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In this study we examine the large Péclet number, Pe, limit of a concentration boundary layer in Couette flow. 
The boundary layer has a thickness of order Pe−1∕2. The asymptotic concentration is asymptotically obtained as 
an integral solution up to order Pe−1∕2 using the Fourier sine transform. The asymptotic solution is found to be 
in good agreement with the full numerical solution for large Péclet numbers. Further, the effective diffusivity 
obtained from the asymptotic solution is found to be in good agreement with the effective diffusivity obtained 
from the full numerical solution for large Péclet numbers.
1. Introduction

Heat and mass transport play an important role in many fields in-

cluding geophysical flows (Helffrich and Wood, 2001), oceanography 
(Zhang et al., 2014), and atmospheric sciences (Pithan et al., 2018). 
Many industries involve mass transport, for example the food industry, 
which aim to efficiently mix the ingredients to produce a uniform/ho-

mogeneous mixture (Wang and Sun, 2003), the paint industry use mix-

ing to create emulsions which are a stable mixture of an aqueous fluid 
with an oil (Zhao et al., 2022), and the energy sector for fuel cells 
(Siegel, 2008). The pharmaceutical industry uses animal cells to pro-

duce antibodies or yeast, such fragile and delicate products need to be 
treated more carefully when mixing is required, for example to ensure 
the active samples have an oxygen supply (Butler, 2005).

There are numerous of studies on heat/mass transport enhancement 
in the presence of chaotic flows, as they provide efficient mixing and so 
are widely used in industry. Ghosh et al. (1992) examined heat transfer 
enhancement between two rotating eccentric cylinders held at different 
temperatures. The resulting flow was chaotic and they found an expres-

sion for the effective diffusivity as an expansion in the eccentricity in 
the large Péclet number, Pe, limit. The Péclet number is the product of 
the length scale and velocity scale divided by the diffusion coefficient. 
Bryden and Brenner (1999) numerically examined the chaotic motion 
inside a spherical droplet using Stokes flow in the presence of an ex-

ternal shear force. Grassia and Ubal (2018) numerically examined the 
mass transport across a spherical droplet in the large Péclet number 
limit. They introduced a streamline averaging technique in which con-

centrations varied between streamlines but not on streamlines.

* Corresponding author.

Pöschke et al. (2017) examined the two dimensional flow in a pe-

riodic cat eyes pattern in the large Péclet number limit where the 
boundary layer scaled with Pe−1∕2. This study numerically examined 
the mean square displacement and found that several different time 
scales were present.

In this study we examine mass transport in Couette flow. This is 
laminar flow in the gap between two concentric cylinders where the 
outer cylinder is rotating and the inner cylinder is stationary. One notes 
that when both cylinders rotate, the flow is called Taylor-Couette flow 
which has been the centre of attention in a plethora of studies due 
to the various possible flow regimes, for example see Taylor (1923); 
Coles (1965); Andereck et al. (1986); Hristova et al. (2002); Nemri et 
al. (2016); Godwin et al. (2023) for more details on this. An analytical 
expression for the stability of Taylor-Couette flow was given by Esser 
and Grossmann (1996).

Many different flows have been investigated to examine mass trans-

port especially in the large Péclet number limit. Acrivos and Goddard 
(1965) studied flow over a semi-infinite plate and found that the con-

centration boundary layer thickness scaled with Pe−1∕3. This result 
was used by Trevelyan et al. (2002) in a square cavity with a con-

centration difference on the stationary walls but with internally gen-

erated flow, to obtain the effective diffusivity in the large Pe limit as 
𝐷eff = 1.1613𝐷Pe1∕3 where 𝐷 is the molecular diffusion coefficient. 
Additionally, Trevelyan et al. (2002) found that in Couette flow with 
a concentration difference on the stationary outer cylinder, with the in-

ner cylinder moving, that the effective diffusivity in the large Pe limit 
was 𝐷eff = 0.6741𝐷(𝜙Pe)1∕3 where 𝜙 = 𝜅∕[𝜋(1 −𝜅)2(1 +𝜅)] and 𝜅 = 𝑎∕𝑏
where the inner and outer cylinder radii are 𝑎 and 𝑏, respectively.
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When the concentration difference is on a moving boundary, then 
the concentration boundary layer thickness scales with Pe−1∕2. A very 
intuitive study was performed by Shraiman (1987) on mass transport 
across Rayleigh-Bénard cells and they found that in the large Pé-

clet number limit, that the effective diffusivity was given by 𝐷eff =
0.487𝐷

√
Pe𝜋𝑤∕𝑘 where 𝑘 is the wavelength of the cell. This result 

was a more accurate version of the result obtained by Rosenbluth et al. 
(1987). One notes that for perfect chaotic mixing the effective diffusiv-

ity scales with the Péclet number (Thiffeault, 2012). Further, for shear 
flows, Taylor (1953); Aris (1956) found that the effective diffusivity 
scaled with the Péclet number squared.

In this study we examine the effective diffusivity in Couette flow. In 
section 2 the model equations are presented and non-dimensionalised. 
In section 3 the system of equations is expanded in the large Péclet 
number limit. In section 4 the zeroth order solution is obtained using a 
superposition of a similarity solution and an integral solution obtained 
using the Fourier sine transform. In section 5, the first order correction 
to the zeroth order solution is obtained. In section 6, the effective diffu-

sivity is obtained using the zeroth and first order solutions. In section 7, 
the full problem is numerically solved. The effective diffusivity for the 
numerical solution is compared with the large Pe number asymptotic 
limit. In section 8, we draw our conclusions. In appendix A, the Fourier 
sine transform is given. In Appendix B, we apply the same analysis to 
planar Couette flow with a periodic concentration specified on a mov-

ing wall.

2. Model

Suppose we have two concentric cylinders centred at the origin. The 
inner cylinder of radius 𝑎 is stationary, whilst the outer cylinder of ra-

dius 𝑏 is rotating anti-clockwise with an angular velocity of 𝑤0. We 
suppose a fluid is between the two cylinders with constant density 𝜌
and kinematic viscosity 𝜈. We assume that the fluid satisfies the incom-

pressible Navier-Stokes equations. A species C with molecular diffusion 
coefficient 𝐷 will dissolve into the fluid. We assume that the concentra-

tion is sufficiently dilute that saturation effects can be neglected so that 
the concentration 𝑐 satisfies the mass transport equation. We assume 
that the species does not affect the density or viscosity of the fluid, 
hence we have the bulk equations:

∇ ⋅ 𝑢 = 0, (1)

𝑢
𝑡
+ (𝑢 ⋅∇)𝑢 = −1

𝜌
∇𝑝+ 𝜈∇2𝑢, (2)

𝑐𝑡 + (𝑢 ⋅∇)𝑐 =𝐷∇2𝑐 (3)

where subscripts denote partial derivatives, 𝑢 is the fluid velocity, 𝑝 is 
the fluid pressure and 𝑡 is time. We suppose the inner stationary cylin-

der is impermeable so that we have the no slip and no flux boundary 
conditions:

𝑐𝑟 = 0 and 𝑢 = 0 on 𝑟 = 𝑎 (4)

where 𝑟 is the radial coordinate measured from the origin. For clarity, 
the 𝑥-axis is horizontal and the 𝑦-axis is vertical. The outer cylinder 
is assumed permeable. We suppose that there is a large container, sur-

rounding the upper half of the outer cylinder, containing species C at 
the concentration 𝑐0. Thus, on the upper half of the outer cylinder, 
𝑦 > 0, we shall assume that species C is held at a constant concentration 
𝑐0. We suppose that there is a large amount of catalyst held in the re-

gion below the outer cylinder such that when species C makes contact 
with the catalyst it undergoes a fast first order chemical reaction. We 
suppose that the reaction rate of the chemical reaction is sufficiently 
fast that it can be assumed instantaneous. Thus, on the lower half of the 
outer cylinder, 𝑦 < 0, we shall assume that species C is absent. Hence, 
on the outer cylinder we have the boundary conditions:{

𝑐0 for 0 ≤ 𝜃 < 𝜋
2

𝑐 = 0 for 𝜋 ≤ 𝜃 < 2𝜋 and 𝑢 =𝑤0𝑒𝜃 on 𝑟 = 𝑏 (5)
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where 𝜃 is the angle measured from the positive 𝑥-axis in the anti-

clockwise direction.

As this problem involves circular boundaries we shall express the 
equations in cylindrical polar coordinates. We assume that the flow and 
concentration have reached a steady state, i.e. 𝑐𝑡 = 0 and 𝑢

𝑡
= 0. Further, 

we assume that the flow field is purely rotational and so takes the form 
𝑢 = 𝑤(𝑟)𝑒

𝜃
, where 𝑒

𝜃
is the unit vector in the 𝜃 direction. Then the 

incompressibility condition is already satisfied and the bulk equations 
become

−𝑤
2

𝑟
= −1

𝜌

𝜕𝑝

𝜕𝑟
, (6)

0 = − 1
𝜌𝑟

𝜕𝑝

𝜕𝜃
+ 𝜈

[1
𝑟

𝑑

𝑑𝑟

(
𝑟
𝑑𝑤

𝑑𝑟

)
− 𝑤

𝑟2

]
, (7)

𝑤

𝑟

𝜕𝑐

𝜕𝜃
=𝐷

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑐

𝜕𝑟

)
+ 1
𝑟2
𝜕2𝑐

𝜕𝜃2

]
. (8)

The boundary conditions on the inner cylinder become

𝑐𝑟 = 0 and 𝑤 = 0 on 𝑟 = 𝑎 (9)

and the boundary conditions on the outer cylinder become

𝑐 =
{
𝑐0 for 0 ≤ 𝜃 < 𝜋
0 for 𝜋 ≤ 𝜃 < 2𝜋 and 𝑤 =𝑤0 on 𝑟 = 𝑏. (10)

Clearly this problem is periodic in 𝜃, i.e.

𝑐(𝑟, 𝜃) = 𝑐(𝑟, 𝜃 + 2𝜋) and 𝑝(𝑟, 𝜃) = 𝑝(𝑟, 𝜃 + 2𝜋).

For the pressure to be periodic and satisfy equation (6) requires that 
𝜕𝑝

𝜕𝜃
= 0. Thus equation (7) can be analytically solved to give

𝑤 = 𝐴
𝑟
+𝐵𝑟

and using the boundary conditions (9) and (10) we can solve for 𝐴 and 
𝐵 to determine that

𝑤 =
𝑏𝑤0(𝑟2 − 𝑎2)
𝑟(𝑏2 − 𝑎2)

. (11)

The problem has now been reduced to solving the mass transport equa-

tion (8) where 𝑤 is given in equation (11).

2.1. Non-dimensionalisation

We non-dimensionalise the system by rescaling the variables as fol-

lows:

𝜃 = 𝜋𝜏, 𝑟 = 𝑏𝑅, 𝑐 = 𝑐0𝐶

and define the Péclet number and the ratio of the radii of the cylinders 
as

Pe =
𝑏𝑤0
𝜋𝐷

and 𝜅 = 𝑎
𝑏
.

Then the dimensionless mass transport equation can be written as

Pe

(
𝑅2 − 𝜅2

1 − 𝜅2

)
𝐶𝜏 =𝑅𝐶𝑅 +𝑅2𝐶𝑅𝑅 + 𝜋−2𝐶𝜏𝜏 for 𝜅 < 𝑅 < 1. (12)

The boundary condition on the inner cylinder becomes

𝐶𝑅 = 0 on 𝑅 = 𝜅 (13)

and the boundary condition on the outer cylinder becomes{
1 for 0 ≤ 𝜏 < 1
𝐶 = 0 for 1 ≤ 𝜏 < 2 on 𝑅 = 1. (14)
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2.2. Effective diffusivity

Let 𝑓 denote the dimensional flux on the upper half of the cylinder, 
then

𝑓 = −𝐷
𝜋

𝜋

∫
0

𝑐𝑟|𝑟=𝑏 𝑑𝜃.
The effective diffusivity can be defined as

𝐷eff = − 𝑓
𝑐𝑟

= 𝑏𝐷

𝜋𝑐0

𝜋

∫
0

𝑐𝑟|𝑟=𝑏 𝑑𝜃 =𝐷 1

∫
0

𝐶𝑅|𝑅=1 𝑑𝜏 (15)

where 𝑐𝑟 is the mean macroscopic gradient, here we use 𝑐𝑟 = 𝑐0∕𝑏.

2.3. Small Péclet number limit

In the small Péclet number limit, the leading order term can be 
obtained by setting Pe = 0, then the problem can be solved using sepa-

ration of variables to give

𝐶(𝑅,𝜏) = 1
2
+ 2
𝜋

∞∑
𝑚=1

𝑅2𝑚−1 + 𝜅4𝑚−2𝑅1−2𝑚

(2𝑚− 1)(1 + 𝜅4𝑚−2)
sin((2𝑚− 1)𝜋𝜏). (16)

Notice, if we substitute equation (16) into equation (15) we obtain

𝐷eff = 4𝐷
𝜋2

∞∑
𝑚=1

1 − 𝜅4𝑚−2

(1 + 𝜅4𝑚−2)(2𝑚− 1)

which is not a convergent series. This unlikely result may be due to 
taking the derivatives of the infinite series in equation (16), and so 
an alternative version of the solution may yield a finite value for the 
effective diffusivity.

3. Large Péclet number limit

In the large Péclet number limit, there is a concentration bound-

ary layer of thickness of Pe
− 1

2 near the outer cylinder. Outside of this 
boundary layer the concentration becomes homogeneous. We introduce 
the boundary layer coordinate

𝜎 =
√

Pe(1 −𝑅) (17)

then equation (12) becomes(
Pe −

2𝜎
√

Pe− 𝜎2

1 − 𝜅2

)
𝐶𝜏 − (

√
Pe− 𝜎)2𝐶𝜎𝜎 =

𝐶𝜏𝜏

𝜋2
− (

√
Pe − 𝜎)𝐶𝜎 (18)

for 0 < 𝜎 <
√

Pe(1 − 𝜅). We now introduce the expansion

𝐶 = 𝐶0 + Pe−1∕2𝐶1 +𝑂(Pe−1).

Substituting this into the above equations, letting the Péclet number 
tend to infinity, and collecting powers of Pe yields

𝐶0
𝜏
= 𝐶0

𝜎𝜎
, (19)

𝐶1
𝜏
= 𝐶1

𝜎𝜎
+ 𝜙𝜎𝐶0

𝜎𝜎
−𝐶0

𝜎
where 𝜙 = 2𝜅2

1 − 𝜅2
(20)

for 0 < 𝜎 <∞. Now the boundary conditions become

𝐶0
𝜎
,𝐶1
𝜎
,→ 0 as 𝜎→∞

and

𝐶0 =
{

1 for 0 ≤ 𝜏 < 1
0 for 1 ≤ 𝜏 < 2 and 𝐶1 = 0 on 𝜎 = 0. (21)

As the problem is periodic in 𝜏 with a period of 2, the concentration 
must tend to a constant as 𝜎 tends to infinity. Hence, using symmetry 
3

we obtain
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𝐶0(𝜎, 𝜏) = 1 −𝐶0(𝜎, 𝜏 + 1), 𝐶1(𝜎, 𝜏) = −𝐶1(𝜎, 𝜏 + 1), (22)

which are the global self-consistency conditions. As 𝐶0(𝜎, 𝜏) tends to 
a constant as 𝜎 tends to infinity, if we call this constant Θ and use 
equation (22) we obtain Θ = 1 − Θ, hence, Θ = 1

2 , thus we can write 
our far field boundary conditions as

𝐶0 →
1
2

and 𝐶1 → 0 as 𝜎→∞. (23)

4. Zeroth order

We are going to solve this problem using the Fourier sine transfor-

mation, however, in order to use this we need homogeneous boundary 
conditions. We now seek a self-similar solution 𝐶(𝜎, 𝜏) in the upper half 
of the domain, i.e. for 0 ≤ 𝜏 ≤ 1. We seek a solution that satisfies

𝐶𝜏 = 𝐶𝜎𝜎 for 0 < 𝜎 <∞ (24)

with the inhomogeneous boundary conditions

𝐶 →
1
2

as 𝜎→∞ and 𝐶 = 1 on 𝜎 = 0. (25)

The self-similar solution to this problem is given by

𝐶 = 1 − 1
2

erf

(
𝜎

2
√
𝜏

)
. (26)

Then we construct the homogeneous part of the zeroth order in the 
upper half of the domain using

𝐶0 = 𝐶 + 𝐶̂

where 𝐶̂ satisfies

𝐶̂𝜏 = 𝐶̂𝜎𝜎 for 0 < 𝜎 <∞ (27)

with the homogeneous boundary conditions

𝐶̂ → 0 as 𝜎→∞ and 𝐶̂ = 0 on 𝜎 = 0. (28)

Using the global self consistency condition (22) with the self similar 
solution (26) we obtain

𝐶̂(𝜎,0) = 1
2

erf
(
𝜎

2

)
− 1

2
− 𝐶̂(𝜎,1). (29)

By taking the Fourier sine transform, given in Appendix A, of (27) and 
solving we obtain

𝑈0(𝑘, 𝜏) =𝐺0(𝑘)𝑒−𝑘2𝜏 (30)

where 𝑈0 =  𝑠{𝐶̂} and 𝐺0(𝑘) needs to be determined. Taking the 
Fourier sine transform of the global self consistency condition (29)

yields

𝑈0(𝑘,0) =  𝑠{1
2

erf
(
𝜎

2

)
− 1

2

}
−𝑈0(𝑘,1). (31)

Now

 𝑠{erf
(
𝜎

2

)
− 1

}
=
√

2
𝜋

∞

∫
0

(
erf

(
𝜎

2

)
− 1

)
sin(𝑘𝜎)𝑑𝜎 =

√
2
𝜋

𝑒−𝑘
2 − 1
𝑘

.

(32)

Substituting equations (30) and (32) into equation (31) allows 𝐺0(𝑘) to 
be obtained. Hence, we can obtain the solution

𝑈0(𝑘, 𝜏) = 𝑒−𝑘
2𝜏 (𝑒−𝑘2 − 1)√

2𝜋𝑘(𝑒−𝑘2 + 1)
. (33)
Taking the inverse Fourier sine transform of equation (33) yields
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Fig. 1. Contours of 𝐶0 in the 𝜎 − 𝜏 plane using equations (35) and (36).

𝐶̂ =
√

2
𝜋

∞

∫
0

𝑈0(𝑘, 𝜏) sin(𝑘𝜎) 𝑑𝑘 =

∞

∫
0

𝑒−𝑘
2𝜏 (𝑒−𝑘2 − 1)

𝜋𝑘(𝑒−𝑘2 + 1)
sin(𝑘𝜎) 𝑑𝑘. (34)

Combining the homogeneous and inhomogeneous solutions yield

𝐶0 = 𝐶 + 𝐶̂ = 1 − 1
2

erf

(
𝜎

2
√
𝜏

)
+

∞

∫
0

𝑒−𝑘
2𝜏 (𝑒−𝑘2 − 1)

𝜋𝑘(𝑒−𝑘2 + 1)
sin(𝑘𝜎) 𝑑𝑘.

Using this result

∞

∫
0

𝑒−𝑘
2𝜏

𝜋𝑘
sin(𝑘𝜎) 𝑑𝑘 = 1

2
erf

(
𝜎

2
√
𝜏

)
we can express the zeroth order solution in the upper half of the domain 
as

𝐶0(𝜎, 𝜏) = 1 − 2
𝜋

∞

∫
0

𝑒−𝑘
2𝜏 sin(𝑘𝜎)

𝑘(𝑒−𝑘2 + 1)
𝑑𝑘 for 0 ≤ 𝜏 ≤ 1, 𝜎 ≥ 0. (35)

Using the zeroth order solution in the upper half of the domain, we can 
obtain the zeroth order solution in the lower half of the domain using 
𝐶0(𝜎, 𝜏 + 1) = 1 −𝐶0(𝜎, 𝜏) to give

𝐶0(𝜎, 𝜏) = 2
𝜋

∞

∫
0

𝑒−𝑘
2(𝜏−1) sin(𝑘𝜎)
𝑘(𝑒−𝑘2 + 1)

𝑑𝑘 for 1 ≤ 𝜏 ≤ 2, 𝜎 ≥ 0. (36)

Using Simpsons’ rule we numerically evaluated these integrals and in 
Fig. 1 we illustrate contours of the concentration 𝐶0 in the 𝜎 − 𝜏 plane. 
In Fig. 1, for small values of 𝜎, we see contours almost parallel to the 𝜏-
axis, except near 𝜏 = 0, 1 and 2 which show contours clustering together 
denoting a large change in concentration. The contours of 𝐶0 = 1

2 are 
approximately lines parallel to 𝜏 = 𝜎∕𝜋 separated by 1 in 𝜏 . We observe 
that for large 𝜎 that 𝐶0 tends 12 .

5. First order

Taking the Fourier sine transform of the first order equation in (20)

and solving yields

𝑈1(𝑘, 𝜏) = 𝑒−𝑘2𝜏
⎛⎜⎜⎝

𝜏

∫
0

𝑒𝑘
2𝑧𝐸1 𝑑𝑧+𝐺1(𝑘)

⎞⎟⎟⎠{ }

4

where 𝑈1(𝑘, 𝜏) =  𝑠 𝐶1(𝜎, 𝜏) , 𝐺1(𝑘) is an arbitrary function and
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𝐸1(𝑘, 𝑧) =  𝑠 {𝜙𝜎𝐶0
𝜎𝜎
(𝜎, 𝑧) −𝐶0

𝜎
(𝜎, 𝑧)

}
=
√

2
𝜋

∞

∫
0

(𝜙𝜎𝐶0
𝜎𝜎
(𝜎, 𝑧) −𝐶0

𝜎
(𝜎, 𝑧)) sin(𝑘𝜎) 𝑑𝜎

= 23∕2

𝜋3∕2

∞

∫
0

∞

∫
0

𝑒−𝜆
2𝑧 sin(𝑘𝜎)
𝑒−𝜆2 + 1

(𝜙𝜎𝜆 sin(𝜆𝜎) + cos(𝜆𝜎)) 𝑑𝜆𝑑𝜎. (37)

Taking the Fourier sine transform of the global self consistency condi-

tion (22) yields 𝑈1(𝑘, 0) = −𝑈1(𝑘, 1), thus we can solve for 𝐺1 to obtain

𝑈1(𝑘, 𝜏) = 𝑒−𝑘
2𝜏

1 + 𝑒−𝑘2
⎛⎜⎜⎝

𝜏

∫
0

𝑒𝑘
2𝑧𝐸1 𝑑𝑧−

1

∫
𝜏

𝑒𝑘
2(𝑧−1)𝐸1 𝑑𝑧

⎞⎟⎟⎠ . (38)

Taking the inverse Fourier sine transform of equation (38) yields

𝐶1 =
√

2
𝜋

∞

∫
0

𝑈1(𝑘, 𝜏) sin(𝑘𝜎) 𝑑𝑘

=
√

2
𝜋

∞

∫
0

𝑒−𝑘
2𝜏

1 + 𝑒−𝑘2
⎛⎜⎜⎝

𝜏

∫
0

𝑒𝑘
2𝑧𝐸1 𝑑𝑧−

1

∫
𝜏

𝑒𝑘
2(𝑧−1)𝐸1 𝑑𝑧

⎞⎟⎟⎠ sin(𝑘𝜎) 𝑑𝑘.
(39)

If we substitute in the expression for 𝐸1 given in equation (37) into 
equation (39) and evaluate the integral in 𝑧 we obtain

𝐶1(𝜎, 𝜏) = 4
𝜋2

∞

∫
0

∞

∫
0

∞

∫
0

Λ 𝑑𝜆𝑑𝜒 sin(𝑘𝜎) 𝑑𝑘 (40)

where

Λ=

(
𝑒−𝜆

2𝜏

1 + 𝑒−𝜆2
− 𝑒−𝑘

2𝜏

1 + 𝑒−𝑘2

)
𝜙𝜒𝜆 sin(𝜆𝜒) + cos(𝜆𝜒)

𝑘2 − 𝜆2
sin(𝑘𝜒). (41)

Hence, we have obtained 𝐶1 which is the first order correction to 𝐶0. 
Using this correction we can obtain a more accurate approximation to 
the effective diffusivity in the large Péclet number limit.

6. Effective diffusivity

To obtain the effective diffusivity in the large Péclet number limit 
we can use the boundary layer coordinate to obtain

𝐷eff = −𝐷
√

Pe

1

∫
0

𝐶𝜎|𝜎=0 𝑑𝜏 =𝐷√Pe𝐼 (42)

with 𝐼 = 𝐼0 + Pe−1∕2𝐼1 +𝑂(Pe−1), where 𝑂 is the upper bound used in 
asymptotic analysis, and

𝐼0 = −

1

∫
0

𝐶0
𝜎
|𝜎=0 𝑑𝜏 and 𝐼1 = −

1

∫
0

𝐶1
𝜎
|𝜎=0 𝑑𝜏. (43)

6.1. Zeroth order term

Using 𝐶0 given in equation (35) we find that

𝐼0 = 2
𝜋

∞

∫
0

Δ 𝑑𝑘 = 1
𝜋

∞

∫
−∞

Δ 𝑑𝑘 where Δ= 1 − 𝑒−𝑘2

𝑘2(𝑒−𝑘2 + 1)

which has been converted into an integral across the whole real line. By 
converting 𝐼0 into a contour integral around a semi-circle in the upper 
half of the complex plane centred at 𝑘 = 0 and noting that the integral 
around the arc tends to zero as the radius of the arc tends to infinity, 

we can evaluate 𝐼0 using Cauchy’s residue theorem:
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∫
Γ

𝑓 (𝑧)
𝑧− 𝑧0

𝑑𝑧 = 2𝜋𝑖𝑓 (𝑧0)

where Γ is a closed contour containing the pole at 𝑧 = 𝑧0. For each 
simple pole we can use

∫
Γ

𝜓(𝑧)
𝜂(𝑧)

𝑑𝑧 = 2𝜋𝑖
𝜓(𝑧0)
𝜂′(𝑧0)

where 𝜂(𝑧) has a simple zero at 𝑧 = 𝑧0, so 𝜂′(𝑧0) ≠ 0. Notice that Δ(0) =
1
2 so Δ is not singular at 𝑘 = 0, hence all the poles of Δ occur at the 
solutions to 𝑒−𝑘2 + 1 = 0. The roots of 𝑒−𝑘2 + 1 = 0 in the upper half of 
the complex plane are at 𝑘 = 𝛼𝑛 and 𝑘 = 𝛽𝑛 for 𝑛 ≥ 0 where

𝛼𝑛 =
√
𝜋

(
𝑛+ 1

2

)
(𝑖− 1) and 𝛽𝑛 =

√
𝜋

(
𝑛+ 1

2

)
(𝑖+ 1).

Hence, we obtain

𝐼0 = 2𝑖
∞∑
𝑛=0

Residue
(
Δ, 𝑘 = 𝛼𝑛

)
+ 2𝑖

∞∑
𝑛=0

Residue
(
Δ, 𝑘 = 𝛽𝑛

)
= 2𝑖

∞∑
𝑛=0
𝛼−3
𝑛

+ 2𝑖
∞∑
𝑛=0
𝛽−3
𝑛

=
√
2

𝜋3∕2

( ∞∑
𝑛=0

1 + 𝑖
(2𝑛+ 1)3∕2

+
∞∑
𝑛=0

1 − 𝑖
(2𝑛+ 1)3∕2

)

= 23∕2

𝜋3∕2

∞∑
𝑛=0

(2𝑛+ 1)−3∕2 = 23∕2

𝜋3∕2

( ∞∑
𝑛=1
𝑛−3∕2 −

∞∑
𝑛=1

(2𝑛)−3∕2
)

= 23∕2(1 − 2−3∕2)
𝜋3∕2

∞∑
𝑛=1
𝑛−3∕2 = 23∕2 − 1

𝜋3∕2
𝜁

(3
2

)
≈ 0.85780470 (44)

using 𝜁
(3
2

)
=

∞∑
𝑛=1
𝑛−3∕2 ≈ 2.61237535 where 𝜁 is the Riemann-zeta 

function (Abramowitz and Stegun, 1968).

6.2. First order term

Using 𝐶1 given in equation (40) we find that

𝐼1 = − 4
𝜋2

1

∫
0

∞

∫
0

∞

∫
0

∞

∫
0

Λ𝑘 𝑑𝜆𝑑𝜒𝑑𝑘𝑑𝜏.

We now evaluate the integral in 𝜏 to obtain

𝐼1 = 4
𝜋2

∞

∫
0

∞

∫
0

∞

∫
0

(𝜙𝜆𝜒 sin(𝜆𝜒) + cos(𝜆𝜒))Ωsin(𝑘𝜒) 𝑑𝜆𝑑𝜒𝑑𝑘

where

Ω= (𝑘2 − 𝜆2)(𝑒−𝑘2−𝜆2 − 1) + (𝑘2 + 𝜆2)(𝑒−𝜆2 − 𝑒−𝑘2 )
𝑘𝜆2(𝑘2 − 𝜆2)(1 + 𝑒−𝑘2 )(1 + 𝑒−𝜆2 )

. (45)

Notice that Ω is not singular at 𝑘 = 0, 𝜆 = 0 or 𝑘 = 𝜆. To allow us to 
approximate this triple integral we shall introduce 𝐼1

𝐿
where we have 

truncated the domain size to [0, 𝐿] in each dimension, and hence

𝐼1
𝐿
= 4
𝜋2

𝐿

∫
0

𝐿

∫
0

𝐿

∫
0

(𝜙𝜆𝜒 sin(𝜆𝜒) + cos(𝜆𝜒))Ωsin(𝑘𝜒) 𝑑𝜆𝑑𝜒𝑑𝑘

and then we analytically evaluate the integral with respect to 𝜒 to ob-

tain

𝐼1
𝐿
= 𝐽 0

𝐿
+ 𝜙𝐽 1

𝐿
(46)

with

𝐽 0
𝐿
= 2

𝐿 𝐿

Ω𝑃0 𝑑𝜆𝑑𝑘 and 𝐽 1
𝐿
= 2

𝐿 𝐿

𝜆Ω(𝐿𝑃1 + 𝑃2) 𝑑𝜆𝑑𝑘
5

𝜋2 ∫
0

∫
0

𝜋2 ∫
0

∫
0
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Table 1

𝐽 0
𝐿

and 𝐽 1
𝐿

as a function of the domain size 𝐿.

𝐿 𝐽 0
𝐿

𝐽 1
𝐿

10 −0.1975622244 −0.1342850967
20 −0.2232219954 −0.1281002227
40 −0.2364765293 −0.1259596249
80 −0.2432057528 −0.1252849260
160 −0.2465948546 −0.1250823458
320 −0.2482954350 −0.1250233477
640 −0.2491472139 −0.1250065255
1280 −0.2495734117 −0.1250018058

Fig. 2. log10(𝐽 0
𝐿
+0.25) against log10(𝐿) using the values in Table 1. Additionally 

the red line corresponds to the line of best fit.

where

𝑃0 =
cos(𝐿(𝜆− 𝑘))

𝜆− 𝑘
− cos(𝐿(𝜆+ 𝑘))

𝜆+ 𝑘
− 2𝑘
𝜆2 − 𝑘2

,

𝑃1 =
sin(𝐿(𝜆− 𝑘))

𝜆− 𝑘
− sin(𝐿(𝜆+ 𝑘))

𝜆+ 𝑘
,

𝑃2 =
cos(𝐿(𝜆− 𝑘))

(𝜆− 𝑘)2
− cos(𝐿(𝜆+ 𝑘))

(𝜆+ 𝑘)2
− 4𝜆𝑘

(𝜆2 − 𝑘2)2
.

We numerically evaluated the double integrals in equation (46) using 
Simpsons rule. In Table 1 we present the numerically evaluated values 
of 𝐽 0

𝐿
and 𝐽 1

𝐿
for various domain sizes 𝐿. The double integrals were 

numerically evaluated using a spatial step of 0.0025 in each dimension. 
Fig. 2 illustrates log10(𝐽 0

𝐿
+0.25) against log10(𝐿). The line of best fit in 

Fig. 2 suggests the relationship

𝐽 0
𝐿
= −1

4
+ 0.537

𝐿
.

Thus as 𝐿 tends to infinity we expect that 𝐽 0 = −1
4 . Fig. 3 illustrates 

log10(−𝐽 1
𝐿
−0.125) against log10(𝐿). The line of best fit in Fig. 3 suggests 

the relationship

𝐽 1
𝐿
= −1

8
− 0.562
𝐿1.75 .

Thus as 𝐿 tends to infinity we expect that 𝐽 1 = −1
8 . Substituting these 

predicted values of 𝐽 0 and 𝐽 1 into 𝐼1 yields

𝐼1 = −1
4
− 𝜙

8
. (47)

Substituting this conjecture into the effective diffusivity equation (42)
yields
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Fig. 3. log10(−𝐽 1
𝐿
− 0.125) against log10(𝐿) using the values in Table 1. Addi-

tionally the red line corresponds to the line of best fit.

Table 2

Numerical values of 𝐼num as a function of Pe when 𝜅 = 1∕2, ob-

tained from the full problem on various meshes 𝑁 with 𝑀 = 𝜆𝑁 .

𝐼num 𝑁

Pe 𝜆 200 400 800 1600 3200

100 5 0.7948 0.8125 0.8292 0.8450 0.8601

250 12.5 0.8223 0.8298 0.8387 0.8481 0.8573

500 25 0.8358 0.8386 0.8430 0.8488 0.8548

1000 50 0.8432 0.8448 0.8465 0.8493 0.8525

2500 125 0.8465 0.8495 0.8505 0.8508 /

5000 250 0.8449 0.8508 0.8524 / /

𝐷eff

𝐷
√

Pe
= 23∕2 − 1

𝜋3∕2
𝜁

(3
2

)
− 2 +𝜙

8
√

Pe
+𝑂(Pe−1)

≈ 0.8578047 − 2 + 𝜙

8
√

Pe
+𝑂(Pe−1). (48)

We note that increasing the ratio 𝜅, increases 𝜙 which decreases the 
effective diffusivity.

7. Numerical solutions

To verify this large Péclet asymptotic limit we numerically solved 
equation (18) by discretizing it using second order finite differences. For 
convenience we choose 𝜅 = 1

2 . We used periodic boundary conditions 
in 𝜏 , namely 𝐶(𝜎, 0) = 𝐶(𝜎, 2). On the outer cylinder, 𝜎 = 0, we used 
boundary condition (14) and on the inner cylinder, when 𝜎 =

√
Pe(1 −

𝜅) we used 𝐶𝜎 = 0. In the 𝜎 direction we used 𝑁 mesh points and in 
the 𝜏 direction we used 𝑀 mesh points. To ensure that 𝐶 remained 
between 0 and 1 we choose 𝑀 = 𝜆𝑁 where 𝜆 = Pe∕20. This condition 
was only required for large values of Pe. Using equation (42) we have

𝐼 =
𝐷eff

𝐷
√

Pe
= −

1

∫
0

𝐶𝜎|𝜎=0 𝑑𝜏.
As 𝐶 will now be obtained numerically, we introduce 𝐼num to denote 
our numerical approximation to the value of 𝐼 . The system of equations 
were solved by iterating until the value of 𝐼num had converged to 4 
decimal places. In Table 2 we present the values of 𝐼num as a function 
of the Péclet number for a range of meshes. Table 2 shows that the 
value of 𝐼num appears to be converging for large values of Pe, however, 
6

for moderate values of Pe, the values do not appear to have finished 
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Table 3

Comparing 𝐼num (on finest mesh in Table 2) with 𝐼asy

(equation (49)) for 𝜅 = 1∕2 for selected values of Pe. Er-

ror = |𝐼num − 𝐼asy|∕𝐼num.

Pe 𝑁 𝑀 𝐼num 𝐼asy Error

100 3200 16000 0.8601 0.8245 4.14%

250 3200 40000 0.8573 0.8367 2.46%

500 3200 80000 0.8548 0.8429 1.39%

1000 3200 160000 0.8525 0.8473 0.61%

2500 1600 200000 0.8508 0.8511 0.04%

5000 800 200000 0.8524 0.8531 0.08%

converging, over the range of meshes considered. The 3 missing values 
in Table 2 were due to meshes requiring more memory than our Fortran 
compiler would allow.

When 𝜅 = 1
2 this means that 𝜙 = 2

3 , so the large Péclet number 
asymptotic prediction of the effective diffusivity in equation (48) yields

𝐼asy =
𝐷eff

𝐷
√

Pe
=0.8578047 − 1

3
√

Pe
+𝑂(Pe−1) (49)

where 𝐼asy is the predicted asymptotic value of 𝐼 in the large Pe limit. 
In Table 3 we compare the asymptotic value 𝐼asy given by equation (49)

with the value 𝐼num obtained from the full numerical problem on the 
finest mesh considered for each value of Pe. The last column in Table 3

is the percentage error of the asymptotic solution with the full numeri-

cal solution 𝐼num. Table 3 shows that the numerical 𝐼num and asymptotic 
𝐼asy values are in very good for large values of Pe, say around 2500, 
however, as Pe decreases the numerical and asymptotic values have the 
opposite trend. The numerical values tend to increase as Pe decreases, 
however, the asymptotic values decrease as Pe decreases. One possible 
cause of this divergence in the results could be that the next correc-

tion in the series, a 𝑂(Pe−1) term not obtained here, may become more 
important than the 𝑂(Pe−1∕2) term obtained here.

In section 2.3 we found that the small Pe limit yields an infinite 
value of 𝐷eff whilst the large Pe limit predicted 𝐼asy to be an increasing 
function of Pe, hence, we should expect a minimum in 𝐼 from the two 
asymptotic limits. Overall, there is good agreement in the predicted 
effective diffusivity in the large Péclet number limit with the results 
from the full solution for 𝜅 = 1

2 .

8. Conclusions

In this study we have analysed mass transport in Couette flow. In 
the large Péclet number limit, using the Fourier sine transform, the 
asymptotic concentration profile in the boundary layer has been ob-

tained as an integral solution. The asymptotic solution agrees well with 
the full numerical solution for large Péclet numbers. Further, the an-

alytical asymptotic prediction in the large Péclet number limit of the 
effective diffusivity is in good agreement with those obtained by full 
numerical solutions, for large values of Pe. To demonstrate the applica-

tion of the approach used, in Appendix B, the same analysis is applied 
to planar Couette flow when a periodic concentration is specified on a 
moving wall and the effective diffusivity is obtained in the large Péclet 
number limit.
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Appendix A. Fourier sine transform

The Fourier sine transform is defined by

 𝑠{𝑞(𝜎)} =
√

2
𝜋

∞

∫
0

𝑞(𝜎) sin(𝑘𝜎) 𝑑𝜎 =𝑄(𝑘) (50)

( 𝑠)−1{𝑄(𝑘)} =
√

2
𝜋

∞

∫
0

𝑄(𝑘) sin(𝑘𝜎) 𝑑𝑘 = 𝑞(𝜎). (51)

We require that 𝑞 and 𝑞𝜎 tend to zero as 𝜎 tends to infinity, then we 
have the property

 𝑠{𝑞𝜎𝜎} =
√

2
𝜋
𝑘𝑞(0) − 𝑘2 𝑠{𝑞(𝜎)}. (52)

Appendix B. Planar Couette flow

Suppose we now have two horizontal parallel plates. The 𝑥 axis runs 
horizontally parallel to the plates whilst the 𝑦 axis runs vertically per-

pendicular to the plates. The lower plate is at 𝑦 = 0 at moves to the right 
at speed 𝑢0, whilst the upper plate at 𝑦 = ℎ is stationary. We suppose 
a fluid is between the two plates with constant density 𝜌 and kine-

matic viscosity 𝜈. We assume that the fluid satisfies the incompressible 
Navier-Stokes equations. A species C with molecular diffusion coeffi-

cient 𝐷 will dissolve into the fluid. We assume that the concentration 
is sufficiently dilute that saturation effects can be neglected so that the 
concentration 𝑐 satisfies the mass transport equation. We assume that 
the species does not affect the density or viscosity of the fluid, hence 
we have the bulk equations:

∇ ⋅ 𝑢 = 0, (53)

𝑢
𝑡
+ (𝑢 ⋅∇)𝑢 = −1

𝜌
∇𝑝+ 𝜈∇2𝑢, (54)

𝑐𝑡 + (𝑢 ⋅∇)𝑐 =𝐷∇2𝑐 (55)

where 𝑢 is the fluids velocity, 𝑝 is the fluid’s pressure and 𝑡 is time. We 
suppose the upper plate is impermeable so that we have the no slip and 
no flux boundary conditions:

𝑐𝑦 = 0 and 𝑢 = 0 on 𝑦 = ℎ. (56)

The lower plate is assumed permeable. We suppose that there is a set of 
large containers, below the lower plate. Each container is fixed in space 
and of equal width 𝑤. The contents of the containers periodically alter-

nate between containing species C at the concentration 𝑐0 for 0 ≤ 𝑥 <𝑤, 
or containing a large amount of catalyst such that when species C makes 
contact with the catalyst it undergoes a first order chemical reaction for 
𝑤 ≤ 𝑥 < 2𝑤. We suppose that the reaction rate of the chemical reac-

tion is sufficiently fast that it can be assumed instantaneous. Thus, on 
the lower plate we shall assume that species C is held at a constant con-
7

centration 𝑐0 for 0 ≤ 𝑥 < 𝑤, but C is absent for 𝑤 ≤ 𝑥 < 2𝑤, and the 
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problem has period 2𝑤 in the 𝑥 direction. Hence, on the lower plate we 
have the boundary conditions:

𝑐 =
{
𝑐0 for 0 ≤ 𝑥 <𝑤
0 for 𝑤 ≤ 𝑥 < 2𝑤 and 𝑢 = 𝑢0𝑖 on 𝑦 = 0 (57)

where 𝑖 is the unit vector in the 𝑥 direction. We assume that the flow 
and concentration have reached a steady state, i.e. 𝑐𝑡 = 0 and 𝑢

𝑡
= 0. 

Further, we assume that the flow field is purely in the 𝑥 direction and so 
takes the form 𝑢 = 𝑢(𝑦)𝑖. Then the incompressibility condition is already 
satisfied and the bulk equations become

0 = −1
𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈𝑢𝑦𝑦, (58)

0 = −1
𝜌

𝜕𝑝

𝜕𝑦
, (59)

𝑢
𝜕𝑐

𝜕𝑥
=𝐷

[
𝜕2𝑐

𝜕𝑥2
+ 𝜕

2𝑐

𝜕𝑦2

]
. (60)

The boundary conditions on the upper plate become

𝑐𝑦 = 0 and 𝑢 = 0 on 𝑦 = ℎ (61)

and the boundary conditions on the lower plate become

𝑐 =
{
𝑐0 for 0 ≤ 𝑥 <𝑤
0 for 𝑤 ≤ 𝑥 < 2𝑤 and 𝑢 = 𝑢0 on 𝑦 = 0. (62)

This problem is periodic in 𝑥, i.e.

𝑐(𝑥, 𝑦) = 𝑐(𝑥+ 2𝑤,𝑦) and
𝜕𝑝

𝑑𝑥
(𝑥, 𝑦) = 𝜕𝑝

𝑑𝑥
(𝑥+ 2𝑤,𝑦).

Now from equation (59) we see that 𝑝 is only a function of 𝑥. We sup-

pose that this problem involves a constant pressure gradient in the 𝑥
direction, i.e. 𝑑𝑝

𝑑𝑥
is a constant. Solving equation (58) yields

𝑢 = 𝑦2

2𝜇
𝑑𝑝

𝑑𝑥
+𝐴𝑦+𝐵

where 𝜇 = 𝜌𝜈 is the dynamic viscosity, and 𝐴 and 𝐵 are constants. 
Using the boundary conditions (61) and (62) we can solve for 𝐴 and 𝐵
to determine that

𝑢 = (ℎ− 𝑦)
(
𝑢0
ℎ

− 𝑦

2𝜇
𝑑𝑝

𝑑𝑥

)
. (63)

Non-dimensionalisation

We non-dimensionalise the system by rescaling the variables as fol-

lows:

𝑥 =𝑤𝜏, 𝑦 = ℎ𝑌 , 𝑐 = 𝑐0𝐶, 𝑝 =
2𝑤𝜇𝑢0
ℎ2

𝑃

and define the Péclet number as

Pe =
ℎ2𝑢0
𝑤𝐷

.

Then the dimensionless mass transport equation can be written as

Pe (1 − 𝑌 ) (1 − 𝑃𝜏𝑌 )𝐶𝜏 = 𝐶𝑌 𝑌 + ℎ2

𝑤2𝐶𝜏𝜏 for 0 < 𝑌 < 1. (64)

The boundary condition on the upper plate becomes

𝐶𝑌 = 0 on 𝑌 = 1 (65)

and the boundary condition on the lower plate becomes

𝐶 =
{

1 for 0 ≤ 𝜏 < 1
0 for 1 ≤ 𝜏 < 2 on 𝑌 = 0. (66)
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Effective diffusivity

Let 𝑓 denote the dimensional flux on the lower plate, then

𝑓 = −𝐷
𝑤

𝑤

∫
0

𝑐𝑦|𝑦=0 𝑑𝑥.
The effective diffusivity can be defined as

𝐷eff = − 𝑓
𝑐𝑦

= ℎ𝐷

𝑤𝑐0

𝑤

∫
0

𝑐𝑦|𝑦=0 𝑑𝑥 =𝐷 1

∫
0

𝐶𝑌 |𝑌=0 𝑑𝜏 (67)

where 𝑐𝑦 is the mean macroscopic gradient, here we use 𝑐𝑦 = 𝑐0∕ℎ.

Small Péclet number limit

In the small Péclet number limit, setting Pe = 0 allows the problem 
to be solved using separation of variables to give

𝐶(𝑌 , 𝜏) = 1
2
+ 2
𝜋

∞∑
𝑚=1

cosh((2𝑚− 1) 𝜋ℎ
𝑤
(1 − 𝑌 ))

cosh((2𝑚− 1) 𝜋ℎ
𝑤
)

sin((2𝑚− 1)𝜋𝜏)
2𝑚− 1

. (68)

We notice we cannot use this solution to obtain the effective diffusivity, 
since if we substitute equation (68) into equation (67) we obtain

𝐷eff = −4𝐷ℎ
𝑤𝜋

∞∑
𝑚=1

tanh((2𝑚− 1) 𝜋ℎ
𝑤
)

2𝑚− 1

which is not a convergent series.

A Large Péclet number limit

In the large Péclet number limit, there is a concentration boundary 
layer of thickness of Pe

− 1
2 near the lower plate. Outside of this bound-

ary layer the concentration becomes homogeneous. We introduce the 
boundary layer coordinate

𝜎 =
√

Pe𝑌 (69)

then equation (64) becomes(
1 − 𝜎√

Pe

)(
1 − 𝑃𝜏

𝜎√
Pe

)
𝐶𝜏 =

ℎ2

𝑤2Pe
𝐶𝜏𝜏 +𝐶𝜎𝜎 (70)

for 0 < 𝜎 <
√

Pe. We now introduce the expansion

𝐶 = 𝐶0 + Pe−1∕2𝐶1 +𝑂(Pe−1).

Substituting this into the above equations, letting the Péclet number 
tend to infinity, and collecting powers of Pe yields

𝐶0
𝜏
= 𝐶0

𝜎𝜎
, (71)

𝐶1
𝜏
= 𝐶1

𝜎𝜎
+ (1 + 𝑃𝜏 )𝜎𝐶0

𝜎𝜎
, (72)

for 0 < 𝜎 <∞. Now the boundary conditions become

𝐶0
𝜎
,𝐶1
𝜎
→ 0 as 𝜎→∞

and

𝐶0 =
{

1 for 0 ≤ 𝜏 < 1
0 for 1 ≤ 𝜏 < 2 and 𝐶1 = 0 on 𝜎 = 0.

As the problem is periodic in 𝜏 with a period of 2, the concentration 
must tend to a constant as 𝜎 tends to infinity. Hence, using symmetry 
we obtain
8

𝐶0(𝜎,0) = 1 −𝐶0(𝜎,1), 𝐶1(𝜎,0) = −𝐶1(𝜎,1)
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which are the global self-consistency conditions. By symmetry we find 
that the concentration tends to 12 as 𝜎 tends to infinity, i.e.

𝐶0 →
1
2

and 𝐶1 → 0 as 𝜎→∞.

Notice the zeroth order solution to this problem is the same as the prob-

lem in the main body of this paper namely equations (35) and (36). 
However, the first order solution is given by

𝐶1 =
√

2
𝜋

∞

∫
0

𝑒−𝑘
2𝜏

1 + 𝑒−𝑘2
⎛⎜⎜⎝

𝜏

∫
0

𝑒𝑘
2𝑧𝐸 𝑑𝑧−

1

∫
𝜏

𝑒𝑘
2(𝑧−1)𝐸 𝑑𝑧

⎞⎟⎟⎠ sin(𝑘𝜎)𝑑𝑘
where

𝐸 =  𝑠 {(1 + 𝑃𝜏 )𝜎𝐶0
𝜎𝜎

}
=
√

2
𝜋
(1 + 𝑃𝜏 )

∞

∫
0

𝜎𝐶0
𝜎𝜎

sin(𝑘𝜎) 𝑑𝜎

=
( 2
𝜋

) 3
2 (1 + 𝑃𝜏 )

∞

∫
0

∞

∫
0

𝜎𝜆𝑒−𝜆
2𝑧

𝑒−𝜆2 + 1
sin(𝜆𝜎) sin(𝑘𝜎) 𝑑𝜆𝑑𝜎.

B Effective diffusivity

To obtain the effective diffusivity in the large Péclet number limit 
we can use the boundary layer coordinate to obtain

𝐷eff = −𝐷
√

Pe

1

∫
0

𝐶𝜎|𝜎=0 𝑑𝜏 =𝐷√Pe(𝐼0 + Pe−1∕2𝐼1 +𝑂(Pe−1))

where

𝐼0 = −

1

∫
0

𝐶0
𝜎
|𝜎=0 𝑑𝜏 = 23∕2 − 1

𝜋3∕2
𝜁

(3
2

)
≈ 0.85780470

𝐼1 = −

1

∫
0

𝐶1
𝜎
|𝜎=0 𝑑𝜏 = 4

𝜋2
(1 + 𝑃𝜏 )

∞

∫
0

∞

∫
0

∞

∫
0

𝜒𝜆 sin(𝜆𝜒)Ωsin(𝑘𝜒) 𝑑𝜆𝑑𝜒𝑑𝑘

where Ω is defined in equation (45). Applying our previous conjecture 
on 𝐼1 to this expression gives us

𝐼1 = −
1 + 𝑃𝜏

8
.

Substituting this into the effective diffusivity equation (42) yields

𝐷eff

𝐷
√

Pe
≈ 0.8578047 −

1 + 𝑃𝜏
8

Pe−1∕2 +𝑂(Pe−1). (73)
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