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Abstract—In this paper, we propose a novel pilot-aided phase
and channel estimation algorithm for coherent mode-division
multiplexing multiple-input multiple-output free-space optical
communication system. This algorithm enables the implementa-
tion of advanced multiple-input multiple-output decoders, leading
to a significantly better bit error rate performance. This algo-
rithm also supports phase-asynchronous light sources at each
transmit and receive channel, significantly reducing the hardware
requirements. Moreover, it has low computational complexity and
Cramér–Rao lower bound approaching estimation performance.
In our proof-of-concept experiment, we employed 10 decorrelated
channels to achieve a record-high 689.2 Gbit/s/wavelength line
rate in strong turbulence, verifying the feasibility of our phase
and channel estimation algorithm.

Index Terms—Free-space optics, multiple-input multiple-
output, channel estimation, atmospheric turbulence.

I. INTRODUCTION

THE beyond 5G/6G networks are expected to address the
demanding requirements of wireless data traffic. Free-

space optical (FSO) communication is a promising technology
to address this demand by providing a much faster data
rate, lower latency, and enhanced security [1]. To further
increase the capacity of FSO transmissions, mode-division
multiplexing (MDM) technology was introduced to exploit the
spatial diversity (i.e. parallel spatial channels) [2]. Unlike other
multiplexing technologies such as polarisation multiplexing
or dense wavelength-division multiplexing (DWDM) [3], [4],
MDM can also provide enhanced atmospheric turbulence
resiliency in the digital domain without an adaptive optics
(AO) system [5], making it a promising technology for high-
capacity FSO communications with a much faster adaptation
speed for turbulence.

Multiple-input multiple-output (MIMO) digital signal pro-
cessing (DSP) is one of the major approaches to mitigate the

Manuscript received October 00, 2023; revised October 00, 2023. Re-
search supported by EPSRC under Grants EP/T009047/1, EP/T009012/1,
EP/S003436/1, and EP/S016171/1, and by the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie
Grant 713694, and Future and Emerging Technologies Open Grant Super-
Pixels 829116. (Corresponding author: Zhaozhong Chen.)

Y. Li, M. Patel and A. Ellis are with Aston Institute of Photonic Technolo-
gies, Aston University, Birmingham, B4 7ET, UK (e-mail: y.li70@aston.ac.uk;
d.benton@aston.ac.uk; m.patel70@aston.ac.uk; andrew.ellis@aston.ac.uk).

Z. Chen, and M. Lavery are with James Watt School of En-
gineering, University of Glasgow, Glasgow, G12 8QQ, UK (e-mail:
Zhaozhong.Chen@glasgow.ac.uk; Martin.Lavery@glasgow.ac.uk).

negative atmospheric turbulence and improve the bit error rate
(BER) performance of FSO systems [6], [7]. Most reported
MIMO algorithms in optical communication systems are based
on a 3-dimensional equaliser (3D-EQ) which performs mini-
mum mean squared error (MMSE) MIMO detection. It works
well in few-mode fibre (FMF) channels with approximately
unitary channel matrices [8]–[10], but quantifies significant
performance degradation in the presence of turbulence-induced
fading [6], [7], [11]. Therefore, it is necessary to go beyond
the MMSE algorithm [11] and introduce more advanced
MIMO decoders (e.g. maximum-likelihood decoder (MLD)
[11], sphere decoder (SD) [12] or successive interference can-
cellation (SIC) decoder [13]) for MDM FSO communications.
To deploy advanced MIMO decoders, it is necessary to replace
the 3D-EQ with an advanced DSP scheme, which separates
phase and channel estimation from MIMO detection.

Phase noise is one of the major imperfections in coherent
FSO systems. To date, most MDM experiments implicitly used
a single narrow-linewidth high-power laser source at both the
transmitter and the receiver side to obtain identical phase noise
among all the modes [6], [8]. Although boost amplifiers [9]
or optical injection locking [14] can be introduced in the
systems to mitigate the stringent requirements on the laser
source, they will still introduce extra hardware costs. In order
to scale up the number of spatial modes, it is necessary
to relax the hardware requirements in MDM systems by
employing phase-asynchronous laser sources [10]. However,
the detrimental impact of phase noise can be more pronounced
due to the turbulence-induced channel matrix deterioration in
MDM FSO systems. Although extensive research on phase
noise estimation has been conducted in single-input single-
output (SISO) systems [15], [16], they can not be directly
applied to MIMO systems, where the received signal may be
deteriorated by multiple phase noise parameters. Therefore,
the joint phase and channel estimation for wireless MIMO
systems with independent phase noise is of particular interest
and has been investigated by several researchers [17]–[19].
However, previous algorithms have to estimate phase after
channel estimation, limiting the maximum effective length
of the training sequence and degrading the channel estima-
tion accuracy. Therefore, these algorithms suffer from either
significant degradation in estimation accuracy [17], [18], or
unacceptably high computational complexity [19]. Therefore,
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there is a pressing demand for a new phase and channel
estimation algorithm with low computational complexity and
high estimation accuracy.

In this paper, we propose a novel pilot-aided phase and
channel estimation algorithm for MDM FSO systems with in-
dependent phase noise to address the aforementioned require-
ments. By moving the phase noise estimation and recovery
before full channel estimation,

1) the algorithm supports advanced MIMO decoders;
2) the algorithm supports phase-asynchronous laser sources;
3) the algorithm has very low computational complexity;
4) the algorithm has Cramér–Rao Lower Bound (CRLB)-

approaching estimation accuracy.

We also validate this algorithm in an experimental MDM
FSO system, which was previously discussed in our recent
European Conference on Optical Communication (ECOC)
paper [20]. By employing 10 decorrelated polarization- and
mode-multiplexed transmit channels, we achieved a record-
high line rate of 689.2 Gbit/s in strong turbulence, indicating
the feasibility of our phase and channel estimation algorithm.

The remainder of this paper is organized as follows: the
system model is given in Section II. Section III proposes
the novel phase and channel estimation algorithm. Section IV
provides the main simulation results of the proposed algorithm.
Section V depicts the proof-of-concept experimental setup.
Section VI provides the experimental results to verify the
effectiveness of the algorithm in the MDM MIMO FSO
systems. Finally, Section VII summarizes the key advantages
of the proposed algorithm.

Notations: xm,: denotes the mth row vector of matrix X,
and x:,m denotes the mth column vector of X.

II. SYSTEM MODEL
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Fig. 1. Schematic diagram for MDM MIMO FSO systems.

As shown in Fig. 1, a point-to-point MDM FSO system with
Nt transmit channels and Nr receive channels is considered.
In Fig. 1, sl,m represents the transmitted symbol at the lth

transmitter and the mth time interval. yk,m represents the
received signal at the kth receiver and the mth time interval.
hk,l is the channel gain between the kth receiver and the
lth transmitter. ψl,m represents the phase noise at the lth

transmitter and the mth time interval. And φl,m represents
the phase noise at the kth receiver and the mth time interval.

As shown in Fig. 2, data symbols are transmitted as frames.
The frame length is Lf . In each frame, there is a training
sequence of length Lts. After the training sequence, Lp
consecutive pilot symbols (a pilot group) are inserted every
Ld data symbols. The cell length (Lc), cell number (Nc), and
pilot rate (Rp) of a frame are defined as

Lc = Lp + Ld

Nc =
Lf − Lts
Lp + Ld

Rp =
Lp

Lp + Ld

. (1)

pL
TS P D P D P D

dL

fL

tsL

Fig. 2. Frame structure of the transmitted data in MIMO systems. TS: Training
Sequence, P: Pilot, D: Data.

The channel matrix has a rank of Nt in a general MIMO
system when Nr ≥ Nt. A feasible phase and channel
estimation can not be obtained within one pilot group if
Lp < Nt (there are insufficient equations to solve the channel
matrix). In this case, although the phase and channel can be
estimated by several pilot groups, the inter-pilot-group phase
noise significantly contaminates the channel matrix estimation.
On the other hand, the impact of intra-pilot-group phase noise
on channel estimation increases as Lp increases (more phase
wander during Lp), and so minimizing Lp is recommended.
Therefore, the optimal condition of Lp = Nt is important for
the phase and channel estimation.

To simplify the mathematical analysis and focus on the
phase and channel estimation, the following assumptions are
adopted in the algorithm derivation and analysis:
A1. The pilots are known at the receiver. Moreover, all the

transmitters simultaneously transmit mutually orthogonal
and element-wise normalized pilots of length Lp = Nt
in one pilot group.

A2. The laser sources for different transmit channels and
local oscillators (LOs) for different receive channels are
independent (Fig. 1), which is a generalized case of
different kinds of practical systems [2], [10], [21].

A3. The channel matrix H remains constant in a frame and
there is no inter-symbol interference (ISI) in the system.

A4. The phase noise is modelled by a Wiener process, which
is static in one symbol period but varies from symbol to
symbol [10], [15], [17].

A5. Perfect signal-to-noise ratio (SNR) estimation, timing
recovery, frame and bit synchronization, and frequency
estimation are assumed, which can be achieved by stan-
dard algorithms [11], [22]–[25].

In the above-mentioned system, the discrete-time baseband
received signal of the system can be described as

y:,m = ΦmHΨms:,m + n:,m, (2)
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where
m represents the mth time interval.
y:,m = [y1,m, · · · , yNr,m]

T is the received signal vector,
and (·)T is the transpose operator.

Φm = diag
(
ejφ1,m , · · · , ejφNr,m

)
is the diagonal phase

matrix of the receiver LOs, and diag (x) is a diagonal matrix
where the diagonal elements are given by vector x.

H =

 h1,1 · · · h1,Nt

...
. . .

...
hNr,1 · · · hNr,Nt

 is the channel matrix.

Ψm = diag
(
ejψ1,m , · · · , ejψNt,m

)
is the diagonal phase

matrix of the transmitter laser sources.
s:,m = [s1,m, · · · , sNt,m]

T is the transmitted signal vector
with normalized power.

n:,m = [n1,m, · · · , nNr,m]
T is the independent and identi-

cally distributed (i.i.d.) additive white Gaussian noise (AWGN)
vector, and nk,m ∼ CN

(
0, σ2

n

)
obeys circularly-symmetric

complex Gaussian distribution with mean 0 and variance σ2
n.

Following assumption (A4), the phase of the laser sources
for different transmit and receive channels can be modelled as
Wiener process, and φk,m and ψl,m are then given by{

φk,m = φk,m−1 +∆φk,m

ψl,m = ψl,m−1 +∆ψl,m
, (3)

where ∆φk,m ∼ N
(
0, σ2

∆φ

)
and ∆ψl,m ∼ N

(
0, σ2

∆ψ

)
are

the phase innovations at the kth LO and the lth transmit
laser source, respectively, at the mth symbol period. N

(
µ, σ2

)
denotes real Gaussian distribution with mean µ and variance
σ2. σ2

∆φ = 2π∆νrT , and σ2
∆ψ = 2π∆νtT . ∆νr and ∆νt are

the 3 dB linewidths of the LOs and signal lasers, respectively.
T is the symbol period.

III. ESTIMATION ALGORITHM

A. Basic Principles of the Estimation Algorithm

Throughout our algorithm, pilots are used for estimating
the phase and channel, while the training sequence is only
used for frame synchronization and frequency estimation in
assumption (A5). Without loss of generality, the time index of
the first symbol in the first pilot group is labelled as m = 1 (the
time indices of the training sequence are −Lts + 1 ≤ m ≤ 0,
which are omitted in the algorithm).

Following assumption (A3), a suitable estimation of channel
matrix H should exploit all the pilot information throughout
a frame to reduce estimation error. However, if the phase
estimation is performed after channel estimation, there will
be a trade-off between the AWGN and the phase noise, and
the channel estimation can be severely contaminated by phase
noise when using all the pilots. To remove the trade-off, it
is necessary to estimate and recover phase before channel
estimation.

To estimate the phase of different transmit and receive
channels within a pilot group, a weighted linear least squares
(WLLS) estimator is proposed to estimate the phase before
full channel information. By extracting Nr + Nt − 1 phase
information from NrNt observed angular terms in the channel
matrix, and assigning a smaller weight to the observed terms

with larger errors, the phase estimation error is significantly
reduced by employing the WLLS estimator. Moreover, Wiener
filters are employed to further improve the phase estimation
accuracy by exploiting the inter-pilot-group phase information.

It will be shown later that the WLLS estimator needs
the information of |H| as weight coefficients. By applying
conventional linear least squares (LLS) algorithm, the estima-
tion of |H| is possible in each pilot group. Because of the
element-wise absolute operator |·|, the phase contamination
phenomenon can not influence the amplitude of the channel
matrix. Therefore, it is possible to calculate the element-wise
average of |H| throughout all the pilots within a frame before
phase recovery.

As a conclusion of the above mentioned reasons, the struc-
ture of our newly proposed algorithm is shown in Fig. 3.

|H| Estimation

WLLS one-shot Phase Estimation

Wiener Phase Estimation

Phase Recovery

H Estimation

Fig. 3. Structure of estimation algorithm.

Remark 1: The influence of the intra-pilot-group phase noise
is neglectable in the low SNR region and very subtle in the
high SNR region. Therefore, it is neglected throughout this
Section. The detailed influence of intra-pilot-group phase noise
is discussed in [26] for interested readers.

B. Step 1: Estimation of Channel Amplitude
It is straightforward to prove that the phase terms Φm and

Ψm do not change the amplitude of the equivalent channel
matrix ΦmHΨm. Therefore, the estimation of channel ampli-
tude at the ith pilot group can be given by conventional LLS
algorithm as [17] ∣∣∣Ĥi

∣∣∣ = ∣∣YiS
+
i

∣∣ , (4)

where |·| denotes the element-wise absolute value opera-
tor, the matrices Yi =

[
y:,(i−1)Lc+1, · · · ,y:,(i−1)Lc+Nt

]
,

Si =
[
s:,(i−1)Lc+1, · · · , s:,(i−1)Lc+Nt

]
, and (·)+ is the

Moore–Penrose inverse operator.
Following assumption (A1), SiSHi = NtINt

. Therefore, the
estimation of channel amplitude at the ith pilot group can be∣∣∣Ĥi

∣∣∣ = 1

Nt

∣∣YiS
H
i

∣∣ , (5)

where (·)H is the Hermitian transpose operator.
When the intra-pilot-group phase noise is neglected, and the

reference phase is set at the middle of the ith pilot group, the
time index of the reference phase can be defined as mi ≜
(i− 1)×Lc+⌈Nt/2⌉, where ⌈·⌉ is the ceiling function. Then
(5) can be written as∣∣∣Ĥi

∣∣∣ ≈ 1

Nt

∣∣(Φmi
HΨmi

Si +Ni)S
H
i

∣∣
=

∣∣∣∣Φmi
HΨmi

+
1

Nt
NiS

H
i

∣∣∣∣
= |Φmi

HΨmi
+N′

i| ,

(6)
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where Ni =
[
n:,(i−1)×Lc+1, · · · ,n:,(i−1)×Lc+Nt

]
is the cor-

responding AWGN matrix. Because SHi
/√

Nt is a unitary
matrix, N′

i =
1
Nt

NiS
H
i is also an i.i.d. circularly-symmetric

Gaussian matrix, and the element at the kth row and lth

column of N′
i obeys the distribution n′i,k,l ∼ CN

(
0, σ2

n

/
Nt

)
.

Noting the i.i.d. property of N′
i, and σ2

n can be perfectly
estimated according to assumption (A5), the element-wise
squaring of channel amplitude estimation can be calculated
over the whole frame as∣∣∣Ĥ∣∣∣

sq
=

1

Nc

Nc∑
i=1

(∣∣∣Ĥi

∣∣∣⊙ ∣∣∣Ĥi

∣∣∣)− σ2
n1Nr×Nt

, (7)

where ⊙ is the element-wise product operator, and 1X×Y
denotes the X × Y all one matrices.

Finally, the estimation of channel amplitude over the whole
frame can be calculated as∣∣∣Ĥ∣∣∣ = √

max

(
0Nr×Nt ,

∣∣∣Ĥ∣∣∣
sq

)
. (8)

The element-wise maximum operator in (8) is to prevent the
estimated value in (7) from accidentally being less than 0 when
hi,j → 0.

Remark 2: A conventional estimate of channel amplitude

would be
∣∣∣Ĥ∣∣∣ = ∣∣∣∣ 1

Nc

Nc∑
i=1

Ĥi

∣∣∣∣ or
∣∣∣Ĥ∣∣∣ = 1

Nc

Nc∑
i=1

∣∣∣Ĥi

∣∣∣. However,

in the first case, the estimation is corrupted by inter-pilot-group
phase noise, reducing the accuracy for high phase noise, whilst
for the latter the absolute value of the observable is dominated
by AWGN at low SNR (consider the case of hk,l = 0, this
estimation gives a result which depends on the AWGN and is
larger than 0). Both of these issues are resolved by adopting
(9) and (10).

C. Step 2: Weighted Linear Least Squares Phase Estimation

Similar to (6), the following approximation holds

Ĥi =
1

Nt
YiS

H
i ≈ ΦmiHΨmi +N′

i. (9)

Define the angular term of Ĥi and H as{
Ai ≜∠Ĥi

Θ ≜∠H
, (10)

where ∠ (·) denotes the element-wise phase angle of complex
matrices. The element at the kth row and lth column of Ai

can be represented as

ai,k,l ≈ ∠
(
ejφk,mi |hk,l| ejθk,lejψl,mi + n′i,k,l

)
= ∠

(
|hk,l| ej(φk,mi

+ψl,mi
+θk,l) + |hk,l|

n′i,k,l
|hk,l|

)
≈ φk,mi

+ ψl,mi
+ θk,l +

n′′i,k,l
|hk,l|

,

(11)

where θk,l is the element at the kth column and lth row of
Θ, and n′′i,k,l ∼ N

(
0, σ2

n/(2Nt)
)

is the azimuthal component
of n′i,k,l. The last approximation is based on the small noise
assumption, which is also used in [15]. On the other hand,
the angular term a:,k,l given by (11) is within the interval of

[−π, π), which is referred to as phase wrapping. Therefore,
a standard phase unwrapping algorithm given by [27] is
necessary to unwrap each a:,k,l.

To eliminate phase ambiguity, it is intuitively satisfying to
set one of the transmit laser sources as reference [18], [25].
Without loss of generality, the phase of the last transmit laser,
ψNt,m, is set as reference, and (11) can be rewritten as

ai,k,l

≈ (φk,mi
+ ψNt,mi

) + (ψl,mi
− ψNt,mi

) + θk,l +
n′′i,k,l
|hk,l|

= βk,mi + βNr+l,mi + θk,l +
n′′i,k,l
|hk,l|

,

(12)
where

βq,m =

{
φq,m + ψNt,m, (1 ⩽ q ⩽ Nr)

ψq−Nr,m − ψNt,m, (Nr + 1 ⩽ q ⩽ Nr +Nt − 1),
(13)

is one of the Nr+Nt−1 phase noise values correlated to the
reference.

In order to enable matrix calculation, Ai is rearranged as

αi =
[
aTi,:,1, · · · ,aTi,:,Nt

]T
. (14)

Define

C ≜


INr

B1

...
...

INr
BNt−1

INr
0Nr×(Nt−1)

 , (15)

where IX is the X ×X identity matrix. 0X×Y is the X × Y
all zero matrix, and Bi =

[
0Nr×(i−1),1Nr×1,0Nr×(Nt−1−i)

]
.

Then (12) can be rewritten in vector form as

αi = Cβ:,mi
+

 θ:,1

...
θ:,Nt

+

 n′′
i,:,1
...

n′′
i,:,Nt

⊘

 |h:,1|
...

|h:,Nt
|

 ,
(16)

where ⊘ is the element-wise division operator. It is easy to
verify that C is a matrix with rank Nr + Nt − 1 (full rank)
[18], which enables the estimation of β:,mi

.
Considering the fact that the LLS algorithm requires i.i.d.

noise on different observed data, if we assume (8) has perfect
estimation on the channel amplitude, (16) can be modified by
(8) as

α′
i = C′β:,mi

+


∣∣∣ĥ:,1

∣∣∣
...∣∣∣ĥ:,Nt

∣∣∣

⊙

 θ:,1

...
θ:,Nt

+

 n′′
i,:,1
...

n′′
i,:,Nt

 ,
(17)

where
α′
i =

[∣∣∣ĥT:,1∣∣∣ , · · · , ∣∣∣ĥT:,Nt

∣∣∣]T ⊙αi, (18)

C′ =


∣∣∣ĥ:,1

∣∣∣ · · ·
∣∣∣ĥ:,1

∣∣∣
... · · ·

...∣∣∣ĥ:,Nt

∣∣∣ · · ·
∣∣∣ĥ:,Nt

∣∣∣


︸ ︷︷ ︸

repeat Nr+Nt−1 times

⊙C. (19)
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Finally, the WLLS estimation is given as

β̂:,mi
= (C′)

+
α′
i. (20)

Remark 3: By substituting (17) into (20), it can be seen that
the estimation of (20) has a quasi-static phase bias of

(C′)
+




∣∣∣ĥ:,1

∣∣∣
...∣∣∣ĥ:,Nt

∣∣∣

⊙

 θ:,1

...
θ:,Nt


 . (21)

However, it will be shown in Sec. III-E that the channel
estimation algorithm can perfectly compensate for this bias,
and result in a feasible estimation of ΦmHΨm.

D. Step 3: Wiener Phase Estimation
In this step, the inter-pilot-group phase sequence, which

can be denoted as
[
β̂:,m1

, · · · , β̂:,mNc

]
, is considered. And

an element-wise inter-pilot-group Wiener phase estimator is
proposed to further suppress the phase estimation error.

By substituting (17) into (20), the noise term of β̂:,mi
can

be written as

nβ̂(:,mi)
=(C′)

+
[(
n′′
i,:,1

)T
, · · · ,

(
n′′
i,:,Nt

)T ]T
=

 ς1,:
...

ςNr+Nt−1,:


 n′′

i,:,1
...

n′′
i,:,Nt

 , (22)

where ςq,: is the qth row of (C′)
+.

Note that n′′i,k,l ∼ N
(
0, σ2

n/(2Nt)
)

are i.i.d. AWGN

variables, it is obvious that nβ̂(q,mi)
∼ N

(
0, σ2

nW (q)

)
, where

σ2
nW (q) =

∥ςq,:∥2

2Nt
σ2
n, (23)

and ∥·∥ is the Euclidean norm of a vector. On the other hand,
as a direct result from (13), the equivalent phase noise variance
between adjacent pilot groups (e.g. βq,mi

and βq,mi+1
) can be

given as

σ2
pW (q) =

{
Lc ·

(
σ2
∆φ + σ2

∆ψ

)
, (q ≤ Nr)

Lc · 2σ2
∆ψ , (q > Nr)

, (24)

where σ2
∆φ and σ2

∆ψ are the variances of the phase innovations
in (3).

For the qth row of the phase sequence, a balanced two-sided
Wiener phase estimator with tap length Ltap = 2LW + 1 can
be given by [28]

β̂′
q,mi

=

LW∑
t=−LW

ωt,qβ̂q,mi−t , (25)

where ω:,q = [ω−LW ,q, · · · , ωLW ,q]
T are the corresponding

Wiener coefficients. When i ≤ t, β̂q,mi−t
should be set to 0

to enable the calculation of (25).
According to [15], the coefficient vector can be calculated

by

ω:,q =
(
K−11(2LW+1)×1

) (
11×(2LW+1)K

−11(2LW+1)×1

)−1
,

(26)

where the (2LW + 1)× (2LW + 1) matrix K is

K = Kp +Kn, (27)

the element at the kth row and lth column of Kp is

kp(k,l) =


σ2
pW (q) ·max (k, l) , (max (k, l) ⩽ LW )

σ2
pW (q) ·min (k, l) , (min (k, l) ⩾ LW + 2)

0, otherwise
,

(28)
and

Kn = σ2
nW (q) · I(2LW+1). (29)

The terms Kp and Kn, which optimize the coefficient vector,
arise from the autocorrelations of phase noise and AWGN,
respectively.

E. Step 4 and 5: Phase Recovery and Channel Estimation

Using the estimated phase given by (25), the full channel
estimation (including phase) at the ith pilot group can be
calculated as

Ĥi =
1

Nt
diag

(
e−jβ̂

′
1,mi , · · · , e−jβ̂

′
Nr,mi

)
YiS

H
i

× diag
(
e−jβ̂

′
Nr+1,mi , · · · , e−jβ̂

′
Nr+Nt−1,mi , 1

)
.

(30)

Therefore, the channel estimation averaged over the whole
frame can be given as

Ĥ =
1

Nc

Nc∑
i=1

Ĥi. (31)

Moreover, the phase at the mth (mi < m < mi+1) symbol
period can be approximated by linear interpolation as

β̂′
q,m = β̂′

q,mi
+
β̂′
q,mi+1

− β̂′
q,mi

mi+1 −mi
(m−mi) . (32)

Finally, the overall joint phase and channel estimation at the
mth symbol period can be calculated as

Φ̂mĤΨ̂m =diag
(
ejβ̂

′
1,m , · · · , ejβ̂

′
Nr,m

)
Ĥ

×diag
(
ejβ̂

′
Nr+1,m , · · · , ejβ̂

′
Nr+Nt−1,m , 1

)
.

(33)

Remark 4: As discussed earlier, the phase estimation of (20)
has a quasi-static bias of (21). This bias also exists (but in the
negative direction) in the elements of the diagonal matrices
in (30). Therefore, the positive and negative bias is cancelled
when calculating (33), which guarantees a feasible estimation
of Φ̂mĤΨ̂m.

Remark 5: A numerical comparison of different estimation
algorithms is given in Table I, while the analytical computa-
tional complexity is given in [26]. The weighing coefficient
for multiplication is set at CM = 1 for a fair and compatible
comparison with existing research. The pilot rate is set at
Rp = 0.1. The frame length is set at Lf = 105. For
the sum-product algorithm maximum a posteriori (SPA-MAP)
algorithm, we use the same parameters as [19, Table I] except
Nt and Nr for a fair comparison. As shown in Table I,
the proposed WLLS-Wiener algorithm has a much lower
computational complexity when compared with the existing
algorithms in [17]–[19].
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TABLE I
COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS

MIMO 2× 2 4× 4 8× 8

LW = 5 19.6 58.5 193.5
LW = 50 57.0 100.4 237.6

EKF in [18] 3.6e2 3.7e3 6.8e4
EKF-EKS in [18] 4.8e2 5.1e3 8.1e4

EKF in [17] 1.2e3 5.6e5 2.8e8
SPA-MAP in [19] 5.9e3 1.0e5 1.1e7

Online MAP in [18] 5.1e6 7.8e7 1.1e9
Offline MAP in [18] 1.0e8 1.5e9 2.2e10

IV. SIMULATION RESULTS

In this section, the numerical performance of our newly
proposed phase and channel estimation algorithm is evaluated
against the CRLB [29]. The BER performance of the proposed
algorithm is also evaluated. The transmitted data is generated
by a random sequence generator in Matlab. It is assumed
that σ2

∆φ = σ2
∆ψ = σ2

∆, and σ2
n = 1/SNR throughout

this section. Unless specified otherwise, we use a value of
σ2
∆ = 10−4, corresponding to a linewidth of ˜5.48 MHz for

the experimental system studied in Sections V and VI, which
is more than an order of magnitude broader than typical
integrable tunable laser assemblies (ITLAs). The i.i.d. optical
power distribution at the lth receiver from the kth transmitter
is described by Gamma-Gamma turbulence model as [30, p.
510, (67)]

fI (Ik,l) =
2(αβ)

α+β
2

Γ (α) Γ (β)
I

α+β
2 −1

k,l Kα+β

(
2
√
αβIk,l

)
, (34)

where
α =

{
exp

[
0.49σ2

R

(
1 + 1.11σ

12/5
R

)−7/6
]
− 1

}−1

β =

{
exp

[
0.51σ2

R

(
1 + 0.69σ

12/5
R

)−5/6
]
− 1

}−1
, (35)

and σ2
R is the Rytov variance. To verify the performance

of our algorithm in the worst channel condition, we set
σ2
R → ∞ to represent very very strong turbulence under

the saturation regime in this section [30, p. 140, (15)], use
the parameters in Table II unless otherwise specified, and
discuss the main simulation results on estimation and BER
performance. Further numerical details are given in [26] for
interested readers.

The performance of channel matrix estimation is shown
in Fig. 4. At the SNR of 10 dB, 20 dB, and 30 dB, the
optimal mean squared error (MSE) of the LLS algorithm is
2.02 × 10−4, 4.41 × 10−5, 1.01 × 10−5, respectively, while
the MSE of the WLLS-Wiener algorithm is 3.14 × 10−5,
3.08×10−6, and 3.15×10−7, respectively. In the conventional
LLS algorithm, a training sequence is necessary to estimate
the channel matrix, and the phase estimation is performed
after the channel estimation. When the training sequence is

TABLE II
SIMULATION PARAMETERS UNLESS OTHERWISE SPECIFIED

Parameter Value

Symbol format QPSK

Type of MIMO decoder MMSE

Number of transmit channels (Nt) 2

Number of receive channels (Nr) 2

Variance of phase noise (σ2
∆) 10−4

Typical Baud rate and linewidth for σ2
∆

6.28GBaud @ 100 kHz
34.46GBaud @ 5.48MHz

Pilot rate (Rp) 1/10

Length of training sequence (Lts) 0

Wiener filter tap length (Ltap) 101

Number of independent Monte-Carlo trials ≥ 105

Symbol length in each trial 3× 103

Hard-decision forward error correction
(HD-FEC) limit with 6.25% overhead [31] 4.7× 10−3
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WLLS-Wiener. SNR = 30 dB

Fig. 4. MSE of channel estimation for a 2×2 MIMO system. A comparison
between our proposed algorithm (dashed lines) and the conventional training-
sequence-based approach with LLS estimators (lines).

too short, the AWGN significantly deteriorated the estima-
tion accuracy. When the training sequence is too long, the
intra-training-sequence phase noise significantly deteriorated
the estimation accuracy. In our WLLS-Wiener algorithm, the
phase estimation and recovery is performed before the channel
matrix estimation, and the effect of phase noise deterioration
on a long training sequence is cancelled out. Moreover, all
the pilot groups within a frame can be utilized to obtain
a much better estimation performance. As the channel is
estimated from the pilots in the WLLS-Wiener algorithm, the
training sequence for the channel estimation can be removed,
significantly reducing the data overhead.

The phase estimation MSE performance for both WLLS
one-shot estimator and WLLS-Wiener estimator are shown in
Fig. 5. To eliminate the influence of the algorithm-introduced
quasi-static phase bias given by Eq. (21), the phase bias was
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Fig. 5. MSE of phase noise estimation for a 2× 2 MIMO system. Different
phase estimators. Lines: MSE performance of DAE in [17] (triangles), our
proposed algorithm without (squares) and with (circles) Wiener filtering;
dashed lines: CRLBs without (squares) and with (circles) Wiener filtering.

also added to the reference phase matrices, resulting in a fair
and unbiased comparison. The corresponding CRLBs, which
are derived in [26], are also depicted. The results indicate
that the proposed WLLS one-shot estimator performs better
than the conventional data-aided estimation (DAE) algorithm
in [17]. This is mainly because the WLLS one-shot esti-
mator extracts Nr + Nt − 1 phase information from NrNt
observed angular terms, and assigns a smaller weight to the
observed data with larger errors, thereby reducing the phase
estimation error (refer to (17)-(20) for details). Moreover, the
performance of the WLLS one-shot estimator is very close
to the CRLB for one-shot estimation. The slight performance
degradation in the low SNR region for the WLLS one-shot
estimator is mainly due to the small noise assumption. The
slight performance degradation in the high SNR region is
mainly due to neglecting the intra-pilot-group phase noise.
On the other hand, introducing the Wiener estimator further
improves the performance of the WLLS one-shot estimator
in the low SNR region. This is because the Wiener filtering
reduces the impact of AWGN. Moreover, the performance of
the WLLS-Wiener estimator is also approaching the CRLB for
Wiener Estimation. The slight performance degradation in the
low SNR region for the WLLS-Wiener estimator is mainly due
to the small noise assumption and the finite filter tap length.
The slight performance degradation in the high SNR region is
mainly due to neglecting the intra-pilot-group phase noise.

The BER performance of both MLD and MMSE decoder
are shown in Fig. 6. A comparison with the extended-Kalman
filter (EKF)/extended-Kalman smoother (EKS)-based algo-
rithms in [17], [18] is also given here. Because of better phase
and channel estimation accuracy, the proposed algorithm out-
performs the conventional EKF/EKS-based algorithms. More-
over, a BER floor is observed when using the MMSE MIMO
decoder, which is a direct consequence of the phase estimation
MSE floor in Fig. 5. This problem can be suppressed by
exploiting higher degree of freedom in MIMO systems (e.g.
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Fig. 6. BER of 2×2 MIMO systems with MMSE (circles) and MLD (squares)
decoders (A comparison with the EKF/EKS-based algorithms in [17], [18]).
Red lines: proposed algorithm; blue dotted lines: EKF/EKS-based algorithms;
black dashed lines: perfect phase and channel estimation.
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Fig. 7. BER of a 2 × 2 MIMO system. The normalised phase noise
σ2
∆ = 10−3 (circles), 10−4 (squares), 10−5 (triangles). Red lines: proposed

algorithm; blue dotted lines: EKF in [17]; black dashed lines: perfect phase
and channel estimation.

by applying MLD). When compared with the perfect phase
and channel estimation scenario at the hard-decision forward
error correction (HD-FEC) limit, the proposed algorithm has
an SNR penalty of approximately 0.5 dB for both MLD and
MMSE MIMO decoders, while the conventional algorithms
has an SNR penalty of approximately 3.2 dB and 3.5 dB for
MLD and MMSE MIMO decoders, respectively.

Fig. 7 compares the BER performance of the proposed
phase and channel estimation algorithm for different phase
noise variances, including σ2

∆ = 10−3 (6.28 GBaud @ 1 MHz
linewidth), σ2

∆ = 10−4 (6.28 GBaud @ 100 kHz linewidth),
and σ2

∆ = 10−5 (62.8 GBaud @ 100 kHz linewidth). Similar
to Fig. 6, the proposed algorithm consistently outperforms the
conventional EKF-based algorithms because of better phase

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JLT.2024.3375791

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
 



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 00, NO. 0, OCTOBER 2023 8

0 5 10 15
SNR (dB)

10-5

10-4

10-3

10-2

10-1

B
ER

2x2. WLLS-Wiener
2x2. SPA-MAP in [19]
2x2. Perfect estimation
4x4. WLLS-Wiener
4x4. SPA-MAP in [19]
4x4. Perfect estimation

Fig. 8. BER of 2 × 2 and 4 × 4 MIMO systems with MLD decoding (A
comparison with the SPA-MAP algorithm in [19]). σ2

∆ = 2.47× 10−4,
Rp = 1/20, BPSK. Red lines: proposed algorithm; blue dotted lines:
SPA-MAP algorithm in [19]; black dashed lines: perfect phase and channel
estimation.

and channel estimation accuracy. It is noteworthy that, in the
low SNR region, despite significant differences in phase vari-
ance, we observe very small BER differences in Fig. 7. This is
attributed to the dominance of AWGN over phase estimation
errors in this region. In the high SNR region, the BER floor
is lower when the phase noise is smaller, establishing a direct
correlation with the dominant phase estimation errors.

In Fig. 8, we compare the BER performance of our proposed
algorithm with the SPA-MAP algorithm in [19]. To make
a fair comparison, we used the same parameters as [19],
including the phase noise (σ2

∆ = 2.47× 10−4), the pilot rate
(Rp = 1/20), the training sequence length (Lts = 10 for SPA-
MAP), and the modulation format (binary phase-shift keying
(BPSK)). In the 2×2 system, our proposed algorithm slightly
outperforms the SPA-MAP algorithm, this is mainly because
of the better channel estimation accuracy in our WLLS-Wiener
algorithm (Fig. 4), which is also the case at the low SNR
region in the 4× 4 system. On the other hand, the SPA-MAP
algorithm slightly outperforms our WLLS-Wiener algorithm
at the high SNR region in the 4× 4 system, which is mainly
because of the lower BER will benefit the decision-feedback
maximum a posteriori (MAP) phase estimation in SPA-MAP,
while the linear interpolation in (32) will slightly degrade the
phase estimation performance when Rp < 1/10. At the HD-
FEC limit, the proposed algorithm has an SNR penalty of
approximately 0.7 dB for both 2×2 and 4×4 systems, While
the SPA-MAP algorithm has an SNR penalty of approximately
1.3 dB and 0.6 dB for 2× 2 and 4× 4 systems, respectively.

V. EXPERIMENTAL SETUP

The proof-of-concept experimental setup is depicted in
Fig. 9. At the transmitter side, a 34.46 GBaud root-raised
cosine (RRC) shaped (roll-off factor = 0.1) dual-polarization
quadrature phase shift keying (DP-QPSK) signal was gen-
erated by a 39.385 GSa/s polarization multiplexing Ciena

Transponder. In the transponder, the ITLA has a linewidth of
<100 kHz. The signal had a frame structure of 20,000 symbols
with 1,680 symbols in the training sequence, and 1 random
pilot symbol for every 9 data symbols, which was generated
from a 215 − 1 pseudo random binary sequence (PRBS)
(Fig. 9(a)). After amplified by an erbium-doped fiber amplifier
(EDFA), the symbols were passed through an acousto-optic
modulator (AOM) to generate a 20 µs burst signal with a period
of 160 µs (Fig. 9(b)) to emulate independent receivers with
different phase noise. To emulate independent transmitters,
the signal was split into 5 copies and delayed by variable
fibre delay lines (FDLs) with lengths of 0, 280, 560, 840, and
1120 symbols, respectively (Fig. 9(c)). As 1120 symbols have
a duration very much less than the coherence time of the laser,
this corresponds to random phase offsets for each channel
with strongly correlated phase evolutions. The decorrelated
signals were then connected to 5 variable optical attenuators
(VOAs) to compensate for the mode-dependent loss in the
mode-selective photonic lanterns (MSPLs). Finally, the signals
were coupled into a free-space turbulence emulator.

The turbulence emulator in Fig. 9 is detailed in Fig. 10. We
first collimated the MDM beam from an FMF into free space
using a transmit collimator (Thorlabs PAF2P-A10C) with
a 10 mm focal length. To employ the polarization-sensitive
spatial light modulator (SLM) for turbulence generation, the
collimated beam was passed through a Thorlabs PBS054
polarizing beam splitter (PBS) and the polarization of the
upper beam was rotated by 90◦ using a D-shaped half-wave
plate (HWP) after a mirror (Thorlabs MRA05-P01). Due to
the distributed nature of the strong turbulence, it can not be
accurately described by one phase plate [32]. Therefore, by
employing a square mirror (Thorlabs PFSQ05-03-P01), the
polarized beams were reflected 4 times on the Santec SLM-200
1920×1080 SLM, where 4 turbulence patterns were generated
from the von Kármán spectrum, and mapped onto the SLM
using the multi-plane light conversion (MPLC) method [33].
After rotating the lower beam by 90◦ using another D-shaped
HWP and reflecting it by another mirror(Thorlabs MRA05-
P01), the two beams were composed by another PBS (Thor-
labs PBS054) and collected by a receive coupler (Thorlabs
PAF2P-A10C) with a 10 mm focal length. By connecting the
receive coupler to a single-mode fibre (SMF) and an FMF,
respectively, the received power distribution was recorded and
depicted in Fig. 10(c). Here the experimental results were well-
fitted with the Gamma-Gamma turbulence model (σ2

R = 9.01
for SMF and σ2

R = 1.45 for FMF), indicating a successful
emulation of the strong turbulence (σ2

R > 1).
At the receiver, another 6-mode MSPL was employed

to decompose the MDM signals. To emulate independent
receivers by employing a time-division multiplexing (TDM)
receiver, the decomposed signals were passed through the
FDLs with 5 km length increment between adjacent modes,
generating a ˜24.5 µs delay, which was slightly longer than
the 20 µs signal burst (Fig. 9(d)). As the delay line increment
exceeds the coherence length of the lasers, this corresponds
to the receivers having independent LOs, suitable to verify a
phase asynchronized algorithm [10]. After adaptively ampli-
fied by 6 EDFAs, the signals were combined into one SMF
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Fig. 9. The proof-of-concept experimental setup. DP-QPSK: dual-polarization quadrature phase shift keying; TS: training sequence; P: pilot; D: data; EDFA:
erbium-doped fiber amplifier; AOM: acousto-optic modulator; FDLs: fibre delay lines; VOAs: variable optical attenuators; MSPL: mode-selective photonic
lantern; LO: local oscillator; DSP: digital signal processing; CD: chromatic dispersion; LMS: least mean squares; MIMO: multiple-input multiple-output.
(a) Frame structure at the coherent transmitter; (b) signal burst after AOM; (c) delayed signal structure after transmitter FDLs; (d) time-division multiplexing
(TDM) signal after receiver FDLs; (e) TDM signal after receiver coupler; (f) offline DSP; (g) illustrative constellation of a 2×2 system.
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and amplified by another EDFA, generating the TDM signal
for the coherent receiver. The LO for the coherent receiver
has a linewidth of <100 kHz (Fig. 9(e)). The signals were
decoded by an offline DSP (Fig. 9(f)), which employed our

y
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Fig. 11. The schematic diagram of the SIC decoder. MMSE: minimum mean
square error decoder.

proposed phase and channel estimation algorithm. Throughout
the experiment, we chose a practical tap length of 201 for
the Wiener phase estimator. The estimation algorithm was
decoupled from the least mean squares (LMS) ISI equalisation
and the MIMO detection. As shown in Fig. 9(g), our decoupled
DSP structure facilitates independent compensation for phase
noise and inter-channel interference (ICI), thereby enabling
the utilization of advanced MIMO decoders. This differs from
the conventional 3D-EQ algorithm [6], wherein the phase
estimation, channel estimation and MMSE MIMO decoding
are intermingled within a single module, and advanced MIMO
decoders can’t be supported. It is also noteworthy that the LMS
ISI equaliser was working with fractionally-spaced inputs at a
rate of 2 samples per symbol, and a tap length of 21, resulting
in a span of ±10 symbols, much smaller than the transmitter
delay of 280 symbols. In our experiments, we chose the
SIC MIMO decoder depicted in Fig. 11 [2], [13], which
has a practical polynomial-level computational complexity and
significant BER performance improvement through nonlinear
ICI cancellation, to compare with the conventional MMSE
decoder with linear ICI cancellation [11, p. 970]. Whilst in
the SIC decoder the occurrence of error propagation events
was minimised by employing the optimal decoding order [34],
no further attempt was made to reduce the impact of the
remaining events. To compensate for practical imperfections
in the experimental system, compensation algorithms for IQ
imbalance, pulse matching, chromatic dispersion (CD), timing,
synchronization, and frequency distortions were also employed

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JLT.2024.3375791

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
 



JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 00, NO. 0, OCTOBER 2023 10

Fig. 12. The typical channel-wise constellation diagrams of different 10× 12 MIMO system configurations. The SIC order is given at the bottom left of the
corresponding constellation. LP: linearly polarized (modes in few-mode fibre); 3D-EQ: conventional 3-dimensional equaliser in [6]; MMSE: minimum mean
square error (decoder); SIC: successive interference cancellation (decoder); Exp: experiment; Sim: reference simulation; EVM: error vector magnitude. Red
crosses: reference constellation points.

before the proposed estimation algorithm.

VI. EXPERIMENTAL RESULTS

Considering our absence of cognizance regarding the true
phase and channel information in the experimental system,
we are unable to calculate the MSE performance of our phase
and channel estimation algorithm. However, we can assess the
estimation performance by gauging BER performance degra-
dation. To generate simulation signals for reference purposes
without true phase and channel information, we utilised the
phase and channel matrices estimated from the experiments us-
ing our proposed algorithm. The matrices were applied both to
the channel and the receiver in the corresponding simulation,
representing the perfect estimation scenario. By employing the
first-order approximation, the discrepancy between the esti-
mated experimental signals and reference simulation signals is
proportional to the estimation error. Therefore, we can verify
the effectiveness of the proposed phase and channel estimation
algorithm by comparing the reference simulation BER and the
experimental BER obtained by

1) 3D-EQ algorithm (conventional linear MMSE MIMO
decoding coupled with phase and channel estimation) [6],

2) MMSE algorithm (linear MMSE MIMO decoding decou-
pled from phase and channel estimation) [11, p. 970],

3) SIC algorithm (nonlinear SIC MIMO decoding decoupled
from phase and channel estimation) [2], [13].

Fig. 12 depicts the typical channel-wise experimental and
reference simulation BER constellations of the 10×12 MIMO
system. We first tested the conventional 3D-EQ based phase

and channel estimation algorithm, which suffered from the
mixture of phase and channel estimation. Here, a phase
rotation is evident, which also degrades the channel estimation
accuracy. Consequently, the 3D-EQ algorithm obtained a much
worse error vector magnitude (EVM) performance when com-
pared with the MMSE decoder using our proposed estimation
algorithm, indicating the superior estimation performance of
our proposed algorithm. Moreover, the experimental and ref-
erence simulation MMSE systems have similar constellations
in Fig. 12, indicating a good phase and channel estimation
accuracy. Due to the recursive interference cancellation nature
of the SIC decoder (Fig. 11), the influence of practical
imperfections (e.g. CD, ISI, phase noise, device nonlinearities,
etc.) will accumulate during the cancellation process, leading
to a higher discrepancy between the reference simulation and
experimental results in the last several decoded channels (a
significant discrepancy is observed from the 5th decoded
channel in Fig. 12). Despite the EVM degradation in the
experimental results, the SIC channels consistently outperform
the MMSE channels, indicating the necessity of employing
our new phase and channel estimation algorithm to deploy
advanced MIMO decoders.

Fig. 13 depicts the experimental and reference simulation
BER performance of the 10 × 12 MIMO system under 100
independent strong turbulence patterns. Here we also com-
pared the performance of the 3D-EQ, the MMSE and the
SIC algorithms. In Fig. 13(a), the MMSE decoder obtained a
significantly better BER when compared with the conventional
3D-EQ algorithm, indicating a better estimation performance
of our proposed algorithm. Moreover, a notable consistency
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Fig. 13. The BER performance comparison of the 10 × 12 MIMO system
under 100 independent strong turbulence patterns. 3D-EQ: conventional 3-
dimensional equaliser in [6]; Exp: experiment; Sim: reference simulation. (a)
MMSE decoder; (b) SIC decoder; (c) Experimental results.

between the reference simulation and experimental results is
evident when employing the MMSE decoder, affirming the
estimation accuracy of our proposed algorithm. In Fig. 13(b),
the SIC decoder had a higher fragility to practical imperfec-
tions, leading to a higher discrepancy between the reference
simulation and experimental results. This is mainly due to
the recursive interference cancellation nature of the SIC al-
gorithm. As shown in Fig. 13(c), our proposed algorithm can
improve the system BER performance in different turbulence
realisations by (1) improving the estimation accuracy (when
comparing the 3D-EQ and the MMSE algorithms), and (2)
supporting advanced MIMO decoders (when comparing the
MMSE and the SIC algorithms).

Fig. 14 compares the average BER performance of different
MIMO configurations (Nt = 6, 8, 10, Nr = 6, 8, 10, 12,
Nt ≤ Nr, lowest order modes connected) in 100 independent
strong turbulence tests. The reference simulation BERs were
depicted by black lines, while the corresponding experimental
BERs were depicted by red dashed lines. We also depicted
the result of the 3D-EQ algorithm by white dash-dotted lines,
and the reference HD-FEC limit of 4.7 × 10−3 by the blue
dotted lines. Similar to Fig. 13, the limited estimation accuracy
of the conventional 3D-EQ algorithm leads to a significant
BER degradation, while the MMSE decoder employing our
proposed algorithm quantifies a good consistency with the
reference simulation results. Due to the limited signal length,
we observed a higher discrepancy at lower average BER.
A higher performance degradation was also observed when
employing the SIC decoder due to its higher fragility to
practical system imperfections. Notwithstanding the higher
performance degradation, the SIC decoder consistently out-
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Fig. 14. A comparison between the experimental and the reference simu-
lation BER performance of different MIMO configurations (Nt = 6, 8, 10,
Nr = 6, 8, 10, 12, Nt ≤ Nr). Average of 100 independent strong turbulence
tests. Black lines: reference simulation results; red dashed lines: experimental
results; white dash-dotted lines: experimental results with conventional 3-
dimensional equalisers in [6]; blue dotted lines: HD-FEC limit of 4.7×10−3.

performed the MMSE decoder. As a result, we obtained a
lower BER than the HD-FEC limit in a 8 × 12 MMSE
system (551.4 Gbit/s/wavelength) and a 10 × 12 SIC system
(689.2 Gbit/s/wavelength), respectively. By (1) improving the
estimation accuracy (when comparing the 3D-EQ and the
MMSE algorithms), and (2) supporting advanced MIMO de-
coders (when comparing the MMSE and the SIC algorithms),
our proposed estimation algorithm can improve the system
BER performance in MDM systems with different numbers
of transmit and receive channels.

VII. CONCLUSION

We proposed a novel pilot-aided phase and channel esti-
mator in this paper. The proposed estimator has low computa-
tional complexity and CRLB-approaching estimation accuracy.
It can also support phase-asynchronous laser sources and
advanced MIMO decoders, significantly reducing the stringent
laser requirements and improving the BER performance of
MDM MIMO FSO communications in turbulent channels.

A proof-of-concept experiment was carried out to verify
the feasibility of the proposed phase and channel estimation
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algorithm. A notable consistency is observed when applying
the MMSE decoder, affirming the estimation accuracy of
our proposed algorithm. Notwithstanding the BER degrada-
tion from practical system imperfections, the advanced SIC
decoder consistently outperformed the conventional MMSE
decoder. By exploiting 10 decorrelated channels in the SIC-
based MDM system, we achieved a record-high line rate of
689.2 Gbit/s with a BER lower than the HD-FEC limit in
strong turbulence, indicating the necessity of employing our
proposed algorithm for advanced MIMO decoders.

Although this algorithm is developed for MDM FSO sys-
tems, it can also benefit MDM fibre systems, multicore fibre
systems, and radio-frequency MIMO systems. Considering
the estimation performance, computational complexity, and
adaptability of the newly proposed algorithm, it will provide
useful guidelines for designing MIMO systems, and will
facilitate deploying practical commercial systems in the future.
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