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Resonant fractional conductance through
a 1DWigner chain

Check for updates

Rose Davies 1,2, Igor V. Lerner 1 & Igor V. Yurkevich 2

In recent experiments on conductance of one-dimensional (1D) channels in ultra-clean samples, a
diverse set of plateaus were found at fractions of the quantum of conductance in zero magnetic field.
We consider a discrete model of strongly interacting electrons in a clean 1D systemwhere the current
between weak tunneling contacts is carried by fractionally charged solutions. While in the spinless
case conductance remains unaffected by the interaction, as is typical for the strongly interacting clean
1Dsystems,wedemonstrate that in the spinful case the peak conductance takes fractional values that
depend on the filling factor of the 1D channel.

Experiments on two-terminal conductance through one-dimensional
(1D) systems contain many complex features despite the seeming simpli-
city of the reduced dimensionality. The most well-known of these,
along with the standard geometric quantization1 of conductance in units of
2e2/h, is the 0.7 plateau2–4. Recent experiments have discovered a surprising
new feature in the conductance—additional plateaus occurring at fractional
values of the conductance quantum at zero (or very small)magnetic field5–7.

The conductance through the prototypical 1D system, a clean Lut-
tinger Liquid, is unaffected by interactions within the system since it is
dominated in the dc limit by the contacts to reservoirs8–10. It is only upon
adding a scattering mechanism andmore channels that fractional values of
the conductance are expected11,12. While such phenomenologically intro-
duced multi-particle backscattering was successfully utilized to reproduce
one of the most prominent fractions of 2/511, the even-denominator frac-
tions have not been explained yet.

Typical samples in experiments5,6 are ultra-clean and relatively short so
electron transport is ballistic. There is experimental evidence13 of the for-
mation of a zigzag Wigner crystal14,15 in precisely the same materials where
the fractional conductance has been later discovered6.

In this work, we suggest a discrete model of a clean 1Dmaterial with a
strong electron–electron interaction where fractional charges, which can
lead to fractional conductance, arise due to the incommensurability of the
Fermi wavelength and the effective lattice spacing. The fact that such a
model results in the appearance of fractionally charged solitons16 has been
established by symmetry arguments in a seminal work by Goldstone and
Wilczeck17. However, having fractional charges does not necessarily lead to
the fractional quantization of conductance.Wewill showhere that the latter
arises only when additional channels, e.g. due to spin, are available to the
electrons.

The solitons in question could arise due to the formation of the charge
density wave (CDW) with a lattice constant incommensurate with the

electron’s Fermi wavelength. In all these experiments, 1D constrictions can
hold only a few electrons and a few superlattice periods, which makes it
imperative to build a finite-sizemodel without going to the thermodynamic
limit of the Luttinger liquid.

Results and discussion
Spinless case
We consider the Hamiltonian of N electrons hopping on a lattice of ℓ sites
with a next-neighbor repulsion:

H0 ¼
X‘�1

x¼1

�t cyxcxþ1 þ cyxþ1cx
� �

þ Unx nxþ1

h i
: ð1Þ

where nx ¼ cyxcx is the on-site number operator. We assume the next-
neighbor repulsion to be strong,

U ≫ t; ð2Þ

which effectively projects out all states with two particles being on adjacent
sites. The chain (1) is connected to the right and left reservoirs via the
tunneling contacts with the couplings ΓL,R.

In this model, different fractional values of conductance might
appear depending on the number of sites ℓ, the number of electrons, and
the gate voltage. For illustration, we restrict considerations to a simple
scenario where the number of sites ℓ is odd (Choosing ℓ to even leads to
similar results under an appropriate choice of the gate voltage. Note that
the ratio N/ℓ plays a role similar to that of the filling factor in the
quantum Hall effect.) and the gate voltage is such that the maximal
number of states possible under condition (2), 1

2 ð‘þ 1Þ � N þ 1, is
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occupied making a string

SNþ1 ¼ � � � � � � � � � � ð3Þ

of alternate N+ 1 occupied (�) and N empty (�) sites. Such a string cor-
responds to the ground state of the system with (N+ 1) particles in the
strong coupling limit. Note that one cannot expect universal fractions in
the opposite, weak coupling limit18,19, where conductance is not fractiona-
lized.We consider theHilbert subspaceHNþ1, where the high-energy states
that contain adjacent occupied sites have been projected out under
condition (2). In this subspace the ground state (3) is unique and we denote
it as ∣N þ 1i.

An important point is that under the same condition, the ground state
energy EN of the systemwithN particles can be very close to EN+1 leading to
the resonance conductance at low temperatures.

States with N ¼ 1
2 ð‘� 1Þ particles in the projected subspace HN ,

which are obtained from ∣N þ 1i, Eq. (3), by removing an electron
from an odd (occupied) site, are made of two strings like that in
Eq. (3) separated by a triplet of empty sites. Such states can be
represented as

∣i; i;Ni � ∣� Si � � � SN�i �
�
; i ¼ 0; 1 � � �N; ð4aÞ

where the 2m−1-long strings Sm contain m electrons with alternating
occupied and empty sites as defined in Eq. (3) for m = N+ 1. Here
we represent left and right reservoirs attached to the chain as two
additional sites at x = 0 and x = ℓ+ 1 depicted by crossed circles,
which are never occupied by design. This is convenient to incorpo-
rate the states obtained from ∣N þ 1i by removal of one of the edge
electrons. Assuming that a string S0 is omitted together with an
adjacent empty site (to keep the total number of sites unchanged), the
boundary states are

∣0; 0;Ni ¼ ∣� � � SN ��
;

∣N;N;Ni ¼ ∣� SN � ���
:

ð4bÞ

Formally, the states in Eq. (4) are obtained by acting with the annihi-
lation operator cx on any occupied site in ∣N þ 1i:

∣i; i;Ni ¼ cx∣N þ 1iδx;2iþ1: ð5Þ

Further states in subspace HN , obtained by acting with the hopping
part of Hamiltonian (1) on states (4), can be represented as configurations
with two doublets of empty sites separating three strings,

∣i; j;N
� ¼ ∣� Si � �Sj�i � �SN�j�

E
; i < j; ð6aÞ

including states with the boundary doubles:

∣0; j;N
� ¼ ∣� � Sj � � SN�j �

E
;

∣j; j;N
� ¼ ∣� Sj � � SN�j � �

E
;

ð6bÞ

In the states of Eqs. (6), particles in strings separated by two empty sites
occupy either only even or only odd sites. The occupancy, nx = 0 or 1, of any
site can be represented as nx ¼ 1

2 ðcosðπx þ ϕxÞ þ 1Þ, with ϕx = 0 for
occupied even (or empty odd) sites and ϕx = π for occupied odd (or empty
even) sites.Hence, an electron hopping by one site can be represented by the
motion of the domain wall (kink) between 0 and π phases by two sites as
illustrated in Fig. 1. In the states of Eqs. (4), all electron-occupied odd sites
and an electron hopping to an empty site is equivalent to the creation of
kink–anti-kink pair.

As such pairs are created by removing a single electron from state
∣N þ 1i, each kink carries the one-half electron charge, in agreement with
the classical soliton picture of Goldstone and Wilczeck for polyacetylene17.
In a model similar to that under consideration, the existence of such kinks
has also been demonstrated numerically20.We will show that, by itself, such
a fractional charge does not lead to fractional conductance.

The states in Eqs. (4) and (6), which are degenerate eigenstates of
Hamiltonian H0 in the absence of hopping, can be used as a basis for
spanning any state ∣ΨN

�
in the projected subspaceHN

∣ΨN

� ¼
X

0⩽i⩽j⩽N
ψi;jþ1 ∣i; j;N

�
: ð7Þ

To get the eigenvalue equation for H0 within HN , one needs to keep
only the hopping terms acting on the ends of the strings, which results in

ε ψij ¼ �tðψiþ1;j þ ψi�1;j þ ψi;jþ1 þ ψi;j�1Þ: ð8Þ

This equationdescribes two free fermions of charge� 1
2 ewithpositions

i and j+ 1 on the fictitious lattice of lengthN+ 1, with one being on the left
of the other, i⩽ j. The constraints on the indices in Eq. (7), 0⩽ i⩽ j⩽N, can
be accounted for by adding two boundary states, i =−1 and j =N+ 1, and
imposing the boundary conditions

ψ�1;j ¼ ψi;Nþ1 ¼ ψii ¼ 0: ð9Þ

The solutions of Eq. (8) with the boundary conditions (9) are the Slater
determinants of the standing waves

ψijðq1; q2Þ ¼ φiðq1Þφjðq2Þ � φiðq2Þφjðq1Þ; ð10Þ

Fig. 1 | An illustration of the kink propagation.
The one-electron hopping from state ∣0; 1; 3i to
∣0; 2; 3i to ∣0; 3; 3i, Eq. (6b), is equivalent to the
motion of the domain wall (kink), indicated by the
dotted line.
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where

φjðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 2

r
sin qðjþ 1Þ; q ¼ πn

N þ 2
ð11Þ

with n = 1, 2,⋯ ,N+ 1. The corresponding eigenenergies are

εðq1; q2Þ ¼ �2t½cos q1 þ cos q2�: ð12Þ

The ground state, which we call ∣Ni, is given by the lowest possible q, i.e.

q1 ¼
π

N þ 2
; q2 ¼

2π
N þ 2

; ð13Þ

and its energy is EN = ε(q1, 2q1). Note that it is separated from excited states
by the gap of order t/N so that our zero-temperature considerations should
be valid for T≲ t/N.

We consider the current through the system in the linear response
regime under the conditions when only the states with N þ 1 ¼ 1

2 ð‘þ 1Þ
and N ¼ 1

2 ð‘� 1Þ electrons in the chain are relevant as their ground state
energies are close. Then only the ground states, ∣N þ 1i and ∣Ni, contribute
to thedimensionless conductance,which in the case of spinless fermions can
be written21 as

g ¼ �
Z1
�1

dεTðεÞ f 0ðε� μÞ; TðεÞ ¼ 4ΓLΓRjG1‘ðεÞj2; ð14Þ

where f(ε−μ) is the electron Fermi distribution function and G1ℓ(ε) is the
retardedGreen’s functiondescribing the propagation of effective excitations
with energy ε across anopenchain connected to the left, atx = 1, and right, at
x = ℓ, reservoirs via the tunneling contacts with the couplings ΓL,R.

We shall use the Dyson equation

Gxx0 ¼ Gxx0 þ
X
α¼1;‘

Gxα Σα Gαx0 ; ð15Þ

to relate G1ℓ(ε) to Green’s function Gxx0 ðεÞ of the isolated chain. This
equation forG1ℓ is algebraic due to the locality of the self-energy:Σ1 =−iΓL,
Σℓ =−iΓR. Then Green’s function for a particle propagating across the
system is found to be

G1‘ ¼
G1‘

1þ iG11ðΓL þ ΓRÞ þ ΓLΓRðG2
1‘ � G2

11Þ
: ð16Þ

Green’s function of the isolated chain, Gx;x0 ðεÞ, is calculated assuming
infinitesimal coupling to the leads to ensure the thermal equilibrium.
Keepingonly the states ∣Ni and ∣N þ 1i, the retardedGreen’s functionhas a
pole structure,

Gx;x0 ðεÞ ¼
ρN þ ρNþ1

ωþ i0
hNjcxjN þ 1ihN þ 1jcyx0 jNi;

ω � ε� ðEN � ENþ1Þ;
ð17Þ

where ρN and ρN+1 are canonical partition functions.
As follows from Eq. (5), the only states withN particles that contribute

to 〈N∣cx∣N+ 1〉 in Eq. (17) are ∣i; i;Ni, Eq. (4). Then we find from the
expansion (7) that

hN þ 1jcyxjNi ¼ ψi;iþ1; x ¼ 2iþ 1: ð18Þ

Using the notations x ¼ 2iþ 1; x0 ¼ 2jþ 1, we reduce the Green’s
function (17) to

Gxx0 ¼
zi;j

ωþ i0
; zi;j � ðρN þ ρNþ1Þψi;iþ1ψj;jþ1: ð19Þ

The transmission coefficient then acquires the Breit–Wigner–Fano
resonance form,

TðωÞ ¼ 4eΓLeΓRω2

ω2 � ð1� s2ÞeΓLeΓR� �2 þ eΓ2 ω2
; ð20Þ

where the couplings to the reservoirs are renormalized byGreen’s functions
residues,

eΓL;R ¼ z0;0 ΓL;R ; eΓ ¼ eΓL þ eΓR; ð21Þ

with s = z0,N/z0,0 being the ratio of the residues. Taking into account
that φN+1 = ± φ0 and φN = ± φ1, Eq. (11), the residues are equal to
each other, i.e. s = 1. The transmission coefficient, therefore, turns
into a standard Breit–Wigner formula

TðωÞ ¼ 4eΓLeΓR
ω2 þ eΓ2 : ð22Þ

For ΓL = ΓR this peaks at 1 at the resonance, ω→ 0, leading to the
universal value of conductance, e2/h, unaffected by the fractional character
of the quasiparticles (kinks) inside thewire.This is similar to thewell-known
result for the Luttinger liquid8–10 where any internal interaction does not
change, in the absence of backscattering, the universal conductance.

Spinful case
The generalization of themodel (1) to a spinful case drastically changes such
a conclusion and results in fractional values of conductance. Similar to the
Luttinger liquid model, the inclusion of the spin degrees of freedom in the
model under consideration opens up an interaction channel not available in
the spinless case. However, unlike the Luttinger liquid model there is no
spin–charge separation in our setup.We showbelow that the addition of the
spin degree of freedom suppresses the charge transport.

It turns out that in long constrictions the conductance g would be
exponentially suppressed but in short constrictions, relevant for the
experiments where the non-magnetic fractional conductance was
discovered5,6, it takes fractional values that dependon the constriction length
and filling factor.

To prove this claim, we generalize Hamiltonian (1) to include spin
σ = ↑, ↓:

cx ! cx;σ ; cyx ! cyx;σ ; nx ¼ nx;" þ nx;#: ð23Þ

Here we assume an infinite on-site repulsion (forbidden double
occupancy). Eachoccupied state (•) in string (3) and in the strings inEqs. (4)
and (6) now acquire a spin index σ.

The spinfulGreen’s function for an isolated chain,Gσσ 0
x;x0 ðεÞ, is calculated

along the same route as the spinless one in Eqs. (17)–(19). Now each con-
figuration of strings bears spin indices, which order cannot change as only
the hopping part of H0 affects the dynamics in the large-U limit.

The spin degrees of freedom inGreen’s functionGσσ 0
x;x0 ðεÞ impose strong

restriction on the matrix element 〈N∣cx,σ∣N+ 1〉 which should be sub-
stituted for〈N∣cx∣N+ 1〉 in Eq. (17): on top of the absence of the adjacent
occupied states we should require that the spin configurations in ∣Ni and
cx∣N þ 1i are identical—otherwise, these two states are orthogonal as
illustrated in Fig. 2.
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Asdirectionsof spins in each string are arbitrary, the relativenumberof
non-orthogonal configurations exponentially decreases with the length of
the chain. Calculating this number with relatively straightforward combi-
natorics results in the following expression for Green’s function of an iso-
lated chain in the spinful case, again using the notations
x ¼ 2iþ 1; x0 ¼ 2jþ 1:

Gσσ 0
xx0 ¼

zi;j
ωþ i0

Aσ
ijδσσ 0 � Gσ

xx0 ; ð24Þ

where the spin factor is

Aσ
i;j ¼ 2Nþi�j�1; ð25Þ

and the residues zi,j are given by Eq. (17). (Although ρN and ρN+1 there
include trace over spin configurations, it is not relevant for what follows).

The full Green’s function G1ℓ, which enters expression (14) for con-
ductance, is given by Eq. (16) where Gσ

xx0 � Gσσ 0
xx0 δσσ 0 is substituted for Gxx0 .

To calculate the conductance, one needs only two components of it:

Gσ
11 ¼ 2N�1G11; Gσ

1‘ ¼
1
2
G1‘: ð26Þ

Substituting this into Eq. (20) we find that s = 2−N there with an
additional factor of 2 coming from the tracing over spin configurations, i.e.
allowing for two spin channels. From this follows themain result: in the zero
temperature limit, at the resonant condition for equal coupling, the peak
value of the transmission

Tpeak ¼ 2�2Nþ1 ð27Þ

takes fractional values that should be observable in experiments on short
constrictions.

Figure 3 displays the spinful conductance at different lengths of the
chain. The suppression of the conductance is caused by the increase in the
length of the system as the number of conducting spin configurations
becomes a smaller part of the state space. This is in excellent correspondence
to the experimental results on Germanium5.

Recent experiments investigating the conductance of one-dimensional
channels have unveiled a diverse range of plateaus occurring at fractions of
the conductance quantum of in zero magnetic field. The adiabatic contacts
in a clean interacting 1D system must guarantee insensitivity of the con-
ductance to the microscopic details of the interaction. A similar result is
anticipated for the tunneling contacts under the resonant conditions. Our
research demonstrates that this is true for spin-polarized electrons, where
the peak resonant conductance matches the conductance quantum.

Fig. 3 | A graph showing the peaks in the spinful
conductance and their reduction as the length of
the system is increased as only transitions that
conserve spin configurations are permitted. The
energy has been set so that each length is plotted
centered on its minimum energy. The inset shows
the spinless conductance for the same lengths -
displaying the expected Breit-Wigner peaks.

Fig. 2 | Demonstrating the orthogonality of a spin
configuration under the hopping process. The
dashed lines at either side of the chain represent the
connection to the reservoirs.
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However, in the case of spinful electrons experiencing strong electron-
electron interaction, the peak conductance assumes fractional values
dependent on the filling factor of the constriction and its length.

In conclusion, our electrostaticmodelwhich is applicable to a relatively
short constriction, results in a universal fractional conductance that changes
only with a chemical potential (gate voltage). The Luttinger-based
description11,12 results only in partial freezing of modes with inevitable
fluctuations due to remaining gapless modes. Moreover, such a description
can lead only to fractionswith odd denominators, while ourmodel gives the
fraction 1

2 for the particular value of chemical potential chosen to illustrate
the concept.

Methods
The derivation of the spinful Green’s function for the isolated chain is
expanded upon here. The spinful Hamiltonian is given by,

H0 ¼
XL�1

x¼1

�t cyx;σcxþ1;σ þ cyxþ1;σcx;σ
� �

þ Unx nxþ1

h i
; ð28Þ

where cx,σ,i now annihilates an electron of spin σ on site x and nx is the total
number electron operator nx = nx,↑+ nx,↓.

The basis in the projected subspace will now contain spin indices
σ = {↑, ↓}, with each string Sm having 2m spin configurations,

Sm ¼ σ1 � σ2 . . . σm�1 � σm; ð29Þ

and the spin order cannot change during dynamical processes in the large-U
limit. The Green function of the isolated chain has extra degrees of freedom
to trace out:

Gσσ 0
x;x0 ðωÞ ¼

ρN þ ρNþ1

ωþ i0
tr Nh ∣cx;σ ∣N þ 1i N þ 1h ∣cyx0;σ 0 ∣Ni: ð30Þ

The trace is taken over all possible spin-configurations of both N- and
(N+ 1)-particle states where ∣Ni, as in themain text, represents the ground
state. The same trace is also present in ρN and ρN+1 but doesnot play a role in
our main result.

The Green’s function can be calculated, like in the spinless case, using
the constraint on the insertion of an extra particle into N-particle states.
Writing this explicitly, using the notation ∣N þ 1i ¼ ∣SNþ1

�
,

cyx;σ ∣SNþ1

� ¼ ψi;iþ1 ∣Si � σ � SN�i

�
; x ¼ 2iþ 1: ð31Þ

As before, for x ¼ 2iþ 1; x0 ¼ 2jþ 1, we find the Green function of
an isolated chain containing spinful particles

Gσσ 0
xx0 ðωÞ ¼

ρN þ ρNþ1

ωþ i0
ψi;iþ1ψj;jþ1 B

σσ 0
ij ; ð32Þ

where

Bσσ0
ij ¼ trhSi � σ � SN�ijSNþ1ihSNþ1jSj � σ 0 � SN�ji: ð33Þ

One can rearrange notations, using fusion rules Sn+m = Sn ⋅ Sm to write
the expression above as

hSi � σ � Sj�i � SN�jjSNþ1ihSNþ1jSi � Sj�i � σ 0 � SN�ji: ð34Þ

The result is non-zero only if the following two spin configurations are
equal: σ � Sj�i ¼ Sj�i � σ 0. This equation is only satisfied when σ ¼ σ 0 and
the configuration Sj−ihas all spins σ. Therefore, the only spin configurations
of the (N+ 1)-particle state that are not orthogonal to both vectors are

∣SNþ1

� ¼ ∣Si � σ � σ . . . σ � σ � SN�j�1

E
ð35Þ

and there are 2N+i−J−1 combinations. Finally, we find

Bσσ 0
ij ¼ δσσ 0 2

Nþi�j�1: ð36Þ

This brings us to Eq. (24) for the isolated Green’s function, fromwhich
using theGσσ

11 ;Gσσ
1N components of the isolated function gives the fullGreen’s

function and therefore the conductance.

Data availability
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