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Abstract 
For a perfectly calibrated forensic evaluation system, the likelihood ratio of the likelihood ratio is the likelihood 
ratio. Conversion of uncalibrated log-likelihood ratios (scores) to calibrated log-likelihood ratios is often per
formed using logistic regression. The results, however, may be far from perfectly calibrated. We propose 
and demonstrate a new calibration method, “bi-Gaussianized calibration,” that warps scores toward 
perfectly calibrated log-likelihood-ratio distributions. Using both synthetic and real data, we demonstrate that 
bi-Gaussianized calibration leads to better calibration than does logistic regression, that it is robust to score 
distributions that violate the assumption of two Gaussians with the same variance, and that it is competitive 
with logistic-regression calibration in terms of performance measured using log-likelihood-ratio cost (Cllr). 
We also demonstrate advantages of bi-Gaussianized calibration over calibration using pool-adjacent violators 
(PAV). Based on bi-Gaussianized calibration, we also propose a graphical representation that may help ex
plain the meaning of likelihood ratios to triers of fact.
Keywords: calibration; Gaussian distribution; likelihood ratio; logistic regression. 

1. Introduction
A set of scales should be well calibrated, otherwise its readout will be misleading. If a set of scales 
is well calibrated, when an item is placed on the set of scales, the value of its readout will equal 
the mass of that item. Figure 1 shows, for a perfectly calibrated set of scales, the relationship be
tween the mass placed on the set of scales and the readout of the set of scales—this is the identity 
function, we will also refer to it as the “perfect-calibration line.” The process of calibrating the 
set of scales involves adjusting its calibration settings so that its readouts over a range of masses 
are as close as possible to the identity function.

Likewise, a forensic evaluation system that outputs likelihood ratios should be well calibrated, 
otherwise its output will be misleading (González-Rodríguez et al. 2007; Ramos and González- 
Rodríguez 2013; Morrison 2013; Brümmer et al. 2014; Meuwly et al. 2017; Vergeer et al. 2020; 
Morrison et al. 2021). If a forensic evaluation system is well calibrated, the likelihood ratio of 
the likelihood-ratio value that it outputs will be the same as the likelihood-ratio value that it out
puts, or, more pithily, “The likelihood ratio of the likelihood ratio is the likelihood ratio” 
(Birdsall 1973: 18), or, as an equation, Equation (1), in which Λ is a likelihood ratio, f is a 
probability-density function, and Hs and Hd are the same-source and different-source hypothe
ses, respectively. 

Λ ¼
f ΛjHsð Þ

f ΛjHdð Þ
(1) 

The following is a perfectly calibrated system: a system for which the distribution of the natu
ral logarithms of the likelihood ratios that it outputs in response to different-source input pairs 
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and the distribution of the natural logarithms of the likelihood ratios that it outputs in response 
to same-source input pairs are both Gaussian and both have the same variance, ln Λdð Þ �

N μd; σ2
� �

and ln Λsð Þ � N μs; σ2
� �

, and the means of the different-source and same-source distri
butions are μd ¼ �

σ2

2 and μs ¼ þ
σ2

2 , respectively (Peterson et al. 1954: Sections 4.3 and 4.9; 
Birdsall 1973: Section 1.3; Good 1985: Section 6; van Leeuwen and Brümmer 2013; 
Morrison 2021).1

Figure 2a shows the different-source and same-source distributions of a perfectly calibrated 
system with σ ¼ 3. The fact that the system is perfectly calibrated can be confirmed by selecting 
any ln Λð Þ value on the x-axis, obtaining the probability density of the same-source distribution 
at that value, obtaining the probability density of the different-source distribution at that value, 
dividing the former by the latter to obtain a likelihood ratio, and taking the natural logarithm of 
that likelihood ratio, see Equation (2), in which f xjμ; σð Þ is a univariate Gaussian probability- 
density function. The result is the same as the original ln Λð Þ value. Applying Equation (2) across 
the plotted range of ln Λð Þ values results in Fig. 2b, the identity function. 

ln Λð Þ ¼ ln
f ln Λð Þj þ σ2

2 ; σ
� �

f ln Λð Þj � σ2

2 ; σ
� �

0

B
@

1

C
A (2) 

The identity function can be obtained by applying the procedure described above to any per
fectly calibrated bi-Gaussian system, irrespective of the value of σ. The panels in the left column 
of Fig. 3 show examples of different-source and same-source distributions of perfectly calibrated 
bi-Gaussian systems with different values of σ. All panels represent perfectly calibrated systems, 
but the performance of systems represented in lower panels is better than the performance of sys
tems represented in higher panels—the overlap between the different-source distribution and the 
same-source distribution is less. From the top panel to the bottom panel, the corresponding log- 
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Figure 1. The relationship, for a perfectly calibrated set of scales, between the mass placed on a set of scales and 
the readout of the set of scales—this is the identity function/the perfect-calibration line.

1 Good (1985) p. 257 attributes the discovery of this relationship to Turing.
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likelihood-ratio cost (Cllr) values are 0.85, 0.52, 0.24, and 0.09. The panels in the right column 
of Fig. 3 show the Tippett plots corresponding to the panels in the left column.2

The process of calibrating a forensic evaluation system that is not already well calibrated 
involves using a calibration model to calibrate the uncalibrated output of the system. Figure 2c 
shows an example of the different-source and same-source distributions of the logarithms of like
lihood ratios output by a system that is not calibrated, but for which both distributions are 
Gaussian and they have the same variance. For brevity, we will refer to the logarithms of uncali
brated likelihood ratios as “scores,” but note that these scores take into account of both similar
ity and typicality, they are not similarity-only scores.3 In order to obtain a mapping function 
from scores, x, to calibrated ln Λð Þ, we can, over a range of x values, obtain the probability den
sity of the same-source distribution at each value, obtain the probability density of the different- 
source distribution at that value, divide the former by the latter to obtain a likelihood ratio, and 
take the natural logarithm of that likelihood ratio, see Equation (3) and the resulting mapping 
function in Fig. 2d. Because the scores were not calibrated, the mapping function is not the iden
tity function, but, in this example, it is a linear function (a linear discriminant function, LDF), as 
described in Equation (4), in which μd, μs, and σ are the statistics (or parameters) of the score dis
tributions, that is, the statistics of the original values rather than those of the transformed values. 
For derivation of the equations for the intercept and slope values, a and b, see van Leeuwen and 
Brümmer (2013) or Morrison (2021). 
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Figure 2. (a) Different-source and same-source Gaussian distributions with, μd ¼ � 4:5, μs ¼ 4:5, σ ¼ 3. (b) Log- 
likelihood-ratio-to-log-likelihood-ratio mapping function corresponding to (a). (c) Different-source and same-source 
Gaussian distributions with, μd ¼ 3, μs ¼ 6, σ ¼ 1. (d) Score-to-log-likelihood-ratio mapping function corresponding 
to (c). Panels (a) and (b) represent a perfectly-calibrated system. Panel (b) shows the identity function.

2 For explanations of Cllr and of Tippett plots, see Morrison et al. (2021) Appendix C.
3 Morrison & Enzinger (2018), Neumann & Ausdemore (2020), and Neumann et al. (2020) have argued that cal

culating likelihood ratios based on scores that only take account of similarity does not result in meaningful likelihood- 
ratio values because they do not take account of typicality with respect to the relevant population for the case. Vergeer 
(2023), however, argues that use of similarity-score-based systems to calculate likelihood ratios is acceptable if system 
performance is better than using prior odds.
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ln Λð Þ ¼ ln
f xjμs; σ
� �

f xjμd; σ
� �

 !

(3) 

ln Λð Þ ¼ aþbx (4) 

b ¼
μs � μd

σ2

a ¼
� μ2

s þ μ2
d

2σ2 ¼ � b
μsþ μd

2 

The mapping function in the example in Fig. 2d has slope b ¼ 6� 3
12 ¼ 3 and intercept 

a ¼ � 3× 6þ3
2 ¼ � 3×4:5 ¼ � 13:5. If this mapping function is applied to the distributions in  

Fig. 2c, the result is Fig. 2a. If the same procedure is then applied to the already-calibrated distri
butions in Fig. 2a, the mapping function in Fig. 2b has slope b ¼ 4:5þ4:5

32 ¼ 1 and intercept 
a ¼ � 1× 4:5� 4:5

2 ¼ 0, that is, it is the identity function.
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Figure 3. Left column: different-source and same-source distributions of perfectly calibrated bi-Gaussian systems 
with different values of σ. Right column: Tippett plots corresponding to the distributions in the left column. From the 
top to the bottom panel, the corresponding Cllr values are 0.85, 0.52, 0.24, and 0.09.
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In the example above, the different-source score distribution and the same-source score distri
bution were both Gaussian and they had the same variance. In these circumstances, the calibra
tion model can be based on an LDF as described in Equation (4). In practice, the assumption 
that the score distributions consist of two Gaussians with the same variance is often violated. 
Therefore, rather than using an LDF, the intercept and slope, a and b, are usually obtained using 
logistic regression (LogReg), which is more robust to violations of this assumption (Brümmer 
and du Preez 2006; González-Rodríguez et al. 2007; Morrison 2013; Morrison et al. 2020, 
2023). Notice, however, that since the calibration function is still a linear mapping in the ln Λð Þ
space, if the score distributions violate the assumption of two Gaussians with the same variance, 
then the “calibrated” ln Λð Þ distributions will not consist of two Gaussians with the same vari
ance, and hence may be far from the same-source and different-source distributions of a perfectly 
calibrated bi-Gaussian system. The pool-adjacent violators (PAVs) algorithm (Ayer et al. 1955; 
Zadrozny and Elkan 2002; Brümmer and du Preez 2006), aka isotonic regression, has been used 
to provide a non-linear but monotonic mapping, but this non-parametric approach overfits on 
the training data and therefore does not generalize well to new data. Also, it does not extrapolate 
below the lowest same-source value and above the highest different-source value.4 Using kernel- 
density estimates (KDEs) of the same-source scores and of the different-source scores, dividing 
the former by the latter, and taking the logarithm results in a non-linear mapping, but one which 
is not monotonic. Conversion of uncalibrated likelihood ratios to calibrated likelihood ratios, 
and indeed calibration in general, should be monotonic.

This article proposes and demonstrates the use of a new calibration method, “bi-Gaussianized 
calibration,” that uses a non-linear monotonic function to map scores toward a perfectly cali
brated bi-Gaussian system.

The remainder of this article is organized as follows:

� Section 2 describes the bi-Gaussianized calibration method. 
� Section 3 demonstrates the application of the method on two sets of simulated data and on 

two sets of real data. 
� Section 4 explores the effect of sampling variability on the performance of the method. 
� Section 5 describes a graphical representation that may facilitate understanding by the trier 

of fact of likelihood-ratio values output by the method. 
� Section 6 provides a conclusion. 

The data and Matlab® code used for this article are available from https://forensic-data-sci 
ence.net/calibration-and-validation/#biGauss. This includes a function that implements bi- 
Gaussianized calibration and a function that draws the graphical representation described in 
Section 5. Python versions of the latter functions will also be made available.

2. Bi-Gaussianized calibration method
2.1 Variants
Below, we describe four variants of bi-Gaussianized calibration. Each variant uses a different 
method to calculate the σ2 for a target perfectly calibrated bi-Gaussian system. Three variants in
clude an initial calibration step using LogReg, KDE, or PAV, then calculate the target σ2 based 
on Cllr, and the other variant calculates the target σ2 based on equal-error rate (which we will ab
breviate as E¼ or EER depending on context). Scores are then mapped toward the ln Λð Þ of the 
perfectly calibrated bi-Gaussian system with the target σ2.

In the remainder of this section:

� We describe the steps required to implement each variant of the bi-Gaussianized- 
calibration method. 

4 Laplace’s rule of succession can be used to prevent the values outside this range from being reported as –1 and 
þ1, see Brümmer & du Preez (2006) §13.2.1.1.
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� We derive, for a perfectly calibrated bi-Gaussian system, the relationship between Cllr and σ2, 
and the relationship between E¼ and σ2. 

� We compare the performance of the EER, LogReg, KDE, and PAV methods for determining 
the target σ2. 

� We describe the algorithm for mapping from the cumulative score distribution to the cumula
tive distribution of the perfectly calibrated bi-Gaussian system with the target σ2. 

2.2 Steps for the Cllr-based variants
The Cllr-based variants of the bi-Gaussianized-calibration method consist of the following steps:

1) Calculate same-source scores and different-source scores (uncalibrated log-likelihood ra
tios) for a set of training data and a set of test data. 

2) Calibrate the training-data output of Step 1 using one of the following methods: LogReg5; 
KDE6; PAV.7 

3) Calculate Cllr for the output of Step 2. 
4) Determine the σ2 of the perfectly calibrated system with the same Cllr as calculated at 

Step 3. 
5) Ignoring the same-source and different-source labels, determine the mapping function from 

the empirical cumulative distribution of the training-data output of Step 1 to the cumulative 
distribution of the perfectly calibrated bi-Gaussian system (a two-Gaussian mixture) with 
the σ2 determined at Step 4. 

6) Apply the mapping function determined at Step 5 to the test-data output of Step 1, and to 
the score calculated for the comparison of the actual questioned- and known-source items 
in the case. 

2.3 Relationship between Cllr and r2

At Step 3 of the Cllr-based variants of the bi-Gaussianized-calibration method, Cllr is calculated 
using Equation (5), in which Ns and Nd are the number of same-source and different-source in
put pairs, respectively.8 

Cllr ¼
1
2

1
Ns

XNs

i¼1

log2 1þ
1

Λsi

� �

þ
1

Nd

XNd

j¼1

log2 1þΛdj

� �

0

@

1

A (5) 

Although, in general, there is a many-to-one mapping in which different sets of same-source 
and different-source likelihood ratios can map to the same Cllr value, there is a one-to-one map
ping between the σ2 of a perfectly calibrated system and the Cllr of that system. Step 4 requires 
that the latter mapping be known. Given Cllr, if one can determine σ2, then one knows every
thing about the same-source and different-source distributions of that perfectly cali
brated system.

For a perfectly calibrated system, the distributions of ln Λdð Þ and ln Λsð Þ are reflections of one 
another about ln Λð Þ ¼ 0, so we need only consider either the left sum or the right sum within the 
outer parenthesis of Equation (5). We take the left sum, convert it to a definite integral, and ar
rive at Equation (6).9 

5 We use a regularized version of logistic regression with a regularization weight of κ ¼ 0:01 relative to the number 
of sources, see Morrison & Poh (2018) for details. This amount of regularization resolves potential numerical prob
lems, but does not induce substantial shrinkage.

6 We used Gaussian kernels with the bandwidth determined using the Gaussian-approximation method, aka 
Silverman’s rule of thumb (Silverman, 1986, p. 45).

7 For PAV, we used Laplace’s rule of succession so that score values below the smallest same-source score and score 
values above the largest different-source score result in finite ln Λð Þ values (see note 4 above).

8 The form of Equation (5) is that given in González-Rodríguez et al. (2007) and thereafter widely repeated in the 
literature. It can be derived from Brümmer & du Preez (2006) Equation 43.

9 In general, a sum 1
N

PN
i¼1 g xið Þ converts to an integral 

Ð1
� 1

f xð Þg xð Þdx, in which f xð Þ is the probability density 

function for x, and g xð Þ is the function of x for which one wishes to integrate out x.
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Cllr ¼
1

ln 2ð Þ

ð1

� 1

f xj
σ2

2
; σ

� �

ln 1þe� xð Þdx

x ¼ ln Λsð Þ

(6) 

We can use numerical integration to integrate out x and arrive at the value for the integral.10  

Figure 4 plots the resulting values of ln Cllrð Þ over a range of σ2 values. Figure 4 also shows a fit
ted regression, the equation for which is given in Equation (7).11 The fitted coefficient values for 
the regression are b ¼ 17:7 and c ¼ 9:33 × 10� 3. Solving for σ2, we arrive at Equation (8), which 
is graphically represented in Fig. 5. Given a Cllr value, Equation (8) can be used to calculate the 
σ2 of the perfectly calibrated system with that Cllr value. 

ln Cllrð Þ ¼ b e� cσ2
� 1

� �
(7) 

σ2 ¼ �
1
c

ln
1
b

ln Cllrð Þþ1
� �

(8) 

This subsection has derived the relationship between Cllr and σ2 for a perfectly calibrated bi- 
Gaussian system. Instead of using Cllr, any other strictly proper scoring rule (SPSR) could be 
used. One would have to derive the relationship between that SPSR and σ2 for a perfectly cali
brated bi-Gaussian system. We use Cllr, rather than any other SPSR, because it is commonly used 
in the forensic-science literature.

2.4 Steps for the E5-based variant
The E¼-based variant of the bi-Gaussianized-calibration method consists of the steps listed be
low. Steps 1, 5, and 6 are identical to the Cllr-based variants, and Steps 3 and 4 are parallel. The 
E¼-based variant has no parallel of the Cllr-based variants’ Step 2.

0 5 10 15 20 25
2

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ln
(C

llr
)

Figure 4. Circles: ln Cllrð Þ values given σ2 values. ln Cllrð Þ values were calculated using numerical integration applied 
to Equation (6). Curve: Fitted regression of ln Cllrð Þ on σ2.

10 We used the “integral” function in Matlab®.
11 The general form of the equation would be ln Cllrð Þ ¼ aþbe� cσ2

, but at σ2 ¼ 0, ln Cllrð Þ ¼ 0, therefore a ¼ � b.
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1) Calculate same-source scores and different-source scores (uncalibrated log-likelihood ra
tios) for a set of training data and a set of test data. 

2) Skip. 
3) Calculate the E¼ for the training-data output of Step 1. 
4) Determine the σ2 of the perfectly-calibrated system with the same E¼ as calculated at 

Step 3. 
5) Ignoring the same-source and different-source labels, determine the mapping function from 

the empirical cumulative distribution of the training-data output of Step 1 to the cumulative 
distribution of the perfectly calibrated bi-Gaussian system (a two-Gaussian mixture) with 
the σ2 determined at Step 4. 

6) Apply the mapping function determined at Step 5 to the test-data output of Step 1, and to 
the score calculated for the comparison of the actual questioned- and known-source items 
in the case. 

2.5 Relationship between E5 and r2

E¼ is the value at which the false-alarm rate (FAR) and miss rate (MR) are equal. To calculate 
E¼ we used an algorithm that sorted the data from Step 1 irrespective of different-source or 
same-source label, calculated FAR and MR at each datapoint (FAR monotonically decreases and 
MR monotonically increases), found the first datapoint for which FAR was less than MR, then 
took the mean of FAR and MR at that datapoint or the mean of FAR and MR at the immediately 
preceding datapoint, whichever was lower.12 If FAR was zero, the mean was calculated using 
the MR obtained as described above and half the lowest non-zero FAR. If MR was zero, the 
mean was calculated using the FAR obtained as described above and half the lowest non-zero 
MR. If FAR was never less than MR, the mean was calculated using half the lowest non-zero 
FAR and half the lowest non-zero MR.

Although, in general, there is a many-to-one mapping in which different sets of same-source 
and different-source likelihood ratios can map to the same E¼ value, there is a one-to-one map
ping between the σ2 of a perfectly calibrated system and the E¼ of that system. Step 4 requires 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
llr
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Figure 5. Relationship between Cllr and σ2 for a perfectly calibrated bi-Gaussian system.

12 If FAR became less than MR because of a step up in MR, FAR had the same value at that datapoint and at the 
immediately preceding datapoint. If FAR became less than MR because of a step down in FAR, MR had the same value 
at that datapoint and at the immediately preceding datapoint.
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that the latter mapping be known. Given E¼, if one can determine σ2, then one knows everything 
about the same-source and different-source distributions of that perfectly calibrated system.

An advantage of the E¼-based variant of the bi-Gaussianized-calibration method over the 
Cllr-based variant is that, unlike for the Cllr to σ2 conversion function (Section 2.3), there is an 
analytical solution for the E¼ to σ2 conversion function. For a perfectly calibrated system (for 
which μs ¼

σ2

2 and the miss rate and false-alarm rate are equal at ln Λð Þ ¼ 0), the relationship be
tween E¼ and σ is as given in Equation (9). 

E¼ ¼ f 0jμs; σ
� �

¼ f �
μs

σ
j0; 1

� �

¼ f �
σ2

2σ
j0; 1

� �

¼ f �
σ
2
j0; 1

� �

(9) 

Solving Equation (9) with respect to σ results in Equation (10), in which F� 1 is the inverse cu
mulative probability function for a Gaussian distribution. 

σ ¼ � 2F� 1 E¼j0; 1ð Þ (10) 

Figure 6 shows the relationship between E¼ and σ2 for a perfectly calibrated system.

2.6 Comparison of methods for determining the target r value
In this subsection, we explore the performance of the alternative methods for determining the σ 
for the perfectly calibrated bi-Gaussian system toward which scores will be mapped (Steps 3 and 
4 of the bi-Gaussianized-calibration method).

We generated synthetic data using Monte Carlo simulation. Sample sets consisting of 100 
same-source scores and 4950 different-source scores were generated from perfectly calibrated bi- 
Gaussian systems with σ 2 1; 2;3; 4f g (the generating distributions are the same as those plotted 
in Fig. 3). For each value of σ, we generated 1,000 sample sets. For each sample set, we calcu
lated the target σ value obtained from each method: EER, LogReg, KDE, and PAV. Violin plots 
of results are provided in Fig. 7 through Fig. 10, note that the scale of the y axis differs across fig
ures. In each figure, the solid horizontal line indicates the “true” σ, that is, the parameter value 
used to generate the Monte Carlo samples. Table 1 gives the root-mean square (RMS) errors be
tween the target σ value and the “true” σ value.
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Figure 6. Relationship between E¼ and σ2 for a perfectly calibrated system.
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EER LogReg KDE PAV

0.6
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1

1.2

1.4

Figure 7. Violin plots of distributions of target σ values estimated by each method. The solid horizontal line indicates 
the parameter value used to generate the Monte Carlo samples, σ ¼ 1.

Table 1. RMS errors of the target σ values obtained from each method relative to the “true” σ, the parameter value 
used to generate the Monte Carlo samples. For each “true” σ value, the RMS value for the best performing method 
is bolded.

Methods

“true” r EER LogReg KDE PAV

1 0.133 0.113 0.122 0.184
2 0.153 0.127 0.131 0.187
3 0.203 0.162 0.159 0.217
4 0.309 0.253 0.232 0.303

EER LogReg KDE PAV
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2

2.2

2.4

2.6

Figure 8. Violin plots of distributions of target σ values estimated by each method. The solid horizontal line indicates 
the parameter value used to generate the Monte Carlo samples, σ ¼ 2.
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The PAV method had a substantial bias toward larger target σ values than the “true” σ value. 
This is likely due to PAV overfitting the training data, resulting in smaller Cllr values and hence 
larger target σ values. Except for “true” σ ¼ 4, for which it had the second highest RMS error, 
the PAV method always had the highest RMS error. Because of the poor performance of PAV as 
a method for determining the target σ, in the remainder of the article, we do not make use of the 
PAV variant of the bi-Gaussianized-calibration method.

For the EER method, as the separation between the different-source distribution and the 
same-source distribution increases, sparsity of data in the overlapping tails of the distributions 
accounts for the multimodality in the distributions of target σ, that is, the multiple bulges see in 
the violin plots for the EER method for σ 2 2; 3;4f g. Each bulge corresponds to a miss rate 
which, because there are only 100 same-source samples, is discretized into steps of 0.01, for ex
ample, for the EER method in Fig. 10, the highest bulge corresponds to a miss rate of 0.01, the 
middle (widest) bulge to a miss rate of 0.02, and the lowest bulge to a miss rate of 0.03, and in  
Fig. 9, the two widest bulges correspond to miss rates of 0.06 and 0.07. Except for “true” σ ¼ 4, 

EER LogReg KDE PAV

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Figure 9. Violin plots of distributions of target σ values estimated by each method. The solid horizontal line indicates 
the parameter value used to generate the Monte Carlo samples, σ ¼ 3.
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4.4

4.6

4.8
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5.2

Figure 10. Violin plots of distributions of target σ values estimated by each method. The solid horizontal line 
indicates the parameter value used to generate the Monte Carlo samples, σ ¼ 4.
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for which it had the highest RMS error, the EER method always had the second highest 
RMS error.

The RMS errors were consistently lowest for the LogReg and KDE methods. For “true” σ 2
1;2f g the LogReg method had the lowest RMS error, and for “true” σ 2 3; 4f g the KDE method 

had the lowest RMS error. Both these methods had a slight bias toward larger target σ values 
than the “true” value (a somewhat greater bias for the KDE method when “true” σ ¼ 1). This 
bias may be due to error in the procedure used to derive the Cllr to σ2 conversion function 
(Section 2.3), stochastic error, fitting error, or intrinsic underfitting due to an insufficiently com
plex regression equation.

Because the LogReg and KDE methods for determining the target σ result, on average, in tar
get σ values that are closer to the “true” σ value than the EER and PAV methods, the LogReg 
and KDE variants of the bi-Gaussianized-calibration method appear to be more promising than 
the EER and PAV variants of the bi-Gaussianized-calibration method.

For the LogReg method when “true” σ ¼ 3, there was an outlier with a low σ value, which 
would result in a conservative calibration, that is, log-likelihood ratios closer to zero than for the 
“true” perfectly calibrate system. The KDE method does not exhibit an outlier, so this could be a 
reason to favor the KDE method over the LogReg method.

In order to have a “true” σ against which to compare target σ results, the Monte Carlo simula
tions used a different-source score distribution and a same-source score distribution which were 
Gaussian and had the same variance. In these simulations, the LogReg method’s assumption of 
linearity in the score (or ln Λð Þ) domain was satisfied. When the different-source score distribu
tion and the same-source score distribution are not Gaussian or do not have the same variance, 
and these assumptions are violated, it could be that the KDE variant of the bi-Gaussianized- 
calibration method will outperform the LogReg variant. Note that, although KDE as a calibra
tion method would result in a non-linear mapping, when KDE is used to determine the target σ 
as part of the bi-Gaussianized-calibration method, the bi-Gaussianized-calibration method will 
result in a monotonic mapping.

2.7 Cumulative-distribution mapping
Step 5 of the bi-Gaussianized-calibration method requires determining the empirical cumulative 
distribution of the training scores output at Step 1. This is done giving equal weight to the set of 
different-source scores and the set of same-source scores (the number of different-source scores, 
Nd, and the number of same-source scores, Ns, usually differ). Each different-source score is 
given a weight of 1

2
1

Ndþ1

� �
, and each same-source score is given a weight of 1

2
1

Nsþ1

� �
. All the 

scores, x1 . . . xNdþNsf g, irrespective of their same-source or different-source labels, are sorted 
from smallest to largest, and the cumulative sums of the sorted scores’ weights are calculated. 
The resulting values of the cumulative sums of the weights monotonically increase from near 0 
for the lowest-value score to near 1 for the highest-value score. In the denominators of the 
weights, the addition of 1 to Nd and the addition of 1 to Ns prevents the final cumulative-sum 
value from reaching 1. We define G xð Þ as the empirical-cumulative-distribution function. G xð Þ
returns the value of the cumulative sum of the weights up to and including score value x. If the 
score value, x, is not exactly the same value as one of the training-score values, the value of G xð Þ
is linearly interpolated using the closest training-score value below x, the closest training-score 
value above x, and their corresponding G xð Þ values. The method does not extrapolate beyond 
values encountered in the training data: If the value of x is below the smallest score value in the 
training set or above the largest score value in the training set, the value returned by G xð Þ corre
sponds to, respectively, the G xð Þ value for the smallest score value in the training set or the G xð Þ
value for the largest score value in the training set.

A score, x, is mapped to a calibrated ln Λð Þ value using Equation (11), in which F� 1 is the in
verse cumulative distribution for a two-Gaussian mixture with the specified mean, standard- 
deviation, and weight values.13 Each Gaussian in the mixture is given the same weight, w ¼ 0:5. 
The value of σ2 is the target value determined at Step 4 of the bi-Gaussianized-calibration 
method. The fact that the maximum G xð Þ value does not reach 1 prevents F� 1 from returning an 
infinite value. 

13 F� 1 is defined differently in Equation (11) than in Equation (10).
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ln Λð Þ ¼ F� 1 G xð Þj μd; σ;w½ �; μs; σ;w½ �
� �

¼ F� 1 G xð Þj �
σ2

2
; σ;0:5

� �

;
σ2

2
; σ;0:5

� �� �

(11) 

3. Demonstrations of the method
3.1 Introduction
We demonstrate application of the method using:

� Synthetic score data for which the generating distributions are those of a perfectly-calibrated 
bi-Gaussian system (Section 3.2). 

� Synthetic score data for which the generating different-source distribution is Gaussian and 
the generating same-source distribution is skewed and has a smaller variance than the 
different-source distribution (Section 3.3). 

� Real score data from a forensic-voice-comparison system (Section 3.4). These data moder
ately deviate from the assumption of equal-variance Gaussians. 

� Real score data from a comparison of glass fragments (Section 3.5). These data exhibit ex
treme deviation from the assumption of equal-variance Gaussians. 

For plots below of cumulative distributions, mapping functions, probability-density plots of 
ln Λð Þ values, and Tippett plots, we have always used the target σ obtained from the LogReg vari
ant of bi-Gaussianized calibration. The target σ for the EER and KDE variants were always simi
lar, so would have resulted in similar (often visually indistinguishable) plots.

3.2 Synthetic data: Equal-variance Gaussians
We generated synthetic data using Monte Carlo simulation. The generating different-source dis
tribution was a Gaussian with parameters μd ¼ � 4:5 and σ ¼ 3, and the generating same-source 
distribution was a Gaussian with parameters μs ¼ 4:5 and σ ¼ 3, that is, the perfectly calibrated 
bi-Gaussian system shown in Fig. 2a and in the third row of Fig. 3. We generated a training-data 
sample set consisting of 100 same-source scores and 4,950 different-source scores, and a sepa
rate test-data sample set of the same size.

In addition to applying bi-Gaussianized calibration (EER, LogReg, and KDE variants), we 
also applied LDF calibration using the Monte Carlo parameter values (which gives the “true” 
likelihood-ratio values), LogReg calibration, and PAV calibration.

The parameter value for σ was 3, and the target σ calculated for bi-Gaussianized calibration 
were 3.10, 2.96, and 2.95 for the EER, LogReg, and KDE variants, respectively. Figure 11 shows 
the empirical cumulative distribution for the score data, and the target cumulative distribution 
for a perfectly calibrated bi-Gaussian system with σ ¼ 2:96.

Figure 12 shows the “true” mapping function from scores to calibrated ln Λð Þ given the Monte 
Carlo population distributions. Since the Monte Carlo population distributions were a perfectly 
calibrated bi-Gaussian system, the “true” mapping function is the identity function. Figure 12 
also shows the mapping functions from scores to calibrated ln Λð Þ for PAV, LogReg, and bi- 
Gaussianized calibration (with target σ ¼ 2:96). LogReg calibration results in a linear mapping 
which is close to the perfect-calibration line. PAV calibration results in a stepped mapping func
tion in which some steps are large and have relatively large deviations from the perfect- 
calibration line. Below the smallest same-source score and above the largest different-source 
score in the training data, the PAV mapping ceases to change, resulting in even larger deviations 
from the perfect-calibration line. In contrast to PAV calibration, bi-Gaussianized calibration 
results in a smoother mapping that generally stays closer to the perfect-calibration line, including 
below the smallest same-source score and above the largest different-source score in the train
ing data.

Table 2 gives the Cllr values for LDF calibration using the Monte Carlo population distribu
tions (“true” values), bi-Gaussianized calibration, LogReg calibration, and PAV calibration. All 
methods, other then PAV calibration, resulted in similar Cllr values (by design, the Cllr value for 
the LogReg variant of bi-Gaussianized calibration should be approximately the same as that for 
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LogReg calibration). PAV calibration exhibited overfitting on the training data: it had the lowest 
Cllr value on the training data but the highest on the test data. Compared to PAV calibration, bi- 
Gaussianized calibration exhibited less overfitting.
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Figure 11. Empirical cumulative distribution of equal-variance Gaussian score data, and target cumulative 
distribution of a perfectly calibrated bi-Gaussian system with σ ¼ 2:96.
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Figure 12. Mapping functions from scores to calibrated ln Λð Þ for the synthetic equal-variance Gaussian score data. 
The bi-Gaussianized-calibration mapping is for target σ ¼ 2:96.
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3.3 Synthetic data: Gaussian distribution and skewed distribution with 
smaller variance
We generated synthetic data using Monte Carlo simulation. The generating different-source dis
tribution was a Gaussian with parameters μd ¼ 0 and σd ¼ 3, and the generating same-source 
distribution was a Gumbel distribution with parameters μs ¼ � 9 and σs ¼ 1 that was mirrored 
about 0, see Fig. 13. These are similar to distributions sometimes observed for real score data. 
We generated a training-data sample consisting of 100 same-source scores and 4,950 different- 
source scores, and a separate test-data sample of the same size.

In addition to applying bi-Gaussianized calibration (EER, LogReg, and KDE variants), we 
also used the Monte Carlo generating distributions to calculate “true” likelihood-ratio values, 
and applied LogReg calibration, and PAV calibration.

The calculated target σ for bi-Gaussianized calibration were 3.65, 3.65, and 3.72 for the EER, 
LogReg, and KDE variants, respectively. Figure 14 shows the empirical cumulative distribution 
for the score data, and the target cumulative distribution for a perfectly calibrated bi-Gaussian 
system with σ ¼ 3:65.

Figure 15 shows the “true” mapping function from scores to calibrated ln Λð Þ given the Monte 
Carlo population distributions. Figure 15 also shows the mapping functions from scores to cali
brated ln Λð Þ for PAV, LogReg, and bi-Gaussianized calibration (with target σ ¼ 3:65). For low 
and high score values, the “true” mapping is non monotonic. This is an artifact of the population 
distributions chosen. Score to calibrated ln Λð Þ mappings for real data should be monotonic. 
References to “true” mapping in the remainder of this paragraph are with respect to its central 
monotonically increasing range (between score values of about –8 and þ9). LogReg calibration 
results in a linear mapping which is close to the “true” mapping. PAV calibration results in a 
stepped mapping function in which the larger steps have relatively large deviations from the 
“true” mapping. In contrast to PAV calibration, bi-Gaussianized calibration results in a 
smoother mapping that generally stays closer to the “true” mapping. At low score values, the bi- 
Gaussianized calibration pulls the ln Λð Þ values closer to 0 than does logistic regression, and at 
high score values, the bi-Gaussianized calibration pushes the ln Λð Þ values further from 0 than 
does logistic regression.

Figures 16 and 17 show the different-source and same-source ln Λð Þ distributions for the train
ing data and the test data, respectively. The solid lines show the target distributions, the distribu
tions for a perfectly calibrated bi-Gaussian system with σ ¼ 3:65. Kernel-density plots are used 
to draw the LogReg and bi-Gaussianized calibration distributions. LogReg calibration only 
involves shifting and scaling in the ln Λð Þ space, and the resulting distributions are shifted and 
scaled versions of the distributions of samples taken from the population distributions shown in  
Fig. 13. These LogReg calibrated distributions are relatively far from those of the perfectly cali
brated bi-Gaussian target distributions. In contrast, bi-Gaussianized calibration involves non- 
linear (but still monotonic) warping, resulting in distributions that are much closer to those of 
the perfectly calibrated bi-Gaussian target distributions. Although the bi-Gaussianized calibrated 
distributions for the training data (Fig. 16) are due to training and testing on the same data, they 
are not perfect matches for the target distributions. This is because the bi-Gaussianized calibra
tion mapping function is trained without the use of same-source and different-source labels. The 
bi-Gaussianized calibrated distributions for the test data (Fig. 17) are further from those of the 
perfectly calibrated bi-Gaussian target than are those for the training data (Fig. 16), but they are 

Table 2. Cllr values for different calibration methods applied to the synthetic equal-variance Gaussian data.

Method

“true” Bi-Gauss LogReg PAV

Data EER LogReg KDE

train 0.251 0.249 0.248 0.248 0.251 0.231
test 0.212 0.213 0.216 0.216 0.213 0.220

Bi-Gaussianized calibration                                                                                                                                        15 

D
ow

nloaded from
 https://academ

ic.oup.com
/lpr/article/23/1/m

gae004/7644346 by guest on 15 April 2024



still much closer to the perfectly calibrated bi-Gaussian target distributions that are the LogReg 
calibrated distributions.

Table 3 gives the “true” Cllr values calculated using the Monte Carlo population distributions, 
and Cllr values for bi-Gaussianized calibration, LogReg calibration, and PAV calibration. All 
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Figure 13. Distributions used for Monte Carlo simulation: Gaussian distribution and skewed distribution with 
smaller variance.
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Figure 14. Empirical cumulative distribution of Gaussian and skewed-distribution score data, and target cumulative 
distribution of a perfectly calibrated bi-Gaussian system with σ ¼ 3:65.
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methods resulted in similar Cllr values, except for PAV calibration, which, due to overfitting, had 
a lower Cllr on the training data.

Figure 18 shows the Tippett plots for the target perfectly calibrated system, 
and for the logistic-regression and bi-Gaussianized calibrated likelihood-ratio values for the 
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Figure 16. Different-source and same-source distributions of calibrated ln Λð Þ for the synthetic Gaussian and 
skewed-distribution score data. The target and bi-Gaussianized distributions are for target σ ¼ 3:65. Training data.
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Figure 15. Mapping functions from scores to calibrated ln Λð Þ for the synthetic Gaussian and skewed-distribution 
score data. The bi-Gaussianized-calibration mapping is for target σ ¼ 3:65. The scale and range of the x-axis on this 
plot is the same as for the plot of the different-source and same-source distributions in Fig. 13.
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test data.14 The bi-Gaussianized calibrated results are closer to the target perfectly calibrated bi- 
Gaussian system than are the logistic-regression calibrated results. This is because, as mentioned 
above in relation to Fig. 15, at low score values, the bi-Gaussianized calibration pulls the ln Λð Þ
values closer to 0 than does logistic regression, and at high score values, the bi-Gaussianized cali
bration pushes the ln Λð Þ values further from 0 than does logistic regression.

One should note that the curves representing the perfectly calibrated bi-Gaussian system in 
Figs 16–18 (and parallel figures in subsections below) do not represent the distributions of 
“true” likelihood ratios, which (except in the context of Monte Carlo simulation) are unknown 
and unknowable. All three systems represented in these figures (LogReg, bi-Gaussianized, and 
perfect calibration) have, by design, (approximately) the same Cllr for the training data. The 
comparisons between the different systems that these figures allow are comparisons of how well 
calibrated the likelihood-ratio outputs of different systems with (approximately) the same Cllr 
are. It is not a comparison of the likelihood-ratio outputs of different systems with “true” likeli
hood ratios. Given two different systems with (approximately) the same Cllr, and so equally 
good performance on this metric, we argue that the better of the two systems is the system which 
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Figure 17. Different-source and same-source distributions of calibrated ln Λð Þ for the synthetic Gaussian and 
skewed-distribution score data. The target and bi-Gaussianized distributions are for target σ ¼ 3:65. Test data.

Table 3. Cllr values for different calibration methods applied to the Gaussian and skewed-distribution data.

Method

“true” Bi-Gauss LogReg PAV

Data EER LogReg KDE

train 0.127 0.129 0.129 0.129 0.126 0.113
test 0.138 0.140 0.140 0.140 0.134 0.137

14 For the calculation of the cumulative proportions for Tippett plots, we used denominators of Ndþ1 and Nsþ1 
rather than Nd and Ns. This prevents the maximum cumulative proportion from reaching 1, which is appropriate for 
plotting the cumulative-density functions F ln � Λdð Þjμd; σ

� �
and F ln Λsð Þjμs; σ

� �
for the distributions of the perfectly cali

brated system. F ln � Λdð Þjμd; σ
� �

¼ 1 and F ln Λsð Þjμs; σ
� �

¼ 1 would only occur when ln Λdð Þ ¼ � 1 and ln Λsð Þ ¼ þ1, 
respectively. The x axes of Tippett plots are scaled in base-ten logarithms rather then natural logarithms, but this is sim
ply a difference in scaling.
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is closer to a perfectly calibrated system with that Cllr.
15 If one accepts this argument, then 

Figs 16–18 (and parallel figures in subsections below) show that bi-Gaussianized calibration is 
better than LogReg calibration.

3.4 Real data: Forensic voice comparison
Real score data were taken from the E3 Forensic Speech Science System (E3FS3) and applied to 
the benchmark forensic-eval_01 data, see Weber et al. (2022).16 There were 111 same-source 
scores and 9719 different-source scores originating from a total of 223 recordings of 61 speak
ers. Kernel-density plots of the different-source and same-source score distributions are shown in  
Fig. 19. These data clearly deviate from the assumption of equal-variance Gaussians (although 
one may consider this a moderate deviation).

We applied bi-Gaussianized calibration (EER, LogReg, and KDE variants), LogReg calibra
tion, and PAV calibration using leave-one-out/leave-two-out cross-validation.17 Over cross- 
validation loops, the mean target σ for bi-Gaussianized calibration was 3.75, 3.44, and 3.45 for 
the EER, LogReg, and KDE variants respectively. Figure 20 shows the empirical cumulative dis
tribution for the score data, and the target cumulative distribution for a perfectly calibrated bi- 
Gaussian system with σ ¼ 3:44. The mapping functions are shown in Fig. 21. Relative to the 
logistic-regression mapping, the bi-Gaussianized calibration mapping pulls both large negative 
scores and moderate-to-large positive scores closer to ln Λð Þ ¼ 0.

Figure 22 shows the different-source and same-source ln Λð Þ distributions. The solid lines 
show the target distributions, the distributions for a perfectly calibrated bi-Gaussian system with 
σ ¼ 3:44. Kernel-density plots are used to draw the logistic-regression and bi-Gaussianized 
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Figure 18. Tippett plots for the target perfectly calibrated system with σ ¼ 3:65, and for the LogReg calibrated and 
bi-Gaussianized calibrated likelihood-ratio values. Synthetic Gaussian and skewed-distribution score data. Test data.

15 The family of perfectly calibrated systems of distributions that we have chosen to use is bi-Gaussian systems. If 
we had chosen some other family of perfectly calibrated systems, our method would have mapped the test data toward 
the distributions of the member of that family with the Cllr corresponding to that of the training data after the initial 
calibration step.

16 The version of E3FS3 used was a later version than that used in Weber et al. (2022) and had slightly better perfor
mance. For display purposes, we rescaled the score values to 2.5% of their raw values. This linear rescaling has no im
pact on the results of subsequent application of calibration methods.

17 For a same-source comparison, all scores from comparisons that involved the source contributing to the score be
ing calibrated were excluded from training. For a different-source comparison, all scores from comparisons that in
volved either or both of the sources contributing to the score being calibrated were excluded from training.
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calibration distributions. Figure 23 shows the corresponding Tippett plots. In both the 
probability-density plots and the Tippett plots, it can be seen that the bi-Gaussianized calibration 
results are closer to the perfectly calibrated bi-Gaussian system than are the logistic-regression 
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Figure 20. Empirical cumulative distribution of voice-comparison score data, and target cumulative distribution of a 
perfectly calibrated bi-Gaussian system with σ ¼ 3:44. The scale and range of the x-axis on this plot is the same as 
for the plot of the different-source and same-source distributions in Fig. 19.
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Figure 19. Kernel-density plots of the different-source and same-source score distributions from comparison of 
voice recordings.
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calibration results. The logistic-regression calibration results deviate particularly for moderate- 
to-large log-likelihood-ratio values, these log-likelihood-ratio values are higher than for the per
fectly calibrated bi-Gaussian system.
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Figure 22. Different-source and same-source distributions of calibrated ln Λð Þ for the voice-comparison score data. 
The target and bi-Gaussianized distributions are for target σ ¼ 3:44.

-20 -15 -10 -5 0 5 10 15 20

Score

-20

-15

-10

-5

0

5

10

15

ln
(

)

PAV
LogReg
biGauss

Figure 21. Mapping functions from scores to calibrated ln Λð Þ for the voice-comparison score data. The bi- 
Gaussianized-calibration mapping is for target σ ¼ 3:44. The scale and range of the x-axis on this plot is the same as 
for the plot of the different-source and same-source distributions in Fig. 19.

Bi-Gaussianized calibration                                                                                                                                        21 

D
ow

nloaded from
 https://academ

ic.oup.com
/lpr/article/23/1/m

gae004/7644346 by guest on 15 April 2024



Table 4 gives the Cllr values resulting from the application of bi-Gaussianized calibration 
(EER, LogReg, and KDE variants), LogReg calibration, and PAV calibration. All the Cllr values 
were approximately the same.

3.5 Real data: Glass fragments
Real score data were taken from comparison of glass fragments by Vergeer et al. (2016) and van 
Es et al. (2017).18 The glass-fragment data consisted of multiple fragments from each of 320 
sources, resulting in 320 same-source scores and 51,040 different-source scores. Due to numeri
cal limitations in the software that calculated the scores, 41,108 (�80%) of the different-source 
scores had a value of –1. We converted the value of these scores to the lowest finite score value 
that already existed in the dataset, thus producing a probability mass at that value. Kernel- 
density plots of the different-source and same-source score distributions are shown in Fig. 24.19 

The different-source distribution has a point mass at approximately –300, and probability 
density spread between –300 and 6.5. Apart from a few outliers, the same-source density is 
concentrated in a relatively narrow range of low positive values, with the mode at 9.0. 
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Figure 23. Tippett plots for the target perfectly calibrated system with σ ¼ 3:44, and for the LogReg and bi- 
Gaussianized calibrated likelihood-ratio values. Voice-comparison score data.

Table 4. Cllr values for different calibration methods applied to the speaker data.

Method

Bi-Gauss LogReg PAV

EER LogReg KDE

0.171 0.172 0.171 0.172 0.168

18 The glass score data were kindly provided by Peter Vergeer of the Netherlands Forensic Institute. The scores had 
been calculated using the multivariate-kernel-density method of Aitken & Lucy (2004). The raw data (as opposed to 
the scores) are available from: https://github.com/NetherlandsForensicInstitute/elemental_composition_glass

19 To plot the KDEs in Figure 24, the Gaussian-approximation method was used to determine the bandwidth to 
use for the same-source scores, then that same bandwidth was used for the different-source scores.
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The different-source and same-source scores overlap in the range –1.7 to 6.5. These distributions 
exhibit extreme deviation from the assumption of equal-variance Gaussians.

We applied bi-Gaussianized, LogReg, and PAV calibration using leave-one-out/leave-two-out 
cross-validation.20 Averaged over cross-validation loops, the target σ for bi-Gaussianized cali
bration were 5.65, 6.02, and 6.01 for the EER, LogReg, and KDE variants respectively.  
Figure 25 shows the empirical cumulative distribution for the score data, and the target cumula
tive distribution for a perfectly calibrated bi-Gaussian system with σ ¼ 6:02. The probability 
mass accounting for �80% of the different-source-scores results in the empirical distribution be
ginning at �0.4. The mapping functions are shown in Figs 26 and 27 (Fig. 27 shows details of  
Fig. 26 around the range of values in which the different-source and same-source scores overlap). 
Whereas the LogReg mapping is linear and maps to a broad range of ln Λð Þ values, the bi- 
Gaussianized calibration mapping is sigmoidal and maps to a much narrower range of ln Λð Þ val
ues. Whereas, outside the range of values in which the different-source and same-source scores 
overlap (–1.7 to 6.5), the PAV mapping is flat, the bi-Gaussianized calibration mapping has 
monotonically increasing slopes which reach below and above the minimum and maximum 
PAV-mapped ln Λð Þ values. Far from the overlap range, those slopes are shallow. In the range of 
values in which the different-source and same-source scores overlap (–1.7 to 6.5), the bi- 
Gaussianized calibration mapping and the PAV mapping are close to each other, but the bi- 
Gaussianized calibration mapping is smoother.21

Figure 28 shows the different-source and same-source ln Λð Þ distributions. The solid lines 
show the target distributions, the distributions for a perfectly calibrated bi-Gaussian system with 
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Figure 24. Kernel-density plots of the different-source and same-source score distributions from comparison of 
glass fragments.

20 Because otherwise the cross-validation would have taken an extremely long time, we excluded test scores that 
had been –1. Scores that had been –1 (and had been converted to the lowest finite score value in the dataset) were, 
however, still included in training. We then assigned the lowest ln Λð Þ value calculated for a finite test scores as the ln Λð Þ
value corresponding to all the test scores that had been –1. Had we included the test scores that had been –1 in the 
cross-validation, because of differences in training data from loop to loop, each would have resulted in a slightly differ
ent ln Λð Þ value. On the particular machine, we used (using 19 parallel workers), it took 11 hours to run the 
cross-validation.

21 The larger steps in the bi-Gaussianized calibration’s mapping function are due to sparce same-source scores. The 
first three same-source scores occur at −1.7, −0.3, and 3.0, which correspond to the end of the rise of the first large 
step up, the second large step up, and the step up following the second large stepup.
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σ ¼ 6:02. Kernel-density plots were used to draw the LogReg and bi-Gaussianized calibrated dis
tributions. For the different-source bi-Gaussianized calibration distribution, the probability 
mass, which is at ln Λð Þ ¼ � 12:9, is represented as a spike (the probability-density axis is 
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Figure 26. Mapping functions from scores to calibrated ln Λð Þ for the glass-fragment score data. The bi- 
Gaussianized-calibration mapping is for target σ ¼ 6:02. The scale and range of the x-axis on this plot is the same as 
for the plot of the different-source and same-source distributions in Fig. 24.
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Figure 25. Empirical cumulative distribution of glass-fragment score data, and target cumulative distribution of a 
perfectly calibrated bi-Gaussian system with σ ¼ 6:02. The scale and range of the x-axis on this plot is the same as 
for the plot of the different-source and same-source distributions in Fig. 24.
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Figure 28. Different-source and same-source distributions of calibrated ln Λð Þ for the glass-fragment score data.
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Figure 27. Part of the mapping functions from scores to calibrated ln Λð Þ for the glass-fragment score data (part of  
Fig. 26), showing details around the range of values in which the different-source and same-source scores overlap 
(–1.7 to 6.5).
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truncated at 0.5, the spike reaches much higher).22 The remainder of the different-source bi- 
Gaussianized distribution is represented as a curve to the right of the spike, which is mostly ob
scured by the different-source curve of the target bi-Gaussian distribution. The different-source 
LogReg calibrated distribution rises very slowly, and eventually has a probability mass at 
ln Λð Þ ¼ � 175 (outside the range of plotted values). Other than at their probability mass, the bi- 
Gaussianized calibration results are much closer to perfectly calibrated bi-Gaussian target distri
butions than are the LogReg calibration results.

Figure 29 shows the Tippett plots. The vertical part of the different-source curve for the bi- 
Gaussianized calibration (at log10 Λð Þ ¼ � 5:67) is due to the probability mass, otherwise, the bi- 
Gaussianized calibration curves lie almost directly on top of the perfectly calibrated bi-Gaussian 
target curves (and are mostly obscured by the latter). In contrast, the LogReg calibration curves 
are generally far from the perfectly calibrated bi-Gaussian target curves.

For the bi-Gaussianized calibration, the probability mass occurs at log10 Λð Þ ¼ � 5:67, which is 
a likelihood ratio of approximately 468,000 in favor of the different-source hypothesis. One 
could report that the likelihood ratio is at least 468,000 in favor of the different- 
source hypothesis.

Table 5 gives the Cllr values resulting from the application of bi-Gaussianized calibration 
(EER, LogReg, and KDE variants), LogReg calibration, and PAV calibration. All the Cllr values 
were approximately the same.

The maximum likelihood-ratio value generated by bi-Gaussianized calibration was very large, 
1.05 × 1015. Concerns over whether such large likelihood-ratio values are justified given rela
tively limited amounts of training data have led to proposals that the reported values of likeli
hood ratios be limited in size or that they be shrunk toward the neutral value of 1. Vergeer et al. 
(2016) proposed a method to limit likelihood-ratio values, Empirical Lower and Upper Bounds 
(ELUB), which when applied to the same glass data as in the article limited log10 Λð Þ to the range 
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Figure 29. Tippett plots for the target perfectly calibrated system with σ ¼ 6:02, and for the LogReg and bi- 
Gaussianized calibrated likelihood-ratio values. Glass-fragment score data.

22 To represent the probability mass as a spike, the bandwidth of the kernel for the different-source distribution 
was manually set to 0.1.
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−2.50 to 4.53.23 Smaller calculated values would be replaced by log10 Λð Þ ¼ � 2:50, and larger 
calculated values would be replaced by log10 Λð Þ ¼ 4:53. Morrison and Poh (2018) proposed a 
method to shrink log-likelihood-ratio values toward 0 by using a large regularization weight for 
regularized-logistic-regression calibration. The latter method could be applied in the LogReg var
iant of bi-Gaussianized calibration and would result in a smaller target σ value than if no regular
ization were applied or if a small regularization weight were used (this article used a small 
regularization weight). Bi-Gaussianized calibration potentially offers another method for induc
ing shrinkage: The magnitude of the target σ value could be reduced from its calculated value, 
for example, it could be reduced to 90% of the value calculated using Equation (8) or Equation 
(10). This would result in the bi-Gaussianized calibrated log-likelihood ratios being closer to 0 
than would otherwise be the case. As with other methods for inducing shrinkage, one would 
have to make a choice as to how much shrinkage to induce (a choice which should make refer
ence to the amount of training data used). Note also, that inducing substantial shrinkage leads to 
larger Cllr. We do not explore this shrinkage method in the present paper.

4. Effect of sampling variability
In Section 3, the bi-Gaussianized calibration method was demonstrated using four different data 
sets (two simulated and two real). Each dataset was treated as a sample from a relevant popula
tion. Different samples from the same population would be expected to produce different results. 
In the present section, we explore the effect of sampling variability on the output of bi- 
Gaussianized, LogReg, and PAV calibration. Smaller samples would be expected to result in 
greater sampling variability, and the size of case-relevant samples that can practically be 
obtained in the context of forensic cases is often small. In addition to testing samples of 100 
sources (as for the Monte Carlo simulations in Sections 3.2 and 3.3), we also test samples of 
50 sources.

As in Section 3.2, we generated synthetic data using Monte Carlo simulation. The generating 
different-source distribution was a Gaussian with parameters μd ¼ � 4:5 and σ ¼ 3, and the gen
erating same-source distribution was a Gaussian with parameters μs ¼ 4:5 and σ ¼ 3, that is, the 
perfectly calibrated bi-Gaussian system shown in Fig. 2a and in the third row of Fig. 3. We gen
erated a single test-data sample set consisting of 10,000 same-source scores and 10,000 
different-source scores. By using a single large balanced test set, we can attribute any bias and 
variability in the results to bias in the calibration methods and sampling variability in the train
ing sets. We generated 1,000 training-data sample sets, each consisting of 100 same-source 
scores and 4,950 different-source scores (the 100 source datasets), and another 1,000 training- 
data sample sets, each consisting of 50 same-source scores and 1,225 different-source scores (the 
50 source datasets). For each training-data sample set, we calibrated the test-data sample set us
ing bi-Gaussianized calibration (EER, LogReg, and KDE variants), LogReg calibration, and PAV 
calibration, and calculated the Cllr for the resulting sets of ln Λð Þ.

Figures 30 and 31 show violin plots of the distributions of Cllr values for the 100 source data
sets, and Figs 32 and 33 show violin plots of the distributions of Cllr values for the 50 source 
datasets. The first figure in each pair uses a Cllr range of 0 to 1, giving an impression of the distri
butions of Cllr values relative to the possible range of Cllr for well-calibrated systems. The second 

Table 5. Cllr values for different calibration methods applied to the glass data.

Method

Bi-Gauss LogReg PAV

EER LogReg KDE

0.006 0.005 0.005 0.006 0.006

23 The bounds are calculated after a calibration model has been applied, so their values will depend on the particu
lar calibration model used. These particular values were the result of calibration that fitted a KDE to the different- 
source scores and a double-exponential model to the same-source scores.
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figure in each pair zooms in to show the shapes of the Cllr distributions—note that the range of 
values on the y axis of Fig. 33 is twice that of Fig. 31. In each figure, the solid horizontal line rep
resents the “true” Cllr value, 0.241, which corresponds to a perfectly calibrated bi-Gaussian sys
tem with σ ¼ 3.24

For all calibration methods and all training-data samples, calculated Cllr was greater than the 
“true” Cllr, that is, no sample-based method outperformed a calculation based on the popula
tion’s parameter values. With the exception of PAV calibration and of a few outliers, however, 

(a) (b) (c) (d) (e)
0.24

0.25

0.26

0.27

0.28

0.29

0.3

C
llr

Figure 31. Violin plots of distributions of target Cllr values resulting from the application of different calibration 
methods using 1,000 training-data sample sets (100 source datasets). (a) Bi-Gaussianized calibration EER variant. 
(b) Bi-Gaussianized calibration LogReg variant. (c) Bi-Gaussianized calibration KDE variant. (d) LogReg calibration. 
(e) PAV calibration. The solid horizontal line represents the “true” Cllr ¼ 0:241.
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Figure 30. Violin plots of distributions of target Cllr values resulting from the application of different calibration 
methods using 1,000 training-data sample sets (100 source datasets). (a) Bi-Gaussianized calibration EER variant. 
(b) Bi-Gaussianized calibration LogReg variant. (c) Bi-Gaussianized calibration KDE variant. (d) LogReg calibration. 
(d) PAV calibration. The solid horizontal line represents the “true” Cllr ¼ 0:241.

24 The Cllr value was calculated using Equation (7).
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all calculated Cllr were only a little higher than the “true” Cllr. As would be expected, calculated 
Cllr values tended to be higher for the 50 source datasets than for the 100 source datasets.

The highest Cllr values (the worst performance) occurred for PAV calibration—PAV overfits 
the training data. For bi-Gaussianized calibration, the median and quartile Cllr values were simi
lar across variants, but were slightly higher for the EER variant, than for the LogReg variant, 
and slightly higher for the LogReg variant than for the KDE variant. Also, outliers were most ex
treme for the EER variant, less extreme for the LogReg variant, and least extreme for the KDE 
variant. For LogReg calibration, the median and quartile Cllr were slightly lower than for the 
KDE variant of bi-Gaussianized calibration, but it produced much more extreme outliers. Even 
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Figure 33. Violin plots of distributions of target Cllr values resulting from the application of different calibration 
methods using 1,000 training-data sample sets (50 source datasets). (a) Bi-Gaussianized calibration EER variant. 
(b) Bi-Gaussianized calibration LogReg variant. (c) Bi-Gaussianized calibration KDE variant. (d) LogReg calibration. 
(e) PAV calibration. The solid horizontal line represents the “true” Cllr ¼ 0:241.
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Figure 32. Violin plots of distributions of target Cllr values resulting from the application of different calibration 
methods using 1,000 training-data sample sets (50 source datasets). (a) Bi-Gaussianized calibration EER variant. 
(b) Bi-Gaussianized calibration LogReg variant. (c) Bi-Gaussianized calibration KDE variant. (d) LogReg calibration. 
(e) PAV calibration. The solid horizontal line represents the “true” Cllr ¼ 0:241.
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though, by design, on the training data, the LogReg variant of bi-Gaussianized calibration should 
have (approximately) the same Cllr as LogReg calibration, on the test data, outliers for the LogReg 
variant of bi-Gaussianized calibration were not as extreme as for LogReg calibration.

Based on these Cllr results, the KDE variant appears to be the best-performing variant of bi- 
Gaussianized calibration. Taking into account the outliers in these Cllr results, the KDE variant 
of bi-Gaussianized calibration also appears to be a better choice than LogReg calibration.

We separately ran the 1,000 training datasets (100 source versions) for each variant of bi- 
Gaussianized calibration, and for LogReg calibration, and timed how long each took (including 
the time to generate the training data). On the particular machine we used (using three parallel 
workers), the EER variant took 5.8 s, the LogReg variant took 7.8 s, the KDE variant took 131 s, 
and LogReg calibration took 3.3 s. A disadvantage of the KDE variant of bi-Gaussianized 
calibration, therefore, is that it takes much longer than the other variants of bi-Gaussianized cali
bration and much longer than LogReg calibration. If time were an issue, the LogReg variant of 
bi-Gaussianized calibration might be a better choice than the KDE variant.

5. Graphical representation of likelihood-ratio output
A biproduct of bi-Gaussianized calibration is that it provides a way of graphically representing 
results which may aid in explaining them to triers of fact or to other interested parties. Since lo
gistic regression is a discriminative method, rather than a generative method, it does not actually 
calculate the ratio of two likelihoods, thus the output of LogReg calibration cannot be directly 
graphically represented as the relative heights of two probability-density curves. If one has used 
bi-Gaussianized calibration, however, one can plot the same-source target probability-density 
function and the different-source target probability-density function, and graphically show the 
relative height of the two curves at a value of interest.

Figure 34 provides an example using a perfectly calibrated system with σ ¼ 3. One can explain 
that the better the performance of the system under the conditions of the case,25 the further apart 
the different-source and the same-source curves will be, that is, the less overlap there will be be
tween the two curves. The x-axis is labeled “likelihood ratio.” This axis has a logarithmic scale, 
but the values along the axis are written in linear form. Imagine that the likelihood-ratio value 
calculated for the comparison of the questioned- and known-source items was 10. We find the 
corresponding location on the x-axis, and draw a vertical line that intersects the same-source 
probability-density curve and the different-source probability-density curve. We highlight the in
tersect points and draw horizontal lines from the intersect points to the y-axis. The y-axis is la
beled “relative likelihood,” and is scaled so that the relative likelihood of the lowest of the two 
aforementioned intersects has a value of 1.26 In this example, the y-axis is scaled so that the in
tersect with the different-source curve has a relative-likelihood value of 1. In this example, given 
this scaling, the intersect with the same-source curve has a relative-likelihood value of 10. It is 
then easy to explain that, for the reported likelihood-ratio value for the comparison of the ques
tioned- and known-source items, the relative likelihood for obtaining that value if the same- 
source hypothesis were true is 10=1 ¼ 10 times greater than the relative likelihood for obtaining 
that value if the different-source hypothesis were true, which is what the reported likelihood- 
ratio value on the x axis means. This will work for any likelihood-ratio value selected on the x- 
axis. We leave it as a task for future research to assess whether graphics of this form will actually 
be helpful for explaining the meaning of likelihood ratios to triers of fact.

6. Conclusion
For the output of a perfectly calibrated forensic evaluation system, the likelihood ratio of the 
likelihood ratio is the likelihood ratio. If the distributions of the different-source and same- 
source natural-log-likelihood ratios, ln Λð Þ, output by the system are both Gaussian and they 
have the same variance, σ2, and the different-source and same-source means are μd ¼ �

σ2

2 and 
25 The system should have been calibrated and validated using data that are representative of the relevant popula

tion for the case and reflective of the conditions of the case (Morrison et al., 2021).
26 If the intersect were very low, we might scale the y axis so that the intersect value is 1, but draw tick marks on 

the y axis at 10, 20, 30, etc. or at 100, 200, 300, etc. If both intersects were low, we might add a zoomed-in view.
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μs ¼ þ
σ2

2 , then the output of the system is perfectly calibrated—this is a perfectly calibrated bi- 
Gaussian system.

Uncalibrated log-likelihood ratios (scores) are often calibrated using logistic regression 
(LogReg), but, unless the score distributions consist of two Gaussians with equal variance, the 
resulting “calibrated” ln Λð Þ can be far from perfectly calibrated. We proposed a new calibration 
method, “bi-Gaussianized calibration,” that maps scores toward perfectly calibrated bi- 
Gaussian ln Λð Þ distributions. The particular perfectly calibrated bi-Gaussian system that the 
scores are mapped toward, is the perfectly calibrated bi-Gaussian system with either the same 
equal-error rate (E¼, EER) as the training data, or the same Cllr as the training data after they 
are calibrated using either LogReg, KDE, or PAVs. The method requires calculating the σ value 
for the perfectly calibrated bi-Gaussian system that corresponds to the E¼ or Cllr calculated for 
the training data. We found that the PAV method resulted in biased target σ values. The EER, 
LogReg, and KDE methods exhibited less bias and all resulted in similar target σ values.

We demonstrated the application of bi-Gaussianized calibration using two sets of simulated 
data and two sets of real data, including real data with extreme deviation from the assumption 
that same-source scores and different-source scores are distributed as two Gaussians with the 
same variance. The demonstrations showed that:

� Bi-Gaussianized calibration is robust to deviation from the assumption that the scores are 
distributed as two Gaussians with the same variance. 

� Bi-Gaussianized calibration results in smoother score to ln Λð Þ mapping functions than PAV 
calibration, and, for simulated data, bi-Gaussianized calibration results in mapping functions 
that are closer to “true” mapping functions than does PAV calibration. 

� Bi-Gaussianized calibration results in ln Λð Þ values that are closer to a perfectly calibrated bi- 
Gaussian system than is the case for ln Λð Þ values output by LogReg calibration. 

We introduced an innovation in drawing Tippett plots in which, in addition to the empirical 
results, we included the cumulative-density functions for the target perfectly calibrated bi- 
Gaussian system. This allows for comparison of the empirical results (e.g., bi-Gaussianized cali
bration results or LogReg calibration results) with the perfectly calibrated bi-Gaussian system 
with (approximately) the same Cllr.

We argued that if two calibration methods result in (approximately) the same Cllr value when 
applied to the same data (as is the case for bi-Gaussianized calibration and LogReg calibration), 
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Figure 34. Example graphic designed for communicating the meaning of a likelihood-ratio value.
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the better system is the one whose ln Λð Þ outputs are closer to the perfectly calibrated system 
with that Cllr value, that is, in our results, in terms of degree of calibration, bi-Gaussianized cali
bration was better than LogReg calibration.

Using simulated data to explore the effect of sampling variability on the performance of cali
bration methods, we found that:

� PAV calibration tended to result in higher Cllr values (worse performance) than other calibra
tion methods. 

� The EER, LogReg, and KDE variants of bi-Gaussianized calibration, and LogReg calibration, 
all resulted in similar median and quartile Cllr values. 

� The KDE variant of bi-Gaussianized calibration had less extreme outlier Cllr values than the 
other variants of bi-Gaussianized calibration and than LogReg calibration. 

In terms of performance as measured by Cllr and in terms of degree of calibration, the KDE 
variant of bi-Gaussianized calibration therefore appears to be the best of the variants and meth
ods tested. It does, however, take many times longer to run than other variants of bi- 
Gaussianized calibration and than LogReg calibration. If time were an issue, the LogReg variant 
of bi-Gaussianized calibration might be a better choice.

As with all calibration methods, it is important to use training data for bi-Gaussianized cali
bration that are representative of the relevant population and reflective of the conditions for the 
case. This includes having sufficiently large training sets; otherwise, there is a danger of overfit
ting the training data and not generalizing well to validation data or to the actual questioned- 
and known-source items from the case. Depending on one’s tolerance for such overfitting, the 
results of exploring the effect of sampling variability suggested that training data from 50 to 100 
items may be acceptable.

We mentioned that, if one were concerned about calculating very large magnitude log-likelihood 
ratios on the basis of a limited amount of training data, in bi-Gaussianized calibration, one could in
duce shrinkage of log-likelihood ratios toward the neutral value of 0 by using a smaller σ for the tar
get perfectly calibrated bi-Gaussian system than the calculated target σ value.

Finally, we proposed a graphical representation which may help in explaining the meaning of 
likelihood ratios to triers of fact. This displays the value of the likelihood ratio of interest on the 
probability-density plots of the target perfectly calibrated bi-Gaussian system. Whether this actu
ally does assist with explaining the meaning of likelihood ratios is a question for future research.
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