therefore provided the

longest possible window such that more than half of the residues covered by the window

would belong to a labelled (epitope or non-epitope) peptide.

2.6.2 The Feature Set

The following features were then calculated for each window/sample in a given dataset:

Feature(s) Number

Proportion of Amino Acid Residues 20

Conjoint Triad Frequencies 343

Frequency of Amino Acid Types 9

K-mer Composition 400

Number of Atoms 5

Molecular Weight 1

Sequence Entropy 1

Amino Acid Descriptors 66

Table 2. Overview of features extracted from each window sequence. Categories of

features extracted from each amino acid window sequence alongside the number of

features extracted for each category.

■ Proportion of individual amino acids in the sequence (20 features): The frequency

/percentage composition of each amino acid residue in the sequence.

■ Conjoint Triad frequencies [85] (343 features): The 20 standard amino acids can

be clustered into seven classes according to their dipoles and volumes of their side

chains ({A,G,V}, {I,L,F,P}, {Y,M,T,S}, {H,N,Q,W}, {R,K}, {D,E}, {C}). Any

three adjacent amino acids in a sequence are regarded as a unit (a triad). Triads

are then categorised according to the classes of amino acids, i.e. triads composed

of three AAs belonging to the same classes are treated as identical, for example
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AIY and GLM. Using the 7 category reduced representation, the frequency of each

triad type is counted. Each protein sequence can then be represented by a 7x7x7

dimensional vector (343 features).

■ Frequency of amino acid types (9 features) [112]: The 20 standard amino acids

are grouped based on the properties of their side chains, their size, hydrophobicity,

charge and response to pH 7 (Table 3). The frequency of each AA type in the

sequence is then calculated.

Class Amino Acids

Tiny A, C, G, S, T

Small A, B, C, D, G, N, P, S, T, V

Aliphatic A, I, L, V

Aromatic F, H, W, Y

Non-Polar A, C, F, G, I, L, M, P, V, W, Y

Polar D, E, H, K, N, Q, R, S, T, Z

Charged B, D, E, H, K, R, Z

Basic H, K, R

Acidic B, D, E, Z

Table 3. Amino Acid Types. 20 standard AA’s grouped by side-chain properties.

■ K-mer composition (400 features): A k-mer is a sub-sequence of length k of the

amino acid sequence. E.g. the sequence ATGK is made up of four monomers (A, T,

G, K) and three 2-mers (AT, TG, GK). For this study, k = 2. The frequency of each

k-mer within the sequence is calculated. When k = 2 for any given sequence there

are 400 possible 2-mer combinations (20x20).

■ Number of atoms (5 features): The total number of Carbon, Hydrogen, Nitrogen,

Oxygen and Sulphur atoms in the sequence.

■ Molecular weight (1 feature): The total molecular weight of the sequence.

■ Sequence Entropy (1 feature) [113]: The information entropy of the distribution of

amino acid residues in the sequence.

■ Amino Acid Descriptors (66 features): From the R ‘Peptides’ package, [114]

aaDescriptors computes 66 descriptors for each amino acid of a protein. These

descriptors are:

± Cruciani properties (3 features) [115]: Three scales that characterise side

chains according to their polarity (PP1), hydrophobicity (PP2) and H-bonding

capability (PP3).

± Kidera factors (10 features) [116]: Helix/bend preference (KF1), side-chain

size (KF2), extended structure preference (KF3), hydrophobicity (KF4), double-

bend preference (KF5), partial specific volume (KF6), flat extended preference

(KF7), occurrence in alpha region (KF8), pK-C (KF9) and surrounding hy-

drophobicity (KF10).
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± Z-scales (5 features) [117]: The computed average of Z-scales of all the amino

acids in a given sequence. Each z-scale represents an amino acid property:

Lipophilicity (Z1), steric properties (steric bulk/polarisability) (Z2), electronic

properties (polarity/charge) (Z3), relating electronegativity, heat of formation,

electrophilicity and hardness (Z4 and Z5).

± Factor Analysis Scales of Generalised Amino Acid Information (FASGAI)

vectors (6 features) [118]: The computed average of FASGAI indices of all the

amino acids in a given protein sequence. Each factor represents an amino acid

property: Hydrophobicity index (F1), alpha and turn propensities (F2), bulky

properties (F3), compositional characteristic index (F4), local flexibility (F5)

and electronic properties (F6).

± T-scales (5 features) [119]: The T-scales are derived from principal component

analysis (PCA) of 67 common structural and topological descriptors of amino

acids.

± VHSE-scales (8 features) [120]: The VHSE-scales are principal component

score Vectors of Hydrophobic, Steric and Electronic properties, derived from

PCA on 18 hydrophobic properties, 17 steric properties and 15 electronic prop-

erties. Each scale represents an amino-acid property: hydrophobic properties

(VHSE1 and VHSE2), steric properties (VHSE3 and VHSE4) and electronic

properties (VHSE5, VHSE6, VHSE7 and VHSE8).

± ProtFP descriptors (8 features) [121]: These descriptors were constructed

from a large selection of indices from the AAindedx database [79].

± ST-scales (8 features) [122]: The ST-scales take 827 constitutional, topological,

geometrical, hydrophobic, electronic and steric properties into account.

± BLOSUM indices (10 features) [123]: The BLOSUM indices were derived

from physiochemical properties subjected to VARIMAX analyses and an align-

ment matrix of the 20 natural AAs using the BLOSUM62 matrix.

± MS-WHIM scores (3 features) [124]: These scores were derived from 36

electrostatic properties derived from the three-dimensional structure of the 20

natural amino acids.

2.7 Chapter Two Conclusion

Chapter 2 has outlined the landscape of feature engineering for epitope prediction. It has

explored ways in which features can be extracted from epitope data and shed light on the

types of features currently prevalent in the field. Feature selection and engineering are

pivotal steps in enhancing predictive accuracy for epitope predictors; presented here is a

meticulously crafted feature set designed explicitly for predicting linear B-cell epitopes.

While this full feature set is likely to contain some redundant features, this issue will be

further explored in later chapters that fully describe the full epitope prediction pipeline.
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3. Machine Learning Techniques for Epitope Prediction

Machine learning is the foundation of modern predictive modelling, it entails the develop-

ment of algorithms and models capable of learning from data to make predictions. The

process of utilising ML algorithms to build models from data is known as training, and the

data used to build these models is called the training data. Once a model has been trained,

the process of making predictions with a learned model is called testing and the data to be

predicted on is called the test data [125]. One of the fundamental goals of machine learning

is to develop models with high generalisation power, which is the effectiveness of the

models on unseen test data. High generalisation performance is pivotal as it ensures that the

ML models can accurately predict outcomes on new, unseen test data. When ML models

perform well on the training data but have poor generalisation performance, they may

have overfit to the training data set. Overfitting is where the ML model excessively learns

from the training data, resulting in diminished performance on the test data [126]. Models

that cannot make accurate predictions on new data are said to have poor generalisation

performance. Ensuring that models can effectively predict outcomes on new, unseen test

data is vital for computational epitope prediction. The following chapter explores current

machine learning techniques utilised in epitope prediction, aiming to contextualise the

epitope prediction challenge within the context of machine learning problems.

In recent years, the field of epitope prediction has witnessed a significant shift towards

using machine learning techniques for prediction. Machine learning methods, including but

not limited to support vector machines [127], random forests [128], and neural networks

[129, 130], have become standard tools in epitope prediction. An inherent advantage of

employing machine learning techniques like these is their capability to unearth intricate

patterns and discern non-linear relationships within complex epitope datasets. Unlike tradi-

tional rule-based or statistical approaches, machine learning algorithms excel at capturing

dependencies between the large feature spaces associated with epitope data. This allows

these models to discern subtle, biologically relevant signals that might otherwise remain

hidden. Furthermore, machine learning techniques like these often excel at managing

high-dimensional datasets, a frequent characteristic of epitope prediction problems. Some

models can efficiently navigate extensive feature spaces, while others can autonomously

identify the most informative features, reducing dimensionality without sacrificing predic-

tive power. Additionally, machine learning pipelines are adaptive and able to continuously

improve their predictive accuracy as new data becomes available. When new experimental

epitope data emerges, machine learning models can be seamlessly retrained on larger and
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more diverse datasets, potentially leading to enhanced prediction performance. These

models can also undergo optimisation and fine-tuning further improving their performance.

These are a few of the reasons why machine learning algorithms have become a popular

choice for epitope prediction.

The remainder of this chapter explores the current trends in machine learning techniques for

epitope prediction, specifically linear B-cell epitope prediction, examining the advantages

and disadvantages of these methods. Furthermore, this chapter aims to conceptualise the

epitope prediction challenge within the context of a machine learning problem. Addition-

ally, it outlines a range of machine learning models chosen for investigation in this study

and presents the performance indicators selected for evaluating epitope predictors in this

work.

3.1 Trends in Epitope Prediction Machine Learning Techniques

Current epitope prediction works employ a range of machine learning (ML) techniques.

ML epitope predictors also exhibit a wide spectrum of training approaches; some rely solely

on sequence data, others incorporate 3D protein structures, and some combine features

from propensity scales and various other sources. Machine learning methods for epitope

prediction generally outperform those based solely on simple amino acid propensity scale

calculations [8], although there are exceptions to this trend [8, 74]. Examples of machine

learning approaches for epitope prediction include: neural network-based methods such as

ABCpred [38], Support Vector Machines [127, 131] which have been used in many epitope

prediction pipelines [47, 48, 51, 52, 54, 56±58, 62, 132] and Random Forest Classifiers

[128, 133] which have also been used in multiple epitope prediction pipelines [61, 63,

134].

As discussed in Section 2.1, early approaches to epitope prediction were characterised

by rudimentary rule-based methods and amino acid propensity scales (Section 2.1, Table

1) [35, 36, 42±46]. These approaches rely on simple heuristics and expert knowledge to

identify potential epitopes. However, they are limited and unable to capture complex rela-

tionships and non-linear patterns within epitope data. The relatively poor performance of

these predictors [72], coupled with the sudden availability of extensive sequence data result-

ing from next-generation sequencing, facilitated the transition toward more sophisticated

methods, particularly machine learning methods, for epitope prediction.
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Machine learning models such as Support Vector Machines (SVMs), Decision Trees, and

Neural Networks, emerged as powerful tools capable of capturing intricate patterns and

non-linear relationships within epitope datasets. From 2005 to 2015, Support Vector

Machines held a position of prominence as popular models for epitope prediction. During

this period, examples of SVM predictors included BCPred, developed by Manzalawy,

Dobbs and Honavar, as described in the study "Predicting linear B-cell epitopes using

string kernels" (2008) [48]. This work evaluated SVM classifiers employing five different

kernel methods. The evaluation was conducted using a dataset comprising 701 linear B-cell

epitopes (sourced from the Bcipep database [135]) and an equal number of non-epitopes

(from SwissProt sequences [22]). The reported predictive performance of BCPred was an

AUC score of 0.758, supposedly outperforming eleven other SVM-based classifiers from

the literature. Another example of a SVM epitope prediction approach from this period

was SVMTriP: "A method to predict antigenic epitopes using support vector machine to

integrate tri-peptide similarity and propensity" by Yoa, Zhang, Liang and Zhang (2012)

[132]. SVMTriP integrated tri-peptide similarity and propensity scores to train a SVM

classifier. This approach demonstrated reported predictive performance scores of 80.1%

sensitivity, 55.2% precision, and an AUC score of 0.702 when assessed through five-fold

cross-validation. These results showcased the potential of SVM-based methods in epitope

prediction during this period.

Though widely-used (Table 1), support vector machines were not the only ML methods

emerging for epitope prediction during this time. The first epitope prediction method

to use neural networks, ABCpred [38], was published in 2006. In this study, Saha and

Raghava trained a recurrent neural network (RNN) to predict linear B-cell epitopes from

antigen sequences. They curated a non-redundant dataset of 700 continuous B-cell epitopes

(obtained from the Bcipep database [135]), and 700 peptides estimated not to represent

epitopes (obtained randomly from UniProtKB [110]). This dataset was then used to train

and test several standard feed-forward (FNN) and recurrent neural networks (RNN) at

predicting B-cell epitopes on antigens. Their best performing model was a RNN (with

a single hidden layer), it yielded a reported 66 % five-fold cross-validation accuracy, 67

% sensitivity, 65 % specificity and 66 % positive predictive value. In addition to SVMs

and NNs, other ML models being employed for epitope prediction at this time included

Decision Trees [37], Naive Bayes classifiers [50] and K-Nearest Neighbour classifiers

[37, 57]. While these models demonstrated the capacity to uncover intricate patterns

and non-linear relationships within epitope datasets, surpassing the capabilities of earlier

rule-based approaches, the need for even higher prediction accuracies in epitope prediction

models persisted.
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Post-2015, there was a notable shift in the field of epitope prediction towards the increased

use of deep learning models, hybrid models, and ensemble learning methods. These

approaches gained popularity due to their ability to capture complex patterns in epitope

data and potentially improve predictive accuracy. Since 2015, machine learning techniques

including Deep Maxout Networks [60], Random Forests [63], AdaBoost Random Forests

[61], ensemble models using Extremely Randomised Trees and Gradient Boosting [39],

and deep-learning techniques [64, 65, 67] have been used for epitope prediction. These

studies often report significantly improved prediction performances when compared to

previous ML methods. In addition to the increased use of deep-learning models for

prediction, there’s been a recent surge in leveraging large protein language models for

feature representations for training classifiers for epitope prediction [65±67]. While

deep-learning methods offer significant potential in advancing epitope prediction, they

do come with certain drawbacks. These include challenges related to interpretability,

susceptibility to overfitting training data, and being resource-intensive and expensive to

use. Overall, these advancements reflect the growing recognition of the importance of

accurate epitope prediction in vaccine design and immunoinformatics. Researchers are

increasingly exploring more complex and sophisticated modeling techniques to enhance

the predictive performance of epitope prediction models.

3.2 The Epitope Prediction Problem Restated

Previously, the epitope prediction problem at the core of this research was defined as

follows: Given protein sequence data, predict regions in the data that have a high likely-

hood of containing a linear B-cell epitope. One of the first major challenges was to define

and frame this problem as a machine learning problem. This section attempts to establish

this epitope prediction challenge as a machine learning problem.

3.2.1 Framing the Machine Learning Problem

The problem at hand is the accurate prediction of where linear B-cell epitopes are within

protein sequences. This can be distilled to: for each amino acid residue within a given

protein sequence, can it be classified as belonging to an epitope or not? Machine learning

models are algorithms that are able to learn patterns and dependencies from provided data.

The issue of predicting where an epitope may be on an unlabelled peptide can be presented

as a supervised classification task for a ML model. As introduced in section 1.3, there are

several curated databases containing labelled epitope and non-epitope data. Labelled data

can be used to train ML models to make predictions on unseen/unlabelled data. In machine

learning, supervised learning is where a ML algorithm learns from a labelled training

dataset, to make predictions on new unseen data [136]. Unsupervised learning, on the

other hand, is where models learn from unlabelled data and includes tasks like clustering

J. S. M. Ashford, PhD Thesis, Aston University, 2023



38

and dimensionality reduction [125]. Supervised learning is often further broken down into

two categories: Classification tasks and Regression tasks. In classification problems, the

target class label, that the algorithm is trying to predict, is categorical (falls into a distinct

category), whereas, in regression tasks the variable that the algorithm is trying to predict is

continuous or numeric. The epitope prediction problem outlined here is a classification

task. The task is to predict one of two potential class labels: either ‘epitope’ if the residue

in question is thought to belong to a linear B-cell epitope or ‘non-epitope’ if the residue

does not belong to an epitope.

Training datasets for this classification task require numerous labelled peptides from each

class (‘epitope’or ‘non-epitope’). Linear B-cell epitope predictors are often sequence-based

predictors that make use of labelled sequence data to make predictions. This work makes

use of labelled protein sequence data (from the IEDB) and employs a sliding window

technique as a pre-processing step, to represent the data in a format that is more easily

amenable to the calculation of features and the downstream prediction of arbitrary-length

epitopes. As discussed in section 2.6.1, sliding window techniques are frequently employed

in epitope prediction; this approach is used as linear B-cell epitopes vary in length, and the

exact location of unknown epitopes within a protein is uncertain. Sliding windows also

enable the extraction of relevant local features from protein data. Several physiochemical

and statistical features are extracted from the windowed dataset entries, this feature set is

subsequently fed into the ML classifier.

Figure 5. Classification task example. ML models are deployed on the feature spaces

associated with each window (input data) to make class predictions. Created in BioRender,

March 2023 [7].
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Figure 5 shows an outline of the peptide classification task. Here the input data is the

feature set extracted from a windowed peptide sequence of the peptide to predict, centred

around the amino acid residue currently being classified. The colour matrices of the input

data represent the feature space associated with each window (highlighted on the string).

New unseen inputs are passed to a pre-trained classification model, which then outputs

a predicted label, either ‘epitope’or ‘non-epitope’. Several classification models may be

trained for these types of linear B-cell epitope prediction tasks.

3.3 Exploring Machine Learning Models for Epitope Prediction

Machine learning algorithms build a mathematical model from the data that they are given

and this model can then be used to make predictions on new data. There are numerous

options for machine learning algorithms to use for epitope prediction. This section explores

several modelling approaches for epitope prediction.

3.3.1 Random Forests

Random forests, as introduced by Leo Breiman in 1994, are a form of ensemble learning

methods used in machine learning [128, 133]. They function by constructing multiple

‘weak’decision tree models and then aggregating their individual predictions to arrive at a

final modal class prediction [94, Chapter 12]. This ensemble learning technique is known

as bootstrap aggregating, or bagging for short. Random forests offer several advantages

over single decision tree models. They are less prone to overfitting, a common issue in

machine learning where a model becomes overly specialised to the training data, resulting

in poor generalisation on unseen data. Random forests also tend to outperform individual

decision trees in classification tasks [94, Chapter 12]. However, random forests are more

challenging to interpret compared to single decision tree models due to their relative

complexity.

Random forests have been used as classification models in multiple epitope prediction

pipelines. Saravanan and Gautham [61] developed an amino acid composition-based

feature descriptor: Dipeptide Deviation from Expected Mean (DDE) to distinguish linear

B-cell epitopes from non-epitopes. In this study, they evaluated the performance of DDE

on an epitope - non-epitope dataset using two machine learning models: a Support Vector

Machine and an AdaBoost-Random Forest. Using 5-fold cross-validation the overall

reported accuracy of the support vector machine model using DDE was 65% with an

F1 score of 0.64 and MCC of 0.213 and the overall accuracy of the AdaBoost random

forest model was 69.12% with an F1 score of 0.69 and an MCC of 0.386 [61]. Another
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notable application of random forests in epitope prediction comes from Jespersen, Peters,

Nielsen, and Marcatili [63]. Their web server, B-cell epitope prediction (BepiPred 2.0)

is based on a random forest algorithm and has been shown to outperform other epitope

prediction pipelines (including LBtope, BCPREDS and CBTOPE) [63]. This demonstrates

the effectiveness of random forests as tools for epitope prediction, contributing to improved

accuracy and reliability in this critical field of research.

3.3.2 Support Vector Machines

Support Vector Machines (SVMs) [127, 131] are versatile supervised learning models, that

can handle both classification and regression challenges. SVMs operate by mapping input

data into a high-dimensional space and then identifying a hyper-plane that maximizes the

margin between the two classes [137]. Renowned for their efficiency in high-dimensional

feature spaces, SVMs are a favored machine learning algorithm for classification tasks,

thanks to their potent performance and reasonable computational demands. Consequently,

they frequently find application in machine learning-based epitope prediction pipelines, as

demonstrated in a variety of studies [47, 48, 51, 52, 54, 56, 58, 62] (Table 1).

Support Vector Machines have been used in numerous epitope prediction pipelines includ-

ing: Chen et al. (2007) [47] who introduced an innovative method for predicting linear

B-cell epitopes, leveraging an amino acid pair antigenicity scale and SVMs. This method

predicts 20-mer peptides and reports, using 5-fold cross-validation, maximum prediction

accuracies ranging from 64.39 % to 68.07 %. A later study by EL-Manzalawy, Dobbs and

Honavar (2008) [48] focused on predicting linear B-cell epitopes directly from sequence

data using a string kernel-based SVM. This study "evaluated support vector machine

classifiers trained utilising five different kernel methods using 5-fold cross-validation" on a

linear B-cell epitope dataset. Based on their findings they proposed a method for predicting

linear epitopes, BCPred, which achieved an estimated prediction accuracy of 67.9 % and

area under the receiver operating characteristic (ROC) curve of 0.758. These investigations

highlight the capabilities of SVMs in the realm of epitope prediction.

3.3.3 Artificial Neural Networks

Artificial neural networks (ANNs) [129, 130], are ML models inspired by biological neural

networks. Examples of types of feed-forward ANNs include the Multilayer Perceptron

(MLP). MLP’s are characterised by a specific architectural layout. Generally, their structure

comprises an initial input layer that receives the input data, followed by one or more hidden

layers and finally an output layer that generates the classification outcomes or predictions.

MLP’s have fully connected layers: every node within the network is connected to every
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node in the layer that precedes it and comes after it. The input layer passes the input vectors

to the neural network, the hidden layer(s) are where the transformations are performed

and the output layer makes a prediction based on the input [138]. MLPs are renowned for

having strong generalisation capabilities, allowing them to effectively model complex, non-

linear functions. Unlike many other algorithms, MLPs make no underlying assumptions

regarding the distribution of the data they operate on, providing a versatile and adaptable

tool for diverse machine learning tasks [139]. Neural networks have also been used in

several epitope prediction works [38, 60, 65, 67].

3.3.4 Gradient Boosting / XGBoost

Boosting is a machine learning ensemble method [140] that combines the predictions

of multiple ‘weak’individual models to create a more accurate final prediction. Unlike

methods like bagging, where individual models are trained independently, boosting aims

to improve model performance by taking into account the performance of previous models

[94, Chapter 12.4]. This iterative approach helps the ensemble focus on the samples that

are more challenging to classify correctly. Gradient boosting is a specific type of boosting

technique that builds multiple models sequentially, with each new model attempting to

correct the errors made by the previous ones, these models are often decision trees.

XGBoost (Extreme Gradient Boosting) [141] is an implementation of the gradient boosting

framework, specifically designed for solving classification, regression, and ranking prob-

lems. This powerful algorithm is known for its efficiency and effectiveness in producing

highly accurate predictions. Tree boosting, the technique employed by XGBoost, has

gained significant popularity in the machine learning community due to its ability to deliver

state-of-the-art results on various classification benchmarks [141, 142]. XGBoost, in par-

ticular, has a remarkable track record of success in numerous machine learning challenges

and competitions. Gradient boosting has been used for epitope prediction, Manavalan et

al., (2018) used gradient boosting in their work "iBCE-EL: A New Ensemble Learning

Framework for Improved Linear B-Cell Epitope Prediction" [39]. In their research, they

employed gradient boosting as part of an ensemble model for epitope prediction, which

also included Extremely Randomised Trees (ERT). The reported predictive performance of

their ensemble model was a Matthews correlation coefficient (MCC) of 0.463 when evalu-

ated through cross-validation on an independent test set. This performance showcases the

potential effectiveness of gradient boosting in enhancing linear B-cell epitope prediction.
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3.4 Evaluating Classifier Performance - Performance Measures

Evaluating the performance of a classification model is essential to understand its potential

for generalising to previously unseen data. Performance evaluation of a classifier is

conventionally conducted using a separate dataset known as the test set. The test set

comprises records that the model has not been exposed to during the training phase: the

test set data is distinct from the training dataset. Prior to modelling experimentation, it is

essential to set aside the test set. When curating a dataset for a machine learning problem,

it is standard practice to partition the labelled data into two distinct subsets: the training

set (for classifier training), and the test set (for model evaluation). To obtain valuable

insights into the generalisation performance of the trained classifiers, it is vital for the test

set to be representative of both the training data and any unseen real-world data that the

classifier is intended to make predictions on. Having an independent and representative test

set ensures that the evaluation results accurately reflect the classifier’s ability to perform

well on new and unseen data, allowing for a reliable assessment of its effectiveness in

real-world scenarios.

After training, a classification model can be used to make predictions on unseen test

instances. The classifier assigns a class label to each test instance based on the patterns and

features it has learned during training. These test set predictions, output by the classifier,

are then compared with the actual class labels (ground truth) to estimate the classifier’s

generalisation performance (ability to correctly predict linear B-cell epitopes). To better

visualise the performance of a classification model in classifying test instances, a confusion

matrix is often employed.

Predicted Class

Actual

Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 4. Confusion Matrix
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Table 4 shows the structure of a standard confusion matrix. Confusion matrices display a

breakdown of how the predictions made by a classification model compare to the ground

truth/actual class labels of the test instances. As displayed in Table 4, a confusion matrix is

typically organised into rows and columns where each row corresponds to the actual class

labels and each column corresponds to the predicted class label. The counts of instances

in each combination of true and predicted labels are recorded in the cells of the matrix.

Considering the confusion matrix in Table 4 the four cells contain the counts of:

■ True Positive (TP): Correctly predicted positive.

■ False Negative (FN): Instances predicted to be negative that are actually positive.

■ False Positive (FP): Instances predicted to be positive that are actually negative.

■ True Negative (TN): Correctly predicted negative.

Confusion matrices are useful for understanding the types of errors made by classifiers and

for evaluating their performance across different classes. Analysing classification results in

a confusion matrix can help to identify specific areas where the classifier is miss-classifying

labels more frequently, this can guide model refinement or dataset balancing techniques, to

try and achieve better classification performance. Confusion matrices can also be used to

derive other performance indicators, like accuracy and sensitivity, using the values in the

matrix.

3.4.1 Defining Selected Performance Measures

The performance measures selected to evaluate classification models in this work are

defined below:

■ Accuracy:
TP + TN

TP + FP + TN + FN

■ Sensitivity:
TP

TP + FN

■ Specificity:
TN

TN + FP
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■ Positive Predictive Value:
TP

TP + FP

■ Negative Predictive Value:
TN

TN + FN

■ F1 Score:

2 ·
PPV · TPR

PPV + TPR

■ MCC:
(TP · TN)− (FP · FN)

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Accuracy (ACC): Calculates the percentage of correctly classified labels made by the

classifier. Accuracy is a basic and easy to interpret measure, though it is sensitive to class

balance and therefore can be misleading if reported without considering the class balance.

Sensitivity (SENS): Also known as the True Positive Rate (TPR) is the ability of a

classifier to correctly identify (or ‘recall’) positive records. Sensitivity is therefore a

valuable measure in applications like medical diagnosis where identifying positive records

is critical. A high sensitivity indicates the classifier’s ability to correctly identifying positive

cases. However, achieving high sensitivity might lead to an increase in false positives,

which is an important trade-off to consider.

Specificity (SPEC): Also known as the True Negative Rate (TNR) is the ability of a classi-

fier to correctly identify negative instances. It is particularly valuable when minimising

false positive predictions is a priority.

Positive Predictive Value (PPV): Also known as Precision, is the proportion of positive

predictions that are true positive predictions. It is a measure of the ability of a classifier

to avoid false positive predictions. PPV is particularly useful when false positives are

undesirable, however it’s important to consider that this measure does not take into account

false negative predictions.

Negative Predictive Value (NPV): The proportion of negative predictions that are true

negative predictions.

J. S. M. Ashford, PhD Thesis, Aston University, 2023



45

F1 Score (F1): The harmonic mean of precision (PPV) and recall (SENS), useful for

balancing precision (PPV) and recall (SENS) as it gives equal weight to both. This makes

the F1 score a good measure for comparing the performance of different classifiers as it

gives a good idea of the performance in terms of both precision and recall. However, the

F1 score can be sensitive to class imbalance.

Matthews Correlation Coefficient MCC: A measure of the quality of binary classifica-

tions. It’s a special case of the ϕ phi coefficient [143] developed by Matthews in 1975

for comparison of chemical structures [144]. An MCC score is a value between -1 and 1,

with 1 representing a perfect prediction, 0 no better than random and -1 total disagreement

between prediction and observation. MCC is not sensitive to class imbalance, it is a

balanced measure which can be used even if classes are of very different sizes.

Area Under the ROC Curve (AUC): The Area Under the Receiver Operating Character-

istic Curve (AUC-ROC) is another measure used to assess the quality of binary predictions.

This measures the model’s ability to distinguish between the positive and negative classes.

It is calculated by first plotting an ROC curve (plotting sensitivity against 1-specificity)

at various threshold values, and then calculating the total area under the ROC curve. An

AUC score is a value between 0 and 1, with 1 representing a perfect prediction, 0.5 no

better than random and 0 total disagreement.

Selecting appropriate performance measures for this machine learning task is crucial

because it directly impacts how the model’s performance and suitability for epitope

prediction is evaluated. This work will employ the performance measures outlined above

(ACC, SENS, SPEC, PPV, NPV, F1, MCC & AUC) when assessing classifiers for linear

B-cell epitope prediction. Beyond their described merits, these performance indicators

also facilitate comparisons with other predictors reported in the existing literature.
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4. Organism-Specific Modelling for Linear B-Cell Epitope

Prediction

Most current epitope prediction tools were developed under a generalist approach, training

models using heterogeneous datasets to create predictors that can be deployed for a wide

variety of pathogens. However, with the rapid advancements in processing power and the

ever-increasing availability of epitope data spanning a diverse range of pathogens, there

arises an opportunity to explore organism or taxon-specific models as a viable alternative.

This approach holds untapped potential to significantly improve predictive performance.

This chapter explores organism-specific training for epitope prediction models and its

potential to yield substantial performance gains. Organism-specific models are compared

to models trained with heterogeneous and hybrid data, as well as widely-used predictors

from existing literature, across various performance indicators, to discern the advantages

of organism-specific training. The findings of this research showcase a promising alterna-

tive for developing custom-tailored predictive models with exceptional predictive power.

Moreover, these models offer ease of implementation and deployment, specifically tailored

to investigate pathogens of interest.

4.1 Generalist Modelling Approaches for Epitope Prediction

Existing epitope prediction tools, to the best of our knowledge, rely on datasets comprising

labeled peptide sequences derived from a diverse range of organisms (Table 5). The

use of such heterogeneous datasets stems from the common objective of developing

general-purpose predictors that can be readily employed without requiring users to specify

the source organism of the submitted peptides for classification. In fact, as recently as

2020, Collatz et al. [65] argued that including ªa large variety of known epitopes from

evolutionarily distinct organisms in the training setº is crucial for achieving unbiased

classification. Even some of the most recently published epitope predictors, such as

EpitopeVec [66] and BepiPred 3.0 [67], continue to utilise phylogenetically heterogeneous

training sets. This assumption holds merit when aiming to build generalist, one-size-fits-all

models that cater to a wide array of scenarios. However, it may prove unnecessary or even

counterproductive if the model is intended to generalise solely to a specific subset of all

possible observations.
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Table 5. Epitope prediction tools in the literature and the composition of their training

datasets. PK = prokaryotes; VI = virus; FG = fungi; PR = protozoan; HM = human; OE =

other eukaryotes. Details on the source databases used can be found on the works cited in

the Method column.

Method Year
Training dataset

Sources Composition

Antigenic [36] 1990 - -

PREDITOP [43] 1993 - -

People [44] 1999 - -

Bepitope [45] 2003 - -

Bcepred [46] 2004 - -

Söllner/Mayer [37] 2006 BCIPEP, FIMM PK+VI+FG+PR+OE

ABCpred [38] 2006 BCIPEP PK+VI+FG+PR+OE

Chen [47] 2007 BCIPEP PK+VI+FG+PR+OE

BCpred [48] 2008 BCIPEP PK+VI+FG+PR+OE

FBCpred [48] 2008 BCIPEP PK+VI+FG+PR+OE

LEPD [49] 2008 Antijen, PK+VI+PR+HM+OE

Pellequer

Epitopia [50] 2009 BCIPEP PK+VI+FG+PR+OE

COBEpro [51] 2009 BCIPEP, HIV PK+VI+FG+PR+OE

BayesB [52] 2010 BCIPEP PK+VI+FG+PR+OE

LEPS [53] 2011 BCIPEP PK+VI+FG+PR+OE

BEOracle [54] 2011 BCIPEP, IEDB, PK+VI+FG+HM+OE

Antijen

SVMTriP [132] 2012 IEDB PK+VI+PR+HM+OE

BEST [56] 2012 BCIPEP, PK+VI+OE

SWISS-PROT

LBtope [57] 2013 IEDB PK+VI+HM+PR+OE

BeePro [58] 2013 Mix of datasets PK+VI+FG+PR+HM+OE

EPMLR [59] 2014 BCIPEP, IEDB, PK+VI+FG+HM+OE

Antijen

DMN-LBE [60] 2015 IEDB PK+VI+HM+PR+OE

LBEEP [61] 2015 IEDB PK+VI+HM+PR+OE

APCpred [62] 2015 BCIPEP PK+VI+FG+PR+OE

BepiPred 2.0 [63] 2017 PDB PK+VI+OE

DRREP [145] 2017 BCIPEP PK+VI+FG+PR+OE

iBCE-EL [146] 2018 IEDB PK+VI+HM+PR+OE

EpiDope [65] 2020 IEDB PK+VI+HM+PR+OE

EpitopeVec [66] 2021 IEDB, Bcipep PK+VI+HM+PR+OE

BepiPred 3.0 [67] 2022 PDB PK+VI+OE
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4.2 The Organism Specific Hypothesis

The continuous advancements in computational processing power, coupled with the in-

creasing abundance of data available for distinct pathogens, suggest that adopting organism

or taxon-specific models may become a feasible alternative for linear B-cell epitope predic-

tion. Rather than relying on a single generalist model, developing predictors specifically

tailored for individual pathogens holds potential advantages. Developing organism-specific

predictors would involve training models using smaller, yet potentially higher-quality,

datasets, resulting in improved predictive performance for new epitopes related to the tar-

get organism, and possibly even its phylogenetically close relatives. Under this alternative

approach of training bespoke models for distinct pathogens (or groups of pathogens), the

objective is to obtain predictors that generalise well to the target organism(s), rather than

to the whole variety of pathogens that may interact with a given host.

This study investigates the effects of employing organism-specific datasets to train machine

learning models for linear B-cell epitope prediction. Proof-of-concept predictors are trained

using organism-specific, heterogeneous, and hybrid data, relating to data-rich pathogens

representing two major classes of parasitic organisms: nematodes and viruses. The effects

of these training sets on the models’ generalisation performance is quantitatively assessed

to ascertain whether organism-specific training can indeed yield superior predictors. The

results obtained from three test cases not only support the viability of this approach, but

also demonstrate that even relatively simple models trained on organism-specific data

exhibit superior performance compared to current state-of-the-art predictors, as evaluated

across multiple performance measures.

4.3 Organism Specific Modelling Pipeline Overview

Figure 6. Overview of the Epitope Prediction Pipeline.
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Figure 6 illustrates the organism-specific epitope prediction pipeline used in this work. To

construct an organism-specific dataset, publicly-available data is retrieved from the IEDB

[28], NCBI [109] and UniProt [22]. All records relating to known epitopes and known

non-immunogenic peptides from the target organism(s) are retrieved from the IEDB and

additional protein information is retrieved from NCBI and UniProt. The NCBI Taxonomy

database was also used to retrieve taxonomic/phylogenetic information relating to the

entries. 845 simple features (described in section 2.6.2) are then calculated for each amino

acid in a record in the dataset. These features are based on the local neighbourhood of

every position extracted using a 15-AA sliding window representation with a step size of

one (Section 2.6.1, Figure 4). Subsequently, the data is divided at the protein level, using

protein ID and similarity, into a training set for model development and a hold-out set

for estimating the models’ generalisation performance (detailed in Section 4.4.2). The

epitopes R package, which implements the main data retrieval and consolidation elements

of this pipeline, can be accessed at https://github.com/JodieAsh/Epitopes.git.

4.4 Organism Specific Dataset Generation

4.4.1 Target Pathogens

The selection of pathogens for this study was primarily based on the availability of a

substantial volume of validated positive and negative observations within the IEDB. This

criterion facilitated the implementation of the rigorous validation strategy outlined earlier,

which involved the use of a 25% hold-out set (see Section 4.4.2) while still ensuring

sufficient data for model development. To identify pathogens meeting these requirements,

the ten organism IDs with the greatest number of valid entries in the IEDB were extracted,

following the filtering process described in Section 2.5. The selection process involved a

further two key considerations:

(i) Ensuring a reasonable balance between positive and negative examples, thereby

excluding entries with heavily imbalanced class distributions (IDs: 353153, 1314,

5833, 1392).

(ii) Focusing on representing pathogens of interest. This removed entries related to

allergens or potential self-epitopes (IDs: 9606, 9913 and 3818).

Based on these criteria three pathogens of interest were selected: a multi-cellular parasite

(Onchocerca volvulus), an RNA virus (Hepatitis C Virus) and a DNA virus (Epstein-Barr

Virus). This selection allowed for the evaluation of the pathogen-specific tools developed

across distinct classes of organisms.
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A brief summary of each of the selected target organisms (used to investigate the efficacy

of organism-specific training) is provided below:

■ Onchocerca volvulus (taxonomy ID: 6282): This roundworm (Nematoda) is the

causative agent of Onchocerciasis, a major cause of blindness worldwide [147]. The

disease affects over 37 million people, primarily in Africa and Latin America [148,

149].

■ Epstein-Barr Virus (taxonomy ID: 10376): This double-stranded DNA virus belongs

to the Herpesviridae family. It is the causative agent of infectious mononucleosis

and has been linked to various human neoplastic diseases [150].

■ Hepatitis C Virus (taxonomy ID: 11102): This positive-sense single-stranded RNA

virus belongs to the Flaviviridae family. It is responsible for causing Hepatitis C

and has been linked to the development of certain cancers [151].

4.4.2 Dataset Generation

Organism specific datasets were generated for each selected pathogen (Onchocerca volvu-

lus, Epstein-Barr Virus and Hepatitis C Virus) based on the full XML export of the Immune

Epitope DataBase (IEDB) [28] retrieved on 10 October 2020, and filtered according to the

criteria outlined in Section 2.5.

For each pathogen, several distinct datasets were generated as follows:

1. Extraction of specific pathogen data: all examples related to the specific pathogen

were extracted based on the taxonomy ID information from the IEDB data. This

included all taxonomically-dependent IDs, such as those related to subspecies or

strains, as part of the data.

2. Hold-out dataset: To ensure unbiased model evaluation, a subset of the organism-

specific data (comprising approximately 25 % of the available observations) was

set aside as a (Hold-out) set. This test data was not utilised at any point during

the model development process, including during exploratory data analysis, data

pre-processing, modelling and hyperparameter tuning.
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3. Organism-specific training dataset: The remaining subset, which contained 75%

of the labelled peptides specific to the target pathogen, was designated as the

organism-specific (OrgSpec) training set. To minimise the chances of data leakage

[152] the division of datasets was conducted at the protein level. This was based

on protein ID, as well as sequence coverage and similarity. Proteins with similarity

and/or coverage greater than 80% were always placed within in the same split,

therefore preventing data leakage due to both peptide and protein similarities.

4. Heterogeneous training dataset: A second training dataset (Heterogeneous) was

created by randomly sampling observations (grouped by taxonomy ID) from the

complete IEDB database. Notably, this sampling excluded any observations as-

sociated to the target pathogen. To ensure a balanced training set, the sampling

routine included as many organisms as necessary to construct a class-balanced

heterogeneous training set, containing between 2,000 and 3,000 labelled peptides of

each class (epitope/non-epitope).

5. Hybrid training dataset: Finally, a third training set (Hybrid) was assembled

by combining the OrgSpec and Heterogeneous sets, incorporating both organism-

specific data and a diverse range of heterogeneous peptides from other organisms.

The dataset sizes extracted from each organism are documented in Table 6.

OrgSpec Heter. Hybrid Hold-out

O. volvulus
Positive 2441 2634 5075 832

Negative 2378 2922 5300 777

Epstein-Barr
Positive 1746 1981 3727 625

Negative 811 1864 2675 315

Hep. C Virus
Positive 919 1926 2845 218

Negative 783 1975 2758 358

Table 6. Number of positive/negative examples in each organism-specific dataset. Hold-out

sets always contain only target organism proteins that were not seen during model training.

In each scenario, the Hybrid dataset was the largest one, followed by the Heterogeneous

dataset and then the Organism-Specific (OrgSpec) dataset. This arrangement was intention-

ally structured to investigate the hypothesis that prioritising sample relevance (represented

by data from the organism of interest for which the models are being developed) over

sample size (which increases when heterogeneous observations are included) would lead

to improved prediction performance.
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4.5 Outline of Main Investigations

The datasets assembled for each pathogen facilitated the following investigations:

(i) The examination of the generalisation performance of the models in predicting new

epitopes within proteins belonging to the specific organisms for which they were

trained. This analysis involved assessing the predictive performance on the distinct

proteins that were reserved as the organism-specific Hold-out set.

(ii) The investigation of the effect of using exclusively organism-specific data on predic-

tive performance. This was accomplished by comparing models developed using the

OrgSpec, Hybrid and Heterogeneous datasets. Given that all pre-processing, feature

development, and classification models were consistent across cases, any systematic

differences in performance could be attributed to the pre-selection of training data.

(iii) The comparison of the performance of organism-specific models against conventional

approaches found in the literature. The inclusion of a hold-out approach (over cross-

validation) for model assessment was particularly important for this purpose, as it

allowed for the estimation of the generalisation performance of all predictors using

the same data. This approach avoided reliance on reported performance values from

the literature, which were obtained on distinct datasets or using different testing

protocols.

4.6 Modelling

4.6.1 Model Selection

To evaluate the performance of various classification models for organism-specific epitope

prediction, set in the space of features defined in this work, the O. volvulus (organism-

specific) training dataset was used. The dataset was further split into training and validation

sets based on protein ID and sequence similarity, excluding the hold-out set used in

the main experiments. The following models were tested: Random Forest (RF) [133],

XGBoost [141], Support Vector Machine (SVM) [131] and Multilayer Perceptron Neural

Network (MLP) [153]. These models were assessed across multiple performance measures,

including Accuracy, Matthews Correlation Coefficient (MCC), Area Under the ROC curve

(AUC) and Positive Predictive Value (PPV).

For these model selection experiments, all classification models were implemented using

the Scikit-learn package version 0.24.1 [154], except for XGBoost, which utilised the

implementation available in the XGBoost package [155]. The default hyperparameter

values provided by these packages were initially used for all methods. The specific

hyperparameters for each model can be found in Table 7. The full Python modelling

pipeline is available at: https://github.com/JodieAsh/Epitope_Prediction_V2.git.
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Table 7. Model hyperparameters used in the model selection experiments. Default values

from each implementation were used.

Model Parameter: value used

Random Forest n_estimators: 100

split criterion: Gini

max_depth: None

min_samples: 2

min_samples_leaf : 1

min_weight_fraction_leaf : 0

max_features: auto

max_leaf_nodes: None

min_impurity_decrease: 0

min_impurity_split: None

bootstrap: True

warm_start: False

class_weight: None

ccp_alpha: 0

max_samples: None

XGBoost eta: 0.3

gamma: 0

max_depth: 6

min_child_weight: 1

max_delta_step: 0

subsample: 1

sampling_method: auto

colsample_bytree: 1

lambda: 1

alpha: 0

tree_method: auto

sketch_eps: 0.03

scale_pos_weight: 1

updater: grow_colmaker

refresh_leaf : 1

grow_policy: depthwise

max_leaves: 0

max_bin: 256

predictor: auto

Support Vector Machine C: 1
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Table 7 ± continued from previous page

Model Parameters: values used (package defaults)

kernel: rbf

degree: 3

gamma: scale

coef0: 0

shrinking: True

probability: True

tol: 1e-3

cache_size: 200

class_weight: None

decision_function_shape: ovr

break_ties: False

Multilayer Perceptron hidden_layers_sizes: (100,)

activation: relu

solver: adam

alpha: 0.0001

batch_size: auto

learning_rate: constant

learning_rate_init: 0.001

power_t: 0.5

max_iter: 200

shuffle: True

tol: 1e-4

warm_start: False

momentum: 0.9

nesterovs_momentum: True

early_stopping: False

validation_fraction: 0.1

beta_1: 0.9

beta_2: 0.999

epsilon: 1e-8,

n_iter_no_change: 10

max_fun: 15000
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After evaluating the performance of each model across multiple indicators, the Random

Forest model was found to consistently outperformed the other models. The results,

presented in Table 8, show that the Random Forest model achieved the highest scores

across all performance measures. As a result, the Random Forest model was selected as

the primary modeling approach for all experiments.

Table 8. Point estimates of performance obtained for initial model exploration (on the

organism-specific validation set). ACC = Accuracy, MCC = Matthews Correlation Coeffi-

cient, PPV = Positive Predictive Value, AUC = Area Under the ROC Curve.

Model ACC MCC PPV AUC

Random Forest 0.695 0.377 0.739 0.753

XGBoost 0.690 0.364 0.727 0.741

Support Vector Machine 0.674 0.334 0.719 0.722

Multilayer Perceptron 0.661 0.300 0.694 0.705

Based on the results obtained, which demonstrated the superior performance of the Random

Forest model across various performance measures, it was decided to utilise the Random

Forest algorithm for developing all organism-specific models in this work. While additional

comprehensive model investigations could be conducted, the achieved high performance

was deemed satisfactory, justifying the adoption of Random Forest as the model of choice

for this study.

Random Forests, are ensemble learning methods that harness the strength of multiple

weaker decision tree (DT) models to produce a collective output based on the combined

predictions of the underlying DTs. Random forests offer a good balance between com-

putational cost/efficiency and performance; they are robust and versatile across diverse

data types and scales, making them an ideal choice for applications like epitope prediction

[61, 63]. Table 8 showed that preliminary comparative testing favored Random Forests

and Gradient Boosting models over alternatives such as multi-layer perceptron neural

networks and SVMs. While Gradient Boosting exhibited competitive performance, the

computational demands associated with it were comparatively higher. In contrast, Random

Forests demonstrated a favorable trade-off between computational efficiency and predictive

accuracy. This distinction in computational costs solidified RF’s position as the preferred

choice, ensuring a feasible and efficient modeling process.
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4.6.2 Hyperparameter Tuning

To potentially enhance the performance of the Random Forest classification model, hyper-

parameter tuning was investigated. Similar to the model selection experiments, the tuning

experiments were conducted using the O. volvulus training dataset (further split into train-

ing and validation). These tuning tests were performed using Scikit-learn’s randomised

search function, using the following fixed parameters:

■ n_iter: 200

■ scoring: mcc_scorer

■ refit: True

■ error_score: np.nan

■ pre_dispatch: None

The following hyperparameters were tuned for the Random Forest model:

■ bootstrap ∈ {False, T rue}. Selected value: True

■ max_features ∈ {auto, sqrt}. Selected value: auto

■ min_samples_split ∈ {10, 15, 20, 25, 30}. Selected value: 20

■ n_estimators ∈ {500, 550, 600, . . . , 1000}. Selected value: 650

■ min_samples_leaf ∈ {2, 3, 4, 5, 6}. Selected value: 4

■ max_depth ∈ {20, 40, . . . , 120}. Selected value: 80

After tuning these hyperparameters, the final performance values are presented in Table

9. For convenience, the baseline results obtained by the standard configuration are also

included in this table.

Table 9. Random Forest performance indicators before and after parameter tuning.

Method ACC MCC PPV AUC

Benchmark 0.695 0.377 0.739 0.753

After Tuning 0.703 0.394 0.744 0.760

By exploring various combinations of hyperparameters using this approach, the aim was to

identify the optimal configuration that maximises the performance of the Random Forest

model. It cannot be definitively concluded that hyperparameter tuning does not significantly

impact the performance of the method. Nonetheless, based on the observations, it was

noted that, even when employing considerably different hyperparameter values, these

variations did not result in substantial differences compared to the default. Considering

this, a decision was made to exclude hyperparameter tuning from the final implementation

of the models in this work. This choice was based on adopting a lower-complexity

approach to pipeline design and the rationale that the primary objective of the research was

to showcase the organism-specific training principle rather than extensively explore model
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optimisation. However, it’s important to note that this outcome does not preclude future,

more comprehensive investigations of different models and hyperparameter settings, which

could be valuable for fine-tuning performance in specific contexts.

4.6.3 Dimensionality Reduction

For the organism specific pipeline, various dimensionality reduction techniques were

investigated, including:

(i) Filter methods based on extracting the top K features using Mutual Information [106,

156] and the Anova F-value [157] as ordering scores.

(ii) Principal Component Analysis (PCA) [158, 159].

(iii) A wrapper method, Maximum Relevance-Minimum Redundancy (MRMR) [107].

These dimensionality reduction methods were assessed using the O. volvulus dataset. As

mentioned, to ensure unbiased evaluation, the data was split into training and validation sets

based on protein ID and sequence similarity. The holdout set, used in the main experiments,

was excluded from these evaluations. In this investigation, all dimensionality reduction

techniques were implemented using Scikit-learn. The default parameters provided by

Scikit-learn for each technique were employed during evaluation, as listed in Table 10. The

primary objective of this investigation was to identify the most effective dimensionality

reduction technique that could enhance epitope prediction performance. By comparing

the results obtained from each method, the study aimed to determine which technique

provided the most significant improvement in epitope prediction performance.

Table 10. Default Dimensionality Reduction Techniques Parameters

Method Parameters

Principal Component Analysis n_components∈ {0.95, 0.5, 0.15}
copy: True

whiten: False

sdv_solver: auto

tol: 0

iterated_power: auto

Mutual Information discrete_features: auto

n_neighbors: 3

copy: True

Select K Best score_func: f_classif

k: 15

MRMR K: 15

relevance: f

redundancy: c

denominator: mean

only_same_domain: False
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The evaluation of various dimensionality reduction techniques did not yield significant

performance gains for any of the classifiers tested. As an illustrative example, Table 11

displays the results obtained specifically for the default Random Forest classifier.

Method Features ACC MCC PPV AUC

Benchmark 845 0.695 0.377 0.739 0.753

Mutual Information 15 0.688 0.365 0.710 0.746

PCA (0.95) 521 0.655 0.284 0.683 0.699

PCA (0.50) 121 0.674 0.334 0.718 0.726

PCA (0.15) 11 0.678 0.353 0.740 0.734

Select K Best 70 0.691 0.370 0.736 0.745

MRMR 15 0.700 0.385 0.738 0.747

Table 11. Random Forest classifier performance after dimensionality reduction. The PCA

values refer to the proportion of variance retained. The baseline values obtained by the

Random Forest on the full feature set are repeated here for convenience (referenced to as

benchmark).

Despite experimenting with different dimensionality reduction methods, the predictive

performance of the classifiers remained relatively stable, and no substantial improvements

were observed in the reduced feature sets. The study did not identify any dimensionality

reduction technique that significantly enhanced the performance of the classifiers in the

context of epitope prediction.

Given that the primary aim of this research was to demonstrate the impact of organism-

specific training, rather than building a fully-deployed pipeline, the decision was made

to retain the full feature sets in the solutions presented. This choice was based on the

observed lack of improvement in generalisation performance with feature reduction (Table

11) and the understanding that Random Forest inherently performs its own embedded

feature prioritisation process. Reducing the feature space through dimensionality reduction

will, however, prove valuable when developing a user-facing interface for the organism-

specific pipeline. It can effectively reduce the computational costs associated with feature

calculation and model fitting, making the pipeline more efficient and user-friendly without

compromising its performance.
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4.7 Model Testing

After experimentation with modelling, hyperparameter tuning and feature selection, all

training datasets from Section 4.4.2 were used to develop Random Forest (RF) predictors

[133]. Multiple RF models were built using the training datasets (extracted from a specific

target pathogen). Once trained, each RF model was deployed to make predictions on the

corresponding hold-out set reserved specifically for that particular pathogen. This approach

ensured that predictions were made for epitopes in proteins belonging to the respective

target organisms for which the models were developed. By evaluating the performance

of each RF model on its hold-out set, the predictive capability of the models for their

corresponding pathogens could be assessed.

Figure 7. Summary of final models and predictions generated. Three separate models were

trained for each target pathogen: an Org-Spec, Heterogeneous and Hybrid model. All were

deployed on the pathogen specific hold-out sets.

Figure 7 provides an overview of the final models generated for each of the target pathogens

and their predictions. Each model was employed to make predictions on the hold-out set

reserved for its corresponding pathogen, resulting in three sets of predictions (one from each

model) for each pathogen. The predictions generated by each model comprised a predicted

probability for every position within each protein of the hold-out set, indicating whether

that position belonged to an epitope or not. These probabilities were then converted into

binary predictions (epitope or non-epitope) using a threshold of 0.5. From these amino-acid

wise predictions, predicted epitopes of arbitrary lengths were extracted for each protein in

the hold-out set. To minimise prediction noise, positive regions shorter than 8-amino-acids

long (consistent with the initial filtering strategy used for the training data) were filtered out

from the output. This filtering step helped to ensure that the predicted epitopes were more
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accurate and biologically meaningful for further analysis and interpretation. The resulting

epitope predictions enabled us to evaluate the performance and predictive capabilities of

the organism-specific, heterogeneous, and hybrid models on their corresponding hold-out

datasets. By testing the models on unseen data from each pathogen, we could gauge their

ability to generalise and make accurate predictions, providing valuable insights into the

effectiveness of the organism-specific approach for epitope prediction.

4.7.1 Performance Assessment and Comparison

Several performance indicators were calculated to provide comparability with different

references in the literature, and to explore distinct aspects of the predictive behaviour of

the models. More specifically, model performance was compared and assessed using:

Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity (SENS),

Accuracy (ACC), Area Under the ROC Curve (AUC) and Matthews Correlation Coefficient

(MCC). The detailed mathematical definition and interpretation of each of these measures

is provided in Section 3.4. By employing these performance indicators and comparing

them with existing studies in the field, we obtained a holistic understanding of the models’

effectiveness in epitope prediction.

The performance assessment and comparison in this section is exclusively based on out-of-

sample predictions, specifically the performance observed on the dedicated hold-out set for

each individual pathogen. This approach ensures the robustness of the evaluation process,

as this hold-out data is entirely excluded from the model development phase. Therefore,

the reported performance values serve as reliable estimates of the models’ generalisation

capabilities for these specific organisms.

Performance was calculated based on peptide-wise correct classifications. Following

standard practice, a classification was deemed correct if the model predicted the correct

class for more than half of the residues within a labeled peptide. Standard errors of

estimation for each performance indicator, along with p-values for comparing mean

performance between our reference implementation (trained with OrgSpec) and all other

comparison methods, were computed using the Bootstrap method [160] (specifically, 999

bootstrap re-samples were generated in all cases). The resulting p-values underwent

correction for multiple hypothesis testing (MHT) using the Holm correction technique

[161]. This correction strategy ensures stringent control of the Family-wise error rate

(FWER) for each hypothesis family. Across all comparisons, significance was established

at a collective α⋆ = 0.05 threshold (significance level). To establish a comparison baseline,

five widely recognised B-cell epitope predictors with user-friendly online interfaces were

employed. These predictors are: Bepipred 2.0 [63], SVMtrip [132], LBtope [57], ABCpred

[38], and iBCE-EL [146]. These models were employed to predict epitopes within the

same hold-out sets, utilising the default configurations of their respective online tools.
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4.8 Results

4.8.1 Organism-Specific Training Improves Performance of Linear

B-Cell Epitope Prediction

As described in Section 4.7, the performance of the organism-specific Random Forest

models (RF-OrgSpec) was compared with:

i. Random Forest models using the same parameters but trained with heterogeneous and

hybrid data, to investigate the effect of the data selection strategy on performance.

ii. A selection of widely-used predictors from the literature, providing a basis for

comparison with established methods.

In all cases the performance evaluation was conducted using the hold-out set specifically

isolated for each pathogen, which was not used at any point during model development.

Figure 8 provides a comprehensive summary of the results obtained for the organisms

described in Section 4.4.1. Notably, a strong positive effect of training models with

organism-specific data was observed across all datasets. For all studied organisms, (EBV,

HepC & O.volvulus) the RF-OrgSpec models consistently achieved the highest scores

among all RF predictors, outperforming the RF-Hybrid and RF-Heterogeneous models,

across all performance measures. A clear performance ordering RF-OrgSpec > RF-Hybrid

> RF-Heter can be observed across all pathogens, on all performance indices used, showing

that RF-OrgSpec outperforms RF-Hybrid, which in turn surpasses RF-Heter. The statistical

analysis, with corrected p-values, further supports these observations, indicating that the

observed differences are mostly statistically significant at the joint 0.05 significance level.

These findings serve as strong validation for the initial hypothesis that training models with

organism-specific data significantly enhances predictive performance. This improvement

is evident even when comparing the performance of the OrgSpec models with those that

include the same organism-specific data alongside examples from other organisms (RF-

Hybrid). The results emphasise the effectiveness of organism-specific training in epitope

prediction, showcasing its superiority in achieving enhanced predictive capabilities when

compared to hybrid and heterogeneous models. These observations highlight the potential

of leveraging organism-specific training to develop custom-tailored predictive models with

superior performance for specific pathogens.
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Figure 8. Performance estimates and standard errors of different predictors on the hold-out

data of the target organisms. RF-OrgSpec, RF-Hybrid and RF-Heter models were deployed

on the hold-out set along with several widely-used epitope predictors from the literature

(SVMtrip, LBtope, iBCE-EL, Bepipred2, ABCpred). The values near each estimate are

MHT-corrected p-values for the comparison of mean performance against RF-OrgSpec.

Estimates are colour-coded for the result of significance tests at the α∗ = 0.05 significance

level (green for significantly worse than RF-OrgSpec, red for significantly better, blue for

non-statistically significant differences). The p-values were truncated at < 0.01 and > 0.9
due to loss in precision of bootstrap estimates at extreme values.
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Additional analyses further confirm that the performance gains of organism-specific pre-

diction are observed specifically for the pathogen on which the model is trained, but are

not evident when attempting to predict epitopes for other organisms. Figure 9 contrasts the

observed performance of the RF-OrgSpec models on the hold-out set of their respective

organism with that obtained when predicting epitopes for the other pathogens. The results

demonstrate that the substantial gains in organism-specific performance (as shown in

Figure 8) come with a trade-off: the models’ ability to predict epitopes in proteins from

other pathogens is reduced. This observation further supports our underlying hypothesis

that organism-specific training enables models to capture unique patterns that are specific

to the target pathogen.

Figure 9. Aggregated performance indices (Accuracy, AUC and MCC) of each organism-

specific model on each organism-specific hold-out set. This shows how organism-specific

training results in models that generalise very well to the particular pathogen for which

they were developed, at the cost of degraded performance for other pathogens.
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4.8.2 Organism-Specific Models Exhibit Better Performance than

Existing Generalist Models

Comparing the performance of the RF-OrgSpec models with the selected predictors

(LBtope, iBCE-EL, Bepipred2 & ABCpred) in Figure 8, it is evident that the standard

Random Forest model used in this study (even without hyper-parameter tuning or threshold

adjustment) consistently outperforms all baseline models from the literature across most

performance measures. For all studied organisms, (EBV, HepC & O.volvulus) the RF-

OrgSpec models consistently achieved the highest performance among all predictors,

across all performance measures, with only two exceptions: positive predictive value

(PPV) for EBV with LBtope and sensitivity (SENS) for O.volvulus with Bepipred2. The

only predictor that consistently presents performance values comparable to RF-OrgSpec is

LBtope in the case of the Hepatitis C virus. However, this can be partly attributed to the

fact that a portion of the hold-out examples used for evaluating the models are also present

in the training data of LBtope (approximately 9.59% of the Hep C hold-out sequences

are present in the LBtope training dataset). Similarly, a significant proportion of hold-out

Hep C examples are found in the training data of Bepipred2 (16.3%) and iBCE-EL (8.6%).

Other predictors are not substantially affected by this data leakage, and it is not observed

in the case of the other tested pathogens.

Table 12 presents the performance values and standard errors of all predictors on all

test organisms, and shows performance values calculated using only the unseen peptides

(not part of the training set) for the case of the Hepatitis C Virus. Out of all organisms

studied, only the Hepatitis C Virus had a significant presence of hold-out observations

as part of the training sets of some benchmark predictors, with 16.3% of the hold-out

sequences present in the training data of Bepipred2, 8.6% in iBCE-EL, and 9.59% in

LBtope. For the other organisms, this type of leakage was minimal, and their performance

estimates were not affected, allowing the use of the full hold-out set for assessment and

presenting a single estimate for their performance. Data leakage appeared to impact the

performance of LBtope when evaluated on the hold-out set, as evidenced by a substantial

drop in performance observed when using only sequences not present in the training set

for validation (Table 12). The values in parentheses in Table 12 indicate the performance

variation (up or down) observed when only sequences not present in the training set were

used for validation, highlighting the importance of proper data separation to obtain accurate

performance estimates.
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Epstein-Barr Virus

ACC AUC MCC PPV NPV SENS

RF-OrgSpec 0.72± 0.01 0.74± 0.02 0.32± 0.03 0.73± 0.02 0.67± 0.04 0.92± 0.01

RF-Hybrid 0.45± 0.02 0.5± 0.02 −0.05± 0.03 0.64± 0.02 0.32± 0.02 0.39± 0.02

RF-Heter 0.35± 0.02 0.36± 0.02 −0.25± 0.03 0.51± 0.03 0.24± 0.02 0.3± 0.02

ABCpred 0.53± 0.02 0.49± 0.02 −0.05± 0.03 0.65± 0.02 0.3± 0.03 0.63± 0.02

Bepipred2 0.53± 0.02 0.42± 0.02 −0.11± 0.03 0.63± 0.02 0.25± 0.03 0.7± 0.02

iBCE-EL 0.4± 0.02 0.46± 0.02 0.01± 0.03 0.68± 0.04 0.34± 0.02 0.18± 0.02

LBtope 0.55± 0.02 0.7± 0.02 0.19± 0.03 0.78± 0.02 0.41± 0.02 0.45± 0.02

SVMtrip 0.38± 0.02 0.43± 0.02 −0.09± 0.03 0.59± 0.03 0.31± 0.02 0.21± 0.02

O. volvulus

ACC AUC MCC PPV NPV SENS

RF-OrgSpec 0.75± 0.01 0.83± 0.01 0.51± 0.02 0.78± 0.01 0.73± 0.02 0.73± 0.02

RF-Hybrid 0.67± 0.01 0.75± 0.01 0.34± 0.02 0.69± 0.02 0.66± 0.02 0.67± 0.02

RF-Heter 0.54± 0.01 0.56± 0.01 0.06± 0.03 0.54± 0.02 0.52± 0.02 0.67± 0.02

ABCpred 0.51± 0.01 0.52± 0.01 0.02± 0.02 0.53± 0.02 0.49± 0.02 0.58± 0.02

Bepipred2 0.63± 0.01 0.65± 0.01 0.26± 0.02 0.61± 0.01 0.66± 0.02 0.77± 0.01

iBCE-EL 0.49± 0.01 0.57± 0.01 0.02± 0.03 0.55± 0.04 0.49± 0.01 0.1± 0.01

LBtope 0.58± 0.01 0.59± 0.01 0.16± 0.02 0.61± 0.02 0.55± 0.02 0.51± 0.02

SVMtrip 0.49± 0.01 0.49± 0.01 −0.01± 0.02 0.51± 0.02 0.48± 0.01 0.25± 0.01

Hepatitis C Virus

ACC AUC MCC PPV NPV SENS

RF-OrgSpec 0.75± 0.02 0.8± 0.02 0.47± 0.04 0.67± 0.03 0.8± 0.02 0.66± 0.03 (0.01 ↑)

RF-Hybrid 0.71± 0.02 0.75± 0.02 0.36± 0.04 0.63± 0.04 0.74± 0.02 (0.01 ↑) 0.53± 0.03 (0.01 ↑)

RF-Heter 0.57± 0.02 0.55± 0.02 0.04± 0.04 0.41± 0.04 0.63± 0.02 0.28± 0.03

ABCpred 0.49± 0.02 0.58± 0.02 0.03± 0.04 0.39± 0.03 0.64± 0.03 0.64± 0.03

Bepipred2 0.62± 0.02 (0.02 ↓) 0.64± 0.02 (0.04 ↓) 0.25± 0.04 (0.03 ↓) 0.5± 0.03 (0.01 ↑) 0.74± 0.03 (0.03 ↓) 0.66± 0.03 (0.03 ↓)

iBCE-EL 0.64± 0.02 (0.02 ↓) 0.64± 0.02 0.14± 0.04 (0.02 ↑) 0.62± 0.08 (0.10 ↑) 0.64± 0.02 (0.02 ↓) 0.12± 0.02 (0.02 ↓)

LBtope 0.76± 0.02 0.82± 0.02 (0.11 ↓) 0.49± 0.04 (0.27 ↓) 0.69± 0.03 (0.38 ↓) 0.8± 0.02 (0.08 ↑) 0.67± 0.03 (0.25 ↓)

SVMtrip 0.61± 0.02 0.54± 0.02 (0.01 ↓) 0.06± 0.04 (0.02 ↓) 0.45± 0.06 (0.03 ↓) 0.63± 0.02 0.14± 0.02 (0.01 ↓)

Table 12. Estimates and standard errors of performance for all models tested on the

validation sets. Values in parentheses indicate the performance variation (up or down)

observed when only sequences not present in the training set were used for validation.

Only the Hepatitis C Virus had a significant presence of hold-out observations as part

of the training sets of some of the benchmark predictors (16.3% for Bepipred2, 8.6%
for iBCE-EL and 9.59% for LBtope). For the other organisms this type of leakage was

minimal and did not affect the estimates, so the full hold-out set was used for assessment

and a single estimate is presented.

The outcomes of this study highlight the significant benefits of adopting organism-specific

training for the development of linear B-cell epitope prediction models. Not only did all

RF-OrgSpec models consistently outperform the RF-Hybrid and RF-Heterogeneous models

but the majority of them also exhibited superior performance compared to the chosen

benchmark predictors from the literature, across all assessed performance measures for

each respective target pathogen. This validation further supports the notion that leveraging

organism-specific data enables the construction of predictive models that capture pathogen-

specific patterns, resulting in enhanced predictive capabilities. This work not only expands

the understanding of organism-specific modeling but also offers a promising avenue for

improving epitope prediction across a range of pathogens.
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4.8.3 Illustrative Example: Onchocerca volvulus Results

This section offers a deeper exploration of the predictions obtained for the O. volvulus

dataset to provide a comprehensive illustration of the organism-specific modelling results.

Figure 10 displays the receiver operating characteristic (ROC) curves obtained for all

predictors on the hold-out datasets for each target pathogen. The right panel of Figure 10

shows the ROC curves for all predictors on the O. volvulus hold-out dataset. This graph

clearly demonstrates significant performance gains with the organism-specific model. The

RF-OrgSpec model exhibited excellent robustness to different threshold values (AUC =

0.83). Additionally, the RF-Hybrid, which also incorporated organism-specific data in

its training, showed reasonably good performance (AUC = 0.75). These findings further

support the efficacy of organism-specific training in improving predictive capabilities for

epitope prediction.

Figure 10. ROC curves for all predictors tested on the hold out sets for the Epstein-Barr

Virus (left), Hepatitis C Virus (centre) and Onchocerca volvulus (right).

Figures 11 and 12 illustrate the regions predicted as epitopes by the organism-specific

models for the 22 hold-out proteins of the O. volvulus hold-out dataset, using the default

threshold value of 0.5. These results showcase not only the excellent agreement of the

RF-OrgSpec predictions with the known epitope labels on the hold-out proteins, but also

highlight a number of newly identified potential epitopes that may exist in those proteins.

The peptides output by the O. volvulus model with an average probability of over 0.75

are listed in Table 13. These results provide valuable insights into the effectiveness and

potential of the organism-specific approach for epitope prediction.
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Figure 11. RF-OrgSpec predictions for the proteins on the O. volvulus hold-out set (Part

1). The narrow line shows the predicted probability returned by RF-OrgSpec, which was

thresholded to yield positive/negative predictions. Light-green highlights indicate regions

that were labelled as positive/negative in the IEDB data. Narrow dark green indicates

true positive predictions, and red indicates new candidate targets, that is, regions without

known labels that were predicted as positive by the RF-OrgSpec model.
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Figure 12. RF-OrgSpec predictions for the proteins on the O. volvulus hold-out set (Part

2). The narrow line shows the predicted probability returned by RF-OrgSpec, which was

thresholded to yield positive/negative predictions. Light-green highlights indicate regions

that were labelled as positive/negative in the IEDB data. Narrow dark green indicates

true positive predictions, and red indicates new candidate targets, that is, regions without

known labels that were predicted as positive by the RF-OrgSpec model.
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Table 13. Predicted target regions in proteins of the O. volvulus hold-out set with average

predicted probabilities above 0.75. Column ‘Matches’ indicates IEDB epitope IDs for

which the sequence identity returned a match of over 80%. Two candidate epitopes have

no match on IEDB (Matches = N/A), and may represent new targets for experimental

investigation.

Protein Start End Length Prob. Matches

A0A044UVG8 845 882 38 0.86 852235 (100%); 855900 (100%)

AAD00842.1 1 71 71 0.83 851260 (100%); 856295 (100%); 853774

(100%); 854736 (100%); 854918

(93.333%)

A0A044V9S3 43 85 43 0.81 854970 (100%); 851810 (100%); 852047

(100%); 857301 (100%); 857276 (100%);

851449 (87.5%); 854446 (85.714%)

A0A044SS43 15 90 76 0.80 854918 (100%); 851260 (100%); 856295

(100%); 853774 (100%); 854736 (100%);

856311 (85.714%)

AAF64251.1 120 149 30 0.80 854055 (100%); 853779 (100%); 852831

(93.333%)

A0A2K6VRB1 299 349 51 0.80 855140 (100%); 855121 (100%); 855119

(100%); 851603 (100%); 855456 (100%);

853564 (90%)

AAF64251.1 376 394 19 0.80 854291 (100%); 853775 (100%); 851576

(100%)

A0A044SAZ1 425 442 18 0.80 855469 (100%); 855469 (100%); 854673

(100%); 855208 (100%); 945036

(83.333%); 945545 (83.333%)

A0A044SS43 875 901 27 0.80 856192 (100%)

A0A044SAZ1 577 601 25 0.79 851740 (100%)

A0A044UVG8 829 841 13 0.79 N/A

A0A044SS43 945 970 26 0.79 853848 (100%); 856088 (83.333%)

A0A044SS43 743 766 24 0.78 853390 (100%); 854905 (100%); 854712

(100%)

A0A044SS43 977 1087 111 0.78 856569 (100%); 855321 (100%); 852138

(100%); 856604 (100%); 851924 (100%)

AAF64251.1 516 542 27 0.78 856224 (100%)

A0A044SS43 779 819 41 0.77 856056 (100%)

A0A044RF80 1485 1501 17 0.77 854139 (100%); 851875 (100%)
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Table 13 ± continued from previous page

Protein Start End Length Prob. Matches

A0A044SS43 636 659 24 0.77 851949 (100%); 854897 (100%); 852938

(83.333%)

A0A044SS43 423 485 63 0.77 853828 (100%); 852292 (100%); 853331

(100%); 854720 (100%); 853875 (100%);

851706 (100%)

A0A044UVG8 1 141 141 0.77 853160 (100%); 851567 (100%); 854638

(100%); 852144 (100%); 853634 (100%);

854011 (100%); 854765 (100%); 853789

(100%); 855619 (100%)

A0A044UVG8 1400 1458 59 0.77 854721 (100%); 855565 (100%)

A0A044UVG8 1059 1094 36 0.77 855021 (100%); 856367 (100%)

AAF64254.1 328 345 18 0.77 854085 (100%)

A0A044UVG8 661 688 28 0.77 854757 (100%); 856403 (100%)

A0A044TU88 308 354 47 0.76 852155 (100%); 851711 (100%); 853615

(100%)

A0A044SS43 915 929 15 0.76 N/A

A0A044QWA5 421 457 37 0.75 854962 (100%); 851542 (100%); 851715

(100%); 855420 (100%)

AAF64251.1 239 294 56 0.75 856870 (100%); 853605 (100%); 852659

(100%); 851234 (100%)

This series of results exemplifies how the heightened overall performance of organism-

specific models, in contrast to state-of-the-art predictors, can be immensely valuable in

advancing the identification and selection of epitopes for diagnostic targets and vaccine

candidates for infectious diseases. Notably, the enhanced positive predictive values (PPV),

as indicated in Figure 8, indicate that the predicted targets hold a high likelihood of being

antigenic, thereby enhancing the efficiency of epitope discovery processes facilitated by the

proposed organism-specific models. This could be a consequence of unique, idiosyncratic

epitope patterns specific to different species, that would be overlooked by generalist

predictors. For this reason, organism-specific models hold exceptional relevance for

pathogen types typically underrepresented in broad, generic epitope training databases.
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4.9 Insights from Organism-Specific Epitope Prediction Results

The results described in this section indicate a clear improvement in performance resulting

from the use of organism-specific models, when compared to generalist predictors trained

on heterogeneous, or even hybrid, data. While a comprehensive analysis of the under-

lying factors contributing to these performance disparities is beyond the purview of this

study, several potential non-mutually exclusive hypotheses can be suggested for further

exploration.

4.9.1 Exploring Feature Relevance and Implications in the Context of

Organism-Specific Modelling

In an attempt to unravel the possible factors contributing to the superior performance

exhibited by organism-specific data-trained models, a visual exploration of feature rele-

vance was conducted. This section of the study delves into the details of this investigation.

Throughout these figures, the various families of features are denoted using the following

nomenclature:

■ AAdescr.: Amino Acid Descriptors (66 features), 66 physiochemical descriptors

(Cruciani properties [115], Kidera factors [116], Z-scales [117], FASGAI indices

[118], T-scales [119], VHSE-scales [120], ProtFP descriptors [121], ST-scales [122],

BLOSUM indices [123] & MS-WHIM scores [124]).

■ Atoms: Counts of Carbon, Hydrogen, Nitrogen, Oxygen and Sulphur atoms

(5 features).

■ CT: 343 Conjoint Triad frequencies [85] (343 features).

■ Entropy: Sequence entropy/information entropy [113] (1 feature).

■ Freq-1AA: Frequencies of occurrence of each amino-acid (20 features).

■ Freq-2AA: Frequencies of occurrence of each dipeptide (400 features).

■ Freq-Types: Frequencies of occurrence of each of the 9 amino-acid types (aliphatic,

acidic, polar, etc.) (9 features).

■ Mol. weight: Molecular weight (1 feature).

All features were derived from the local 15 amino acid-wide neighbourhood surrounding

each position within a protein sequence (as described in Section 2.6.1). Figures 13, 14 &

15 offer an insightful analysis into the significance of distinct features and feature groups,

providing valuable insights into their contributions to the predictive capabilities of both

OrgSpec and Heterogeneous models.
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Figure 13. Feature importance of organism-specific (OrgSpec) and heterogeneous (Heter)

RF models coloured by feature family. In all cases, the Freq-2AA and CT features contribute

very little to the predictive ability of the RF models, and the AAdescr-type features are

consistently selected as the most relevant by Random Forest.

Figure 14. Comparison of feature importance between organism-specific and heteroge-

neous data-trained models stratified by pathogen. The dashed regression line serves as a

reference to qualitatively assess the strong correlation between the two sets. Note: both

axes are log-scaled.
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Figure 15. Feature importance for different organism-specific models. The dashed re-

gression line provides a reference for qualitatively assessing the high correlation. Note:

both axes are log-scaled. This again highlights the high relevance of the physiochemical

descriptors AAdescr, followed by the atom counts and single-amino acid frequencies

(Freq-1AA). Dipeptide (Freq-2AA) and CT frequencies do not contribute significantly to

any of the models.
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From this analysis, there are several interesting general insights that can be derived regard-

ing which feature groups contribute the most to the predictive ability of both organism-

specific (OrgSpec) and heterogeneous (Heter) models (Figures 13, 14 & 15). One notable

observation is the disproportionately large prevalence of AA descriptors-type features

among the most influential for predictive accuracy. Another is the apparent irrelevance

of di-peptide frequencies or Conjoint Triads in the context of the linear B-cell epitope

prediction problem modelled here.

All three figures (13, 14 & 15) display the same patterns of relative importance of feature

families: highlighting the high relevance of the physiochemical descriptors (AAdescr),

followed by the atom counts (Atoms) and single amino-acid frequencies (Freq-1AA).

Dipeptide (Freq-2AA) and CT frequencies exhibit minimum contribution to the predictive

capabilities of any of the models. However, for the context of this study, it’s especially

valuable to focus on features that consistently exhibit higher relevance for organism-specific

(OrgSpec) models compared to heterogeneous (Heterogeneous) ones.

As indicated in Figures 16 & 17 the BLOSUM1 feature [162] stands out prominently as

highly relevant overall, with particular significance for the organism-specific models. The

BLOSUM1 feature is strongly correlated with hydrophobicity, boasting an r2 value of 0.94

according to [162]. In the windowed data representation used in this study, this feature

quantifies the average hydrophobicity of the 15-amino-acid neighborhood surrounding a

specific position on the protein. Hydrophobicity and hydrophilicity are closely linked to

epitope accessibility within the protein structure. Hydrophilic polar regions are typically

found on the protein’s surface, continually exposed to antibodies, whereas hydropho-

bic regions often engage in interactions within the protein’s core or with other cellular

components, rendering them less accessible to the serological immune response [35]. Ad-

ditionally, there are other features that consistently emerge as highly relevant, although not

as prominently as BLOSUM1. These include features like ProtFP1, Z1, VHSE8, and F5 .

These features are composite scales derived from algebraic transformations of underlying

physicochemical properties, lacking the same direct interpretability as BLOSUM1, which

hinders the formulation of biochemical hypotheses based on them. While intriguing, the

detailed investigation of underlying mechanisms potentially represented by these particular

features is beyond the scope of this work.
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Figure 16. Thirty most highly relevant features according to each Random Forest model

trained for each pathogen (organism-specific and heterogeneous). The high prevalence of

AAdescr features is clear, although they make up only a fraction of the total feature space

(66/845 features ≊ 7.8%).
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Figure 17. An alternate representation of the top thirty most relevant features selected by

the Random Forest models. The BLOSUM1 feature appears as particularly relevant for all

organism-specific models.
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4.9.2 Spatial Distribution of Observations

Another factor that could offer insight into the improved performance of organism-specific

models is the potential variance in the spatial distribution of epitopes within the feature

space, depending on the pathogen. To explore the local data structure, t-distributed stochas-

tic neighbor embedding (t-SNE) projections [163] were utilised to investigate whether data

originating from different pathogens exhibit distinct clustering or neighborhood patterns

concerning positive and negative observations. Figure 18 presents these t-SNE projections.

Figure 18. Estimated probability density of epitope and non-epitope observations in the

t-SNE projection. Clear distinct regions of high density of positive/negative observations

can be seen which occupy different portions of the feature space. Epitopes (positive) of

different pathogens tend to occur in distinct regions of the feature space. Models trained

on combined (heterogeneous) data would not be able to explore these patterns.
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Figure 18 illustrates the estimated density of observations on the 2D t-SNE projection of

the data, categorised by pathogen and class. The V1-V2 coordinates remain consistent

across all panels and clear distinct regions with high densities of both positive and negative

observations can be seen, which occupy different portions of the feature space. The figure

clearly demonstrates how the density of positive and negative examples not only varies

depending on the pathogen but also reveals that regions with a high density of positive

examples for one organism may simultaneously contain high densities of negative examples

for others. For instance, the high-density top-left portions of the negative examples for both

EBV and HepC coincide with a corresponding high-density region of positive examples

for O. volvulus.

This type of pattern can help explain the effectiveness of organism-specific training from

a data mining perspective, although not necessarily a biological one. Generalist models

trained on heterogeneous data might struggle to discern these organism-specific patterns

since they would appear as a more mixed combination of positive and negative examples

if data from multiple pathogens were merged into a single training set. This could in

effect prevent those models from identifying promising regions of the feature space that

were potentially rich in epitopes of a specific pathogen, leading to reduced predictive

performance.

4.10 Organism-Specific Modelling for Epitope Prediction Conclusions

This study investigated the use of organism-specific data for improving the performance of

linear B-cell epitope prediction. Organism-specific Random Forest models were developed

for three distinct pathogens, namely the Epstein-Barr Virus, Hepatitis C Virus, and the

roundworm Onchocerca volvulus. Our findings revealed that these models presented

substantial performance improvements in comparison to similar models trained on hetero-

geneous and hybrid datasets, across multiple key performance indicators. These results

suggest that carefully pre-selecting the most relevant data and training bespoke models for

specific pathogens is preferable to the common strategy of increasing and diversifying the

training dataset.

Furthermore, performance comparisons also highlight that this organism-specific mod-

eling approach can yield results that are not only on par with but, in several instances,

surpass those of common predictors from the literature; despite the fact that the predictors

developed in this study were relatively straightforward proof-of-concept models without ex-

tensive fine-tuning. Additionally, only basic features derived from the amino acid sequence

itself were utilised, with no intricate feature engineering applied. Further enhancements to

organism-specific predictors, including model refinement and the incorporation of more
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informative features, have the potential to elevate predictive performance even further.

While these results do not diminish the relevance of generalist predictors, which remain

invaluable for the investigation of pathogens for which little or no specific data is available -

they certainly propose a potent and readily applicable new approach for researchers dealing

with relatively data-abundant organisms.
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5. Exploring the Limits of Organism-Specific Training for

Linear B-Cell Epitope Prediction

The previous chapter (Chapter 4, Organism-Specific Modelling for Epitope Prediction)

showcased the effectiveness of organism-specific training in improving linear B-cell epitope

prediction performance for organisms with abundant epitope data resources (data-rich

organisms). This chapter investigates the limits of organism-specific training for LBC

epitope prediction, by systematically quantifying the effect of the amount of training

data on the performance of the models developed. The findings from this investigation

reveal that even models trained on modest-sized organism-specific datasets can outperform

comparable models trained on larger, heterogeneous and mixed datasets. Furthermore,

these models exhibit superior performance compared to widely-used well-established

predictors from the scientific literature (which are trained on heterogeneous data). These

results indicate potential for a much broader application of pathogen-specific models

for the prediction of linear B-cell epitopes, which may facilitate the study of data-poor

organisms such as emerging or neglected pathogens.

5.1 The Scarcity of Epitope Prediction Data

As mentioned previously, the current prevailing approach for epitope prediction involves

training predictive models on extensive heterogeneous datasets encompassing observations

from various organisms such as, prokaryotes, viruses, fungi, protozoan, humans and

other eukaryotes (Chapter 4, Section 4.1, Table 5). However, this work (Chapter 5) has

shown that training models with smaller, organism-specific datasets can improve epitope

prediction performance, for data-rich organisms. The previous chapter (4) investigated

organism-specific training for three distinct organisms: the nematode Onchocerca volvulus,

Epstein-Barr Virus, and Hepatitis C Virus. The selection of these organisms was driven

by the availability of an ample volume of validated epitope observations, both positive

and negative, within the Immune Epitope Database (IEDB) [28]. Unfortunately, for most

organisms, substantial amounts of validated epitope data are not available; several factors

may be contributing to this scarcity: the organism might be associated with an emerging or

neglected disease that has not garnered substantial research focus. The organism might

possess only a limited number of epitopes. In cases where the organism’s impact on human

health is negligible, research efforts such as, immunological investigations and epitope

data collection might be scant. Moreover, the experimental validation of epitopes demands

significant resources and time, further compounding the challenge.
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5.2 Outlining the Limits of Organism-Specific Training Investigation

This chapter seeks to explore the viability of organism-specific training for organisms with

relatively limited available epitope data. It aims to probe the limits of organism-specific

training, addressing two key questions:

i How does the quantity of available organism-specific training peptides impact pre-

diction performance?

ii What is the minimal organism-specific data required to achieve superior model

performance compared to models trained on extensive, diverse datasets?

To address these inquiries, we assess and compare predictive performance of models trained

on reduced training sets, mixed data, and large, heterogeneous datasets. Additionally,

we contrast these outcomes with those of four generalist predictors from the scientific

literature: Bepipred2.0 [63], LBtope [57], iBCE-EL [39], and ABCpred [14], across diverse

performance indicators.

5.3 The Limits of Organism-Specific Training Investigation Methods

5.3.1 Dataset Generation

For this investigation, the same datasets from Chapter 4 were used. Data from three

distinct pathogens, namely Onchocerca volvulus (taxonomy ID: 6282), Epstein-Barr Virus

(taxonomy ID: 10376), and Hepatitis C Virus (taxonomy ID: 11102), were utilised, the

generation of these datasets was detailed in Section 4.4.2. Segmentation occurred at the

protein level, with entries belonging to the same protein or from proteins displaying over

80% sequence coverage and similarity being grouped together in the same split. This

investigation utilised four distinct datasets: the Hold-out set (comprising approximately

25% of the organism’s epitope data), the Organism-specific set (consisting of the remaining

75% of the organism’s epitope data), the Heterogeneous dataset (excluding any observations

from the target pathogen), and the Hybrid dataset (combining both organism-specific and

heterogeneous data) for each respective target pathogen.

The objectives of this investigation were to explore the influence of the size of organism-

specific training datasets on linear B-cell epitope prediction performance, while also

aiming to determine approximate lower bounds for the amount of data necessary for

effective organism-specific training as a viable alternative to models developed on larger,

heterogeneous datasets. To achieve this, several heterogeneous, hybrid and reduced
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organism-specific training datasets were generated for each target organism; the organism-

specific datasets were based on the available organism-specific model development data

described above. For each organism and each desired training set size, the full organism-

specific model development data was split into smaller non-overlapping Organism-specific

data sets, each containing data from between 20 and 500 peptides . The same class balance

as the full organism-specific dataset was maintained in all reduced subsets.

For each target organism, multiple reduced organism-specific datasets were generated.

The total number of available organism-specific training peptides (4819 for O. volvulus,

1702 for Hep C and 2557 for EBV) determined the number of replicates produced for

each reduced dataset size. Table 14 presents the number of replicates corresponding to

each reduced dataset size (set size = number of organism-specific peptides in the set).

The distribution of positive (+) and negative (-) peptides in each organism-specific dataset

(training and hold-out sets) for the target pathogens is also shown in Table 14.

O. volvulus Hepatitis C Virus Epstein-Barr Virus

Hold-out peptides (832+ / 777−) (218+ / 358−) (625+ / 315−)

Train/Model dev. peptides (2441+ / 2378−) (919+ / 783−) (1746+ / 811−)

20-peptide sets (N20) 237 83 124
40-peptide sets (N40) 118 41 62
60-peptide sets (N60) 79 27 42
80-peptide sets (N80) 59 21 31
100-peptide sets (N100) 47 17 25
150-peptide sets (N150) 32 11 16
200-peptide sets (N200) 24 8 12
250-peptide sets (N250) 19 6 10
300-peptide sets (N300) 16 5 8
400-peptide sets (N400) 12 4 6
500-peptide sets (N500) 9 4 5

Table 14. Summary of organism-specific datasets: number of positive (+) / negative (-)

peptides in each set, and number of replicates for each reduced dataset size. I.e. for the 20-

peptide sets (N20) there are 237 O. volvulus datasets (each made up of 20 organism-specific

peptides), 83 Hep C datasets and 124 EBV sets.

Table 14 provides an overview of the reduced organism-specific datasets generated for

each target pathogen. Using these variable-sized organism-specific training datasets, two

categories of hybrid datasets were also assembled: Hybrid-A and Hybrid-B.

■ Hybrid-A, consisting of the organism-specific peptides (at different sizes) plus

an equal number of peptides randomly sampled from other pathogens. Hybrid-A

datasets therefore comprised twice the number of peptides as their corresponding

organism-specific counterparts, maintaining a balanced distribution of 50 − 50%

between organism-specific and ’other’ peptides.
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■ Hybrid-B, comprising the organism-specific peptides plus additional peptides sam-

pled from other pathogens to achieve a fixed dataset size of 1000 training data

peptides (e.g., 20 organism-specific + 980 ’other’ peptides; 40 organism-specific +

960 ’other’, and so forth). Hybrid-B datasets maintained a fixed size (1000 peptides)

while varying the balance between data from the target pathogen (organism-specific

data) and data from other organisms.

For each target organism, an additional category of datasets were also assembled: the Het-

erogeneous datasets. Heterogeneous data was collated by randomly sampling observations

grouped by taxonomy ID from the full IEDB export, excluding any observations associated

with the specific target organism. For each organism, 6000 labeled peptides exclusively

from non-target organisms were extracted, maintaining a balanced class distribution of 50%

epitope and 50% non-epitope peptides, to form a large heterogeneous dataset. From this

heterogeneous data several smaller fixed-size heterogeneous datasets were also extracted

by sub-sampling (without replacement) 1000 (non-target organism) peptides from the

heterogeneous data, 30 replicates were extracted for each organism.

5.3.2 Experimental Protocol Overview

Figure 19 provides an overview of the experimental protocol for assessing the limits of

organism-specific model training for linear B-cell epitope prediction. This figure shows

that for each target pathogen:

■ The organism-specific (target pathogen data) is first split into training (model devel-

opment - 75%) and hold-out sets (25%).

■ (A) For each desired organism-specific dataset size (number of target pathogen

peptides), the organism-specific model development data is partitioned into non-

overlapping subsets of the desired size, each preserving the original class balance

distribution.

■ (B) Two categories of hybrid datasets are constructed using the reduced organism-

specific data replicates: Hybrid-A maintains a fixed 50-50 balance between organism-

specific and heterogeneous data at all dataset sizes; Hybrid-B adds the required

number of non-target organism observations to reach a dataset size of 1,000 pep-

tides, resulting in datasets with varying proportions of organism-specific VS ’other’

peptides.

■ (C) Baseline datasets comprising 1000 non-target pathogen peptides are generated

through diverse sub-sampling (without replacement) from the heterogeneous data.

■ All datasets are then employed to train Random Forest models, which have their

performance assessed on organism-specific hold-out data.
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Figure 19. Experimental protocol for testing the limits of organism-specific model training

for linear B-cell epitope prediction. (A) For each pathogen and each desired data size,

the model development data set is split into non-overlapping subsets, each maintaining

the original class balance of the data. (B) Two sets of hybrid data sets are composed

based on the organism-specific reduced-data replicates: Hybrid-A maintains a fixed 50-50

balance between organism-specific and heterogeneous data at all data set sizes; Hybrid-

B adds the required number of non-target organism observations to complete a data

set of 1,000 peptides, resulting in sets with variable proportions of organism-specific

peptides. (C) Baseline data sets composed of 1,000 exclusively non-target pathogen

peptides are also generated based on different sub-samplings (without replacement) from

the heterogeneous data. All data sets are used to train Random Forest models, which then

have their performance assessed on organism-specific hold-out data.
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5.4 Modelling and Performance Assessment

Several epitope prediction models were constructed through the training of Random Forest

(RF) predictors on the aforementioned training datasets. For each target organism, RF

models were trained on:

■ ’OS-full’: The full organism-specific model development training dataset.

■ ’Organism-Specific’: Several reduced organism-specific training datasets, relating to

11 size categories (from 20-peptide sized datasets to 500-peptide sized datasets).

■ ’Hybrid-A’: The same number of organism-specific peptides as other (non-target

organism) peptides, for each organism-specific size category.

■ ’Hybrid-B’: The organism-specific datasets plus a number of other, non-target pep-

tides to reach a dataset size of 1000 peptides.

■ ’Heterogeneous 1K’: 30 lots of 1000 non-target organism peptides. (These datasets

are the same size as all Hybrid-B datasets and can be thought of as Hybrid B datasets

with 0 % organism-specific data and 100 % non-target peptide data.)

■ ’Heter 6K’: A large heterogeneous dataset consisting of 6000 non-target pathogen

peptides.

■ ’OS-full + 6K’: A large hybrid dataset combining the full organism-specific training

dataset (OS-full) and the large heterogeneous dataset (Heter 6K).

The RF implementation utilised Scikit-learn version 0.24.1 [154] with default hyper-

parameter values. The selection of Random Forest was based on preliminary experi-

mentation as detailed in Section 4.6.1 fostering direct comparability with prior research

outcomes (Chapter 4). The trained models were employed to generate predictions for the

organism-specific hold-out datasets. Evaluation of prediction performance encompassed

several distinct measures: Balanced Accuracy (BAL.ACC), Matthew’s Correlation Co-

efficient (MCC), Area Under the ROC Curve (AUC), Positive Predictive Value (PPV),

Negative Predictive Value (NPV), and Sensitivity (SENS). Given that these performance

indicators were computed on the hold-out datasets (which remained unseen by the models

throughout development except during testing), it can be assumed that the resulting values

are reasonably indicative of the models’ generalisation capabilities in epitope prediction

for proteins derived from the respective target pathogens.

The mean estimated performance and corresponding standard errors for each quality

measure were computed from the replicates across the various pathogen types and dataset

sizes. These findings were then juxtaposed against a series of baseline benchmarks

including: the observed performance of Bepipred2.0 [63], LBtope [57], iBCE-EL [39] and

ABCpred [14] on the hold-out set of each pathogen; and the results from the OS-full, Heter

6K and OS-full + 6K models on the hold-out datasets.
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5.5 Results

Figures 20 and 21 present the mean performance results of each set of models on the

respective pathogen’s hold-out dataset. The aim of these figures is to depict the relation-

ship between the number of organism-specific peptides in the training dataset and the

corresponding mean model performance, as indicated by various evaluation measures.

The number of organism-specific peptides in the training dataset are plotted against the

estimated mean performance according to different performance indicators.

Figure 20. Mean performance scores (Area Under the Curve (AUC), balanced accuracy

(BAL_ACC), Matthew’s Correlation Coefficient (MCC)) and their corresponding standard

errors for all models tested on the organism-specific hold-out datasets. Blue squares indi-

cate the scores from the organism-specific models (trained on organism specific datasets).

Red circles denote scores from the models trained on the Hybrid A (50 % org-spec, 50 %

other/doubled data) datasets. Green triangles indicate scores from the models trained on

the Hybrid B (1000 peptide) datasets. Horizontal lines depict reference value scores for

each organism including from models trained on the complete organism-specific dataset

(’OS-full’); on a large heterogeneous dataset (’Heter 6K’); on a large hybrid dataset (’OS-

full+6K’); and scores from several predictors from the literature on the same hold-out sets.

(Note: Standard error bars are often shorter than the size of the marker representing the

point estimate.)
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Figure 21. (Continuing from Figure 20) Mean performance scores (Positive Predictive

Value (PPV), Negative Predictive Value (NPV), Sensitivity (SENS)) and standard errors

for all models tested.

Results from figures 20 and 21 clearly show that, for all pathogens tested, organism-

specific training resulted in uniformly better performance across all dataset sizes when

compared to models trained on hybrid or purely heterogeneous data, even when as few as

20 organism-specific peptides are used in the training set. Additionally, the performance of

organism-specific models swiftly surpasses that of most comparison predictors, even when

only a limited number of organism-specific peptides are available for model training. The

strong performance of LBtope on the Hepatitis C data, as evident across all performance

indicators, can be partly explained by the overlap between some of the hold-out peptides

used in this study and LBtope’s training data [57] (As detailed in Section 4.8.2).

Looking in more detail at the Onchocerca volvulus results (the largest dataset in this

study), the highest scores on the hold-out set are achieved by the full organism-specific

model (OS-full) for all performance indicators except for sensitivity. Following this, the

split-sampling organism-specific models (organism-specific), generally secure the next

highest scores, converging towards the performance of the full organism-specific model

after approximately 150 peptides. A clear pattern can be seen across all performance
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measures: models trained on the organism-specific datasets consistently and uniformly

outperform those trained on Hybrid-A (double size) datasets, which in turn outperform

the models trained on Hybrid-B (1000-peptides) datasets. The largest datasets from both

Hybrid-A and Hybrid-B consistently yield very similar scores, as anticipated. This is due to

the fact that in both cases, the sets consist of 500 peptides sourced from the target pathogen

data and 500 peptides from the non-target pathogen data.

Within each group of tested models (Organism-specific, Hybrid-A and Hybrid-B) the

pattern of performance improvement as the training set becomes larger was observed,

as expected. Remarkably, most small-sample organism-specific models surpass those

trained on the extensive heterogeneous (Heter 6k) and large hybrid (OS-full+6k) models

(for ≥ 40 peptides). Additionally, for most performance indicators, the Onchocerca

volvulus organism-specific models outperform most benchmark models from the literature,

with the exception of sensitivity where Bepipred2.0 outperforms others, and NPV where

Bepipred2.0 prevails over models trained with ≤ 40 organism-specific peptides.

A similar trend is evident for the models trained on the Epstein-Barr Virus data. Figures

20 and 21 once again illustrate that the full organism-specific model (OS-full) consis-

tently achieves the highest scores on the hold-out set across all performance indicators,

except for positive predictive value (PPV) where LBtope attains the highest score, and

sensitivity (SENS) where the full organism-specific model (OS-full) and the reduced

data split-sampling organism-specific models (Organism-specific) have comparable scores

across all training data sizes. The overall pattern observed for the EBV models mirrors

that of the Onchocerca volvulus models: organism-specific > Hybrid-A > Hybrid-B. Addi-

tionally, as the training data become scarcer, the model performance generally decreases,

as anticipated. Notably, the Epstein-Barr Virus small-sample organism-specific models

(Organism-specific) outperform all tested models from the literature (except for LBtope),

as well as the Heter 6K and OS-full+6K models.

Finally, the results from the models trained on the Hepatitis C Virus data reinforce the

recurring performance trends observed for the other pathogens. The LBtope predictor

demonstrates exceptional performance here, achieving the highest performance scores for 5

out of the 6 selected performance measures. However, as documented in Section 4.8.2, the

notably strong performance of LBtope for this pathogen, across all performance measures,

can be partially attributed to the presence of several hold-out peptides in LBtope’s training

data1. With the exception of LBtope’s results, the pattern observed for the Hepatitis C

models closely resembles the results seen in the other two pathogens. Organism-specific

1https://webs.iiitd.edu.in/raghava/lbtope/data/LBtope_Variable_

Positive_epitopes.txt
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models tend to outperform the literature predictors even when trained with a relatively

modest number of peptides, typically between 40 and 100, depending on the performance

measure. For the Hepatitis C Virus epitope prediction models, the performance discrepancy

within each group is notably smaller than the variations observed for the other tested

organisms, although there remains a clear trend of organism-specific > Hybrid-A > Hybrid-

B across all performance indicators except for PPV, where the three training approaches

generally overlap across all data sizes.

When comparing the scores of all organism-specific reduced-data models (Organism-

specific) to the scores of the purely heterogeneous models (Heter 6K & left-most point

in the Hybrid-B group) across all organisms and performance measures, Figures 20-21

clearly demonstrate that almost all organism-specific models achieve significantly higher

scores. Additionally, when comparing the organism-specific models to the hybrid models

(Hybrid-A, Hybrid-B and OS-full+6K) and to the generalist predictors from the literature,

generally the organism-specific models exhibit superior performance. This performance

advantage is evident even when the organism-specific models are trained on relatively

modest-sized datasets. Across all cases, the prediction performance diminishes as the

number of organism-specific peptides in the training set decreases, even when the total

number of peptides in the training set remains constant (Hybrid-B). Notably, the organism-

specific models in this study exhibit a higher degree of robustness, displaying smaller

performance declines as the amount of organism-specific data decreases, compared to

Hybrid-A and particularly Hybrid-B.

5.6 Discussing the Limits of Organism-Specific Training

The findings of this study indicate that, when compared to heterogeneous and hybrid

training approaches, organism-specific training yields higher performance scores for linear

B-cell epitope predictors, even when training with very small dataset sizes. The impact of

the number of organism-specific peptides in the training set on the predictive performance

of organism-specific models is profound, especially up to around 100 or 150 peptides.

Beyond this point, the performance improvement becomes less pronounced, reaching

a point of diminishing returns as more data is added, ultimately approaching the levels

achieved by models trained on the full organism-specific training data. These results also

demonstrate that, even with limited amounts of organism-specific data, organism-specific

models generally outperform generalist training models (predictors from the literature),

which are trained on diverse peptides from various pathogens. The only systematic

exception was the high observed performance of LBtope for the Hepatitis C Virus; where

the presence of hold-out examples in LBtope’s training data (9.59% of the Hep C hold-out

sequences are present in the LBtope training dataset) resulted in some level of data leakage

[152].
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In addition to showing that organism-specific training outperforms heterogeneous and

hybrid training, this work highlights that introducing unrelated data into organism-specific

training sets leads to decreased generalisation performance when predicting linear B-

cell epitopes for a target pathogen. Notably, as seen in Figures 20-21, the addition

of heterogeneous data (as demonstrated by the Hybrid-A and Hybrid-B comparisons)

consistently results in poorer prediction performance. These results highlight the potential

advantages of employing organism-specific training to achieve optimal performance when

developing models for organism-specific epitope prediction. These findings underscore the

importance of using highly specific training data, comprising only labeled peptides from the

target organism for organism-specific predictions. This approach has been demonstrated

to consistently outperform models trained on heterogeneous or hybrid datasets, as well

as generalist predictors from the literature. Therefore, a key takeaway is that for optimal

performance in organism-specific epitope prediction, it is crucial to curate training data

that is tailored to the specific organism of interest, thus maximizing the relevance and

accuracy of the resulting predictive models.

In summary, the comprehensive results presented in this study strongly suggest that

organism-specific models, even when trained on small datasets comprising ≥ 100− 150

peptides, offer highly competitive predictive performance compared to the tested generalist

predictors. Additionally, the point at which organism-specific models start to outperform

generalist predictors appears to vary depending on the organism. For O. volvulus and

Epstein-Barr Virus predictors the performance of the organism-specific models generally

compared favourably to that of generalist models down to the smallest organism-specific

dataset tested (20 peptides); while for Hepatitis C Virus predictors, a larger number of

peptides were required for the organism-specific training to become competitive. These

findings not only emphasize the effectiveness of organism-specific training but also expand

the applicability of the methods outlined in Chapter 4, which were limited to data-rich

organisms. In contrast, this study demonstrates that organism-specific training enhances

epitope prediction performance for data-poor organisms as well. For context, the number

of labeled peptide examples in the full training sets used in Chapter 4 were substantial,

ranging from 8,819 for O. volvulus to 1,702 for Hepatitis C Virus, representing some of

the most data-rich organisms on the IEDB. Currently, the majority of organisms possess

significantly fewer available labeled epitope examples. This study highlights the significant

potential of organism-specific training to enhance prediction performance for numerous

organisms with limited available data, promising a more effective approach to epitope

prediction across a broader range of pathogens.
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5.7 Limits of Organism-Specific Training Conclusions

Chapter 4 (Organism-Specific Modelling for Linear B-Cell Epitope Prediction) demon-

strated the efficacy of organism-specific training in enhancing linear B-cell epitope predic-

tion for organisms with abundant data. This work expands the applicability of organism-

specific modeling, revealing that contrary to initial assumptions, organism-specific training

remains effective even for organisms with limited data (data-poor organisms). However,

this study also establishes that there are indeed limits to the scope of organism-specific

training for epitope prediction. The findings outlined in this study indicate that organism-

specific models trained on more than approximately ∼ 150 labeled peptides tend to out-

perform generalist predictors trained on substantially larger, but heterogeneous, datasets.

Furthermore, the study confirms the trend that predictive performance generally improves

in tandem with the inclusion of more organism-specific peptides in the training data (across

a wide variety of indicators). It is important to note, however, that the results presented

here are based on reasonably class-balanced datasets, and the investigation did not cover

models trained on highly imbalanced data. The worst case among the pathogens tested was

the Epstein-Barr virus data with a 2:1 balance of classes, which does not configure extreme

class imbalance. While further exploration of imbalanced classification techniques for

epitope prediction could potentially broaden the scope of organism-specific training, the

current results presented here, combined with the growing accessibility of computational

resources, already point to a promising direction. This suggests a valuable avenue for

the development of bespoke predictors for specific pathogens, even in cases involving

relatively data-poor organisms, such as those related to emerging health threats or neglected

pathogens.
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6. Discussion

6.1 Revisiting Research Questions

Numerous research questions were explored throughout this study with the principal ones

being:

i Does training linear B-cell epitope prediction models using organism-specific data

lead to improved prediction performance compared to models trained on heteroge-

neous or hybrid data?

ii How do organism-specific models compare to well-established epitope predictors

from the literature?

iii How does the quantity of available organism-specific training data impact prediction

performances?

iv What is the minimum amount of organism-specific data required for organism-

specific models to outperform generalist predictors?

This study demonstrated that using organism-specific data significantly enhances linear

B-cell epitope prediction. It showed that organism-specific Random Forest models outper-

formed those trained on heterogeneous and hybrid datasets for the pathogens Epstein-Barr

virus, Hepatitis C virus, and O. volvulus, indicating that selecting relevant data and con-

structing tailored models for specific pathogens is more effective than expanding and

diversifying the training set. Additionally, the organism-specific models achieved perfor-

mance comparable to or better than common predictors from the literature and there’s the

potential for even higher predictive accuracy with further model refinements and the use of

more informative features. Furthermore, it has been demonstrated that organism-specific

training remains effective even for organisms that have limited available data. It has been

shown that models trained on organism-specific datasets, containing more than 150 labelled

peptides (and in some cases, even considerably less than 150), tend to outperform gener-

alist predictors trained on larger, heterogeneous datasets. It was also shown that model

performance generally improved with the addition of more organism-specific peptides in

the training data. This underscores the robustness and advantages of organism-specific

training across both data-rich and relatively data-poor organisms, such as emerging health

threats or neglected pathogens. This research provides a valuable approach for epitope

prediction researchers dealing with data-rich and relatively data-poor organisms while

recognising the continued importance of generalist predictors for pathogens for which very

little or no specific data is available.
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6.2 Comparison with Existing Literature

While many widely-used epitope predictors were developed under a generalist approach,

capable of predicting epitopes for a wide variety of pathogens, since the beginning of this

research, studies have emerged that focus on developing more specific/tailored epitope

predictors. For example, in 2022 Yin et al., published a study: "A framework for predicting

variable-length epitopes of human-adapted viruses using machine learning methods"

[164]. This research outlines a general framework for predicting linear B-cell epitopes

that are specific to human-adapted viruses. The predictor was trained on a viral-specific

dataset sourced from the IEDB by filtering on all linear viral peptides derived from B-

cells of the human host. After data preprocessing, the final dataset comprised 4,975

epitope and 4,956 non-epitope instances originating from 17 different human-adapted

viruses. The findings show that the predictor exhibited superior performance to state-of-

the-art methods on the test set, reporting an impressive AUROC score of 0.827. This is

one of the few emerging works that investigate more specific epitope prediction. The

developed epitope prediction framework targets epitopes from human-adapted viruses and

demonstrates superior performance in predicting epitopes from this category compared

to well-established state-of-the-art predictors (Including: Bepipred2.0 [63], LBtope [57],

iBCE-EL [39] & EpitopeVec [66]). Additionally, the model also showed potential at being

able to reveal the viral species of the epitopes.

Another notable example is the study by Bahai et al., titled "EpitopeVec: linear epitope

prediction using deep protein sequence embeddings (2021)" [66]. In this study, it was dis-

covered that the predictive performance of the linear B-cell epitope predictor (EpitopeVec),

was influenced by the origin (viral, bacterial and eukaryotic) of the antigens. Consequently,

the researchers proceeded to develop a dedicated linear B-cell epitope predictor for viral

antigens. This virus-specific predictor, trained on a substantial viral dataset, demonstrated

enhanced prediction performance compared to the generalist predictor. This finding again

aligns with the hypothesis that tailored training, whether organism-specific or virus-specific,

can lead to improved epitope prediction results. Furthermore, research conducted by Silva,

Ascher, and Pires in their study titled "Epitope1D: Accurate Taxonomy Aware B-cell Linear

Epitope Prediction" [165] also evaluated the potential benefits of taxonomy-aware training

in the context of epitope prediction. This study acknowledged that work published in

conjunction with this PhD thesis ("Organism-specific training improves performance of

linear B-cell epitope prediction" [166]) served as inspiration and motivation for some of

their design choices.
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Researchers have also studied the frequency of application of epitope predictors, and have

revealed that specific predictors are employed more frequently when predicting epitopes

for particular categories of pathogens. In 2020, Raouf et al., published a study entitled:

"Epitope Prediction by Novel Immunoinformatics Approach: A State-of-the-art Review"

[33]. This research investigated the frequency of the application of several well-known

epitope predictors at predicting both structural and linear epitopes of B and T cells, based

on the nature of the target antigen which were categorised into three groups: viral, bacterial

and tumor-specific antigens. The review findings indicated that Bepipred exhibited the

highest frequency for linear viral B-cell epitopes, BCpred for predicting linear bacterial

B-cell epitopes and ABCpred for predicting tumor-specific B-cell epitopes [33].

The emergence of studies like these provides compelling support for the hypothesis that

more specific and tailored training significantly enhances the performance of linear B-cell

epitope predictors. These investigations support several key insights. They highlight the

importance of data curation, specifically the selection of highly relevant data specific

to a particular pathogen or group of pathogens; these tailored data approaches have

led to improvements in linear B-cell epitope prediction performance. These studies

have also demonstrated that more specific predictors can outperform well-established

generalist (state-of-the-art) epitope prediction models when it comes to predicting epitopes

for a specific target pathogen or group of pathogens. This highlights the advantages

of models fine-tuned to the unique characteristics of the target pathogen or pathogen

categories, resulting in more accurate predictions. Additionally, it has been shown that

these specialised models may possess the ability to discern the species origin of the epitopes,

suggesting the presence of distinct patterns in epitope data related to their originating

species. The experiments and research detailed in this thesis align with the existing

literature to further confirm and reinforce the promise of organism-specific training as a

viable approach for improving the performance of epitope prediction. Collectively, these

findings lend strong support to the notion that, for linear B-cell epitope prediction, a tailored

approachÐwhether focusing on a specific organism or a category of organismsÐholds

the potential for significantly enhanced predictive performance. This further supports the

hypothesis that organism-specific or more specific/tailored training represents an optimal

strategy for epitope prediction. Such an approach enables models to capture the unique

patterns and characteristics that are highly relevant to the specific context of interest,

resulting in improved predictive capabilities.
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6.3 Limitations and Future Work

While this thesis aims to make a significant contribution to the field of linear B-cell epitope

prediction, it is important to acknowledge several limitations of this work.

A common challenge in this field is the availability of high-quality labeled epitope data.

More specifically, for this work, large volumes of high-quality data related to unique

pathogens. Few carefully curated epitope databases exist that offer comprehensive and

precise labelled epitope data. Even widely used epitope databases such as the Immune

Epitope Database (IEDB) contain relatively limited epitope data. This issue becomes

even more pronounced when dealing with pathogen-specific datasets, which often also

suffer from imbalanced distribution between epitopes and non-epitopes. These limitations

can impact the development and evaluation of epitope prediction models, especially

for organism-specific models which require specific data for training. Training on small

datasets can result in model overfitting, where models may perform well on the training data

but struggle to generalise and provide accurate predictions for unseen data. Additionally,

for numerous pathogens, although some data may be available, there’s often a large data

imbalance in the data. This can introduce biases and inaccuracies model performance.

Given these limitations, organism-specific training, as investigated in this work, may not

yet be a viable option for organisms lacking a minimum of 150 labeled peptides with a

reasonably balanced class distribution.

Addressing the challenge of data availability is crucial for improving the accuracy and

applicability of organism-specific epitope prediction models, especially for emerging

and neglected pathogens. To address this limitation, future research could investigate

the application of transfer learning techniques. These techniques have proven to be an

effective strategy when dealing with limited data by leveraging pre-trained models on

larger, related datasets and fine tuning them on smaller, pathogen-specific data, potentially

improving prediction performance. Building on the work of this thesis, Lindeberg Faria, a

researcher at the University of Brasilia in Brazil, is currently undertaking a PhD project

investigating the potential of transfer learning as an approach for this challenge. In addition

to transfer learning, the investigation of synthetic data generation or data augmentation

could be valuable. These approaches involve artificially increasing the size of available

epitope datasets, which may also help mitigate data imbalances, potentially enhancing

model performance. By generating synthetic epitope data, researchers can create more

comprehensive training sets for organism-specific models, ultimately improving their

predictive capabilities.
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Another potential limitation of this work is the generalisability of the organism-specific

approach for epitope prediction. While this thesis clearly demonstrates the effectiveness of

organism-specific training for specific pathogens, it may not fully investigate the applicabil-

ity of these models across a broad range of organisms. Additionally, this thesis concentrates

solely on the application of organism-specific modelling to predict linear B-cell epitopes

and does not address the potential of this approach for conformational B-cell epitope

prediction or other types of epitope prediction. Further research should aim to assess the

applicability of this approach across a broader spectrum of organisms, expanding beyond

the pathogens studied in this work. Extending this approach to conformational epitopes

could open up new avenues for improved epitope prediction.

This thesis employs a specific curated set of features derived from the amino acid sequences

of the proteins being queried. It does not delve extensively into feature engineering or

consider more complex data representations, which could potentially enhance predic-

tion accuracy. Exploring potentially more informative features including those beyond

sequence-based representations may help to extract more meaningful information from the

limited available data. Future research should investigate these possibilities. Incorporating

new structural-based features could prove useful for organism-specific training, especially

for conformational epitope prediction. Furthermore, the recent advancements in large lan-

guage models for protein analysis, such as ProteinBERT [167] and ESM-2 [168, 169], offer

exciting prospects for potentially improving epitope prediction. These models leverage

the power of deep learning to capture intricate relationships within protein sequences and

structures. Integrating such features into models for epitope prediction could potentially

yield more accurate and biologically relevant results. Future research should focus on

feature engineering and consider cutting-edge data representations, including structural

and language model-based features, to advance the field of epitope prediction. These

approaches have the potential to enhance prediction accuracy and provide deeper insights

into epitope prediction. Additionally, this thesis employed Random Forest models as pre-

dictors, which are relatively simple machine learning models. Future research endeavors

should explore a broader range of modeling approaches. This includes investigating the

potential advantages of employing more complex models, such as deep-learning models,

to enhance predictive performance. Evaluating the benefits and trade-offs associated with

these alternative modeling techniques should be a focus for further investigations in the

field of epitope prediction.
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This thesis primarily focuses on the computational prediction of linear B-cell epitopes, it

does not delve into the critical phase of clinical/experimental validation of these predicted

epitopes, which, in the realm of vaccine and drug development, is an indispensable step.

Clinical validation involves rigorous laboratory experiments and testing to confirm whether

the predicted epitopes are indeed antigenic and trigger an immune response. Computational

predictions, while valuable for initial screening and prioritisation, are not sufficient on their

own to guarantee the effectiveness of a vaccine or drug candidate, making this validation

process vital. Following the completion of this thesis, subsequent research has successfully

applied more specific epitope predictors in the context of the Monkeypox virus in the work:

"Phylogeny-aware linear B-cell epitope predictor detects candidate targets for specific

immune responses to Monkeypox virus" [170]. This work aimed to identify candidate

epitopes for the Monkeypox virus. The research uncovered nine potential peptides specific

to the Monkeypox virus, among which one was a previously known and experimentally

validated diagnostic target for Monkeypox, highlighting the effectiveness of more tailored

epitope prediction models in specific pathogen contexts. Further experimental validation,

conducted in collaboration with research partners in Brazil, confirmed that 8 out of

the 9 peptides identified were indeed immunogenic, with at least 3 resulting in specific

identification of the Monkeypox virus. While computational methods have provided a

valuable list of potential epitope candidates for investigation, clinical validation remains

the gold standard for determining whether a predicted epitope can be translated into a

successful vaccine or therapeutic agent. Clinical validation involves a series of activities,

including peptide synthesis, immunological assays, animal studies, and human clinical

trials. These steps are essential to assess the safety, efficacy, and immunogenicity of the

predicted epitopes in real biological systems. This thesis aims to contribute to the initial

stage of epitope identification by identifying potential epitope candidates for use in medical

diagnostics, vaccines and immunotherapies. Nevertheless, it’s important to emphasise that

the experimental validation steps are indispensable for these real-world applications.
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6.4 Conclusions

In conclusion, this thesis aimed to explore the potential benefits of organism-specific

training for linear B-cell epitope prediction. The primary goal was to investigate whether

tailoring prediction models to individual organisms could yield improved predictive perfor-

mance compared to generic models trained on heterogeneous or hybrid data.

Some of the main investigations of this thesis were:

■ Organism-Specific Generalisation Performance: Assessing the generalisation

performance of organism specific models/assessing how well the models perform

when predicting new epitopes within proteins belonging to the specific organisms

for which they were trained.

■ Exclusive Organism-Specific Training: Investigating the effect of using exclu-

sively organism-specific training data by comparing the predictive performance of

organism-specific models to hybrid and heterogeneous models.

■ Performance Bench-marking: Comparing the performance of organism-specific

models against conventional approaches found in the existing literature.

■ Organism-Specific Data Quantity Analysis: Investigating how the quantity of

organism-specific training data influences prediction performance.

■ Limits of Organism-Specific Training: Assessing the minimal amount of organism-

specific training data required to achieve superior model performance compared to

models trained on heterogeneous and hybrid datasets.

These investigations collectively contributed to a comprehensive evaluation of the potential

benefits and optimal strategies for organism-specific training for linear B-cell epitope

prediction.

For multiple selected pathogens, it has been shown that organism-specific Random Forest

models display good generalisation performance on unseen proteins. When compared

against generalist models trained on heterogeneous and hybrid data, the organism-specific

models consistently outperformed their generalist counterparts across multiple performance

indicators. This was also generally true when comparing organism-specific models against

most well-established linear B-cell epitope prediction methods from the existing literature.

Exploring the limits of organism-specific training unveiled its effectiveness across a

range of data availability, including both data-poor and data-rich organisms. This study

demonstrated that organism-specific models, trained on datasets containing more than

approximately 150 labeled peptides, consistently outperformed their generalist counterparts

trained on substantially larger and more diverse datasets. Furthermore, this investigation
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highlighted the positive correlation between predictive performance and the addition of

more organism-specific data. The more organism-specific data in the training data, the

more robust and accurate the predictive models became.

This work provides support and evidence for the use of organism-specific training for

linear B-cell epitope prediction, even for organisms with limited available data. The

study’s findings contribute significantly to the field of epitope prediction by showcasing

the advantages of organism-specific models/tailored training. Organism-specific epitope

prediction models performed as well as, if not better than, established predictors in the

literature, despite their relative simplicity and the use of basic features derived solely from

amino acid sequences. While this research focused primarily on simple models for linear

B-cell epitope prediction, it opens the door to future investigations. It encourages the

exploration of tailored approaches for conformational epitope prediction, the consideration

of potentially more informative features, and the assessment of more sophisticated machine

learning models for organism-specific epitope prediction. In summary, this thesis aims to

enhance the field of epitope prediction, a critical step in vaccine and drug development,

by demonstrating the effectiveness of organism-specific models. It helps pave the way for

improved prediction tools for the discovery of diagnostic targets and vaccine candidates,

ultimately contributing to advancements in health, medical diagnostic and therapeutic

research applications.
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