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ABSTRACT

We examine the flow in and around a falling fluid droplet in a vertically oscillating flow. We assume axisymmetric Stokes flow, and for small
deformations to the droplet, the governing equations can be linearized leading to an infinite system of linear ordinary differential equations.
In this study, we have analytically solved the problem in the small-capillary limit. We note that the solution locally breaks down at the poles
of the droplet. The drag and center of the mass were also obtained. In the case when only odd modes are present, the droplet shows three-
dimensional axisymmetric heart-shaped solutions oscillating vertically in time. When only even modes are present, the droplet exhibits axi-

symmetric stretching and squeezing.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187932

I. INTRODUCTION

The classical problem of a sphere moving through a fluid has
long attracted great interest for its numerous applications but also fun-
damental significance for fluid dynamics. For example, Chatterjee
et al.' examined whether the flow from an expanding or collapsing
microbubble near a cell could be used as a drug delivery technique,
Ward et al.” considered whether such flows could be used to destroy
cancerous cells, and Krehbiel et al.” investigated whether they could be
used to rupture algal cells. Other applications include sedimentation,
lubrication processes, emulsions, and suspensions, for example, micro-
organisms, paint, sun protection cream, etc. As the problem has a long
history, we shall only highlight some of the key works.

Almost two centuries ago, Stokes’ examined steady flow past a
solid sphere of radius R. and moving at uniform speed U in the
absence of inertia and he obtained the stream function of the flow field
W = (UR./4r)(3r* — R?) sin*(0), where r is the radial coordinate
measured from the center of the sphere and 0 is the angle measured
from the axis in the direction of the flow. Furthermore, he found that
the drag on the sphere in the vertical direction was given by
Dy = 6nuR U, where  is the dynamic viscosity of the fluid. Stokes'
also solved the problem of a rigid sphere oscillating within a fluid in a
spherical container in terms of the streamfunction using separation of
variables. The so-called “Stokes solution” is one of the fundamental
results in low-Reynolds-number hydrodynamics.

Oseen” obtained the first-order correction to flow past a solid
sphere for low Reynolds numbers, with the dimensionless streamfunc-
tion given by

2 +1

3(1 + cos(0)) (1 _ ¢ Re(1—cos(0)))
4r

_ S 20y
lp - s (9) JRe 3

and, further, that the drag coefficient on the sphere in the vertical
direction was Cy; = % (1 + %Re) Proudman and Pearson® obtained a
higher-order approximation to flow past a solid sphere for low
Reynolds numbers, Re, which includes corrective terms of
O(Re*In(Re)), and they found the drag coefficient was given by
Ca = §E(1 + 38 4 2 Re? In(Re) + O(Re?)). Payne and Pell” explored
Stokes flow for a class of axially symmetric solid bodies and obtained
the drag on a variety of bodies including a lens-shaped body, hemi-
sphere, spherical cap, a pair of separated sphere, a spheroid, and a lens.
Cox” obtained the drag in the low Reynolds number limit up to
O(Re? In(Re)) for steady flow around arbitrary-shaped solid bodies
falling at a constant speed, such bodies included a moving spheroid, a
moving dumb-bell-shaped body, a moving rotating sphere, and a
dumb-bell-shaped body in pure rotation. Ockendon’ considered
unsteady flow past a solid sphere with a time-dependent velocity at
small-but-finite Reynolds numbers and showed that the drag predicted
by the Stokes flow differs from that obtained from the unsteady
Navier-Stokes solution. Chester et al.'” considered flow past a solid
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sphere for low Reynolds numbers, Re, which includes corrective terms
of O(Re®In(Re)), and they found the drag coefficient was given by
Ca = (1 + 3% + 2Re?[In(Re) + ] + ZRe’In(Re) + O(Re?)),
where ¢ =y +3In(2) — 32 and y is Euler’s constant. On the other
hand, Pruppacher et al.'' numerically examined flow past a solid
sphere for moderate Reynolds numbers, which agreed well with exper-
imentally obtained values of the drag. The numerical results for the
drag agreed well with the analytical results obtained in the low
Reynolds number limit, for small Reynolds numbers, but these analyti-
cal results diverged from the numerical solution for moderate
Reynolds numbers.

Landau and Lifshitz'* gave the solution for an oscillating spheri-
cal drop in an infinite medium and found the smallest possible fre-
quency of oscillations of the drop was 4/8u/(pR>), where o is the
surface tension coefficient, p is the density of the fluid, and R, is the
radius of the droplet. They said that “the oscillations cause the surface
of the drop to deviate from the spherical form.” Mei and Adrian'”
examined unsteady low Reynolds number with very low-frequency
oscillatory flow past a stationary solid sphere and found that the
acceleration-dependent force was linearly proportional to the fre-
quency. They found that the classical Stokes solution was not valid for
small frequencies for small Reynolds numbers. Chang et al."* focused
on axisymmetric viscous laminar flow around solid spheroids for mod-
erate Reynolds numbers. They found that, for small times, the asymp-
totic analysis and numerical solutions obtained using finite
differencing agreed well. Taseli and Demiralp'” examined axisymmet-
ric Stokes flow past an arbitrary axisymmetrical solid body by writing
the solution as an infinite series involving Gegenbauer polynomials.
Otto'® explored the stability of the flow around a solid sphere oscillat-
ing at a high frequency. The problem was reduced to an infinite system
of ordinary differential equations. Using linear stability analysis, they
found that the flow could become unstable to Taylor-Gortler vortices.

The flow of an fluid sphere through a another fluid in the absence
of inertia was analyzed by Rybczynski'” and Hadamard'® who inde-
pendently found that the dimensionless streamfunction inside i and
outside  of the sphere were given by

3-2B

(r* — r*)sin®(0),

V="
1/ :%<r2 - Br+B—;1) sin?(0),

where B = (2t + 3jt) /(21 + 2t), where ft and u denote the dynamic
viscosity’s of the fluids inside and outside the sphere, respectively.
They found that the drag on the sphere was given by
Dy = 4n(p — p)gR? where R. is the radius of the sphere, g is the mag-
nitude of the gravitational acceleration, and p and p denote the density
of the fluids inside and outside the sphere, respectively. Furthermore,
the speed of the sphere was given by U = gR?(p — p)/(3Bp). Taylor
and Acrivos'” theoretically investigated the axisymmetric motion of a
slightly deformable fluid drop falling through a fluid in the small-but-
finite Reynolds number limit. They found that for small Weber num-
bers, the drop will deform into an oblate spheroid while further
increase in the Weber number deforms the droplet into a spherical cap
shape. Lin and Gautesen™ studied the small-but-finite Reynolds num-
ber flow of axisymmetric steady fluid surrounding a deformable sphere
with variable radius. They obtained the drag up to O(Re? In(Re)). To
illustrate there result by considering two cases: a pulsating sphere and

pubs.aip.org/aip/pof

a constantly expanding sphere. Oliver and Chung”' numerically con-
sidered flow inside and outside a fluid sphere at low Reynolds number
for a variety of density ratios. They found that the drag increases when
the viscosity ratio is increased, but decreased when the Reynolds num-
ber was increased. They found that the density ratio had little effect on
the drag. Pozrikidis™ examined a viscous drop subject to axisymmetric
perturbations. They found that a moving spherical drop was unstable
and developed into a nearly steady ring under perturbations.
Furthermore, surface tension was not capable of suppressing the insta-
bility. Machu et al.”" numerically and experimentally examined the
small-but-finite Reynolds number flow around a deforming droplet.
They found that everything they observed experimentally could be
observed using Stokes flow without the need to include surface tension
or inertial effects. Srivastava et al.”* numerically investigated the steady
flow around an oblate axisymmetric body for various eccentricities.
They found that increasing the eccentricity of the deformed sphere
reduced the drag with a flat circular disk having the smallest drag.
Krehbiel and Freund” considered axisymmetric steady inviscid flow
surrounding a Newtonian liquid sphere. They were able to obtain ana-
lytical solutions for the inner and outer streamfunction as relatively
simple finite expressions. Recently, Sahu and Khair’® numerically
investigated a neutrally buoyant viscous droplet and found that the
droplet could break up if the capillary number was greater than a criti-
cal value that depended on the Deborah number. Furthermore, Godé
et al.”’ numerically examined the Basset-Boussinesq history force on a
droplet in a uniform oscillating flow. By adjusting the frequency of the
oscillation, they were able to determine the range of physical parame-
ters that make the contribution of the history force significant.

There are several studies involving non-Newtonian fluids. Leslie
and Tanner”* examined low-Reynolds-number flow of an axisymmet-
ric steady non-Newtonian fluid surrounding a solid sphere. They
found the drag on a solid sphere by the non-Newtonian fluid to be
smaller than the drag on a solid sphere by a Newtonian fluid. Caswell
and Schwarz”’ looked at low-Reynolds-number flow of a non-
deformable Newtonian spherical droplet surrounded by an incom-
pressible Rivlin-Ericksen fluid. Sadly, their analytical expression for
the drag on the sphere involved two unknown parameters, which
could not be obtained from the experimental data available to them, so
they were unable to compare their work with previous studies. Beris
et al.” considered a solid sphere falling through a Bingham plastic
material. They numerically solved the flow field using the finite ele-
ment method. They found that the drag on the sphere was greater in a
Bingham plastic material, compared to than the drag on a solid sphere
by a Newtonian fluid. By obtaining the drag on a sphere, one may be
able to determine various physical properties of the fluid.
Ramkissoon’ analytically examined steady axisymmetric Stokes flow
past a non-deformable Reiner—Rivlin fluid spheroid. They obtained an
analytical expression for the drag when the spheroid is only a slightly
deformed sphere. They found the drag on the Reiner-Rivlin fluid
spheroid is less than the drag on a Newtonian spheroid. Sostarecz and
Belmonte™ experimentally examined an Order Three (see Bird
et al.”’) non-Newtonian fluid droplet falling through a Newtonian
fluid. The droplet was found to exhibit a stable dimple at its edge, with
the dimple moving toward the center of the droplet as the droplet vol-
ume increases, eventually leading to a torus-shaped droplet for suffi-
ciently large droplet volumes. Mukherjee and Sarkar’* numerically
investigated the motion of an Oldroyd-B fluid droplet falling in a
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Newtonian fluid using finite differences. They found the flow to be
unstable when there was a decrease in surface tension. Jaiswal and
Gupta™ analytically examined axisymmetric steady Stokes flow sur-
rounding a Reiner-Rivlin liquid spheroid, which is very close to a
sphere in shape. They obtained the flow field and drag on the spheroid.
They found that the drag on a solid spheroid is greater than the drag
on a Reiner-Rivlin liquid spheroid. Furthermore, the drag on a
Reiner-Rivlin liquid spheroid is greater than the drag on a liquid
sphere.

Vamerzani et al.”® analytically examined a deformable fluid drop-
let falling through a fluid using Stokes flow. They found good agree-
ment between analytical and experimental results in estimating the
terminal velocity and drop shape when both the Deborah and capillary
numbers were small. Interestingly, it was observed that as the volume
of the drop increases, the drop loses its spherical shape and falls faster.
We note that some of the cross sections of their droplets resemble
heart shapes. Norouzi and Davoodi’ investigated slightly deformable
spherical droplets in Stokes flow when both the Deborah and capillary
numbers were small. Again some of the droplets resemble heart
shapes. The results were compared with experiments involving a fluid
droplet falling through a fluid when both fluids were Oldroyd-B fluids.
Jaiswala™ explored the axisymmetric steady motion of a Reiner—Rivlin
fluid surrounding a Newtonian liquid spheroid, which is very close to
a sphere in shape. For fluids with a smaller viscosity ratio, the droplet’s
speed will initially increase and then decrease as a function of the
Weissenberg number.

In the present study, we examine axisymmetric Stokes flow in
and around a falling fluid droplet under external forcing. In Sec. 11, we
present the problem and non-dimensionalize the governing equations
and boundary conditions. In Sec. I, the equations are expressed in
axisymmetric spherical polar coordinate while also introducing appro-
priate streamfunctions, and are linearized assuming the droplet is only
slightly deformable. Section IV gives the well-known non-deformable
droplet solutions. An infinite system of equations that the first-order
(in terms of the droplet deformation parameter) solutions need to sat-
isfy is derived in Sec. V. This system is rescaled in Sec. VI. In Sec. VII,
expressions for the drag on the droplet in the vertical direction, the vol-
ume, and center of mass of the droplet are obtained. In Sec. VIII, we
obtain the first-order steady-state solution in the small-capillary limit.
In Sec. IX, we obtain the first-order unsteady solution in the small-
capillary limit. Finally, a summary of our findings and conclusions are
offered in Sec. X.

Il. MODEL EQUATIONS

Suppose we have a droplet of fluid 2 falling through an infinite
region of fluid 1 as illustrated in Fig. 1. We suppose that both are
immiscible, incompressible Newtonian fluids of constant density and
constant kinematic viscosity. The bulk equations are the Navier-
Stokes and continuity equations

8£+(
oT
ou oo 1o an .
ﬁ-l—(U~V)U——EVP—|—VVU—gez,V~U—07 (2)

where hats denote fluid 2 (the droplet), U is the fluid velocity, T is
time, p is the density, P is the pressure, v is the kinematic viscosity, g is

1
U-V)U= f;VP+1/V2U7geZ, V-.U=0, (1)
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A, H(T)

=

X

FIG. 1. Schematic diagram of a droplet of fluid 2 falling in an unbounded oscillating
fluid 1.

the magnitude of the gravitational acceleration, and e; is a unit vector
pointing vertically upward.

Here, X and Y are in the horizontal plane, while Z is pointing ver-
tically upward. The driving forcing on the droplet can be of different
kinds, but one of the simplest, yet quite informative to consider, is one
in which the domain is being periodically oscillated in the vertical
direction, such that the position of the domain is moving vertically
upward by a distance A.H(T) compared to the stationary reference
frame. Here, A, is the constant amplitude of the oscillation, while H(T)
is the temporal part of the motion with a maximum value of unity.
Hence, the far-field boundary condition is

UHACZL;eZ as R — oo, 3)
where A dH/dT is the time-dependent forcing velocity and
X2 + Y? + Z2 is the radial distance from the origin.
We let F(X,Y,Z,T) =0 denote the equation of the interface
between the two fluids. We require that the velocities are continuous at
the interface, i.e,

U=U on F=0. (4)

The kinematic condition, which implies that particles on the interface
will remain on the interface, can be obtained by noting that since F is a
scalar function which always vanishes at any point on the interface, its
time derivative following any material point there should also vanish,
ie, DF /DT = 0, where D/DT is the convective derivative, or
2—1;+U-VF:0 on F=0. (5)

The stress balance equation on the interface is

(P—Pn+(Z—z)n=yn(V-n)—Vy on F =0,
where T = 2ue is the deviatoric stress tensor, with e =%(VU+
(V U)T) the rate-of-strain tensor, y is the surface tension, n is the unit
outward pointing normal vector to the interface, and yu = vp is the
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dynamic viscosity. We shall assume that the surface tension is con-
stant, and so, the tangential and normal stress balances are

(—2)n) ;=0 on F=0, (6)
P—P+(#—z)n) - n=9V-n on F=0, (7)
where t; is a tangential vector.
We shall now introduce a coordinate system moving with the
droplet and non-dimensionalize our governing equations as follows:

R A
T=—t (X,Y)=R(x,y), Z=R|z—t+=h],
U, R,

R. dt

I
PZNRLCICP—pchZ—pr%%z,
P:”R‘fﬁ—/bg&z—bvfﬁ—j%z,

where lower case letters without tildes are used to denote the dimen-
sionless parameters, R, is the average radius of the droplet, and U, is
the average speed of the droplet which we assume to be non-zero. The
dimensional timescale is R./U.. To keep the problem as general as
possible we are not specified the forcing function however, we are lim-
iting the forcing frequency to a lower bound of O(2nU,/R,) so that
the analysis is valid. To avoid confusion, we write H(T) = h(t) as H is
a function of the dimensional time T, while h is a function of the
dimensionless time t. We note that the hydrostatic force and the oscil-
lations in the vertical direction have been included in the pressure. The
dimensionless version of the Navier-Stokes and continuity equations
(1)and (2) is

Re(%ﬂu.v)u):%wzu, Vou=o,  ®
on . . JU .
KRe E—I—(le)u =-Vp+AVu, V-u=0 )
with
Re:RcUc’ K:B and A:E’
v p u

where Re is the Reynolds number. In this study, we shall assume that
the Reynolds number is sufficiently small that it can be neglected, so
that the Navier-Stokes and continuity equations (8) and (9) reduce
down to the Stokes flow equations

Vp=Vu, V-u=0, Vp=,Va, V-i=0. (10)

We have assumed that « is not too large and / is not too small so that
the terms in Eq. (9) are of a similar order to the corresponding terms
in Eq. (8); otherwise, this would invalidate the use of Stokes flow. The
far-field condition equation (3) is now written as

u—e, as r— 00, (11)

pubs.aip.org/aip/pof

where r = \/x? + > + z2. Now, we use F(x,y,z,t) = 0 as the equa-
tion for the interface. The continuity of velocity condition equation (4)
becomes

u=u on F=0, (12)

and the kinematic condition equation (5) becomes

OF
5, Tu VF=0 on F=0. (13)

Finally, the tangential stress condition equation (6) is
((t—1)n)-t;=0 on F=0, (14)

and the normal stress condition equation (7) as

p—pt |+ 2L Rt~ )z 4 (e - 2)m)
PPt gz TR oge et T Er )
1
=—V.-n on F=0, (15)
Ca
where
Ue Ue
Caz'u and Fr=

VER:’
where Ca is the capillary number and Fr is the Froude number.

lll. AXISYMMETRIC SPHERICAL POLAR COORDINATES

To solve the Stokes flow equations in Eq. (10), we shall use axi-
symmetric spherical polar coordinates and write the velocities as

u=u,(r,0)e, + up(r,0)ep,
u=1u,(r,0)e + iy(r,0)ey,

where e, and ey are the unit vectors in the r and 0 directions, respec-
tively. We recall that r is the distance measured from the origin and 0
is the angle measured anticlockwise from the positive z axis. For the
functions #,(r, 0) and i1y (r, 0) we require,

u, and 1y areboundedat r =0. (16)
Using e, = cos(0)e, — sin(6)ey, the far-field condition (11) becomes
u, — cos(0) and wuyp — —sin(0) as r— oo, (17)
and the continuity of velocity condition (12) becomes
u,=1u, and wuy=1uy on F=0. (18)
We now suppose that
F=r—1—¢f(0,1),

where ¢ is a small constant representing the amplitude of the deviation
of the droplet from a spherical droplet and f is an unknown function
to be determined. Then, F= 0, the equation for the droplet interface, is
given by

r=1 +af, (19)

and the kinematic condition (13) is written as

- 1 - -
eft—uer;afou():O on r=1+¢f. (20)
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Now, the unit normal and tangential vectors to the interface, F = 0,

are
1 1

n=—VF=— (e,fﬂeg;)
N N

t=nxey=— N(ﬁer—i-eg)
where N = |VF| = /1 + ezr‘zf o- Finally, the tangential stress condi-

tion (14) is written as

and

81‘}0(6” —epg — Aey + iéeg)

AU -
= (rz — 82f9> (le,g —ep) on r=1+¢f, (21)
where the components of the rate-of-strain tensor are as follows:
8u, 1 81/1()

err:E> epo = ’ a
_fﬁ v +iaur
&= Sar \r 2r 00 °

The normal stress condition (15) is given by

e (% (ﬁ) B sirf(@)% (jo in\1;(0))> trop

1 A d*h
= ( R dtz)Re(l K)r cos(0)
2 .2, 7% )
+ e (e,, Ay . (erg — Aerp)
~2
2 2 ~
+ r;{;z() (egp — Aerp) on r=1+ef. (22)

By introducing 1 = cos(0)), we can express the velocity compo-
nents in terms of the streamfunctions i and  for the flow fields out-
side and inside of the droplet, respectively, as

v,
Up = ——>, U= — =
r r/1—n
- lpﬂ ~ !l/r
r—= T 50 uy)g = — >
r ry/1—n

The Stokes flow equations (10) are satisfied when the streamfunctions
satisfy equation (A3), namely,

E'Y = EYY =0, (23)
where
2 —_—
By = o2 2 o2’ (24)

which is explained in the book by Leal.”” The boundedness condition
at =0 for the velocity components, Eq. (16), means that

;//—2 isboundedat r =0. (25)
The far-field condition (17) becomes

\pn—>—r2n and lﬁ,—w(l—nz) as r — o0.

By integrating these expressions and using Q; = 1 (n* — 1), we obtain
W — —1?Q, as r — oo. (26)

We now let f(6,t) = f(n,t), which makes the equation for the
interface

r=(1+¢)e (27)
in vector form. The continuity of velocity condition (18) becomes
'//17:':0’1 and l//r:l]/r on r:1+€f.

Expanding each term using a Taylor series about ¢ = 0 and linearizing
in &, we obtain

Uy + &y =y +ef,, on r=1, (28)

¢r+bfl//rr = I/A/r+8f;prr on r= 1' (29)
The kinematic condition (20) now becomes

efs + W;; sf:;ﬁ,:O on r=1+¢f.

Expanding about ¢ = 0 and linearizing in ¢ yield

efe + 0, +efr,, — 2efY, +efyh, =0 on r=1. (30)

The tangential stress condition (21) is also linearized in ¢ and we
obtain

{;
erg — 2eyg = [en — ego + A(eop — &) ;\/1—11 f

on r =1+ &f. We can express the components of the rate-of-strain
tensor in terms of the stream function as

_ 2 l//m]
err = 73%, T2
S mw, Wy
0= "2 21—y P’
Y Y Vi-n?
€0 = L - = + l//;m'

21— 2ry/1—pr 21

The tangential stress condition is written as

L, Q. 6Q 4Q
%_l/;_r__lpﬂﬂ+f7( +_1[p __1 ”1)
Ar Arr { 6 4 7
:j. l/:—z_l/;—r__lpﬂyl+8ﬁ1<Q lp +&wq %qu)}

on r = 1+ &f. Upon expanding about ¢ =0 and linearizing in &, we
get
A2, = = 2Quibyy + o (B0, — 4, — )]
+ 226, (QU, + 6Quir, — 4Qi,)
= 20fQu (P = 30y) = 20, = Yy = 2Qu¥,
+ 26/, (Q)Y, + 6QuY, — 4QuY,,)
+ef B, — 4, — Y = 2Qu (b, — 30y (31)
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on r=1. We now turn to the normal stress condition (22), which is

also linearized in ¢ to give
1- '72 nér()>

(err +— 1- ner()) — 24 (err +—
1 A d*h
+p—-p+ + R Al Re(l — k)rn
2
Ca( (Q1ﬁ7)) on r=1+s¢f,

which upon substituting in the components of the rate-of-strain tensor
yields

2 (1 ¢
Ca (; +t3 (Q1ﬁ7)17>

. 4 2y, 2 1 2
:P—P"‘g%—r—2n+28ﬁ7(r—3%—ﬁl//n—r—4Qllﬁw>
2 7 l//ﬂ 1 - 2 4
_2/L|:r3 I 7+ f,7( rzl//rf_rlellpw):|
1 A d*h ,
+ (WJFR dt2)Re( 1,
onr=1+¢f.

To carry out this expansion, we are going to assume that A./R,
and Fr are large so that the leading terms are retained in the expansion.
In particular, we choose A./R.= O(¢7'), Fr=0(¢7!), and
Re = O(¢?), with fand h both of O(1). Then, expanding about & =0
and linearizing, we obtain

(U= E(Qufy),)

. . 1+ A d*h ,
:pfp+bf(p,*pr)+( F;f+R dtz)Re(lfK)Q1+4l//,7

=2+ 26[f (4 — 6 =) + 1 (20, — W = 2Qu¥,)]
= 27f (4 1y — 6, = W ) = 221200, =)
— 22y (20, =, — 2Qu,,) onr=1. (32)
To solve the above system of equations, we introduce the expansions
Yron,t) = y°(r,n) + el (r,n, t),
W (rm,t) =9 () + e (r,m, 1)
p(r.nt) = p°(r,n) +ep' (r,n, 1),
n,t)

7t7

~0

ﬁ(rﬂ/ht) =p (7777) +si)l(r7

IV. ZEROTH-ORDER SOLUTION

We begin by seeking the zeroth-order solutions, which are inde-
pendent of time and the droplet is a sphere of radius 1. The zeroth-
order Stokes flow equations are

E%'=0 and E%’ =0,

whose general solutions are given by Eqs. (B3) and (B4), namely,

pubs.aip.org/aip/pof

(o]
YO = Z(A}’r]‘” + O B DJ(.’r_]) Q;
<
0o A%+ L &% L B2 4 PPy
o= (A0 + G 4 B 4+ Dy ) Q,

<.
Il

where the Qs are a modified set of Gegenbauer polynomials, which
satisfy Eq. (C1) in Appendix C. Additional properties of the modified
Gegenbauer polynomials are given in Appendix C. The boundedness
condition for the velocity components + =0 (25) yields

-0

— isboundedat r=0.

,

30—
This means that B

; ;) =0 for j > 1. The far-field condition (26)
then yields

Y’ — —r’Q as r— oo,

This means that A? =0 for j > 1, CV =

—1, and C]Q =0 for j > 2.
The kinematic condition (30) yields

lﬁ?,:O on r=1.

As the derivatives of the Gegenbauer polynomials are linearly indepen-
dent, we can equate their coefficients to yield DY = 1 — B? and D? =
—B](-) for j > 2. Next, the continuity of velocity conditions (28) and
(29) gives

0o_ 30 0o_ 70
=V, and Y, =y, on r=1L

The first condition gives A;’ = —C';) for j > 1. The second gives

A(l) = —PB/2, where f=3—2B% and A;) = BJ(.) for j > 2. We next
turn to the tangential stress condition (31), which is written as

20—, —2Qui,, ] = 290 —

on r= 1. This equation gives

0 0
o 2Q1 nm

2434
2(1+4)

and Bf = 0 for j > 2. At this stage, the leading-order stream functions
are given by

0
B, =

(33)

)
v = (3 "o (31)
l/}o = g(rz - MQ,. (35)
Since 7 = cos(0) and Q; = 1 (> — 1), we can write
2 o 0
o_ (" y By — 1) )
V= (2 2 o) SO,

0
4 {j(r — 1) sin?(0).

As Jis a positive constant, 1 < B‘l) < %, and so, 1//00 is a non-negative
monotonically increasing function of r, while Yy is a non-positive
function of r, which has a local minimum at r = 1/+/2 /2, with the mini-
mum value 1// = —f3/16. This means that a recirculation zone exists
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T

FIG. 2. Contours of the leading-order streamfunctions ° and 1/}0 in Egs. (34) and
(35) with A = 1.3. The contour values for 1//0 are 7 x 107%, 0.07, 0.35, 1, 2 and

1/}0 are —1 x 10°%, —0.000025, —0.003, —0.015, and —0.026. The red and blue
lines represent the streamlines for J/O and y/°, respectively.

inside the droplet. We notice that if 2 — oo, then B! — 3/2 and

20
Y — 0. Figure 2 illustrates the streamlines obtained using Eqs. (34)

and (35). The general solutions for p° and p° are given by Egs. (B5)
and (B6), namely,

6 2—-4
p—po+Z( ]+ J+B;’j—]r*f*‘)Q; (36)

and

A6 2=
_p0+AZ( ] +Bjj+ljr“)Q} (37)

as presented in Appendix B and shown by in the book Leal ”
Substituting in the values obtained for the coefficients AO B A and

B;) into Egs. (36) and (37) yields

B? - .
PP=p-—3Q and p°=py+5rQ (38)
The normal stress condition (32) yields
2 _ 50 0 Re /
ca P77 —'—Frz(1 9
L0 50
- A[4l//l1 - 2]10;«)1} + 4"//2

Substituting in the solutions for p°, p°, ¥/°, and {00 into Eq. (39) and

— 21//9,, onr=1. (39)

ARTICLE pubs.aip.org/aip/pof

Finally, using the definitions of the dimensionless parameters, the sec-
ond equation above becomes
6+9. R
T
Substituting in the ratios for x and 4 yields
_ 2R — p) (e + 1)
‘ 3u2u+3p)

Hence, the speed of the droplet is proportional to gravity, the differ-

ence in density, and the square of the droplet radius, which are the
same results obtained by Leal.”

V. FIRST-ORDER EQUATIONS

We next turn our attention to the first-order solutions in which
the droplet interface is allowed to deform in # and time. The first-
order Stokes flow equations are

E%'=0 and E% =0,

(k —1).

(41)

whose general solutions are

oo
1_ 1,43 1 j+1 1,2-j L\
W fZ;(Ajr —O—C}r +Bjr —I—Djr )QJ,
=
01 N AL A SN N NS S U S B G
W :Z A+ G+ Bt + D) Q.
=

The boundedness condition for the velocities at r =0 (25) yields

~1
v
r2

isboundedat r =0,

which means that B ]1 = 15; = 0 forj > 1. The far-field condition (26)
yields
wl

—HO as r — 00,

which means that A} = C} = 0 for j > 1. Turning then to the conti-
nuity of velocity conditions (28) and (29),

1 40
1//,17 +fl//2, =y, +fy, on r=1,
AU, =, Sl on r=1.

Substituting in y° and 1/A/0 reduces these to

~1 ~1
Yh=1U, and =y, +afQ on r=1,
where o = 12B) — 15. As the Q;s are linearly independent functions,
a1 Al L . .
=A; +C; —Dj for j > 1. Using
this result, the second condition gives

the first condition implies that le

1 o0
= — A:Q; 42
f Ql; Q) (42)

equating coefficients of the constants and Q] yields where
2 0 _ Re 1 . 1 . 1 1
S=ho—po and 3B = S(k—1). (40) A= (@+DA; + (- 1¢ +20}), 43)
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© Author(s) 2024

£1'8€:G1 ¥20Z Aenigad 0z


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

for j > 1. Here, we are assuming that o # 0, i.e, B} #2, ie, 21 # 1,
ie, ft # [t and the two fluids have different dynamic viscosities. We
notice that at this stage, we can write the first-order streamfunctions as

=3 ((a)+¢) -

1) 2-j 1—j
Dj)r /4 Djr J)Qj, (44)

oo
=> (47 + ), (45)
=1
Turning now to the kinematic condition (30), we have
fit w0, = 2+ Yl =0 on r=1

Substituting in y° reduces this to

fi+ vy = BQf), =0 on r=1,

from which
Z( QJ+QQQ1) =0,
j=1
where
A1 sl
=4 +C + E((2]+ DA; + (2~ 1)C; +2D> (46)

for j > 1. We now make use of the identity (C5) in Appendix C to
obtain

o~ 94, o DY~ DY
; Q= ZQJ“ 4j+6 _;Qf” 4—2

By defining Qy = 0 and since the Q;s are linearly independent, we
obtain

an; Qo Qy .
i+ (2L - 2L for > 1 47
a It )(4j+6 5—2) = 47)

We now turn to the tangential stress condition (31), and substituting
iny° and 1// leads to

~1 ~1 ~1
}[2[//7 - lprr - 2Q1l//ym] + zanQll n
=2yl —y! —2Q im +15(1 = B)Qif on r =1,

which becomes

(P(1=2) = (1432~ 2)4;Q

NgE

1

-
I

(1= 2 —j—2)C; + (4 +2)DI]Q;

NgE

1

-
I

o0

~ )Y A+

]:1
= —20QiQyf, + 15(1 — B})Qif-
Using Eq. (C1), we obtain

pubs.aip.org/aip/pof

> 15
E‘Pij = aQQfy +7(B(1) -1)Qf,
=

where we have defined

279 . ~1 R . A1
Y= (P(A-1)+24+ DA, + (2 - 1) - 1)
—@2j+1)D} for j>1. (48)
Next, we use the shape of the droplet, Eq. (42), along with the identity
(C7) in Appendix C to get
ZF Q= ocZA Zﬁm(m +1)2m+1)Q
! = 26+ A

where we have defined as
o1 0

— (P +1)
2/ 4 . Ay AL 1
+(] (A+1)—]+1—A)Cj _Dj

+ A+ D+ 1A

15—9B) / 1 oAl
+Tl((2]+ DA; +(2/ - 1)C; +2D}>, (49)

for j > 1. By changing the order of the summations and using the fact
that the Qs are linearly independent functions, the tangential stress
condition reduces to

Fj = O((D] for ] > 17 (50)
where

@ =j(j+1)(2j +1) i —Amifg(fj !

m=j+2

forj > 1. By setting m = 2i + j, the above expression is simplified to

= ](] 1 2] 1) .
S A S LV U > 1.
®; = ,E i PICESES) Agiyj for j>1 (51)

We next look at the normal stress condition (%2) and substituting in

y° and np from Egs. (34) and (35) andp andp from Eq. (38), and
using Eq. (40) lead to

2 1
Q) ~ ) =P —p' — cQf ~ 3R~ 24l 20
+4lp1 l//m onr=1,

where ¢ =30 — 21B) and { = A_Fr 4 Using the general solutions for

&R,
the pressure, we have
% (2 -4)Q
=Y (4 + c - D; , (52)
;( > G+ 1)+t
~14 6
SOWIE e

Substituting the pressures into our normal stress condition yields
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& (@), —) = 320 - <y -3

where we have defined as

2j— 3] 41 3D}
0,= )L(yfl)+]+— (A +C) ]A +]+—1 for j>1.

(54)
We now use the shape of the droplet in Eq. (42) to get

50 {a0(2)-o(2) )

o0

= 20,QQ -

= =1

. d¢
qQQZAjQ, 3B QQu.

To simplify this expression, we make use of the identities (C4)-(C7) in
Appendix C to give

Cii: (— —2 (;—i—l)Q])

00 J=2 ( q\j-m
_éZAj (ZMm(m+l)(2m+l)Qm>
j=1 m=1

O G+ 16+ 2 - Q)

j=1 2j
—éfj A ((+2) Q1 + (i — 1)Q-1) — 3B %<4
£2j+1 s o tar

As before, we change the order of the summations and simplify the
above equation to

((i —2)(i + DA; —20)Q;

\\Mg

1
Ca

_ _apod C _®j+l
B 3BldtQ2+Z/(]+ Q|3 1 2j+3

_5Z< 2]—1 zj+3>Q”

=1

where we have defined Ag = ®¢ = 0. As the Q;s are linearly indepen-
dent, the normal stress condition reduces to

é(u—zm va-25)

d¢ 0,1 0,
vy 02 HIUE )(2]'71 213

_ 5(0 + DA A

—3BY =

> for j>1, (55)

pubs.aip.org/aip/pof

VI. SIMPLIFYING THE LINEAR SYSTEM

Equations (43), g46 5 (49), and (54) are expressions for Aj, Q;, I'j,
and ©; in terms of A;, C;,and D!. We notice that we can 1nvert Eqs
(43), (46) and (49) to yleld
11 ) off ...
Aj =3 (6B — 7 —2j%)a; + 7](7 +1)g

~ BiGi+ 1)(2f* + 15B] — 23)

4(2j+1) by (56)
PRI U . aff .
C = 3 (2/* +4j +3p)a; — 7](] +1)g
i(j+1)(27* +4j — 21 + 15B°
4(2] + l)
D i+t 1)(2p7 + 20 4 30(B?)* — 77B% + 51) "
j 4(2j+1) !
0 2 aff .
To express the system of Eqgs. (47), (50), (51), and (55) in a simpler
form, we define the new variables
Q. 2A;
aj = .7]7 j = ..7]7 (59)
2j+1 jG+1)
21 20;
G=————— and dj=-"1, (60)
oj(G+1)(2j + 1) 2j+1

where ay = by
can write

= dy = 0. Furthermore, using the new variables, we

dj = qa; + qjhbj + g;¢j, (61)
where

o 6(2j+3B)—2) 47 +47—2j—6

. _ 4 , (62)
T =D+ ) Bj(2j+1)
_ 4 487+ (92— 728))"  (3B) —17)j+6(B) —1)(158) —23)
i = 2(2j+1)° 2(2j+1)° 7
(63)
. 3o(j + 2BY — 2)
4G = *%’ e

for j > 1 with gf = qg = ¢ = 0. The kinematic condition equation
(47) becomes

db;

d—t’ =aj —ai, for j>1 (65)

Substituting Eq. (51) into the tangential stress condition equation (50)
with these new variables yields

G= by for j>1. (66)

i1
Next, the normal stress condition equation (55) becomes
1

2i—1 | 2j+3 6(0—2)U+1)bj—6j(4j+2))
. , . . % j-1 jt2
where we have substituted (50) in the tangential stress condition, and = d — 0y +diy —djy — & 51 bj_1 + 2513 bjt1
0; j is the Kronecker delta, equal to 1 when i = j and zero otherwise. ] ]
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for j > 1. We can eliminate d; from this equation to obtain

= (G- 26+~ 5(4+2)

0 dl
ldt52]+qj a]1+q] lb]1+q] CJI
- qj+1“j+1 - ‘Zj+1bj+1 — 4j1G+
i + .
— f( +;]+3b]+1) for j>1. (67)

Hence, our system of equations consists now of Eqgs. (65)-(67) which
we need to solve to obtain aj, bj, and ¢. Once bj is known, we can
obtain A; from Eq. (59), and then, using Eq. (42), we can obtain f, and
then, from r=1+&f, we can obtam1 the shape of the droplet. Using
Egs. (56)-(58), we can obtain A;, C;, and D}. The streamfunctions
and the pressures can then be obtalned from Egs. (44), (45), and (53).

VIl. DRAG, VOLUME, AND CENTER OF MASS
OF DROPLET

The drag on the droplet only acts in the z direction and is given
by
Dy = ”gn -e,dS = nU.R.Cy,

where the drag coefficient is given by

Cy= szn - e,dS. (68)
In Appendix D, we find that the drag coefficient is given by Eq. (68),
namely,
0o 4 Al ol 1
Cq = 47nBj +§3n A +C, —D

4 2
= 4nB) + 5sn(3B§’al +afe) + Sem(15 = 23B° + 10(B)*)b;.

Notice, the relation for the drag coefficient reduces to the one for the
unforced case that of a free droplet given by Leal.”” The volume of the
droplet is given by

V= rn r Jqﬂf r*sin(0) drd0d¢

0 Jo Jo

:2?”]0( +¢f) sin(0 )d0:23—”171(1+sf)3d;7

Linearizing in ¢ gives

2 (! 4 !
Vm?nJ 1+3afd11=?n+2nej fdn.
-1 -1

Using Egs. (42) and (C9), we obtain

pubs.aip.org/aip/pof

Conservation of mass dictates that for the droplet to have a volume of
47/3, corresponding to the volume of the undisturbed droplet, a
sphere of radius 1, we require thatj Jfdn=0,or

> by =0. (69)
j=1

We note that as the droplet is falling and that the domain is being
forced to move in the vertical direction, the center of the mass of the
droplet will also be moving vertically in the domain. We shall now
consider how the center of mass changes in our coordinate system.
The center of mass of the droplet is at (0, 0, z.), where z, is given by

2n (mopldef
J J J zr* sin(0) drd0d ¢

0 Jo Jo

2m e pldef
‘ J J 1% sin(0) drd0d¢

Jo Jo Jo

Z. =

1

3 L (14 ¢f)*ndn 3J (14 4¢f ) dn

4£1 (1+¢f)d 4[1 1+ 3ef dnp

38de_3£ZAJ lQ]dn

using ﬁl fdn =0, so that the droplet volume remains as 47/3. Using
Eq. (C10), we obtain

= Ay
ZCN3FZk2k+ (70)

for the vertical coordinate of the center of the droplet.
VIil. SMALL CAPILLARY NUMBER—-STEADY-STATE
SOLUTION

Before considering the case when the droplet is forced to oscillate,
in this section, we consider the case when the droplet is falling and
allowed to deform. For a steady flow field, Eq. (65) reduces to

ajy =aj for j>1.
This means that ay = 0 and ay;; = a; for j > 1. However, if the
ayj—1 s are all equal, then this means that the Q,;_; s tend to 1nﬁn1ty
as j tends to infinity, which means that at least one of the A s, C; i s, or

D;s would diverge. Hence, in order to obtain a convergent solution,
we require that a; = 0. Equation (66) reduces to

oo
G = sz,-ﬂ' for j>1.
=1

Substituting this into Eq. (67) yields

o ((j —2)(i+ )by — (4+ z)ibw)

i=1
00 0

_ b b c c

- qulbj—l - q]urlijrl + q};lzbZHj—l - q]urleZHjJrl
i=1 i=1

(11 Jt ,
_ > 1.
Q(Zj— 1b] 1+2]+3b]+1> for j>1 (71)
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Using Eq. (69) for a steady state, we have

00 00 j J
E bZH—Zj—l = E b2i—1 - E bZi—l = - Z bZi—l
i=1 i=1 i=1 i=1

For convenience, we introduce the constant I, defined as

0 0 00 j J
Iy = Z by so Z byitaj = Z by — Z by =1Ip — Z byi.
i1 i—1 i1 i1 i1

Then, using the odd values in Eq. (71) and simplifying we have

2 J
Ca (]( j = 3)byj1 + (4 — 1 ZbZi—l)

5
= (qgj—z A 35) bajz + (432 — d3)To

4j -
2j+
- <Q2j ‘121 2 +4]+ 1 é)b 42; %; th

for j > 1. Next, using the even values in Eq. (71) and simplifying we
have

2 j

Ca ((J = 1)(2j+ )by — (4 + 1) (Io - ;h2i>>
(s 21 b b
= | i - 5 21+ (4301 — 931 Z 2i—

. 2j+2
+ (‘12j+1 - qlz]jﬂ - —4]. 3 f) baj1

for j > 1. To solve these in the small-capillary-number limit, we let
b, = y, where y is an undetermined constant that measures the defor-
mation of the surface of the droplet. We can now obtain a non-trivial
solution and use the expansions

Ip = 7 + Ca*I?) + O(Ca%),
by = Cab(zjl.)_1 +0(Ca*) for j>1,
sz = 151] + Cazbg) + O(Ca4) for ] 2 1.

Substituting these into the odd equations at leading order gives

j
2j(2j — 3)b(2] L +2(4 Zb

i=1

(qz 5)52] <qg+5§)5w for j>1.

Solving this yields
3 17,
b?):*Z(qgﬂL*C): bgl):z(qgﬂLEC),
(4j—1)
by, = W=y § ) for j>2. (72)

y—10+1

i=1
Solving the recursion equation in Eq. (72) gives

T C g V)7
2+ D@ - 1)@ -3)

for j>3.

pubs.aip.org/aip/pof

Using now Eq. (66), we have

J
= O(Caz) and C2j—1 = — Z bZi—l for ] 2 1.
i=1
Hence,
xC 3
q= % (qg + g€> +0(Ca?),
LéCa +0(Ca%),
xCag

= 3 j> 3.
C2j—1 20+1)(2j_1)+O(Ca) for j>3

Using Eq. (68) for the drag coefficient, we have
Cy=4nB —Lgc ( (BY)* —38B% + 50) (58(3‘1))2 — 1558 + 105).

We notice that when y > 0, the O(Ca) term is reducing the drag coef-
ficient as long as

19 — v211

B) < — R~ L4,

which corresponds to 4 = 28 + 24/211 = 57.05. Using Eq. (59), we

obtain
A =— 7ca<q >+O(Ca) Ay =3y,
3/ Ca (q > +o(ca),
Ay ( 2) for i>2,
2j-1 = %—F O(Ca®) for j>3.

Using Eq. (70), we find that the vertical coordinate of the center of
mass of the droplet is given by z. = 3¢y + O(Ca?). Furthermore, from
Eq. (42), we obtain

_37Q  yCa 3 3uCaf 4, 17\ Qs
F="4, ~ 1 ( 56)+ 2 ("2+45§>Q1

1Cal(4j — 1) Q- N
+220+ -3 @ o) 73)

Using x = r cos(0) and z = rsin(6) with 7 = cos(0) and r = 1 + &f,
we can construct the droplet interface. For convenience, we truncated
the series in Eq. (73) to the first 25 terms. Typical droplet interface pro-
files are displayed in Fig. 3 using ¢ = - and Ca = { for various values
of 2 with (a) y =1 and (b) y = —1. It can be inferred from Fig. 3 that
the droplet interface appears both vertically and horizontally symmet-
ric. In Fig. 3(a), when y = 1, for large values of A, which corresponds to
a viscous droplet surrounded by a much less viscous fluid, the droplet
is slightly squashed vertically. For small values of 4, corresponding to a
viscous droplet surrounded by a much more viscous fluid, the droplet
appears vertically stretched. In Fig. 3(b), when y = —1, for large values
of A, which corresponds to a viscous droplet surrounded by a much
less viscous fluid, the droplet is slightly squashed vertically while for
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(@)

-1 -0.5 0 0.5 1

FIG. 3. Steady-state droplet interface profiles for ¢ = 11—5 and Ca = ]T using the first
25 terms in Eq. (73) with (a) =1 and (b) y = —1 for /1 equal to 0.001 (red), 0.2
(blue), 0.5 (green), 0.9 (orange), 1.5 (yellow), 2.5 (brown), 5 (pink), 10 (gray), and
500 (purple).

small values of A, which corresponds to a less viscous droplet sur-
rounded by a much more viscous fluid, the droplet appears vertically
squashed in the middle. We notice that the interfacial shape in the
vicinity of the north and south poles resembles the shape of a jet in the
south pole of a rising bubble; the jet grows as the bubble rises and
eventually collapses.

Some steady-state streamlines are illustrated in Fig. 4 for
&¢=1,Ca=14and A = 0.5with (a) y=1and (b) y = —1.

pubs.aip.org/aip/pof

(@)

2+

(b)

N
T

2F

-3
3 2 -1 0 1 2 3

X

 Ca =

1, and Z = 0.5 using the first 25

e

FIG. 4. Steady-state streamlines for ¢ = ;
terms in Eq. (73) with (a) y =1and (b)

—1.
We note that

[ sin=o(ca),

which is consistent with the condition Lll fdn = 0, so the volume of
the droplet remains the same for all parameters.

In Appendix E, we demonstrate that the steady-state droplet
shape function f converges at various points but diverges when
n = = 1. In other words, the solution is valid almost everywhere except
for the poles.

IX. SMALL CAPILLARY NUMBER—-UNSTEADY SOLUTION

By differentiating Eq. (66) with respect to ¢ and substituting in
Eq. (65), we obtain
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de

i —aj for j>1. (74)

Differentiating Eq. (67) with respect to t and subbing in Egs. (65) and
(74), we obtain

.. . .
a(J(J+3)aj+1—(1—2)0+1)aj—1)

o dai odajy b j-1
:qf”T—qf“T—aﬁZ(qj‘l éZJj)

dC i— j+2
1dt2 521+a] (q] 1 q] 1+q]+1 5 é

2j+3
c b z ]+ 2 .
t a2 (‘1j+1 — i1 _C2j+3) for j>1. (75)
We shall now consider the solution in the small-capillary-number limit
by defining
dK
a = and a; = Caaj(l) +0(Ca?) for j>2,

where K is an unknown function introduced so that a; is defined.
Using this expansion, the O(1) terms in Eq. (75) are

W _G=20G+1D o 0%;dM

T 13 T 10 dr
5 30\ 35 2 \]dK
(e - (e-idla oo

d dK
M =B df ?E' (77)

Using Eq. (76), we obtain the recursion relation

) 1( L3 5)d1< Jo__LtaM ) CdK

for j > 1 where

B\ TP T
-2)j+1
and aj(fl w%@l for j>4,
jG+3)
which can be solved to yield
. __ L aM .
G T Ty nE D a2
m_ ¢ dK .
T P

We can integrate Eq. (74) to yield

o= %(z - K) (q’; +§6) +0(Ca%),

MCa 5 .
= >
) 22 13) +O(Ca®) for j>1,
Ca(y — K
C2j—1 <Calz ) +0(Ca%) for j>2.

T2+1@2j-1)

We can integrate Eq. (65) to yield

b = %(K - 7) (q‘; +§£) +0(Ca?),

CaM
by =y — K ———+ 0(Ca?),

10
» :%(X’K)(Qﬁ—) +0(Ca?),
CaM(4j+ 1) , |
byj = 20— 1)j(2j +1)(2j + 3) +0O(Ca®) for j>2,
by Cal(y—K)(4j— 1) Lo(Ca?) for >3

EEERCERICEEY
Using Eq. (68), we have

0 dK
Cq = 47ZBO + 4a7rB i

Ca(K — 3
# SO in( 4 2¢) (105 - 153+ su(at?).

6

We notice that the condition for the volume of the droplet to remain
47 /3 given by Eq. (69) can be written as

i b21+1

Substituting this into Eq. (66) when j= 1 gives
by +¢; =0,
which is already satisfied. Using Eq. (59), we find that to leading order

Ca 3,
A =— (K- X) (qg +—§) + O(Caz)7

4
3CaM
A =3y — 3K - 22

+0(Ca?),
3C 17¢
A =2 (2= K) (qz +—> +0(Ca%),
CaM(4j 4 1)
2(—1)(2j+3)
_Cal(x=K)(4j — 1)
2(+1)(2j—3)
Using Eq. (70), we find that the vertical coordinate of the center of
mass of the droplet is

Ay = +0(Ca?) for j>2,

Agj +0(Ca*) for j>3.

=3¢(y — K) + O(Ca?).
Using Eq. (42), we have

7Ca . b § . _LaMm 3Q2
p=Su-n(drde)+ (i-k-S) 2
3Ca , 178 N CaM(4j+1) Qy
+T(X*K)( ) +Z2(]—1 2j+3) Q1

Caf )QZj—l 2
+Z 2(]+1 2] 3) o To(ca), (78)

where the shape of the droplet is given by r =1+ ¢f. Using Eq.
(C12), we find that at n = =1, we have
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o~ CaM(4i+1) > Cal(y— K)(4j—1)
‘,;z@—l)(zmﬁ; 2+ 1)~ 3)

plus terms of O(Ca®). Hence, again our solution is not valid at the
poles. Notice our solution still involves two unknowns: K and the con-
stant . To proceed, we shall consider two cases.

A. Case (i): Odd modes

If we assume that the shape of the droplet only includes the odd
mo@es in 7, then K = y, so that a; = O(Ca). This means that M =
B? % and the solution is now defined. We notice

, BYd*(
a(Z}):O for j>1, “(31):_?6?’
B a
W B P,

2G-DZj+)de
Then, c;j—1 = O(Ca?) forj > 1 along with
BYCa d(
2(2j+3)dt
Then, by, = 0O(Ca?

0 = +0(Ca*) for j>1.

) for j > 1 along with

CaB)d

by = — 10 d—f-f—O(C ),

b CaB)(4j +1) dc
= )i+ 1)(2 +3) dt

for j > 2. This leads to C; = 47BY + O(Ca?). We find that

+ 0(Ca?)

A2j71 = O(Caz) for ] Z 1,

3CaBY d(

Az_ 10 E+O(C )
04 1
M%w(m for j>2.

2(j— 1)(2j+ 3) dt

Ay =

Using Eq. (70), we find that the vertical coordinate of the center of
mass of the droplet is z. = O(Ca?), so the center of mass of the droplet
does not change in our moving coordinate system. Using Eq. (42), we

then have
_ (3@ 3~ (4+10Qy ) CaBYdC
( Z(]*l )(2i+3) ) 2Q dt (79)

plus terms of O(Ca?). Figure 5 illustrates the droplet shape using
h = eR.sin(nt)/(AFr?), A=3,6=0.03, and Ca=1 at various
times. Figure 5 appears to shows that the droplet interface resembles
three-dimensional axisymmetric heart-shaped solutions oscillating
vertically in time, when only odd modes are present. Furthermore, in
Fig. 6, we display the streaklines for the same parameters at times 3, 1,

and % The streaklines are contours of l/}o + 8!2/1 for r < 1 and contours
of Y* + &' for r>1 using Egs. (34), (35), (44), and (45). Figure 6
shows the flow pattern within the droplet and reveal as expected that
the center of the recirculation zone within the droplet appears to move
to the vertical position where the droplet is widest.

pubs.aip.org/aip/pof
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FIG. 5. Unsteady droplet interfaces for case (i) using the first 25 terms in Eq (79)
for h = ¢R; sm(nt)/(AcFr ), with 2 =3, & = 0.03, and Ca = 1 at times 1 (red), 3
(blue), 0.9 (green), 1 (orange), 1.1 (yellow), 5 (brown), and 3(plnk)

B. Case (ii): Almost even modes

To remove the odd modes from the infinite sum in Eq. (78), we
require M = 0 however, the smgle Q,/Q odd term will remain. Hence,
BY ‘jﬁ 4% % Notice that g = 3B}, so K = (/3. The solution is now
defined up to an integration constant 1. Using Eq. (76), we obtain

aé}il =0 for j>2,

1.d¢
% = (qg *3 é) 12dt’
m _ ¢ d¢

V= — j> 2.
LT sy —na 1=
Then, c;; = O(Ca?) forj > 1 along with
Ca 3
a=13,062-0 (qi’ +z é) +0(Ca?),
Cj1 = M—Q— O(Ca?) for j>2.

6(]' + l)(2j — 1)
We can integrate Eq. (65) to yield

_Ca b, 3 P
b= (=37 (qz +5€) + O(Ca’),
b, :x—§+o(Ca2),

_Ca b 176) )
b; = 5 Bz—0 <q2 + 15 + O(Ca%),
by = 0(Ca?) for j>2,

Cal(37-04j—1)

PTG D@ - @ D)

+0(Ca%) for j>3.
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FIG. 6. Streaklines for case (i) using the first 25 terms in the series for
h = ¢R, sin(xt) / (AFr?), with 2 = 3, ¢ = 0.03 and Ca = ! at times (a) 1,

and (0) 3.

Using Eq. (68), we have

Odg
Cq = 4nB° + 4en i

Ca({ —3y) b3 0 012
+ e g+ ¢ (105 — 15589 + 58(B1)?).

Using Eq. (59), we find that to leading order

M= -3p(d+ 2¢) +orean

12
Ay =3y — {4+ O(Ca?),
As Cza(s —C)( 7g)+o(c )

Ay =0(Ca®) for j>2
Caé(37 OMi -1
6(G+1)(2j —3)
Using Eq. (70), we find that the vertical coordinate of the center of

mass of the droplet is z, = &(3y — {) + O(Ca?). Using Eq. (42) and
removing terms O(Ca?), we get

((=3pCa , 35) ((-30Q
6= ()3

_ﬂ< 17_g) é*3/ )Ca 1)Qyj1
6Q; 3+ Z(}+1 )(2j—3)

1

Agjy +0(Ca*) for j>3.

f=

(80)

It is evident from Eq. (80) that the value of y, without loss of generality,
can be chosen to be zero or absorbed into (. Figure 7 depicts the drop-
let shape using h = &R, sin(nt) /(AFr?), 2 =3, =0, ¢ = 0.03, and
Ca = L at various times.

-1 -0.5 0 0.5 1
T

FIG. 7. Unsteady-state droplet mterfaces for case (ii) using the first 25 terms in Eq.
(80) for h = ¢R; sm(nt)/(AcFr ) with 2 =3, 7 =0, & 0.03 and Ca = } at times
O(red),}(blue), 0.4 (green) (orange), 0.6 (yeIIow) (brown), and 1 (pink).
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Figure 7 shows that the droplet undergoes axisymmetric
stretching and squeezing in time, when only even modes are pre-
sent. Finally, Fig. 8 plots the streaklines h = eR,sin(nt)/(A.Fr?),
with 2=1,6=0.01, and Ca=1 at times i, 1, and 3. Figure
8 shows the flow pattern remains almost symmetrical throughout
the oscillations.

X. DISCUSSION AND CONCLUSIONS

In this study, we have considered the effect of a vertically oscil-
lating flow field on a viscous slightly deformable axisymmetric drop-
let falling through a fluid using the Stokes flow equations. An
expansion in the amplitude of the deformation of the droplet allowed
the equations to be expanded. The zeroth-order solution yielded the
well-known solutions by Rybczynski'” and Hadamard.'® The first-
order equations we obtained for a droplet in a vertically oscillating
flow field in axisymmetric spherical polar coordinates by expressing
the solution to Stokes flow as a series involving the modified
Gegenbauer polynomials. Using the interfacial conditions along with
the far-field conditions and the velocities remain finite at the origin,
the problem was reduced to an infinite system of linear ordinary dif-
ferential equations. In the small-capillary limit, the system was ana-
lytically solved, which led to a droplet with singularities at its poles.
Additionally, the drag in the vertical direction and center of mass of
the droplet was obtained.

Three-dimensional axisymmetric vertically oscillating heart-
shaped solutions were obtained when only odd modes are present.
Heart-shaped solutions of droplets have been found in the literature,
see Sostarecz and Belmonte,”” Norouzi and Davoodi.”” In the case
when only even modes are present, the droplet now exhibits axi-
symmetric stretching and squeezing. As experiments have shown
that droplets do deform from a sphere, our results do appear to be
consistent with the early stages of the deformation of a spherical
droplet. Experiments and numerical simulations by Pozrikidis** and
Machu et al” found that droplets deformations are present and
increase in time. Such results may explain why the solution exhib-
ited singularities at the poles of the droplet. One notes that singular-
ities are common in fluid flows; for example, cusps were found by
Joseph et al,"’ when partially submerged cylinders are rotated, and
by Jeong and Moffatt,"" when fully submerged cylinders are rotated.
Hence, the breakdown of the solution at the poles should have been
expected.

This study was not able to obtain the conditions for when the
droplet resonates as only the first-order terms in the expansion were
obtained. Perhaps, if the expansion had been taken further, such a con-
dition would have emerged. It would be interesting to see whether
experiments could provide additional insights into the early stages of
how a spherical droplet deforms in a vertically oscillating flow field. In
order for the experiments to agree with this study, they would need to
ensure that a pair of immiscible fluids are chosen that satisfy
Re=0(&?), Fr=0(¢ 1), and A./R. = O(¢"!) along with a small
capillary number. One expects that such an experiment would require
a relatively small droplet falling through a very viscous fluid. If the
droplet radius was too large, one would expect much larger variations
in the droplet shape than considered in this study. Furthermore, if the
liquid was not sufficiently viscous, the use of Stokes flow would not be
appropriate. If the density ratio is too large, i.e., when « is large, then
inertial effects would come into play, which have been neglected in this
study.
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FIG. 8. Streaklines for case (ii) using the first 25 terms in the series for
h = &R, sin(nt) / (AFr?), with 2 = 1, & = 0.01, and Ca = [ at times (a) 4, (b) 1,
and (c) 3.
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APPENDIX A: STREAMFUNCTION FORMULATION

We write the velocities in terms of derivatives of the stream-
functions \ and y using

u=VxA, a=VxA,

where

IJ/(T’, 9) 1 IJ/ (rv 6)

~ rsin(0) ia ~ rsin(0) €

and e, is a unit vector perpendicular to the plane of motion (azi-
muthal direction). These satisfy V- u = 0 and V - ## = 0. The veloc-
ity components are given by

o lp() _ lpr
" 12sin(0)’ = rsin(0)’ (aD)
0= lp() a(} _ ll/r (AZ)

" r2sin(0)’
We find that

Vxu=-VA, Vu=Vx(V*A),

Vxi=-V2A, Vii=Vx(V*A).
Hence, the Stokes flow equations become

V x (V2A) =Vp and AV x (V?A) = Vp,

and we obtain
ViA=0 and V*A =0.

Now,

pubs.aip.org/aip/pof

2, L (O( Y, 9 ( Wy
via= r (67’ (sin(@)) * 0 <r2 sin(f))))e(/)7

23 1[0 U, 9 Vo
Vi = r <8r (sin(@)) * 00 <r2 sin(f))))fz(’)7

and so, by introducing the operator E* defined by

gy =n0) (5 () * 30 () )

we can write

EXY EYY
VA = ViA =
rsin(0) “ rsin(0) 4
Ny L EY
VA = VA = :
rsin(0) € rsin(0) %
Hence, we have
E'Y =0 and E% =0. (A3)
Finally, we introduce 7 = cos(0) to get
azdl 1 _ ’,’Z azl!/
2 _ .
By = o T on*’

APPENDIX B: SOLVING E*) = 0

To solve E*Y = 0, we let w = E%s so that E>w = 0. To solve
the later partial differential equation, we use the method of separa-
tion of variables and let w = R;(r)Q;(1), and the equation is rewrit-
ten as

1 ]’Iz U /!
- _ 270 (2 J_
RQ+-—5-RQ =0 = rr= (n? - 1)5_ ~I
j j
The separation constant is given by I = —j(j 4 1), where j is a non-
negative integer, and we find that

R =A7" +Br7, (F -1)Q —ji+1)Q=0. (B

By letting L; = Q, we see that

(1 =)L —2nL; +j(j + 1)L; = 0,
which is the Legendre differential equation. The L;s are orthogonal
functions with a weight function of 1 [see Leal” Eq. (7-120)], since

1 20;
J LiLjdn =5,
1 2j+1

where Kronecker delta 6;; is zero unless i=j in which case it
becomes 1. The Ljs are the Legendre polynomials. The first few
Legendre polynomials are as follows:
3 1 5 3
Ly=1, Li=n L=>n-5, Li=>1—n,..
0 ) 1=, L2 5 n 5 TS n 5 n,

We note that we are assuming the flow to be axisymmetric so along
with no ¢ dependence, we have 1y =0 on §=0 and 6 = 7, i.e, at
n = *1. This implies ¥, = 0 at § = *£1; hence, \/ is constant at
n = 1. From the far-field condition, the constant vanishes, hence,
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Yy=0 at n==1
We therefore define

Ul
Q= L Li(n)dn

so that Q;=0 at n = —1. Here, Q; are a modified set of orthogonal
Gegenbauer polynomials. The first few such polynomials are

Q2 Q 1, _,
1), 2= =2 =—Gp - 1),...
o
Hence, the general solution for w is given by
o0
w = Z(Ajrj“ +Bj1’7j> Q]

=1

1
Q0:’7+1,Q1:5(’72*

It should be noted that we start at j = 1, since Q, does not satisfy the
axisymmetric condition. To solve now solve w = E*y, we let iy =
lpl + l//c and
Ezl//I =w= (AjTjJrl + Bjrfj) Qj (BZ)
At the same time, we notice that
B (2r°Q) = Er" *(a(o — 1) — j(j + 1))Q;,

using Eq. (B1). Now, we compare the powers of r. If we let 5; = A;
with j+1=0—2=0=j+3, then A; = A;(4j+6). If we let
E;=B; with —j=0—-2=0=2—j, then B;=B;(2—4j).
Hence,

b= 2 (4 + 5 7)0,

where
By, = i (Aj(4j +6)P 4 Bi(2 — 4j)r*f) Q.
j=1
Now, Ezlpc = 0, so that
Y. = i( 4 D) Q.
j=1

Hence, we have found that

=

Y= Z(Ajrf“ + Gt 4 B 4 Djr‘f) Q.  (B3)
j=1

l;b Z (A J+3 + erj_H + Bji’z_j + DJI"_J) Q] (B4)

1

J

Now, V2u = Vp,so0 V x (V x u) =

Voou=- rsirll(e) (E%¥)es.

—Vp. Hence,

which implies that

Vp=Vx (rsirll(()) (Ezlp)e(,)).

pubs.aip.org/aip/pof

By using the curl in spherical polar coordinates, we obtain

_ L oEy) 1 0By
“2sin(0) 90 O rsin(0) or

By using the gradient in spherical polar coordinates, we obtain
10p 1

B_ 1 o) 1o 1 o)
or  r2sin(0) 00 me o0~ rsin(0) or

Using n = cos(6), we obtain

oo 10w o
or 12 0On on 1—n* Or

Now, w = E?\;, where

00

By = (A,-(4j +6)r 4 B2 — 4j)r-f') Q.
=1
Solving for p yields

Lrt)e.

6, 52
Pt (A

and similarly,
+6 ~2—4f .
p= P0+AZ< A ] ij+1jrj I)QJ{' (B6)

APPENDIX C: PROPERTIES OF THE GEGENBAUER
POLYNOMIALS

The Q;s are a modified set of Gegenbauer polynomials satisfy-
ing the ordinary differential equation
2Q1Qj’f =j(i+1)Q for jeN (C1)
along with Q;=0 at # = *1. The Q;s are orthogonal functions with
a weight function of Q;! [Leal™” Eq. (7-123)] since
Jl QiQ 40;;
a1 Q jG+1DEi+1)

Similarly, Q; s and the Q/' s are linearly independent when applying
the weight functions 1 and Q, respectively. We find that

! 20, G +1)8
Q) dy = 221 U+ 1%
LQQJ =%+ 2+1

1
J QQ/Q dn = —
—1

We notice that the polynomials satisfy the recursion relations

jQQi +2Q:Q )
Qi+1 = % for j>0, (C2)
1 = (J )Q.lel QIQ] for ]2 5 (C3)
i—

For j > 1, we have

<Qz(gj)) Q},Q1—Qj:%0+2)0_l)oﬁ (1)
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G+ DG +2)Qu —ji — 1)Qi

QQ = 202/ 1 1) ; (C5)
(]+2)Q]+1 + (j* I)Qj
QQ = e (Co6)

Furthermore, for j > 3, we have

2y
QQ (Q]) = Eumw +1)2m+1)Qu+ (- 1)Q

Q = 2(G+1)
(C7)
We notice that
! 2 ! 2
J de'?:—*(su, J WQJ/-d'?:§51,j7 (C8)
-1
1 1
Q J Qoj-1 2
dn =0, dn = , C9
L Q Lo iy (©)
Q1 Q-1 Jl QQ; 2
d =0, dn = . C10
L Q S e (€10
Furthermore, we notice that
%:1 on n=1, (C11)
1
gk (- on p=-1 (C12)
1

We can write each Qj as a sum in powers of n, ie,
j+1
= Z km’?’”v
m=0
where

m(m—1)—jG+1)
(m+1)(m+2)

kmi2 = ki for 0<m<j-—1

If j is even, then kg = 0 and k; = %, while if j is odd, then

S

()+l /z(j 1!

k] = 0and k() W

APPENDIX D: DRAG ON THE DROPLET

The equation for the surface of the droplet is given by Eq. (27),
and so, we have

rg=(1+¢f)eg —¢fysin(0)e, and ry = (1 +¢f) sin(0)ey.
The vector cross product of these vectors is
ro X ry = (1+¢f)’ sin(0)e, + ef, (1 + &f ) sin(0)ep.

Hence,

Iro % rgl = (1 + &f) sin(0)/(1 + &f)* + &2f2 sin2(0),

which reduces to |ry X ry| = (1 + 2¢f) sin(0) in the small ¢-limit.
We then have

Ca= rﬂ r Tn-e(1+2¢f)sin(0)d0d¢

0 Jo
1

:2nJ tn - e (1+2¢f )dn
-1

1
1
o J + 2¢f
N

n(2ex — p)dn

Ul 4 2¢f

1

— 27

o] B ()
J ( fo(1 =1 )(Zeoo—P))d’?

' 1+2¢ 2,
:anl f |: l//n rzi_p:|d'7

N

Dl42f e Y, ¥, Q
var | LT [l -y, |y

Dl 2ef ( Wy P)
+87Z6J71 — HQi Y mTo00 v a2 dn,

where r is evaluated on the surface of the droplet, ie., Eq. (19),
which is substituted in and linearizing we obtain

1
Comam | (a0~ 20y~ ) ~ 200+ 08+ 2
—1
1
+2en ;7(41// 20, —p") =20} + ¥ +2Qu,d
+2em fﬂ(4l//m 41//0 Zzpm]—pr 2p°)d11
—2en m[w‘:,+zelw2,,]dn
-1
1
—dem | fQi(p°+ 21//2 — 21//?,1)d11
-1

1

F2em |l A, +2Qi (W, — Yy, ldn. (D1)

-1

Using integration by parts on the last line in Eq. (D1) and simplify-
ing, we obtain

1
Cd = ZEJ n <4lp — 2l//m ) - zwo + lp?, + 2Q1 ""
—1
1
+ 2an n(‘hﬁ}, -2y, — p1> — 2, + Y, + 2Quipy, dn
~1

1

+ anJ f[2Q1P2 —np) + (4n* = 2) rm]d”
—1

1
+2em [ 08, — b, 2008,
—1

Using the zeroth-order solutions in Egs. (34), (35), and (38), we
obtain

1
Ca= nJ n*(9 — 6B%) — npo + 3B — 3dy
-1

1
+ ZSHJ
—1

n(40) =20, = p') — 20} + V), + 2Qu,dn.

Phys. Fluids 36, 022113 (2024); doi: 10.1063/5.0187932
© Author(s) 2024

36, 022113-19

£1'8€:G1 ¥20Z Aenigad 0z


pubs.aip.org/aip/phf

Physics of Fluids

which further reduces to
1
Cq = 4nB) + Zenj n<4l//,11 -2y, —p1>d11
~1

1
- 2an 20, — Yy, = 2Qu,,di.
—1

Substituting in the first-order solutions (44), (45), and (53) and sim-
plifying yields

3
Cd:4nB(f+4an nZQ A, +c)[;-2+]+l}dn
s

1 00 3
4¢ ‘D4 ———|d
+e7tj W;Q,,{ j+1]n

1 00
+ 2an > Q((A) +C)af —2)+ D2 +4) )
-1 =
Finally, using the equations in Eq. (C8), we obtain
o 4 Al Al 1
Cy = 4nB; +§£77: A +C,—D
0 4 0
= 4nB] + 587‘((331611 + afcr)

2
+ 5gn(ls —23B% + 10(B%)*)b,. (D2)

APPENDIX E: EVALUATING THE STEADY-STATE
DROPLET SHAPE FUNCTION f

Evaluating Eq. (73) at =0 yields

7Ca
oo =552 (64342 ) + 0(ca)
using the value of ky in Appendix C. This shows that f converges at
1 =0. The solution appears to converge for other values of 7 as well,
for example, at = %,

3A _ 5xCaq}
32

[l ™ — 0.162 847yCaé + O(Ca?)

and at 7 = cos (g) = @ ~ 0.965 926,

6 2 5yCagt
qjt ’(;qz (5+3v3)

lyveess = 3%
4
+2.991 395yCaé + O(Ca?).

However, using Eq. (C12), we find that
5yCa
Flyor =372 2222 (3h + ¢)

N yCal(4j— 1) )
Z2(J+ =3 O

Notice each term in the series is of O(j!) for large j, so the series
does not converge, which means that f does not exist at y = *1.
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