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Abstract: With the intent to further increase production efficiency while making human the cen-
tre of the processes, human-centric manufacturing focuses on concepts such as digital twins and
human–machine collaboration. This paper presents enabling technologies and methods to facilitate
the creation of human-centric applications powered by digital twins, also from the perspective of
Industry 5.0. It analyses and reviews the state of relevant information resources about digital twins
for human–machine applications with an emphasis on the human perspective, but also on their
collaborated relationship and the possibilities of their applications. Finally, it presents the results of
the review and expected future works of research in this area.
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1. Introduction

During the advancements of industrial revolutions, the concept of the digital twin (DT)
has emerged, revolutionising industries and redefining our approach to design, monitoring,
and maintenance. The DT is a concept that has many definitions [1], but essentially, it is a
virtual digital replica or simulation of a physical entity, be it a product, process, or system.
This digital counterpart is created by integrating real-time data from sensors, Internet of
Things (IoT) devices, and other sources, providing a dynamic and accurate representation of
the physical entity’s behaviour, while also being a powerful tool for analysis, optimisation,
and decision making throughout the entire lifecycle of the corresponding physical entity.

The new trend towards human-centric manufacturing aims to place humans at the
centre of manufacturing systems and processes [2]. The concept of human–machine col-
laboration (HMC) emerged before Industry 5.0 as a solution to combine the strengths of
both machines and humans, having great potential for fulfilling human needs and easing
physically and mentally demanding tasks. However, most HMC applications created
are system-centric, focusing on effectiveness and productivity, rather than on humans.
Because of this, HMC should also evolve to be more human-centric [3]. Industry 5.0 em-
phasises the importance of human workers alongside advanced technologies. HMC in
industry often occurs in complex workspaces that need to adapt regularly.

The DT, together with other enabling technologies, is a solution to manage these
complex systems by creating digital counterparts of these workspaces and by altering them
based on our needs. By creating a DT of the HMC workspace, we can manage individual
tasks and problems more intuitively. However, similar to HMC, DTs have primarily
focused on productivity rather than on human-centric aspects, presenting a challenge
in creating easily accessible human-centric applications. The value-driven approach of
Industry 5.0 requires us to shift our focus and create a systematic approach to creating
human-centred solutions.

Sensors 2024, 24, 2232. https://doi.org/10.3390/s24072232 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5473-4988
https://orcid.org/0000-0002-4182-6162
https://orcid.org/0000-0001-7261-3832
https://orcid.org/0000-0002-2816-2306
https://doi.org/10.3390/s24072232
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072232?type=check_update&version=2


Sensors 2024, 24, 2232 2 of 20

In the transition to Industry 5.0, human-centric DTs are pivotal in creating explicit
connections between humans and technologies to complement their strengths in HMC ap-
plications. This research aims to develop a systematic approach to creating human-centric,
DT-driven HMC solutions. By bridging the gap between DTs and HMC, we can unlock
the potential for symbiotic human–machine applications that prioritise both productivity
and the quality of work life for human operators. Consequently, there is a pressing need to
define how to utilise DTs to make more human-centric solutions for HMC. To address this
gap, we investigate the current state of research on human-centric applications involving
the use of DTs in HMC. Additionally, we identify enabling technologies and methods that
facilitate human-centric applications involving DTs and HMC.

2. Background

Digital twins play a pivotal role in facilitating human–machine collaboration in In-
dustry 5.0. They offer intuitive interfaces, real-time insights, and collaborative capabilities,
empowering human operators to optimise processes and make informed decisions. This
symbiotic relationship underpins Industry 5.0’s transformative potential, enabling organi-
sations to excel in a digital world.

This section provides background literature for the key concepts of this paper. It
begins with an exploration of Industry 5.0, highlighting its human-centric approach and the
need for a systematic approach to manage enabling technologies (Section 2.1). The section
then delves into HMC, emphasising various types of relationships and the challenges faced
in designing human-centred workspaces (Section 2.2). Lastly, the concept of the DT is
introduced, showcasing its role in facilitating interactions between humans and machines
and the evolution towards human-centric DTs (Section 2.3).

2.1. Industry 5.0

Since the introduction of the concept of Industry 5.0, researchers have tried to define
and agree on how to realise its values, including human-centric applications in various
areas of industry. The literature is mostly focused on identifying human needs and what
technologies could be used together to fulfil those needs. However, these solutions are
often partial, lacking a systematic approach for integrating these technologies to create
comprehensive human-centric applications.

Firstly, the Industry 5.0 document by the European Commission [4] presented six
categories of enabling technologies, consisting of subcategories, and stated that the full
potential of the mentioned technologies can be achieved by using the presented technologies
together in a synergistic manner. Regarding the topic of this review paper, the document
mentions “individualised human–machine-interaction” and “digital twins and simulation”;
however, it does not state how to use the mentioned technologies to accomplish its values,
leaving space for researchers’ interpretations [3,5–7]. Since Industry 5.0 complements the
previous Industry 4.0 and their enabling technologies cross paths [8], it is clear that many
enabling technologies of Industry 4.0 will also undoubtedly help to achieve the societal
goals of Industry 5.0 [9].

The human-centric approach in industry puts human needs and interests at the centre
of the processes. It also means ensuring that new technologies do not interfere with workers’
fundamental rights, such as the right to privacy, autonomy, and human dignity. Humans
also should not be replaced by robots in industry, and they should synergistically combine
with machines to improve workers’ health and safety conditions [10]. Starting with the pre-
vious fourth industrial revolution, human-centric solutions and concepts were also created,
for example Operator 4.0 [11], focusing on human–automation symbiosis, which has now
started its transition towards Operator 5.0 under Industry 5.0’s influence [12]. Similarly,
the concept of human–cyber–physical systems (HCPSs) [13], a composite intelligent system
comprising humans as operators, agents, or users, is also evolving towards human-centric
manufacturing. Regarding human-centricity in Industry 5.0, the authors in [3] presented
an industrial human needs pyramid for Industry 5.0, focusing on higher human needs like
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belonging, esteem, and self-actualisation. They state that human-centric manufacturing
should go beyond traditional human factors and focus on a higher humanistic level, such
as cognitive and psychological well-being, work–life balance, and personal growth.

2.2. Human–Machine Collaboration

HMC is one type of relationship between a human and a machine. Both the term and
this type of relationship emphasise both humans and machines collaborating on the same
tasks and goals simultaneously, allowing robots to leverage their strength, repeatability,
and accuracy, while humans contribute their high-level cognition, flexibility, and adaptabil-
ity. It involves parties with different capabilities, competencies, and resources, which must
be coordinated to maximise their strengths. Other most defined human–machine relation-
ships are coexistence and cooperation [3,14]. Apart from collaboration, human–machine
relationships like cooperation, where humans and machines can temporarily share their
resources or workspace, they also may work on the same goal, but have their own tasks.
The first-ever relationship, coexistence, is where humans and machines do not share their
workspace at all. Possible future relationships have also been defined, like coevolution and
compassion [3].

In this paper, we give the word “machine” a broad meaning as it can refer to an
automated or autonomous system, an agent, a robot, an algorithm, or an AI. Therefore,
studies on HMC span a variety of fields, including human–robot collaboration (HRC),
human–machine interaction (HMI), or human–machine teaming, involving extensive lit-
erature on robotics. While HMC is focused on synergy and combined effort, HMI refers
to any situation when humans interact with machines and does not necessarily involve
collaboration or working on a common goal [15]. One of the major goals of the field of HMI
is also to find the “natural” means by which humans can interact and communicate with
machines [16].

Many studies on HRC have already focused on effective collaboration between hu-
mans and cobots, which led to the creation of collaborative assemblies [14,17]. Cobots or
collaborative robots are designed to interact physically with humans in a shared environ-
ment without barriers or protective cages. These applications also proved useful to be
extended and used with their DT, which enabled real-time control and dynamic skill-based
task allocation. Using predictions and simulations led to optimised behaviour without
the risk of human injury or financial loss. However, these applications and studies were
limited only to cobots, which are usually implemented in closed industrial cells.

HMC today faces many identical and social challenges addressed in the literature [3,5,18,19],
such as transparency, explainability, technology acceptance and trust, safety, performance
measures, training people, or decision-making risks while using AI [20]. Overcoming these
challenges would result in improved human well-being and flexible manufacturing, where
humans and machines develop their capabilities. In [19], the authors proposed a framework
with guidelines and recommendations for three complexity levels of the influencing factors
presented when designing human-centred HMI workspaces in an industrial setting. It
was concluded that challenges from designing HMC workspaces in industrial settings
require multi-disciplinary and diverse knowledge of fields with a framework to systematise
research findings.

Working alongside cobots appears to be an effective method for creating personalised
products, yet it also raises important issues and considerations that need to be tackled.
As mentioned in [5], these concerns encompass fears of job loss among humans, psycholog-
ical issues, and the challenge of dynamic task distribution. The authors noted that HRC
in factories is more successful when cobots assist in repetitive tasks, allowing humans to
focus on creative and innovative work.

2.3. Digital Twin

The concept of the DT was proposed in 2002, but became a reality due to the surge of
IoT devices, which are used for collecting vast amounts of data, thus making DT accessible
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and affordable for many companies. Based on the collected data, it is possible to analyse
and monitor the digital counterparts in real-time to make decisions or prevent problems
in the physical world [5], making DTs essential to improve interactions between humans
and machines [21]. Thus, to enable the efficient design, development, and operation of an
HRC system, some DT frameworks were already created [22]. In the recent literature [23],
the authors identified six key application areas for DTs with strong human involvement,
one of which was ergonomics and safety, as well as other identified areas such as training
and testing of robotics systems, user training and education, product and process design,
validation, and testing.

During the past few years, there has been a trend to combine DTs with semantic
technologies to enhance them with cognitive abilities [24]. From this trend, the concept
of the Cognitive Digital Twin (CDT) [25,26] emerged as a promising next evolution stage
of DTs, which can replicate human cognitive processes and execute conscious actions au-
tonomously, with minimal or no human intervention. Besides cognitive abilities, the CDT
should have multiple levels and lifecycle phases of the system. Key enabling technologies
for the CDT are semantic technologies (ontology engineering, knowledge graphs), model-
based system engineering, product lifecycle management, and industrial data management
technologies (cloud/fog/edge computing, natural language processing, distributed ledger
technology) [24]. For HRC cases in smart manufacturing, ref. [27] proposed a CDT frame-
work and case study to learn human model knowledge through deep learning algorithms in
edge–cloud 5G computing to improve the interaction, facilitating workers’ lives. Similarly,
the concept of a Digital Triplet was created [28] containing the cyber world, physical world,
and “intelligent activity world”, where humans solve various problems by using the DT.

Based on the reviewed literature, one of the main parts of creating human-centric DT
sin HMC should involve creating a DT of a human [3,29]. Currently, most existing DT
applications are developed for prediction and monitoring purposes to be used as decision-
making applications for humans, and the importance of human involvement in the DT
environment is overlooked, as past research is mostly focused on manufacturing devices,
which creates one of the main research issues [29]. The authors in [3] also mention the
importance of creating a human digital twin (HDT), which can be created according to a
worker’s capabilities, behaviour pattern, and wellness index. One technical limitation in
creating an HDT arises from the varied methods of communication. A DT of an electronic
object can exploit real-time communication with its physical counterpart, but a DT of a
human connects with its physical twin through intermediary devices, typically sensors or
software applications [30].

3. Review Methodology

Based on the title search in the Web of Science (WoS) database for review categorisation,
the numbers of review and survey papers on themes such as Industry 5.0, HMC or HRC,
or DT, we can see that the trend of these concepts has increased rapidly in the last 5 years
Figure 1. However, in the case of DT, most of the review and survey papers are scarcely or
not at all focused on human factors. For this review, to evaluate previous review papers,
we decided to select and focus only on those articles that were focused on humans in more
depth, which resulted in a comparison of 20 review and survey papers that were found in
the WoS database for the keyword- and title-based search as follows:

(TI = (digital twin*) OR AK = (digital twin*)) AND (TI = (human* OR industry 5.0 OR
operator* OR user* OR people OR worker* OR employee*) OR AK = (human* OR industry 5.0 OR
operator* OR user* OR people OR worker* OR employee*))

The search phrase was altered to contain the most common phrases labelling humans
in various areas of industry. This also involves papers with topics such as HMI, which
is also a part of the HMC scenarios. The search phrase found 29 articles related to the
topic of our review paper, from which we picked only 20 more closely related articles, see
Table 1. Each article was then rated based on its primary focus on coverage, as low, medium,
or high, to evaluate how well it focused on enabling technologies, certain methods for these
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technologies, their use cases, and to what extent they also cover human–machine system
topics. The authors of the papers propose challenges and future perspectives of DTs for
futuristic human-centric industry transformation.
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Figure 1. Number of related review and survey articles in the past 5 years.

In the next phase, we picked all articles regarding our search phrase, not restricted only
to reviews and surveys, and based on 422 results, we created a keyword co-occurrence map
in VOSViewer to further help identify enabling technologies and methods for this topic; see
Figure 2. Keywords from the network map are shown and ordered by occurrences in Table 2.

Figure 2. Human-related digital twin keywords co-occurrence network map.
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Table 1. Comparison of related review and survey papers.

Ref. Year Description ET EM UC HM

[23] 2023 State-of-the-art literature review on human-centric digital twins (HCDTs) and their
enabling technologies. H H H H

[31] 2023 State-of-the-art studies of AR-assisted DTs across different sectors of the industrial field in
the design, production, distribution, maintenance, and end-of-life stages. H H H H

[32] 2023 Recent trends for DT-incorporated robotics. H H H H

[33] 2023 Literature review on human-centric smart manufacturing to identify promising research
topics with high potential for further investigations. H H H H

[34] 2024 Focus on human centricity as core value of Industry 5.0 and on the concept of human
digital twins (HDTs) and their representative applications and technologies H H H M

[35] 2022 A driver digital twin was introduced to create a more comprehensive model of the
human driver. H H H M

[21] 2023 A systemic review and an in-depth discussion of the key technologies currently being
employed in smart manufacturing with HRC systems. H M H H

[36] 2023 Review on technological aspects of relevant applications dealing with occupational safety
and health program issues that can be solved with human-focused DT. H M H H

[37] 2023 Provides a comprehensive perspective of DTs’ critical design aspects in the broad
application areas of human–robot interaction systems. M M M H

[38] 2022
Research on utilisation of information and communication technologies toward better

food sustainability, where humans collaborating with intelligent machines find
their place.

M M M M

[39] 2022 Review on simulation platforms and their comparison based on their properties and
functionalities from a user’s perspective. M H H L

[40] 2023 The author examined current DT technology from the viewpoint of human–robot
interaction systems. M M M M

[41] 2022 The integration of human factors into a DT of a city and a human interacting with a DT of
objects in the city. M M M L

[42] 2023 The analysis of the progress of DTs and robotics interfaced with extended reality. L L H H

[43] 2023 Overview of DT applications within the fields of industry and health. The concept of
controlling a rehabilitation exoskeleton via its DT in the VR is presented. M M H L

[44] 2022 Focus on DT technologies in the manufacturing domain and human–robot
collaboration scenarios. L L M H

[45] 2021 Integration and interaction of human and DT in smart manufacturing systems and
current state of the art of DT-based HMI. L L M L

[46] 2023 The impact of DT technology on industrial manufacturing in the context of Industry 5.0’s
potential applications and key modelling technologies is discussed. H L L L

[47] 2021 Analysis of existing fields of application of DTs for supporting safety management
processes and the relation between DTs and safety issues. L L M L

[48] 2023 Use case review of how human operators affect the performance of cyber–physical
systems within a “smart” or “cognitive”’ setting. L L L L

ET—enabling technologies, EM—Enabling Methods, UC—use cases, HM—human–machine focus.

In Table 1, we can see that more than half of the related review papers chosen for
comparison were published from the year 2023. After reading the papers, we concluded
that some papers had satisfying higher coverage on topics related to this review paper.
Still, none of them focused directly on the enabling technologies and methods of DTs for
HMC regarding human-centric topics and, therefore, lacked proper depth, as they tended
to focus on specific technologies or different topics.
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Table 2. Co-occurrence network map keywords.

Id Keyword Occurrences Total Link Strength

1 digital twin 229 316

2 human–robot collaboration 58 71

3 virtual reality 36 62

4 artificial intelligence 27 69

5 Industry 4.0 21 40

6 simulation 17 35

7 human digital twin 17 27

8 augmented reality 16 42

9 machine learning 16 36

10 human–robot interaction 16 31

11 Industry 5.0 16 28

12 smart manufacturing 13 38

13 human–computer interaction 11 25

14 Internet of Things 11 25

15 cyber–physical system 10 26

16 safety 10 24

17 human–machine interaction 10 20

18 robotics 9 27

19 human factors 9 19

20 smart city 9 19

21 Metaverse 9 14

22 extended reality 8 21

23 deep learning 8 18

24 computer vision 8 15

25 mixed reality 7 19

26 task analysis 7 17

27 training 6 12

28 Operator 4.0 6 9

29 edge computing 5 17

30 teleoperation 5 17

31 collaborative robotics 5 16

32 sustainability 5 16

33 assembly 5 13

34 ergonomics 5 12

35 blockchain 5 10

The found keywords in Table 2 and their total link strength show that HRC is the
biggest topic related to humans and DT, while the term “human–machine collaboration” is
not used extensively in the literature. The technologies with the biggest total link strength
include virtual reality and artificial intelligence, indicating their biggest literature coverage
in implementing DTs in HMC applications.
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Our background literature review and review methodology underscore a notable
research gap in the current literature, indicating a pressing need for more comprehensive
studies addressing the human-centric aspects of DT-driven HMC solutions. The question
of how DT integration can enhance the development of human-centred HMC applications,
along with identifying the most suitable technologies and methods for optimising this
integration, remains unanswered. Therefore, key enabling technologies, their methods,
and paradigms for DT for HMC are discussed and analysed in the next sections as existing
applications, concepts, and use cases are explored and analysed from the human-centric
point of view.

4. Enabling Technologies and Methods

This section discusses the importance of various enabling technologies presented
in an official document of Industry 5.0 [4] and the discovered keywords from Section 3
while focusing on the use cases of these technologies. This includes digital twins and
simulations (Section 4.1), artificial intelligence (Section 4.2), human–machine interaction
(Section 4.3), and data transmission, storage, and analysis technologies (Section 4.4), often
used together in many applications. This section will concentrate on integrating DTs with
these technologies in HMC scenarios and address applications with similar topics.

4.1. Digital Twins and Simulations

Before creating a DT, it is necessary to decide on the appropriate tools. According
to [49], the five-dimensional DT model can provide reference model support for applica-
tions of DT in different fields. Based on the five dimensions, the authors created a reference
framework of enabling technologies for DTs, from which we include technologies for
cognising and controlling the physical world, DT modelling, data management, services,
and connections. Different tools support different sets of features and technologies; there-
fore, it is up to engineers to choose a tool that will fulfil the needs of our application. Based
on our review methodology, we searched articles focusing on DT implementations and use
cases with various technologies.

In Table 2, we focus on describing the most common tools we found in the literature
to create DT-driven HMC applications. These tools vary in their application areas and,
therefore, were used for different application problems. The cost of the software needs to
also be considered when selecting commercial tools, including the cost associated with
training to be able to learn to use such tools. Some tools, such as the Robot Operating Sys-
tem (ROS), are used, which is an open-source middleware, thereby offering a cost-effective
communication framework for DT applications. ROS-compatible software, such as Cop-
peliaSim, Gazebo, RViz, Unity, and Blender, is often implemented as a simulation platform,
although some of them are rather game engines than a simulation environment [44]. Unity,
the most used tool in our review, is a proprietary software for which buying a personal
license is not mandatory, similar to V-REP, where the education edition is for free. However,
tools such as Technomatix Process Simulate or Matlab can be costly. In some cases, custom
tools for simulation were also created.

The most common implementation areas for HMC applications included safety and
ergonomics, maintenance, task planning, optimisation, testing, and training. Some articles,
while having humans in the loop, were focused more on increasing productivity and
optimisation. A variety of methods are utilised in the literature for the implementation of
DTs to facilitate safe interactions of robots with human operators and optimise ergonomics
during such interactions. Decision making supports task planning and allocation and
gives operators autonomy. Human action recognition and prediction are also used to
optimise production or ensure human safety. With the help of the simulation technologies,
the authors also focused on designing and testing safe HMC workspaces before their
implementation, which simplifies training and robot programming.

Choosing the right DT tools, as identified in Table 3, is crucial for implementing
other key enabling technologies for HMC, such as AI, and HMI technologies like extended



Sensors 2024, 24, 2232 9 of 20

reality (XR). However, a great variety of methods and techniques for these technologies can
make choosing the right ones for certain use cases complicated. Identifying the most and
least common use cases for DT technologies in the HMC domain can help organisations
determine how they can best leverage the technology to improve their operations and
processes and start to put humans in the centre. Therefore, the next subsections will discuss
enabling technologies and methods in various use cases and analyse how they enable
human-centric DT in HMC applications.

Table 3. DT tools used in HMC applications.

Digital Twin Tool Description Application Areas Literature Review

Unity [50–56] Real-time 3D
development platform Gaming, AR/VR, Automotive

Virtual reality support [50]
DT of physical robot [51]
DT of virtual space [52]

MR system development [53]
Human action prediction [54]
Safety and productivity [55]

Human reaction analysis [56]

Matlab [57,58] High-level technical
computing language Engineering, Research

Obstacle detection and
3D localisation [57]

Human digital twin [58]

ROS [55,59–62] Middleware for robotics
software development Robotics, automation

Communication [55]
Decision making [59]

Safety and ergonomics [60]
Robot learning [61]

Human behaviour [62]
Flexible assembly [62]

Gazebo [59–61] Advanced robotics simulation Robotics, educational research
Decision making [59]

Safety and ergonomics [60]
Robot learning [61]

Klampt [63] Versatile motion planning and
simulation tool Robotics, education Assembly planning [63]

V-REP [64] Robot dynamics simulator with
a rich set of features Robotics, educational research Robot control [64]

Siemens NX [65]
Advanced solution for

engineering design
and simulation

Engineering, manufacturing Robot programming [65]

Technomatix Process Simulate [22,66,67] 3D simulation of
manufacturing processes Manufacturing, automation

Flexible assembly [66]
Design, development,
and operation [22,67]

4.2. Artificial Intelligence

AI is one of the enabling leaders and facilitators for growth and adaptability for DTs,
also becoming the main component of such systems [68]. Based on the literature review,
we identified specific methods and tasks for different application problems, as seen in
Table 4. In the literature focusing on humans, authors focused on topics such as safety,
ergonomics, decision making, and training. Still, simultaneously, some authors focused also
on increasing the effectiveness of HMC applications in areas where the focus on humans is
not as big, such as robot learning, assembly line reconfiguration, or optimisation.

Most applications involving human safety use deep learning for object detection or
recognition for collision avoidance or calculating the distance between humans and robots.
Many DT applications use AI as a tool to optimise processes focusing on task planning
or decision making. Some authors started to focus on recognising human behaviour,
especially by motion detection, to be able to predict the next human action, which has wide
application potential. Artificial Neural Networks are often used for computer vision-related
tasks, which often involve the use of HMI devices such as Red Green Blue-Depth (RGB-D)
cameras to gather data to train neural networks for tasks such as object recognition or
human motion detection, mainly for solving human safety and ergonomics. Computer
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vision can also help with creating HDTs, as applications may involve the recognition of
human facial features, expressions, poses, and gestures [23].

In [60], the authors developed a solution to monitor operator’s ergonomics by imple-
menting a Convolutional Neural Network (Single-Shot Detector) to detect the existence or
position of parts to be assembled, as well as the hands of the operator. The neural network
model was trained on real-life and virtual object photos and increased its accuracy by also
training on more synthetic data. In the next work, decision making based on artificial
intelligence logic is used to derive alternative production system configurations, such as
the optimal layout and task plans to reconfigure the system in cases of unexpected events
online [59].

In [69], the authors proposed using Visual Question Answering (VQA) in HMC
applications to increase effectivity and safety. VQA is a method for video understanding,
consisting of computer vision and natural language processing algorithms, making it a
multimodal method, consisting of more artificial intelligence methods. In some applications,
the composition of multiple modules of AI is used, resolving in composable or composite
AI [70]. In [54], the authors fused different human-tracking sensors and combined deep
learning with semantic technologies for predicting human interactions in HRC.

AI algorithms can process and analyse large volumes of data collected from sensors,
machinery, and various other sources. By extracting crucial insights and identifying patterns
within these data, these algorithms can assist manufacturers in making more informed
decisions and enhancing the efficiency of their operations. One of the advantages of AI-
equipped DTs over conventional ones is the ability to better respond to HMC applications
due to the uncertainties in the environment and sensors and the randomness and diversity
of human behaviour [71]. Implementing AI in HMC can advance learning processes,
allowing humans and machines to adapt to changing environments or requirements.

Table 4. Artificial intelligence methods used in DT HMC applications.

AI Method Specific Technique Task Application Problem

Traditional methods SVM [50,72] Classification [50]
Object recognition [72]

Human skill
level analysis [50]
Soft-robot tactile

sensor feedback [72]

Heuristic methods Search algorithms [59] Decision making [59] Assembly line reconfiguration
and planning [59]

Neural networks FFN [57]
RNN [73]

Object recognition [57]
Sequential data handling [73]

Human safety [57]
Dynamic changes’

prediction [73]

Deep learning

1D-CNN [74]
Mask R-CNN [75,76]
CNN [53,58,60,77,78]

PVNet Parallel network [79]
PointNet [79]

SAE [80]

Detection or
recognition [53,60,74–76,79]

Classification [77]
Human action and

motion recognition [78]
Pose estimation [58,79]
Feature extraction [73]

Anomaly detection [80]

Human safety [60,75,76,78–80]
Ergonomics [60]

Human action and
intention understanding [60,77]

Efficiency [78,79]
Position estimation [53]

Decision making [73]
Object manipulation [74]

Reinforcement learning

Model-free RL[51]
TRPO [61]
PPO [61]

DDPG [61]
Q-learning [63]

Robot motion planning [51]
Robot learning [61]

Dynamic programming [63]

Training [51]
Teleoperation [51]

Robot skill learning [61]
Assembly planning

optimisation [63]

Deep reinforcement learning

Deep Q-learning [81]
PPO [52]
SAC [52]

DDPG [64]
D-DDPG [73]

Task scheduling [81]
Decision making [81]

Training [52]
Humanoid robot arm

control and motion planning
Optimisation [64,73]

Smart manufacturing [81]
Optimisation [52]

Robot learning [64]
Enhancing efficiency and

adaptability [73]

Generative AI motion GAN [82] Human motion prediction [82] Human action prediction [82]

4.3. Human–Machine Interaction

Since humans interact with DTs in both physical and virtual worlds, human–computer
interaction technologies and human–machine interaction should be incorporated. Similar
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to other technologies, HMI technologies are also challenged to become more human-centric.
HMI technologies in DT applications are crucial to support various HMC applications
by providing a means to interact with machines and their virtual counterparts. Various
technologies are used to visualise data intuitively for users, which can fulfil many roles.
As seen in Table 5, these technologies can support operators’ safety and collaboration with
machines, while AI algorithms can also be implemented.

One of the most emerging technologies is XR technologies, which encompass aug-
mented reality (AR), virtual reality (VR), and mixed reality (MR). AR is frequently found
in the literature, where it is explored for its useful support for human–machine collabora-
tive applications. Thanks to its ability to overlay digital information, it is a useful tool to
enhance the safety of workers and increase their productivity and trust of technologies.
Augmented reality applications are mostly used in the form of mobile devices, such as
phones [83], tablets [55], or glasses.

In contrast, VR provides an immersive virtual environment for users to experience,
observe, and interact with virtual objects to perceive the real environment. These virtual
models map the sensor data of physical products to reflect their life-cycle process [84].
VR is commonly used in design and simulation use cases, where a fully virtual world is
needed to design workshops or test new configurations. In [85], VR was used to generate
an industrial human-action-recognition dataset using the DT of an industrial workstation.

One of the common techniques to enable HMI in HMC involves using depth RGB cam-
eras, such as Microsoft Kinect, often used for perceiving the human body and workspace
for safety and ergonomics within applications. Using IoT and widespread connectivity,
various methods, wireless technologies, and approaches are suggested in scientific articles
to offer indoor localisation services, thereby enhancing the services available to users [86].
These localisation technologies include WiFi, Radio Frequency Identification (RFID) devices,
Ultra-Wideband (UWB) or Bluetooth Low Energy (BLE).

Natural user interfaces (NUIs) are a type of user interface design that aims to use
natural human behaviours and actions for interaction rather than requiring the user to
adapt to the technology. NUIs should be designed so that users are able to use them with
little to no training [87]. Multimodal interfaces use several ways of HMI, including NUIs, so
the users are either free to choose the most convenient method for themselves or use more
of them to create better input to process by machines [88]. For example, the authors in [89]
used a multimodal interface, which included voice recognition, hand motion recognition,
and body posture recognition as the input for deep learning for collaboration scenarios.

Table 5. HMI technologies used in DT HMC applications.

HMI Technology Specific Technique Task Application Problem

Touch interfaces Tablet [55]
Phone [83]

Visual
augmentation [55,83]

Safety [55,83]
HM cooperation [55]

Web interfaces BLE tags [80] Indoor positioning [80] Occupational safety
monitoring [80]

Extended reality

VR

HTC Vive [50,56,65]
HTC Vive Pro Eye [85]
Facebook Oculus [50]

Sony PlayStation VR [50]
Handheld sensors [65,85]

Training [65]
Validation [65]

Safe development [56]
Data generation [85]
Auto-labelling [85]

Interaction with
virtual environment [74]

Robot operation
demonstration [50]

Online shopping [74]
Human

productivity
and comfort [50]
Human action

recognition [85]

AR
HoloLens 2 [51,79,90]

Tablet [55]
Phone [83]

Robot teleoperation [51]
Visual

augmentation [55,83,90]
Real-time interaction [79]

Human safety
[55,79,83,90]

Intuitive human–
robot interaction [51]

Productivity [79]

MR HoloLens 2 [53,75] Visual augmentation [75]
Object manipulation [53] Human safety [75]
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Table 5. Cont.

HMI Technology Specific Technique Task Application Problem

Natural user interfaces

Gestures HoloLens 2 [53]
Kinect [91] Head gestures [53] 3D object robot

manipulation [53,91]

Motion

Perception Neuron
Pro [85]

Manus VR Prime II [54]
Xsens Awinda [54]

Motion capture [85]
Finger tracking [54]

Body joint tracking [54]

Human motion
recognition [54,85]

Gaze
Pupil Invisible [54]

HoloLens 2 [53]
Object focusing [54]
Target tracking [53]

Assembly task
precision [54]

Interface adaptation [53]

Voice HoloLens 2 [53] MR image capture [53] 3D manipulation [53]

4.4. Data Transmission, Storage, and Analysis Technologies

A data-driven digital twin possesses the ability to observe, react, and adjust according
to changes in its environment and operational circumstances. Data transmission technolo-
gies include wired and wireless transmissions. Both wired and wireless transmissions
depend on transmission protocols. Storing collected data for processing, analysis, and man-
agement is an essential aspect of database technologies. However, traditional database
technologies face challenges with the increasing volume and diversity of data from multiple
sources. Therefore, big data has prompted the exploration of alternative solutions, such
as distributed file storage (DFS), NoSQL databases, and NewSQL databases. This large
volume of data is then preprocessed and analysed for extracting useful information through
statistical methods or by database methods, which include multidimensional data analysis
and OLAP methods [49]. Nonetheless, AI methods from Section 2.2, such as neural net-
works or deep learning, can also be used for some analytic tasks. As seen in Table 6, authors
often use multiple technologies, and multiple authors do not state specific technologies in
their work, but rather, specify the usage of broad technology frameworks such as TCP/IP
or cloud databases.

Based on various levels of DTs, edge computing, fog computing, and cloud computing
can be used for data transmission, storage, or analysis tasks. Cloud computing provides
widespread, easy, and on-demand network access to a pool of resources, shareable as
needed, offering high computational and storage capacities at reduced costs. Meanwhile,
fog computing extends the cloud’s computing, storage, and networking capabilities to the
edge network. Edge computing (EC) then allows data processing to be performed closer
to the data sources [92]. As one of the enabling technologies for Industry 5.0 [4,5], EC has
already found a number of applications in the literature for network operations, where the
edge must be designed efficiently to ensure security, reliability, and privacy.

Since one of the main challenges of DTs is to ensure data flow between the physical
and digital counterparts, one of the big research areas that can improve human safety is
also task offloading [93]. In many areas, like healthcare, the risk of potential high response
latency at the data centre end is critical [94]. Ruggeri et al. [95] proposed a solution that
utilises a deep reinforcement learning agent in an HRC scenario, which observes safety and
network metrics to decide which model should run on mobile robots and the edge based on
network congestion, which greatly improved the safety metrics and reduced the network
latency. In the case of task offloading, authors very often focus on Autonomous Mobile
Robots (AMRs) because of their limited computation hardware, which poses a challenge in
these applications.

Paula Fraga-Lamas et al. [96] proposed a mist/edge computing cyber–physical human-
centred system (CPHS) that uses low-cost hardware to detect human proximity to avoid
risky situations in industrial scenarios. The proposed system was evaluated in a real-world
scenario, where the maximum latency was reduced and low computational complexity was
preserved. Research on edge intelligence in DTs that can improve areas such as anomaly
detection was also explored [97].
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Taking scalability into account, an edge-based twin is most valuable due to its minimal
latency, especially when compared to twins based on cloud and edge–cloud configura-
tions [98]. As edge AI and AI-enabled hardware like graphical processing units, such as
the Nvidia Jetson series, or AI accelerators, such as Intel Movidius products, continue to
evolve, it becomes feasible to break down the DT of an entire factory process into smaller,
modular DT processes [44].

Technologies, such as Kubernetes and Docker, streamline container management and
workload orchestration, enhancing data handling and processing efficiency in modern
computing [99]. The microservices architecture, adopted in the era of cloud computing,
facilitates greater customizability, reusability, and scalability by splitting solutions into
interconnected applications [100]. This approach, coupled with Kubernetes orchestration
and containerisation, significantly boosts deployment efficiency, scalability, flexibility,
and reliability in contemporary DT operations and applications [101,102].

Furthermore, incorporating the precise analysis and forecasting strengths of big data,
HMC driven by DT technology will become more adaptive and forward-looking, offering
significant improvements in various aspects of efficient and accurate management [103].

Table 6. Data transmission, storage, and analysis technologies in DT HMC applications.

Category Technology Task Application Problem

Storage
MySQL [55]

MongoDB [60]
Cloud database [80,104]

CAD, audio, and 3D model files [55]
Assembly step executions [60]
Robotic arm motion list [104]

General system data storage [80]

Human safety [60,80,104]
Productivity [60,104]

Data Transmission

TCP/IP [50,55,73,75]
Ethernet [55]
MQTT [97]

Cellular [80]
WiFi [55,80]

Bluetooth [80]

Physical and digital world
communication [50,75]

Human–robot Android AR
application [55]

Robot control movement [73]
Occupational safety system [80]

Edge intelligence anomaly
detection [97]

Human safety [55,75,80]
Productivity [55]

Human skill level analysis [50]
Dynamic changes’ prediction [73]

Maintenance [97]

Analysis Principal component analysis [50]
Parameter sensitivity analysis [105]

Dimension reduction [50]
Model adaptability enhancement [105]

Human safety [80]
Maintenance [105]

5. Discussion

The growth of DT applications in HMC and the recent focus on human centricity
indicate the potential for human-centric DT applications in various areas of industry. In this
review paper, we identified the existing literature and research trends in the HMC domain
using the DT as a key enabling technology. We focused on different applications based on
enabling technologies identified for the Industry 5.0 era. The limitations of this study may
include its main focus on the WoS database and keyword search, which may miss some
work on this topic. Based on the literature reviewed, we identified several research gaps.

Firstly, the scarcity of human-centric applications stems from their recent emergence
as a focus area, a lack of standardisation, and the complexity of societal and technical
challenges. Although creating these human-centric applications lacks standardisation,
numerous applications place a significant emphasis on the human aspects. However, most
DT applications still focus on productivity as the main goal. In HMC, where humans are
part of collaboration processes, focusing on human problems is often inevitable. There is a
need to complement DTs with a deep understanding of human behaviours, preferences,
and limitations to make the uncertainty of human behaviour less challenging to model.
As a result, the following research should start by analysing the impact and significance
of the analysed enabling technologies and methods in implementing human-centric DTs
across various HMC applications.

Secondly, HMC applications mostly focus on arm manipulators and lack work involv-
ing mobile robots. While there are existing industrial applications, research in industrial
domains may be proprietary and not widely published due to competitive reasons. At the
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same time, modelling mobile robots and humans in dynamic environments represents
new challenges as opposed to robots whose environment is smaller and does not change
much. Therefore, new case studies and experiments are essential to comprehend the
practical implications, limitations, and benefits of mobile robots in HMC across various
industrial contexts.

Thirdly, the methods for synergistically integrating all enabling technologies in com-
plex systems remain unclear. According to the Industry 5.0 document, all technologies will
reveal their full potential when combined with the others to create complex systems. There-
fore, a framework should be proposed in future work to integrate the analysed technologies
and methods, providing a systematic approach to technology selection and combination
for different use cases.

Apart from identified research gaps, the analysed enabling technologies and meth-
ods, on their own, have their limitations, which need to be addressed in future research.
DTs confront several challenges, including creating accurate virtual models, the absence
of a standardised framework for DT development, insufficient training programs, high
development costs, and the complexity of accurately modelling human interactions. Fur-
thermore, integrating DT with cyber–physical systems and IoT sensors poses challenges in
real-time connectivity and data synchronisation. Therefore, research efforts should priori-
tise improving the fidelity of DT models, particularly in accurately representing human
interactions and physical phenomena. Collaborative efforts between academia, industry,
and policymakers will be crucial [44].

Although incorporating HMI technologies into DT applications can enhance user ex-
perience and support HMC, achieving true human-centricity in these technologies presents
significant challenges. Despite the potential benefits of depth RGB cameras and other
IoT devices, it also raises worries regarding privacy and data security when frequently
recording sensitive details concerning the movements and interactions of workers, where
research can also head in the direction of human-centric privacy- or data-protection sys-
tems [106]. Additionally, AR and VR devices have to be designed to be inclusive to all
humans and to mitigate any sensory overload or disorientation, particularly in complex
industrial environments [107].

Similarly, there is a question on how to solve the biggest challenges to designing,
implementing, and deploying fair, ethical, and trustworthy AI. We can address this chal-
lenge by focused research questions [108] encompassing issues such as identifying and
addressing AI biases, ensuring transparency and explainability, establishing accountability,
and developing robust legal and regulatory frameworks.

Moreover, additional limitations and challenges emerge, including reliability and latency
issues in data transmission technologies, the scalability constraints of traditional database tech-
nologies, and the complexities associated with implementing edge computing, fog computing,
and cloud computing solutions. Additionally, complexity challenges persist in managing
containerised microservices despite their potential to enhance deployment efficiency.

As many applications achieve better outcomes with a broader array of technologies
and data, the use of fusion and multimodal solutions is expected to increase in the coming
years. One of the examples is composite AI [109], or composable AI systems [110], which
are crucial for the advancement of AI technology, as the modularity and composition of
multiple AI models will make creating complex AI systems easier and faster. For instance,
in [111], the authors proposed a composite AI model employing a Generative Adversar-
ial Network to predict preemptive migration decisions for proactive fault tolerance in
containerised edge deployments.

For advancing video understanding techniques, the authors in [112] developed a
Human–Robot Shared Assembly Taxonomy (HR-SAT) for HRC to represent industrial
assembly scenarios and human procedural knowledge acquisition, which can be further
used for various AI tasks, such as human action recognition and prediction or human–robot
knowledge transfer. Federated learning [113] offers an effective method for leveraging
the growing processing capabilities of edge devices and vast, varied datasets to develop
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machine learning models while maintaining data privacy, which could solve some ethics
problems and improve human trust in collaboration with machines.

HMC applications involving mobile robots, such as drones or ground AMRs, could
also be utilised in the future for their flexibility, manoeuvrability, and adaptability. However,
it is harder for applications involving mobile robots to solve safety issues, as their workspace
is not constrained to a smaller place than it usually is with assembly cells with cobots.
For safety applications involving mobile robots, solutions, such as AR in HMC applications,
could be used to visualise the path of mobile robots [83], which will also increase human
trust when working in the same workspace and then collaborating on the same tasks.
Exploring natural user interfaces (NUIs) for multimodal interaction with mobile robots,
such as drones, may also unveil future collaborative applications [114].

Localisation and communication trends such as Visible Light Communication (VLC)
or Visible Light Positioning (VLP) [115] are also promising technologies to enable human-
centric HMI in future DT applications or where the use of other technologies might be
limiting or undesirable.

6. Conclusions

This research presents a comprehensive literature review focused on the importance
of developing human-centric applications within DT and its technologies for HMC. It
examines specific technologies and methods reported in the literature for each technology
category. Our focus was on identifying common use cases for DT technologies in the
HMC domain, aiming to guide organisations on optimally leveraging these technologies
to enhance operations and processes and prioritise human-centric approaches. Despite
its importance, the DT, a key component in futuristic synergistic HMC systems, still lacks
extensive literature on human-centric applications. This gap partly arises from the absence
of standardised frameworks for developing these types of applications. In the coming
years, a significant expansion in research on these topics is anticipated, with a focus on
addressing the main challenges and exploring enabling technologies and methods.
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The following abbreviations are used in this manuscript:

AI artificial intelligence
AMR Autonomous Mobile Robot
AR augmented reality
CDT Cognitive Digital Twin
DT digital twin
EC edge computing
HMC human–machine collaboration
HRC human-robot collaboration
HMI human–machine interaction
HDT human digital twin
IoT Internet of Things
MR mixed reality
NUI natural user interface
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ROS Robot Operating System
VR virtual reality
VQA Visual Question Answering
WoS Web of Science
XR extended reality
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