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Abstract 

Road Surface Texture Depth (STD) is a critical aspect of a road surface. A typical STD range 
is between 2.0-0.8 mm. Roads with STD less than the lower threshold are more prone to 
traffic accidents due to aquaplaning or drop in skid resistance. Roads with STD more than the 
upper threshold are prone to fretting and pothole formation. In this study, a simple method to 
predict STD has been developed. The method utilises previous STD measurements collected 
by the Surface Condition Assessment for the National Network of Roads (SCANNER) 
method to quantify STD deterioration rate, which is the amount of increase or decrease in 
STD over time. The deterioration rates are then converted into Texture Deterioration Master 
Curves (TDMCs) which can be used in predicting STD. To demonstrate the application of 
this method, SCANNER data covering around 400 km of class A roads in Nottinghamshire 
collected between 2014 and 2018 were analysed and used to build TDMCs. STD data in 2020 
were then predicted and compared to the measured STD data for validation. The results show 
that the developed method is simple and reliable, which makes it a valuable management tool 
for highway authorities enabling them predicting the STD on their road networks and 
assessing the risks of high or low STD on the condition and operation of their road networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1- Introduction 

Road Surface Texture Depth (STD) can be defined as a measure of deviations in height and 
depth on the road's surface from a smooth road surface profile. The deviations can vary from 
as small as a few micrometres, which is mostly related to particle surface roughness, to tens 
or hundreds of millimetres, which is mostly related to the used aggregate gradation and 
asphalt mix volumetrics, or road unevenness. Therefore, researchers have classified road 
texture based on its amplitude (A) and wavelength (λ), which is the distance between two 
texture amplitudes into four categories:  microtexture (A ≤ 0.2 mm and λ ≤0.5 mm), 
macrotexture (0.1 < A ≤ 20 mm and 0.5 < λ ≤ 50 mm), megatexture (0.1 < A ≤ 50 mm and 50 
< λ ≤ 500 mm), and Unevenness (λ ≥ 500 mm) (Chen et al., 2022; Wambold et al., 1995). Every 
one of these categories have significant effects on the interaction between the road surface 
and vehicle tyres, and affect the safety of road users and sustainability of roads during the use 
phase. 

At micro and macro surface texture levels, STD impacts on road safety and traffic accidents 
can be analysed by its effects on critical road surface aspects, which are skid resistance and 
vehicle hydroplaning. The relationship between STD and skid resistance has been under 
investigation since the Fifties of the previous century (Sabey, 1966); the main conclusion of 
this study is that skid resistance on wet roads depends largely on the “coarseness” of the road 
surface,  which will not drop significantly if the road has a textured surface. It also 
recommends limiting the STD on roads to more than 0.6 mm to ensure acceptable level of 
skid resistance. On the other hand, the combination of a good STD and worn vehicle tyres has 
been found to significantly decrease the risk of “vehicle hydroplaning”, which is the inability 
of vehicles to brake and steer on wet roads (Horne & Joyner, 1966). This is because the STD 
provides drainage channels for water at the road surface to escape, which ensures a good grip 
between the road surface and vehicle tyres. 

The relationship between STD and traffic accidents has been thoroughly investigated by 
many researchers and highway organisations. A Transport Research Laboratory (TRL) study 
(Roe et al., 1991) has shown that maintaining the macrotexture above 0.7 mm reduces the risk 
of accidents in wet and dry conditions as well. Another TRL study that investigated the 
relationship between collisions and skid resistance and included various modern road 
surfacing materials (Wallbank et al., 2016) concluded that STD prevents vehicles from 
skidding on wet roads and also increases surface friction in all weather conditions, which 
means maintaining sufficient STD reducing the risks having traffic accidents in wet and dry 
conditions. Several other studies have also demonstrated that smooth road surfaces increase 
the risks of vehicle accidents and the STD must be kept in certain limits to ensure good 
vehicle tyre grip, high skid resistance, and low risk of hydroplaning (Fairall et al., 2021; 
Fernandes & Neves, 2014; Pardillo Mayora & Jurado Pina, 2009; Spitzhuttl et al., 2020). 

In addition to the critical effects of STD on road safety, it has critical impacts on other 
aspects. Tyre-pavement interaction noise has been one of the main concerns due to noise 
effects on the ecological environment and surrounding population. Various studies have 
shown that vehicle noise is a function of STD and other factors such as air void content at the 
surface, vehicle type, speed, and tyre tread pattern (Descornet et al., 2000; Franklin et al., 1979). 
Sandberg (1999) demonstrates that the relationship between STD and noise is complex and 
STD can decrease or increase noise depending on texture wavelength, vehicle type, vehicle 



tyre texture and vehicle speed. With respect to fuel economy, this is a critical topic that has 
been extensively investigated due to the critical effects of fuel consumption on the 
environmental, economic, and social impacts of roads during the use phase. The effect of 
STD on vehicle fuel consumption can be understood by the direct relationship between 
rolling resistance and fuel consumption (Thom, 2008). STD of more than about 5mm 
increases rolling resistance and eventually fuel consumption, and driving on very rough roads 
can increase fuel consumption by 11% in comparison with driving on very smooth roads  
(Bendtsen, 2004). Several other studies have also demonstrated similar conclusions (Chatti & 
Zaabar, 2012; Ejsmont et al., 2016; Levesque et al., 2023; Perrotta et al., 2017).   

Due to the aforementioned paramount effects of STD, highway authorities and researchers 
have developed different methods to measure and quantify the surface texture of roads. The 
sand patch (BSI, 1990; Cooper, 1974) is one of the earliest methods to quantify the Mean 
Texture Depth (MTD) of a pavement surface. This method has been extensively used to 
estimate skid resistance on roads. It is however a slow method that gives a single texture 
measurement every reading, and it is also an unpractical method as it requires traffic stoppage 
when used for texture measurement on roads. Therefore, different automated traffic speed 
texture measurement methods have been developed over time. The Transport Research 
Laboratory developed a high speed texture meter using a contactless laser reflectance sensor 
(Roe et al., 1988) which is able to measure texture depth and produces a texture profile at 
traffic speeds between 10 and 100 km/h. This method of texture measurement has been used 
to monitor texture depth during the use phase of roads and to investigate texture related 
traffic accidents (Roe et al., 1991). The capability of texture measurement by laser sensors has 
evolved to include 3D texture scanning (Chen et al., 2021), which enables analysis of texture 
distribution and roughness characterisation. Moreover, with the advancement in imaging 
technologies, various studies have proposed image-based texture depth measurements, which 
allows for analysing the entire texture distribution over a pavement surface (Chen, 2018; 
Matlack et al., 2021; Wang et al., 2022).  

It can be seen that a lot of significant work has been done to measure and monitor STD to 
ensure it remains within accepted criteria. Very little work, however, has been done on 
predicting STD over time. In this study, a STD prediction tool has been developed. The tool 
is basically a statistical model that has been developed based on previous texture depth data 
quantified by the SACNNER method. The tool requires the last two texture depth readings to 
predict the future. In particular, two readings are required to establish the tendency of the 
section, whether it has a decreasing or increasing texture depth. The last reading will then be 
used to predict STD based on the specified prediction period and the relevant model. The 
validation results of this tool show it is very reliable and easy to implement. Moreover, since 
this tool has been developed based on the data collected by the Surface Condition Assessment 
for the National Network of Roads (SCANNER) method, which is the method used by local 
authorities in the UK to inspect their road networks (UK Roads Board, 2011), then the local 
authorities in the UK can confidently implement it. Furthermore, since other data such as 
road geometry are also available from the SCANNER machine, then complementing these 
data with traffic data and use of available models such as accident prediction or pothole 
prediction models make this tool a strategic management tool, where the predicted condition 
of the network can be used to predict the consequences of STD in a scenario analysis 
approach. 



2- Materials and Methods  

2-1 Data description and pre-processing 

The surface texture measurement data used in this study has been taken using the SCANNER 
method, which uses laser sensors to quantify the texture. The data covers around 400 km of 
class A roads in Nottinghamshire, as shown in Figure 1; every point on this figure represents 
a texture measurement expressed as an average over every 10 m of the inner lane of the road 
sections. The road sections had been surveyed between 2014 and 2020 every two years. 
These data however may contain inherent issues such as error in measurements, inaccurate 
section boundaries, or missing data. Therefore, the data must be pre-processed to ensure only 
reliable data is used in the model building. Several statistical methods are available to pre-
process in these situations, such as outlier removal in the case of measurement error, 
averaging in the case of missing data, or combining sections and averaging in the case of 
inaccurate section boundaries (Kargah-Ostadi et al., 2019). In this study, the outlier removal 
method has been used to remove sections with a significant increase or decrease in STD over 
any two years. The removal rule regarding the increasing STD case is that any section that 
exhibits an increase of more than three times the initial reading in two years was removed; 
this is because this section was most likely suffering from localised damage, poorly 
constructed, or there was an error in the measurement. The removal rule regarding the 
decreasing STD case is that any section that exhibits a decrease in the texture of more than 
75% of its last reading in two years was removed, this is because that section could be located 
at a location subjected to critical surface friction, which makes it deteriorating at a rate 
significantly different from the average, or there was an error in the measurement. Both of 
these rules have been developed in this study based on significant data analysis and 
observation of the texture deterioration tendency over time.  

 

Figure 1. A map showing the study area and the road sections used in this study (every point 
represents a 10 m length road section; bridges, roundabouts, and intersections were not 
included in the scan)  

 



 

2-2 Model development 

Road surface texture either decreases over time mainly due to polishing by vehicle tyres, or 
increases over time due to fretting or ravelling of the surface. Both conditions can be 
represented as a rate of deterioration, which can be represented using the following form: 

𝑇𝐷𝐷𝑅௜ = (𝑆𝑇𝐷௜ − 𝑆𝑇𝐷௜ିଵ)/((𝑇௜ − 𝑇௜ିଵ)  Equation 1 
where TDDR is the texture depth deterioration rate in mm/year, STD is the texture 
measurement, T is the time of the survey in years, and i is the survey number. Previous 
studies, however, have demonstrated that pavement deterioration is in general a function of 
its condition in addition to the environment and traffic loadings  (Abaza, 2014; Abed et al., 
2023b). Therefore, to include the effects of pavement condition on TDDR, the previous 
equation can be rewritten as follows: 

𝑇𝐷𝐷𝑅௜,௦ = (𝑆𝑇𝐷௜,௦ − 𝑆𝑇𝐷௜ିଵ,௦)/((𝑇௜ − 𝑇௜ିଵ,௦)  Equation 2 
where s refers to texture depth state represented by its magnitude. This means that the 
deterioration rate of texture is related to its current state represented by the texture magnitude. 

Following this understanding, the data collected 2014 and 2018 has been filtered as explained 
in the previous section. Then the sections that showed decreasing texture over time have been 
isolated and used to calculate the TDDR of the decreasing texture case; the rate of these 
sections is referred to as TDDRd. Since the TDDR is related to the texture state as mentioned 
earlier, then the deterioration rate has been calculated cross different initial texture states as 
shown in Figure 2. This figure has been produced by considering five initial texture depth 
states, which are 0-0.5, 0.5-1, 1-1.5, 1.5-2, and 2-2.5 mm. The data show that it is very 
unusual to find an initial texture depth state of more than 2.5 mm regardless of the asphalt 
mix used. Then the sections in every state in 2014 were isolated and monitored till 2018. 
Lastly, the average texture depth of these sections was plotted against time and a linear model 
was fitted as shown in the figure. The slope of the fitted lines represents the average TDDRd 
of every texture state. Despite this figure showing that the relationship between texture depth 
and time is approximately linear, the TDDRd actually increases with the increase in the initial 
texture depth magnitude, which means the overall relationship is not quite linear. 

Similarly, the sections that showed increasing texture over time have been used to calculate 
the average texture increase rate, which is referred to as TDDRi, as shown in Figure 3. This 
figure demonstrates that the increase in the texture is related to the initial texture state; the 
larger the initial texture the larger the increase rate. The increase in texture depth over time is 
mostly likely related to pavement surface fretting, which is defined as the loss of bitumen or 
fine aggregate particles from a road surface, ravelling, which is the disintegration of coarse 
aggregate particles from the road surface (Abouelsaad & White, 2021; Scott et al., 2008), or 
stripping which is the displacement of bitumen on the aggregate particle surface by actions of 
water (Bagampadde et al., 2011). The results in Figure 3 suggest that texture can increase at any 
state or stage in a pavement service life. This could be on newly constructed roads with initial 
texture depth between 1-2 mm, or sections that suffered from ageing, moisture damage, and 
traffic action after some time in service, with texture depth below 1 mm, or sections with 
existing fretting or ravelling which most likely are those ones texture depth more than 2 mm.  



 

Figure 2. Average TDDRd calculated based on 2014 and 2018; the negative slope sign means 
the texture is decreasing over time. 

 

Figure 3. Average TDDRi calculated based on 2014 and 2018. 

The fitted linear models in Figure 2 and Figure 3 can be used straight away by simply using the 
initial texture depth state to select the relevant model. This however will make the number of 
models to be used in the prediction process relatively large. Therefore, another approach has 
been followed in this study, converting the fitted linear models onto one master curve called 
Texture Deterioration Master Curve (TDMC). This can be done by following the procedure 
proposed by (Abed et al., 2023b); basically, the texture depth data are moved to the right on the 
x axis without changing the y axis until the data form a smooth shape, as shown in Figure 4. 
The rationale behind this approach is that the deterioration rate, which is the slope of the 
fitted lines, matches the slope of the fitted master curve to the shifted data. This can be 
achieved by keeping the y axis and the time spacing between the shifted data (i.e., two years 
in this case) the same, which means the deterioration rate is the same but calculated at a 
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different time. It must be stated here that the shifted time on the x axis is an imaginary time 
that has a mathematical importance when calculating the deterioration rate but no physical 
meaning. In other words, it is not related to the age of the roads. The resulting shape can then 
be modelled using a suitable model. In this study, exponential models have been found to 
best fit texture deterioration data, as shown in Figure 5 and Figure 6. These figures suggest that 
the fitted models are very accurate with a coefficient of regressions (R2) of more than 0.98 in 
both cases.  

To use the developed TDMCs, two inputs are required: firstly, the last two texture depth 
measurements to establish whether the texture is increasing or decreasing on that particular 
section; secondly the last reading to predict the texture in the future. An example of this 
process is shown in Figure 5. In this example the last texture depth measurement is projected 
onto the TDMC to identify the imaginary time, then the prediction period (PP) is added to the 
imaginary time; the next step is to project the new time on the master curve; and lastly to 
project the result of the last step on the y axis to predict the texture in the future. 
Mathematically, this model can be derived as follows: 

1. In the case of decreasing texture depth, the model fitted to the resulting master curve is as 
follows: 

𝑆𝑇𝐷௜ = 2.0355 × 𝑒(ି଴.଴ଽହ×்೔)  Equation 3 
2. To calculate the imaginary time of a texture depth Ti, the above model can be inverted, as 
follows: 

𝑇௜ = 10.526 × 𝑙𝑛(2.035/𝑆𝑇𝐷௜)  Equation 4 
3. To add the prediction period to the model, then we can use the following form: 

𝑇௜ାଵ = 𝑇௜ + 𝑃𝑃 = 10.526 × 𝑙𝑛(2.035/𝑆𝑇𝐷)  + 𝑃𝑃  Equation 5 

4. To predict the texture in the future, the following model should be used: 

𝑆𝑇𝐷௜ାଵ = 2.0355 × 𝑒ି଴.଴ଽହ×்೔శభ)  Equation 6 

5. Since 𝑇௜ାଵ is calculated in step 3, then it can be substituted in step 4, as follows: 

𝑆𝑇𝐷௜ାଵ = 2.0355 × 𝑒ି଴.଴ଽହ×(ଵ଴.ହଶ଺×௟௡(ଶ.଴ଷହ/ௌ்஽)  ା௉௉)  Equation 7 

6. Lastly, the above equation can be simplified, which yields the following model: 

𝑆𝑇𝐷௜ାଵ = 𝑆𝑇𝐷௜/𝑒଴.଴ଽହ×௉௉  Equation 8 

The model shown in Equation 8 can be used to predict STD after a prediction period (PP) 
substituted in years using the last STD measurement. 

Following the above steps, the prediction model of the increasing STD case can also be 
derived, which yields the following model:  

𝑆𝑇𝐷௜ାଵ = 𝑆𝑇𝐷௜ × 𝑒଴.଴ସଽଷ×௉௉   Equation 9 
 



 

Figure 4. Illustration of the texture TDMC construction process (S stands for shifted data) 

 

Figure 5. TDMC in the case of decreasing STD 

 

Figure 6. TDMC in the case of increasing STD 
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Model validation 

The above models have been derived based on 2014-2018 data. To validate these models, the 
data in 2016 and 2018 have been used to predict the STD values in 2020, which have been 
compared with the actual measurements in 2020. The role of the data in 2016 and 2018 is to 
establish whether the analysed section is decreasing or increasing in texture, which can be 
accomplished using the following logic: 

 𝐼𝑓 𝑆𝑇𝐷ଶ଴ଵ଼ > 𝑆𝑇𝐷ଶ଴ଵ଺ 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑆𝑇𝐷 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑡 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 

Admittedly, this is a basic analysis to assess whether the analysed section is exhibiting 
fretting or ravelling, and it may not be accurate as there is some error in texture 
measurements by the SCANNER method. This analysis, however, can be improved by 
coupling video recording and image processing principles to determine whether a road 
section is exhibiting fretting or ravelling or not, which reduces the number of the required 
inputs in the model to one STD measurement, but this is beyond the scope of this study.  

Using the TDMC models shown in Equations 8 and 9, and 2016/2018 data the texture depth 
in 2020 was predicted, as shown in Figures 7, 8, and 9. The first figure shows the prediction 
results of sections exhibiting decreasing texture over time. It can be seen that the model can 
predict the texture to a very good accuracy with a correlation coefficient of 0.96 in this case. 
Figure 8 on the other hand shows the prediction results of texture depth in the case of sections 
exhibiting increasing texture over time. The performance of this model is not as good as the 
decreasing texture model as there is more scatter in the data. The correlation coefficient in 
this case was 0.77. Also, Figure 8 shows that the prediction model underestimates the texture 
in many sections. This is in fact a very reasonable result because the models implement the 
average deterioration rate in the prediction process, which makes texture decrease prediction 
more accurate as the deterioration mechanism is mainly related to aggregate polishing. On the 
other hand, texture increase is related to more sophisticated damage mechanisms such as 
fretting or ravelling, which are difficult to predict distress types. The last figure combines the 
results in the two cases; the overall correlation coefficient is 0.93, which shows that the 
developed models are reasonably reliable in predicting STD. 

 

   

Figure 7. Validation of STD 
predictions in the case of 
decreasing texture 

Figure 8. Validation of STD 
predictions in the case of 
increasing texture 

Figure 9. Overall validation 
of STD predictions.  

  



Model application 

The developed models can obviously be implemented in predicting STD. Implementing STD 
predictions to assess road network performance, however, can be extremely beneficial to 
highway authorities from a management point of view. STD has significant effects on 
different road aspects such as fuel consumption or collisions as discussed in the introduction 
section. Using STD predictions in assessing these aspects helps highways authorities to 
understand the influence of STD on the network performance and eventually making 
informed management decisions and strategic investment plans. 

For instance, the relationship between pavement surface condition and collision risk has been 
investigated in several Transport Research Laboratory studies (Fairall et al., 2021; Parry & 
Viner, 2005; Wallbank et al., 2016). These studies have demonstrated that collision risk can be 
predicted based on road section type such as carriageways or junctions, and important 
predictors such as traffic flow, texture depth, or skid resistance. Since in this study, STD has 
been predicted for class A roads, then the following model developed by Wallbank et al. (2016) 
has been adopted:  

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝐸𝑥𝑝(𝐿𝑒𝑛𝑔𝑡ℎ + 0.86 × log(𝐴𝐴𝐷𝑇) −
15.83 − 0.1 × 𝑆𝑇𝐷)  
 

Equation 10 

This model gives an indication of the risk of having a car accident per 100M vhe-km/year 
based on the considered section length, traffic flow and texture depth. It must be stated here 
that this model gives an indication of the collision risk rather than predicting an actual 
number of car accidents. The model has been used together with the developed STD models 
to predict the collision risk in 2020, 2024 and 2028 as shown in Figure 10. The traffic data has 
been downloaded from the Department for Transport traffic statistics data base (Department 
for Transport, 2023). This figure shows that sections with increasing STD will have less risk of 
collision because of the expected increase in skid resistance and a reduced risk of 
hydroplaning. On the other hand, the sections with decreasing texture depth will have more 
risk collisions over time because of the drop in skid resistance and increased risk of 
hydroplaning. Moreover, predicting and monitoring collision risk over time at the network 
level enables highway authorities to take strategic investment decisions to limit collision risk 
and improve safety on the network. This can be achieved by setting a threshold for the 
collision risk; for instance, keeping the risk below 0.215 (equivalent to 1.17 100M veh-
km/year collisions on a 500 m road section with 10000 AADT and 0.5 mm STD) on any 
section, which can be used as an investigatory level to trigger further investigations and plan 
required maintenance. 



 

Figure 10. Collision risk results per 100M vehicle-km/year (1-3 show the collision risk results 
over sections with increasing STD, whereas 4-6 show the collision risk results over sections 
with decreasing STD). 

Another application that has been considered in this study is the correlation between STD 
increase and pothole formation. As stated earlier, the increase in the STD is most likely a 
form of fretting or ravelling, which are defects can lead to pothole formation if left without 
maintenance (Abouelsaad & White, 2021; McRobbie et al., 2015; Scott et al., 2008). The 
relationship between STD and pothole formation has been quantified by (Abed et al., 2023a). 
This study shows that sections with STD of 2 mm or less have a low probability of 0.05 of 
developing a pothole, which means one out of twenty sections with this texture depth range 
will form a pothole. Sections with 2-3 mm STD have a medium probability of 0.1, and 
sections with STD of more than 3 mm have a high risk of 0.2. By implementing these figures 
together with the predicted STD data, the probability of pothole formation over the analysed 
sections has been predicted, as shown in Figure 11. This figure shows that sections with 
increasing STD will show an increased risk of pothole formation over time due to the 
increased risk of fretting and ravelling, which can lead to pothole formation, whereas sections 
with decreasing STD will have a low risk of pothole formation because these sections are 
unlikely to exhibit fretting or ravelling. Moreover, monitoring the risk of pothole formation at 
a network level, can help highway authorities to develop strategic plans and prepare 
investment schemes to limit the number of potholes on the network and enhance safety.  



 

Figure 11. The results of the predicted pothole formation risk (1-3 show the number of 
sections with low, medium, or higher pothole formation risk over the sections with increasing 
STD, whereas 4-6 show the results over the sections with decreasing STD).  

Conclusions 

Road surface texture changes due to different factors such as friction between the surface and 
vehicle tyres, traffic volume, road geometry, and asphalt mix type and properties. The 
decrease or increase in the texture can lead to critical consequences such as reduced skid 
resistance, increased fuel consumption, increased noise, collision risk, and progressive 
distress types such as ravelling or potholes. Accordingly, it is extremely important to monitor 
texture depth to keep it with acceptable limits. In this study, simple texture depth prediction 
models have been developed using previous texture measurements collected by the 
SCANNER method. The models require input of the last two texture measurements and can 
be used to predict texture for extended period of times. The developed models have been used 
to predict texture depth on class A roads in Nottinghamshire; the validation results show that 
the models provide accurate texture predictions. Moreover, using available collision risk and 
pothole formation risk models, the collision risk and pothole formation risk over the 
investigated sections have been predicted. The results show that the developed approach can 
be a critical pavement management tool that is able to support highway authorities to make 
strategic plans and develop investment schemes to limit the negative impacts of road surface 
texture on the network performance. Within the limits of this study, the following major 
conclusions can be drawn:  

1. The developed texture prediction models are built for a specific network with a 
certain condition. To implement these models, however, a “tailored” set of models 
should be developed based on the road class and other network properties following 
the same approach, which can significantly enhance the accuracy of the developed 
prediction method. 



2. Texture decrease rate results show that sections with initial STD of more than 2 mm 
deteriorate at a rate that is almost double of the sections with initial STD of 1.5-2 mm. 
This suggests that limiting the initial STD to less than 2 mm will prolong the period 
of texture deterioration till it reaches the minimum allowable STD. 

3. Using aggregates with good abrasion resistance in the surface layers of roads together 
with an optimum STD can enhance safety and reduce collision risk on roads. On the 
other hand, adopting preventive pavement maintenance approaches to prevent or 
delay fretting and ravelling can lead to critical benefits such as less fuel consumption 
and reduced risk of pothole formation. 

4. The critical relationships between STD and network performance indicators such as 
collision risk or pothole formation means that STD prediction can play a critical role 
in network management by developing maintenance schemes designed to keep these 
indicators within acceptable limits. The threshold values of collision risk or pothole 
formation risk however should be thoroughly discussed and carefully selected as they 
have significant impacts on the way the network is managed. 

Lastly, it must be stated that variability of texture deterioration was not considered in this 
study. The data analysed in this study however show that STD can increase or decrease at 
rates significantly higher or lower than the average deterioration rate. Therefore, it must be 
appreciated that the predictions made using the developed models are mean estimates that 
will enable pavement managers and highway authorities to make strategic investment 
decisions.  
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