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ABSTRACT

We examine the flow in and around a falling fluid droplet in a vertically oscillating flow. We assume axisymmetric Stokes flow, and for small
deformations to the droplet, the governing equations can be linearized leading to an infinite system of linear ordinary differential equations.
In this study, we have analytically solved the problem in the small-capillary limit. We note that the solution locally breaks down at the poles
of the droplet. The drag and center of the mass were also obtained. In the case when only odd modes are present, the droplet shows three-
dimensional axisymmetric heart-shaped solutions oscillating vertically in time. When only even modes are present, the droplet exhibits axi-
symmetric stretching and squeezing.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187932

I. INTRODUCTION

The classical problem of a sphere moving through a fluid has
long attracted great interest for its numerous applications but also fun-
damental significance for fluid dynamics. For example, Chatterjee
et al.1 examined whether the flow from an expanding or collapsing
microbubble near a cell could be used as a drug delivery technique,
Ward et al.2 considered whether such flows could be used to destroy
cancerous cells, and Krehbiel et al.3 investigated whether they could be
used to rupture algal cells. Other applications include sedimentation,
lubrication processes, emulsions, and suspensions, for example, micro-
organisms, paint, sun protection cream, etc. As the problem has a long
history, we shall only highlight some of the key works.

Almost two centuries ago, Stokes4 examined steady flow past a
solid sphere of radius Rc and moving at uniform speed U in the
absence of inertia and he obtained the stream function of the flow field
w ¼ ðURc=4rÞð3r2 � R2

c Þ sin2ðhÞ, where r is the radial coordinate
measured from the center of the sphere and h is the angle measured
from the axis in the direction of the flow. Furthermore, he found that
the drag on the sphere in the vertical direction was given by
Df ¼ 6plRcU , where l is the dynamic viscosity of the fluid. Stokes4

also solved the problem of a rigid sphere oscillating within a fluid in a
spherical container in terms of the streamfunction using separation of
variables. The so-called “Stokes solution” is one of the fundamental
results in low-Reynolds-number hydrodynamics.

Oseen5 obtained the first-order correction to flow past a solid
sphere for low Reynolds numbers, with the dimensionless streamfunc-
tion given by

w ¼ 2r3 þ 1
4r

sin 2ðhÞ � 3ð1þ cosðhÞÞ
2Re

1� e�
r
2Reð1�cosðhÞÞð Þ;

and, further, that the drag coefficient on the sphere in the vertical
direction was Cd ¼ 6p

Re 1þ 3Re
8

� �
. Proudman and Pearson6 obtained a

higher-order approximation to flow past a solid sphere for low
Reynolds numbers, Re, which includes corrective terms of
OðRe2 lnðReÞÞ, and they found the drag coefficient was given by
Cd ¼ 6p

Re ð1þ 3Re
8 þ 9

40 Re
2 lnðReÞ þ OðRe2ÞÞ. Payne and Pell7 explored

Stokes flow for a class of axially symmetric solid bodies and obtained
the drag on a variety of bodies including a lens-shaped body, hemi-
sphere, spherical cap, a pair of separated sphere, a spheroid, and a lens.
Cox8 obtained the drag in the low Reynolds number limit up to
OðRe2 lnðReÞÞ for steady flow around arbitrary-shaped solid bodies
falling at a constant speed, such bodies included a moving spheroid, a
moving dumb-bell-shaped body, a moving rotating sphere, and a
dumb-bell-shaped body in pure rotation. Ockendon9 considered
unsteady flow past a solid sphere with a time-dependent velocity at
small-but-finite Reynolds numbers and showed that the drag predicted
by the Stokes flow differs from that obtained from the unsteady
Navier–Stokes solution. Chester et al.10 considered flow past a solid
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sphere for low Reynolds numbers, Re, which includes corrective terms
of OðRe3 lnðReÞÞ, and they found the drag coefficient was given by
Cd ¼ 6p

Re ð1 þ 3Re
8 þ 9

40 Re
2 ½lnðReÞ þ c� þ 27

80 Re
3 lnðReÞ þ OðRe2ÞÞ,

where c ¼ cþ 5
3 lnð2Þ � 323

360 and c is Euler’s constant. On the other
hand, Pruppacher et al.11 numerically examined flow past a solid
sphere for moderate Reynolds numbers, which agreed well with exper-
imentally obtained values of the drag. The numerical results for the
drag agreed well with the analytical results obtained in the low
Reynolds number limit, for small Reynolds numbers, but these analyti-
cal results diverged from the numerical solution for moderate
Reynolds numbers.

Landau and Lifshitz12 gave the solution for an oscillating spheri-
cal drop in an infinite medium and found the smallest possible fre-
quency of oscillations of the drop was

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a=ðqR3

c Þ
p

, where a is the
surface tension coefficient, q is the density of the fluid, and Rc is the
radius of the droplet. They said that “the oscillations cause the surface
of the drop to deviate from the spherical form.” Mei and Adrian13

examined unsteady low Reynolds number with very low-frequency
oscillatory flow past a stationary solid sphere and found that the
acceleration-dependent force was linearly proportional to the fre-
quency. They found that the classical Stokes solution was not valid for
small frequencies for small Reynolds numbers. Chang et al.14 focused
on axisymmetric viscous laminar flow around solid spheroids for mod-
erate Reynolds numbers. They found that, for small times, the asymp-
totic analysis and numerical solutions obtained using finite
differencing agreed well. Taseli and Demiralp15 examined axisymmet-
ric Stokes flow past an arbitrary axisymmetrical solid body by writing
the solution as an infinite series involving Gegenbauer polynomials.
Otto16 explored the stability of the flow around a solid sphere oscillat-
ing at a high frequency. The problem was reduced to an infinite system
of ordinary differential equations. Using linear stability analysis, they
found that the flow could become unstable to Taylor–G€ortler vortices.

The flow of an fluid sphere through a another fluid in the absence
of inertia was analyzed by Rybczynski17 and Hadamard18 who inde-
pendently found that the dimensionless streamfunction inside ŵ and
outside w of the sphere were given by

ŵ ¼ 3� 2B
4

ðr4 � r2Þ sin2ðhÞ;

w ¼ 1
2

r2 � Br þ B� 1
r

� �
sin2ðhÞ;

where B ¼ ð2lþ 3l̂Þ=ð2lþ 2l̂Þ, where l̂ and l denote the dynamic
viscosity’s of the fluids inside and outside the sphere, respectively.
They found that the drag on the sphere was given by
Df ¼ 4

3 pðq̂ � qÞgR3
c where Rc is the radius of the sphere, g is the mag-

nitude of the gravitational acceleration, and q̂ and q denote the density
of the fluids inside and outside the sphere, respectively. Furthermore,
the speed of the sphere was given by U ¼ gR2

c ðq̂ � qÞ=ð3BlÞ. Taylor
and Acrivos19 theoretically investigated the axisymmetric motion of a
slightly deformable fluid drop falling through a fluid in the small-but-
finite Reynolds number limit. They found that for small Weber num-
bers, the drop will deform into an oblate spheroid while further
increase in the Weber number deforms the droplet into a spherical cap
shape. Lin and Gautesen20 studied the small-but-finite Reynolds num-
ber flow of axisymmetric steady fluid surrounding a deformable sphere
with variable radius. They obtained the drag up to OðRe2 lnðReÞÞ. To
illustrate there result by considering two cases: a pulsating sphere and

a constantly expanding sphere. Oliver and Chung21 numerically con-
sidered flow inside and outside a fluid sphere at low Reynolds number
for a variety of density ratios. They found that the drag increases when
the viscosity ratio is increased, but decreased when the Reynolds num-
ber was increased. They found that the density ratio had little effect on
the drag. Pozrikidis22 examined a viscous drop subject to axisymmetric
perturbations. They found that a moving spherical drop was unstable
and developed into a nearly steady ring under perturbations.
Furthermore, surface tension was not capable of suppressing the insta-
bility. Machu et al.23 numerically and experimentally examined the
small-but-finite Reynolds number flow around a deforming droplet.
They found that everything they observed experimentally could be
observed using Stokes flow without the need to include surface tension
or inertial effects. Srivastava et al.24 numerically investigated the steady
flow around an oblate axisymmetric body for various eccentricities.
They found that increasing the eccentricity of the deformed sphere
reduced the drag with a flat circular disk having the smallest drag.
Krehbiel and Freund25 considered axisymmetric steady inviscid flow
surrounding a Newtonian liquid sphere. They were able to obtain ana-
lytical solutions for the inner and outer streamfunction as relatively
simple finite expressions. Recently, Sahu and Khair26 numerically
investigated a neutrally buoyant viscous droplet and found that the
droplet could break up if the capillary number was greater than a criti-
cal value that depended on the Deborah number. Furthermore, God�e
et al.27 numerically examined the Basset–Boussinesq history force on a
droplet in a uniform oscillating flow. By adjusting the frequency of the
oscillation, they were able to determine the range of physical parame-
ters that make the contribution of the history force significant.

There are several studies involving non-Newtonian fluids. Leslie
and Tanner28 examined low-Reynolds-number flow of an axisymmet-
ric steady non-Newtonian fluid surrounding a solid sphere. They
found the drag on a solid sphere by the non-Newtonian fluid to be
smaller than the drag on a solid sphere by a Newtonian fluid. Caswell
and Schwarz29 looked at low-Reynolds-number flow of a non-
deformable Newtonian spherical droplet surrounded by an incom-
pressible Rivlin–Ericksen fluid. Sadly, their analytical expression for
the drag on the sphere involved two unknown parameters, which
could not be obtained from the experimental data available to them, so
they were unable to compare their work with previous studies. Beris
et al.30 considered a solid sphere falling through a Bingham plastic
material. They numerically solved the flow field using the finite ele-
ment method. They found that the drag on the sphere was greater in a
Bingham plastic material, compared to than the drag on a solid sphere
by a Newtonian fluid. By obtaining the drag on a sphere, one may be
able to determine various physical properties of the fluid.
Ramkissoon31 analytically examined steady axisymmetric Stokes flow
past a non-deformable Reiner–Rivlin fluid spheroid. They obtained an
analytical expression for the drag when the spheroid is only a slightly
deformed sphere. They found the drag on the Reiner–Rivlin fluid
spheroid is less than the drag on a Newtonian spheroid. Sostarecz and
Belmonte32 experimentally examined an Order Three (see Bird
et al.33) non-Newtonian fluid droplet falling through a Newtonian
fluid. The droplet was found to exhibit a stable dimple at its edge, with
the dimple moving toward the center of the droplet as the droplet vol-
ume increases, eventually leading to a torus-shaped droplet for suffi-
ciently large droplet volumes. Mukherjee and Sarkar34 numerically
investigated the motion of an Oldroyd-B fluid droplet falling in a
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Newtonian fluid using finite differences. They found the flow to be
unstable when there was a decrease in surface tension. Jaiswal and
Gupta35 analytically examined axisymmetric steady Stokes flow sur-
rounding a Reiner–Rivlin liquid spheroid, which is very close to a
sphere in shape. They obtained the flow field and drag on the spheroid.
They found that the drag on a solid spheroid is greater than the drag
on a Reiner–Rivlin liquid spheroid. Furthermore, the drag on a
Reiner–Rivlin liquid spheroid is greater than the drag on a liquid
sphere.

Vamerzani et al.36 analytically examined a deformable fluid drop-
let falling through a fluid using Stokes flow. They found good agree-
ment between analytical and experimental results in estimating the
terminal velocity and drop shape when both the Deborah and capillary
numbers were small. Interestingly, it was observed that as the volume
of the drop increases, the drop loses its spherical shape and falls faster.
We note that some of the cross sections of their droplets resemble
heart shapes. Norouzi and Davoodi37 investigated slightly deformable
spherical droplets in Stokes flow when both the Deborah and capillary
numbers were small. Again some of the droplets resemble heart
shapes. The results were compared with experiments involving a fluid
droplet falling through a fluid when both fluids were Oldroyd-B fluids.
Jaiswala38 explored the axisymmetric steady motion of a Reiner–Rivlin
fluid surrounding a Newtonian liquid spheroid, which is very close to
a sphere in shape. For fluids with a smaller viscosity ratio, the droplet’s
speed will initially increase and then decrease as a function of the
Weissenberg number.

In the present study, we examine axisymmetric Stokes flow in
and around a falling fluid droplet under external forcing. In Sec. II, we
present the problem and non-dimensionalize the governing equations
and boundary conditions. In Sec. III, the equations are expressed in
axisymmetric spherical polar coordinate while also introducing appro-
priate streamfunctions, and are linearized assuming the droplet is only
slightly deformable. Section IV gives the well-known non-deformable
droplet solutions. An infinite system of equations that the first-order
(in terms of the droplet deformation parameter) solutions need to sat-
isfy is derived in Sec. V. This system is rescaled in Sec. VI. In Sec. VII,
expressions for the drag on the droplet in the vertical direction, the vol-
ume, and center of mass of the droplet are obtained. In Sec. VIII, we
obtain the first-order steady-state solution in the small-capillary limit.
In Sec. IX, we obtain the first-order unsteady solution in the small-
capillary limit. Finally, a summary of our findings and conclusions are
offered in Sec. X.

II. MODEL EQUATIONS

Suppose we have a droplet of fluid 2 falling through an infinite
region of fluid 1 as illustrated in Fig. 1. We suppose that both are
immiscible, incompressible Newtonian fluids of constant density and
constant kinematic viscosity. The bulk equations are the Navier–
Stokes and continuity equations

@U
@T

þ ðU � $ÞU ¼ � 1
q
$P þ �$2U � gez; $ � U ¼ 0; (1)

@Û
@T

þ ðÛ � $ÞÛ ¼ � 1
q̂
$P̂ þ �̂$2Û � gez; $ � Û ¼ 0; (2)

where hats denote fluid 2 (the droplet), U is the fluid velocity, T is
time, q is the density, P is the pressure, � is the kinematic viscosity, g is

the magnitude of the gravitational acceleration, and ez is a unit vector
pointing vertically upward.

Here, X and Y are in the horizontal plane, while Z is pointing ver-
tically upward. The driving forcing on the droplet can be of different
kinds, but one of the simplest, yet quite informative to consider, is one
in which the domain is being periodically oscillated in the vertical
direction, such that the position of the domain is moving vertically
upward by a distance AcHðTÞ compared to the stationary reference
frame. Here, Ac is the constant amplitude of the oscillation, while H(T)
is the temporal part of the motion with a maximum value of unity.
Hence, the far-field boundary condition is

U ! Ac
dH
dT

ez as R ! 1; (3)

where AcdH=dT is the time-dependent forcing velocity and
R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z2
p

is the radial distance from the origin.
We let ~FðX;Y ;Z;TÞ ¼ 0 denote the equation of the interface

between the two fluids. We require that the velocities are continuous at
the interface, i.e.,

U ¼ Û on ~F ¼ 0: (4)

The kinematic condition, which implies that particles on the interface
will remain on the interface, can be obtained by noting that since ~F is a
scalar function which always vanishes at any point on the interface, its
time derivative following any material point there should also vanish,
i.e., D~F=DT ¼ 0, where D/DT is the convective derivative, or

@~F
@T

þ U � $~F ¼ 0 on ~F ¼ 0: (5)

The stress balance equation on the interface is

ðP̂ � PÞnþ ð~s � ~̂s Þn ¼ cnð$ � nÞ � $c on ~F ¼ 0;

where ~s ¼ 2l~e is the deviatoric stress tensor, with ~e ¼ 1
2 ð$U þ

ð$UÞTÞ the rate-of-strain tensor, c is the surface tension, n is the unit
outward pointing normal vector to the interface, and l ¼ �q is the

FIG. 1. Schematic diagram of a droplet of fluid 2 falling in an unbounded oscillating
fluid 1.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 022113 (2024); doi: 10.1063/5.0187932 36, 022113-3

VC Author(s) 2024

 20 February 2024 15:38:43

pubs.aip.org/aip/phf


dynamic viscosity. We shall assume that the surface tension is con-
stant, and so, the tangential and normal stress balances are

ðð~s � ~̂s ÞnÞ � ti ¼ 0 on ~F ¼ 0; (6)

P̂ � P þ ðð~s � ~̂s ÞnÞ � n ¼ c$ � n on ~F ¼ 0; (7)

where ti is a tangential vector.
We shall now introduce a coordinate system moving with the

droplet and non-dimensionalize our governing equations as follows:

T ¼ Rc

Uc
t; ðX;YÞ¼Rcðx;yÞ; Z¼Rc z� tþAc

Rc
h

� �
;

ðU ;V ;Û ; V̂ Þ¼Ucðu;v; û; v̂Þ; W¼Uc w�1þAc

Rc

dh
dt

� �
;

Ŵ ¼Uc ŵ�1þAc

Rc

dh
dt

� �
; ~s ¼ lUc

Rc
s; ~e ¼Uc

Rc
e;

P¼ lUc

Rc
p�qgRcz�qU2

c
Ac

Rc

d2h
dt2

z;

P̂ ¼ lUc

Rc
p̂� q̂gRcz� q̂U2

c
Ac

Rc

d2h
dt2

z;

where lower case letters without tildes are used to denote the dimen-
sionless parameters, Rc is the average radius of the droplet, and Uc is
the average speed of the droplet which we assume to be non-zero. The
dimensional timescale is Rc=Uc. To keep the problem as general as
possible we are not specified the forcing function however, we are lim-
iting the forcing frequency to a lower bound of Oð2pUc=RcÞ so that
the analysis is valid. To avoid confusion, we writeHðTÞ ¼ hðtÞ as H is
a function of the dimensional time T, while h is a function of the
dimensionless time t. We note that the hydrostatic force and the oscil-
lations in the vertical direction have been included in the pressure. The
dimensionless version of the Navier–Stokes and continuity equations
(1) and (2) is

Re
@u
@t

þ ðu � $Þu
� �

¼ �$pþ $2u; $ � u ¼ 0; (8)

jRe
@û
@t

þ ðû � $Þû
� �

¼ �$p̂ þ k$2û; $ � û ¼ 0 (9)

with

Re ¼ RcUc

�
; j ¼ q̂

q
and k ¼ l̂

l
;

where Re is the Reynolds number. In this study, we shall assume that
the Reynolds number is sufficiently small that it can be neglected, so
that the Navier–Stokes and continuity equations (8) and (9) reduce
down to the Stokes flow equations

$p ¼ $2u; $ � u ¼ 0; $p̂ ¼ k$2û; $ � û ¼ 0: (10)

We have assumed that j is not too large and k is not too small so that
the terms in Eq. (9) are of a similar order to the corresponding terms
in Eq. (8); otherwise, this would invalidate the use of Stokes flow. The
far-field condition equation (3) is now written as

u ! ez as r ! 1; (11)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Now, we use Fðx; y; z; tÞ ¼ 0 as the equa-

tion for the interface. The continuity of velocity condition equation (4)
becomes

u ¼ û on F ¼ 0; (12)

and the kinematic condition equation (5) becomes

@F
@t

þ u � $F ¼ 0 on F ¼ 0: (13)

Finally, the tangential stress condition equation (6) is

ððs � ŝÞnÞ � ti ¼ 0 on F ¼ 0; (14)

and the normal stress condition equation (7) as

p̂ � pþ 1

Fr2
þ Ac

Rc

d2h
dt2

� �
Reð1� jÞz þ ððs � ŝÞnÞ � n

¼ 1
Ca

$ � n on F ¼ 0; (15)

where

Ca ¼ lUc

c
and Fr ¼ Ucffiffiffiffiffiffiffi

gRc
p ;

where Ca is the capillary number and Fr is the Froude number.

III. AXISYMMETRIC SPHERICAL POLAR COORDINATES

To solve the Stokes flow equations in Eq. (10), we shall use axi-
symmetric spherical polar coordinates and write the velocities as

u ¼ urðr; hÞer þ uhðr; hÞeh;
û ¼ ûrðr; hÞer þ ûhðr; hÞeh;

where er and eh are the unit vectors in the r and h directions, respec-
tively. We recall that r is the distance measured from the origin and h
is the angle measured anticlockwise from the positive z axis. For the
functions ûrðr; hÞ and ûhðr; hÞ we require,

ûr and ûh are bounded at r ¼ 0: (16)

Using ez ¼ cosðhÞer � sinðhÞeh, the far-field condition (11) becomes

ur ! cosðhÞ and uh ! �sinðhÞ as r ! 1; (17)

and the continuity of velocity condition (12) becomes

ur ¼ ûr and uh ¼ ûh on F ¼ 0: (18)

We now suppose that

F ¼ r � 1� e~f ðh; tÞ;
where e is a small constant representing the amplitude of the deviation
of the droplet from a spherical droplet and ~f is an unknown function
to be determined. Then, F¼ 0, the equation for the droplet interface, is
given by

r ¼ 1þ e~f ; (19)

and the kinematic condition (13) is written as

e~f t � ur þ 1
r
e~f huh ¼ 0 on r ¼ 1þ e~f : (20)
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Now, the unit normal and tangential vectors to the interface, F ¼ 0,
are

n ¼ 1
N
$F ¼ 1

N
er � e~f h

r
eh

� �
and

t ¼ n� e/ ¼ � 1
N

e~f h
r

er þ eh

� �
;

where N ¼ j$Fj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2r�2~f

2
h

q
. Finally, the tangential stress condi-

tion (14) is written as

er~f hðerr � ehh � kêrr þ kêhhÞ
¼ r2 � e2~f

2
h

	 

ðkêrh � erhÞ on r ¼ 1þ e~f ; (21)

where the components of the rate-of-strain tensor are as follows:

err ¼ @ur
@r

; ehh ¼ 1
r
@uh
@h

þ ur
r
;

erh ¼ r
2
@

@r
uh
r

� �
þ 1
2r

@ur
@h

:

The normal stress condition (15) is given by

1
r2Ca

@

@r
r2

N

� �
� e

sinðhÞ
@

@h

~f h sinðhÞ
N

� � !
þ p� p̂

¼ 1

Fr2
þ Ac

Rc

d2h
dt2

� �
Reð1� jÞr cosðhÞ

þ 2
N2

err � kêrr � 2e~f h
r

ðerh � kêrhÞ
� �

þ 2e2~f
2
h

r2N2
ðehh � kêrhÞ on r ¼ 1þe~f : (22)

By introducing g ¼ cosðhÞ, we can express the velocity compo-
nents in terms of the streamfunctions w and ŵ for the flow fields out-
side and inside of the droplet, respectively, as

ur ¼ �wg

r2
; uh ¼ � wr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p ;

ûr ¼ � ŵg

r2
; ûh ¼ � ŵr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p :

The Stokes flow equations (10) are satisfied when the streamfunctions
satisfy equation (A3), namely,

E4w ¼ E4ŵ ¼ 0; (23)

where

E2w ¼ @2w
@r2

þ 1� g2

r2
@2w
@g2

; (24)

which is explained in the book by Leal.39 The boundedness condition
at r¼ 0 for the velocity components, Eq. (16), means that

ŵ
r2

is bounded at r ¼ 0: (25)

The far-field condition (17) becomes

wg ! �r2g and wr ! r 1� g2
� �

as r ! 1:

By integrating these expressions and using Q1 ¼ 1
2 ðg2 � 1Þ, we obtain

w ! �r2Q1 as r ! 1: (26)

We now let ~f ðh; tÞ ¼ f ðg; tÞ, which makes the equation for the
interface

r ¼ ð1þ ef Þer (27)

in vector form. The continuity of velocity condition (18) becomes

wg ¼ ŵg and wr ¼ ŵr on r ¼ 1þ ef :

Expanding each term using a Taylor series about e¼ 0 and linearizing
in e, we obtain

wg þ efwgr ¼ ŵg þ ef ŵgr on r ¼ 1; (28)

wr þ efwrr ¼ ŵr þ ef ŵrr on r ¼ 1: (29)

The kinematic condition (20) now becomes

eft þ
wg

r2
þ efgwr

r2
¼ 0 on r ¼ 1þ ef :

Expanding about e¼ 0 and linearizing in e yield

eft þ wg þ efwrg � 2efwg þ efgwr ¼ 0 on r ¼ 1: (30)

The tangential stress condition (21) is also linearized in e, and we
obtain

erh � kêrh ¼ ½err � ehh þ k êhh � êrrð Þ� e
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
fg

on r ¼ 1þ ef . We can express the components of the rate-of-strain
tensor in terms of the stream function as

err ¼ 2
r3
wg �

wrg

r2
;

ehh ¼
wrg

r2
þ gwr

r2 1� g2ð Þ �
wg

r3
;

erh ¼ wr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p � wrr

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
2r3

wgg:

The tangential stress condition is written as

wr

r2
� wrr

2r
� Q1

r3
wgg þ efg

Q0
1

r3
wr þ

6Q1

r4
wg �

4Q1

r3
wrg

� �

¼ k
ŵr

r2
� ŵrr

2r
� Q1

r3
ŵgg þ efg

Q0
1

r3
ŵr þ

6Q1

r4
ŵg �

4Q1

r3
ŵrg

� �" #

on r ¼ 1þ ef . Upon expanding about e¼ 0 and linearizing in e, we
get

k½2ŵr � ŵrr � 2Q1ŵgg þ ef ð3ŵrr � 4ŵr � ŵrrrÞ�
þ 2kefgðQ0

1ŵr þ 6Q1ŵg � 4Q1ŵrgÞ
� 2kefQ1ðŵrgg � 3ŵggÞ ¼ 2wr � wrr � 2Q1wgg

þ 2efgðQ0
1wr þ 6Q1wg � 4Q1wrgÞ

þ ef ½3wrr � 4wr � wrrr � 2Q1ðwrgg � 3wggÞ� (31)

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 022113 (2024); doi: 10.1063/5.0187932 36, 022113-5

VC Author(s) 2024

 20 February 2024 15:38:43

pubs.aip.org/aip/phf


on r¼ 1. We now turn to the normal stress condition (22), which is
also linearized in e to give

2 err þ 2e
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
fgerh

� �
� 2k êrr þ 2e

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
fgêrh

� �

þ p̂ � pþ 1
Fr2

þ Ac

Rc

d2h
dt2

� �
Reð1� jÞrg

¼ 2
Ca

1
r
þ e
r2

Q1fgð Þg
� �

on r ¼ 1þ ef ;

which upon substituting in the components of the rate-of-strain tensor
yields

2
Ca

1
r
þ e
r2

Q1fgð Þg
� �

¼ p̂ � pþ 4
r3
wg �

2wrg

r2
þ 2efg

2
r3
wr �

1
r2
wrr �

2
r4
Q1wgg

� �

� 2k
2
r3
ŵg �

ŵrg

r2
þ efg

2
r3
ŵr �

1
r2
ŵrr �

2
r4
Q1ŵgg

� �" #

þ 1
Fr2

þ Ac

Rc

d2h
dt2

� �
Reð1� jÞrQ0

1

on r ¼ 1þ ef .
To carry out this expansion, we are going to assume that Ac=Rc

and Fr are large so that the leading terms are retained in the expansion.
In particular, we choose Ac=Rc ¼ Oðe�1Þ; Fr ¼ Oðe�1Þ, and
Re ¼ Oðe2Þ, with f and h both of O(1). Then, expanding about e¼ 0
and linearizing, we obtain

2
Ca

1� ef þ e Q1fgð Þg
� �
¼ p̂� pþ ef ðp̂r � prÞþ 1þ ef

Fr2
þAc

Rc

d2h
dt2

� �
Reð1�jÞQ0

1þ 4wg

� 2wrgþ 2e f ð4wrg � 6wg �wrrgÞþ fgð2wr �wrr � 2Q1wggÞ
� �

� 2kef ð4ŵrg � 6ŵg � ŵrrgÞ� 2k½2ŵg� ŵrg�
� 2kefgð2ŵr � ŵrr � 2Q1ŵggÞ on r ¼ 1: (32)

To solve the above system of equations, we introduce the expansions

wðr; g; tÞ ¼ w0ðr; gÞ þ ew1ðr; g; tÞ;

ŵðr; g; tÞ ¼ ŵ
0ðr; gÞ þ eŵ

1ðr; g; tÞ;
pðr; g; tÞ ¼ p0ðr; gÞ þ ep1ðr; g; tÞ;
p̂ðr; g; tÞ ¼ p̂0ðr; gÞ þ ep̂1ðr; g; tÞ:

IV. ZEROTH-ORDER SOLUTION

We begin by seeking the zeroth-order solutions, which are inde-
pendent of time and the droplet is a sphere of radius 1. The zeroth-
order Stokes flow equations are

E4w0 ¼ 0 and E4ŵ
0 ¼ 0;

whose general solutions are given by Eqs. (B3) and (B4), namely,

w0 ¼
X1
j¼1

A0
j r

jþ3 þ C0
j r

jþ1 þ B0
j r

2�j þ D0
j r

�j
	 


Qj;

ŵ
0 ¼

X1
j¼1

Â
0
j r

jþ3 þ Ĉ
0
j r

jþ1 þ B̂
0
j r

2�j þ D̂
0
j r

�j
	 


Qj;

where the Qjs are a modified set of Gegenbauer polynomials, which
satisfy Eq. (C1) in Appendix C. Additional properties of the modified
Gegenbauer polynomials are given in Appendix C. The boundedness
condition for the velocity components r¼ 0 (25) yields

ŵ
0

r2
is bounded at r ¼ 0:

This means that B̂
0
j ¼ D̂

0
j ¼ 0 for j � 1. The far-field condition (26)

then yields

w0 ! �r2Q1 as r ! 1:

This means that A0
j ¼ 0 for j � 1; C0

1 ¼ �1, and C0
j ¼ 0 for j � 2.

The kinematic condition (30) yields

w0
g ¼ 0 on r ¼ 1:

As the derivatives of the Gegenbauer polynomials are linearly indepen-
dent, we can equate their coefficients to yield D0

1 ¼ 1� B0
1 and D0

j ¼
�B0

j for j � 2. Next, the continuity of velocity conditions (28) and
(29) gives

w0
g ¼ ŵ

0

g and w0
r ¼ ŵ

0

r on r ¼ 1:

The first condition gives Â
0
j ¼ �Ĉ

0
j for j � 1. The second gives

Â
0
1 ¼ �b=2, where b ¼ 3� 2B0

1 and Â
0
j ¼ B0

j for j � 2. We next

turn to the tangential stress condition (31), which is written as

k½2ŵ0

r � ŵ
0

rr � 2Q1ŵ
0

gg� ¼ 2w0
r � w0

rr � 2Q1w
0
gg

on r¼ 1. This equation gives

B0
1 ¼

2þ 3k
2ð1þ kÞ (33)

and B0
j ¼ 0 for j � 2. At this stage, the leading-order stream functions

are given by

w0 ¼ B0
1r � r2 þ 1� B0

1

r

� �
Q1; (34)

ŵ
0 ¼ b

2
r2 � r4ð ÞQ1: (35)

Since g ¼ cosðhÞ andQ1 ¼ 1
2 ðg2 � 1Þ, we can write

w0 ¼ r2

2
� B0

1r
2

þ B0
1 � 1
2r

� �
sin2ðhÞ;

ŵ
0 ¼ b

4
r4 � r2ð Þ sin2ðhÞ:

As k is a positive constant, 1 � B0
1 � 3

2, and so, w0 is a non-negative
monotonically increasing function of r, while ŵ

0
is a non-positive

function of r, which has a local minimum at r ¼ 1=
ffiffiffi
2

p
, with the mini-

mum value ŵ
0 ¼ �b=16. This means that a recirculation zone exists
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inside the droplet. We notice that if k ! 1, then B0
1 ! 3=2 and

ŵ
0 ! 0. Figure 2 illustrates the streamlines obtained using Eqs. (34)

and (35). The general solutions for p0 and p̂0 are given by Eqs. (B5)
and (B6), namely,

p0 ¼ p0 þ
X1
j¼1

�A0
j
4jþ 6

j
rj þ B0

j
2� 4j
jþ 1

r�j�1
� �

Q0
j (36)

and

p̂0 ¼ p̂0 þ k
X1
j¼1

�Â
0
j
4jþ 6

j
rj þ B̂

0
j
2� 4j
jþ 1

r�j�1
� �

Q0
j (37)

as presented in Appendix B and shown by in the book Leal.39

Substituting in the values obtained for the coefficients A0
j ; B

0
j ; Â

0
j , and

B̂
0
j into Eqs. (36) and (37) yields

p0 ¼ p0 � B0
1

r2
Q0

1 and p̂0 ¼ p̂0 þ 5kbrQ0
1: (38)

The normal stress condition (32) yields

2
Ca

¼ p̂0 � p0 þ Re

Fr2
ð1� jÞQ0

1

� k½4ŵ0

g � 2ŵ
0

rg� þ 4w0
g � 2w0

rg on r ¼ 1: (39)

Substituting in the solutions for p̂0; p0, w0, and ŵ
0
into Eq. (39) and

equating coefficients of the constants and Q0
1 yields

2
Ca

¼ p̂0 � p0 and 3B0
1 ¼

Re

Fr2
ðj� 1Þ: (40)

Finally, using the definitions of the dimensionless parameters, the sec-
ond equation above becomes

6þ 9k
2ð1þ kÞ ¼ qg

R2
c

lUc
ðj� 1Þ:

Substituting in the ratios for j and k yields

Uc ¼ 2gR2
c ðq̂ � qÞðlþ l̂Þ
3lð2lþ 3l̂Þ : (41)

Hence, the speed of the droplet is proportional to gravity, the differ-
ence in density, and the square of the droplet radius, which are the
same results obtained by Leal.39

V. FIRST-ORDER EQUATIONS

We next turn our attention to the first-order solutions in which
the droplet interface is allowed to deform in g and time. The first-
order Stokes flow equations are

E4w1 ¼ 0 and E4ŵ
1 ¼ 0;

whose general solutions are

w1 ¼
X1
j¼1

A1
j r

jþ3 þ C1
j r

jþ1 þ B1
j r

2�j þ D1
j r

�j
	 


Qj;

ŵ
1 ¼

X1
j¼1

Â
1
j r

jþ3 þ Ĉ
1
j r

jþ1 þ B̂
1
j r

2�j þ D̂
1
j r

�j
	 


Qj:

The boundedness condition for the velocities at r¼ 0 (25) yields

ŵ
1

r2
is bounded at r ¼ 0;

which means that B̂
1
j ¼ D̂

1
j ¼ 0 for j � 1. The far-field condition (26)

yields

w1

r2
! 0 as r ! 1;

which means that A1
j ¼ C1

j ¼ 0 for j � 1. Turning then to the conti-
nuity of velocity conditions (28) and (29),

w1
g þ fw0

gr ¼ ŵ
1

g þ f ŵ
0

gr on r ¼ 1;

w1
r þ fw0

rr ¼ ŵ
1

r þ f ŵ
0

rr on r ¼ 1:

Substituting in w0 and ŵ
0
reduces these to

w1
g ¼ ŵ

1

g and w1
r ¼ ŵ

1

r þ afQ1 on r ¼ 1;

where a ¼ 12B0
1 � 15. As the Qjs are linearly independent functions,

the first condition implies that B1
j ¼ Â

1
j þ Ĉ

1
j � D1

j for j � 1. Using
this result, the second condition gives

f ¼ 1
Q1

X1
j¼1

KjQj; (42)

where

Kj ¼ � 1
a

ð2jþ 1ÞÂ1
j þ ð2j� 1ÞĈ1

j þ 2D1
j

	 

; (43)

FIG. 2. Contours of the leading-order streamfunctions w0 and ŵ
0
in Eqs. (34) and

(35) with k ¼ 1:3. The contour values for w0 are 7� 10�5, 0.07, 0.35, 1, 2 and

ŵ
0
are �1� 10�6, �0.000 025, �0.003, �0.015, and �0.026. The red and blue

lines represent the streamlines for ŵ
0
and w0, respectively.
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for j � 1. Here, we are assuming that a 6¼ 0, i.e., B0
1 6¼ 5

4, i.e., k 6¼ 1,
i.e., l 6¼ l̂ and the two fluids have different dynamic viscosities. We
notice that at this stage, we can write the first-order streamfunctions as

w1 ¼
X1
j¼1

Â
1
j þ Ĉ

1
j � D1

j

	 

r2�j þ D1

j r
�j

	 

Qj; (44)

ŵ
1 ¼

X1
j¼1

Â
1
j r

jþ3 þ Ĉ
1
j r

jþ1
	 


Qj: (45)

Turning now to the kinematic condition (30), we have

ft þ w1
g þ fw0

rg � 2fw0
g þ fgw

0
r ¼ 0 on r ¼ 1:

Substituting in w0 reduces this to

ft þ w1
g � bðQ1f Þg ¼ 0 on r ¼ 1;

from which

X1
j¼1

dKj

dt
Qj þ XjQ

0
jQ1

� �
¼ 0;

where

Xj ¼ Â
1
j þ Ĉ

1
j � bKj

¼ Â
1
j þ Ĉ

1
j þ

b
a

ð2jþ 1ÞÂ1
j þ ð2j� 1ÞĈ1

j þ 2D1
j

	 

; (46)

for j � 1. We now make use of the identity (C5) in Appendix C to
obtain

X1
j¼1

dKj

dt
Qj ¼

X1
j¼1

Xjþ1
jðjþ 1ÞQj

4jþ 6
�
X1
j¼2

Xj�1
jðjþ 1ÞQj

4j� 2
:

By defining X0 ¼ 0 and since the Qjs are linearly independent, we
obtain

dKj

dt
¼ jðjþ 1Þ Xjþ1

4jþ 6
� Xj�1

4j� 2

� �
for j � 1: (47)

We now turn to the tangential stress condition (31), and substituting
in w0 and ŵ

0
leads to

k½2ŵ1

r � ŵ
1

rr � 2Q1ŵ
1

gg� þ 2aQ1Q
0
1fg

¼ 2w1
r � w1

rr � 2Q1w
1
gg þ 15ð1� B0

1ÞQ1f on r ¼ 1;

which becomes

X1
j¼1

ðj2ð1� kÞ � ð1þ 3kÞj� 2ÞÂ1
j Qj

X1
j¼1

½ð1� kÞðj2 � j� 2ÞĈ1
j þ ð4jþ 2ÞD1

j �Qj

þ 2ð1� kÞ
X1
j¼1

ðÂ1
j þ Ĉ

1
j ÞQ1Q

00
j

¼ �2aQ1Q
0
1fg þ 15ð1� B0

1ÞQ1f :

Using Eq. (C1), we obtain

X1
j¼1

WjQj ¼ aQ1Q
0
1fg þ

15
2
ðB0

1 � 1ÞQ1f ;

where we have defined

Wj ¼ ðj2ðk� 1Þ þ 2kjþ 1ÞÂ1
j þ ðk� 1Þðj2 � 1ÞĈ1

j

� ð2jþ 1ÞD1
j for j � 1: (48)

Next, we use the shape of the droplet, Eq. (42), along with the identity
(C7) in Appendix C to get

X1
j¼1

CjQj ¼ a
X1
j¼1

Kj

Xj�2

m¼1

ð�1Þj�m þ 1
2jðjþ 1Þ mðmþ 1Þð2mþ 1ÞQm

 !
;

where we have defined as

Cj ¼ Wj � ajþ 1
2
ð15� 9B0

1Þ
� �

Kj

¼ ðj2ðkþ 1Þ þ ð2kþ 1Þjþ 1ÞÂ1
j

þ ðj2ðkþ 1Þ � jþ 1� kÞĈ1
j � D1

j

þ 15� 9B0
1

2a
ð2jþ 1ÞÂ1

j þ ð2j� 1ÞĈ1
j þ 2D1

j

	 

; (49)

for j � 1. By changing the order of the summations and using the fact
that the Qjs are linearly independent functions, the tangential stress
condition reduces to

Cj ¼ aUj for j � 1; (50)

where

Uj ¼ jðjþ 1Þð2jþ 1Þ
X1

m¼jþ2

Kmðð�1Þm�j þ 1Þ
2mðmþ 1Þ ;

for j � 1. By settingm ¼ 2iþ j, the above expression is simplified to

Uj ¼
X1
i¼1

jðjþ 1Þð2jþ 1Þ
ð2iþ jÞð2iþ jþ 1ÞK2iþj for j � 1: (51)

We next look at the normal stress condition (32) and substituting in
w0 and ŵ

0
, from Eqs. (34) and (35) and p0 and p̂0 from Eq. (38), and

using Eq. (40) lead to

2
Ca

Q1fgð Þg � f
� � ¼ p̂1 � p1 � nQ0

1f � 3B0
1
df
dt

Q0
1 � k½4ŵ1

g � 2ŵ
1

rg�
þ 4w1

g � 2w1
rg on r ¼ 1;

where n ¼ 30� 21B0
1 and f ¼ AcFr2

eRc

dh
dt . Using the general solutions for

the pressure, we have

p1 ¼
X1
j¼1

Â
1
j þ Ĉ

1
j � D1

j

	 
 ð2� 4jÞQ0
j

ðjþ 1Þrjþ1
; (52)

p̂1 ¼ �k
X1
j¼1

Â
1
j
4jþ 6

j
rjQ0

j: (53)

Substituting the pressures into our normal stress condition yields
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2
Ca

Q1fgð Þg � f
� � ¼X1

j¼1

2HjQ
0
j � nQ0

1f � 3B0
1
df
dt

Q0
1;

where we have defined as

Hj ¼ kðj� 1Þþ jþ 2j� 1
jþ 1

� �
ðÂ1

j þ Ĉ
1
j Þ�

3k
j
Â

1
j þ

3D1
j

jþ 1
for j� 1:

(54)

We now use the shape of the droplet in Eq. (42) to get

2
Ca

X1
j¼1

Kj Q0
1Q1

Qj

Q1

� �0
þQ2

1

Qj

Q1

� �00
�Qj

 !

¼
X1
j¼1

2HjQ
0
jQ1 � nQ0

1

X1
j¼1

KjQj � 3B0
1
df
dt

Q0
1Q1:

To simplify this expression, we make use of the identities (C4)–(C7) in
Appendix C to give

2
Ca

X1
j¼1

Kj
1
2
ðj� 2Þðjþ 1ÞQj

� �

� 2
Ca

X1
j¼1

Kj

Xj�2

m¼1

ð�1Þj�m þ 1
2jðjþ 1Þ mðmþ 1Þð2mþ 1ÞQm

 !

¼
X1
j¼1

Hj

2jþ 1
ðjþ 1Þðjþ 2ÞQjþ1 � jðj� 1ÞQj�1
� �

� n
X1
j¼1

Kj

2jþ 1
ðjþ 2ÞQjþ1 þ ðj� 1ÞQj�1
� �� 3B0

1
df
dt

Q2:

As before, we change the order of the summations and simplify the
above equation to

1
Ca

X1
j¼1

ðj� 2Þðjþ 1ÞKj � 2Uj
� �

Qj

¼ �3B0
1
df
dt

Q2 þ
X1
j¼1

jðjþ 1ÞQj
Hj�1

2j� 1
� Hjþ1

2jþ 3

� �

�n
X1
j¼1

ðjþ 1ÞKj�1

2j� 1
þ jKjþ1

2jþ 3

 !
Qj;

where we have defined K0 ¼ H0 ¼ 0. As the Qjs are linearly indepen-
dent, the normal stress condition reduces to

1
Ca

ðj� 2Þðjþ 1ÞKj � 2Cj

a

� �

¼ �3B0
1
df
dt

d2;j þ jðjþ 1Þ Hj�1

2j� 1
� Hjþ1

2jþ 3

� �

� n
ðjþ 1ÞKj�1

2j� 1
þ jKjþ1

2jþ 3

 !
for j � 1; (55)

where we have substituted (50) in the tangential stress condition, and
di;j is the Kronecker delta, equal to 1 when i¼ j and zero otherwise.

VI. SIMPLIFYING THE LINEAR SYSTEM

Equations (43), (46), (49), and (54) are expressions for Kj, Xj, Cj,
and Hj in terms of Â

1
j ; Ĉ

1
j , and D1

j . We notice that we can invert Eqs.
(43), (46), and (49) to yield

Â
1
j ¼

1
2
ð6B0

1 � 7� 2j2Þaj þ ab
2
jðjþ 1Þcj

� bjðjþ 1Þð2j2 þ 15B0
1 � 23Þ

4ð2jþ 1Þ bj; (56)

Ĉ
1
j ¼

1
2
ð2j2 þ 4jþ 3bÞaj � ab

2
jðjþ 1Þcj

þ bjðjþ 1Þð2j2 þ 4j� 21þ 15B0
1Þ

4ð2jþ 1Þ bj; (57)

D1
j ¼ � jðjþ 1Þð2bj2 þ 2ajþ 30ðB0

1Þ2 � 77B0
1 þ 51Þ

4ð2jþ 1Þ bj

þ ð4� 3B0
1 � j2Þaj � ab

2
jðjþ 1Þcj: (58)

To express the system of Eqs. (47), (50), (51), and (55) in a simpler
form, we define the new variables

aj ¼
Xj

2jþ 1
; bj ¼

2Kj

jðjþ 1Þ ; (59)

cj ¼ 2Cj

ajðjþ 1Þð2jþ 1Þ and dj ¼ 2Hj

2jþ 1
; (60)

where a0 ¼ b0 ¼ d0 ¼ 0. Furthermore, using the new variables, we
can write

dj ¼ qaj aj þ qbj bj þ qcj cj; (61)

where

qaj ¼
6ð2jþ 3B0

1 � 2Þ
jðjþ 1Þð2jþ 1Þ þ

4j3 þ 4j2 � 2j� 6
bjð2jþ 1Þ ; (62)

qbj ¼
4j4þ8j3þð92�72B0

1Þj2
2ð2jþ1Þ2 þð3B0

1�17Þjþ6ðB0
1�1Þð15B0

1�23Þ
2ð2jþ1Þ2 ;

(63)

qcj ¼ � 3aðjþ 2B0
1 � 2Þ

2jþ 1
; (64)

for j � 1 with qa0 ¼ qb0 ¼ qc0 ¼ 0. The kinematic condition equation
(47) becomes

dbj
dt

¼ ajþ1 � aj�1 for j � 1: (65)

Substituting Eq. (51) into the tangential stress condition equation (50)
with these new variables yields

cj ¼
X1
i¼1

b2iþj for j � 1: (66)

Next, the normal stress condition equation (55) becomes

1
Ca

ðj� 2Þðjþ 1Þbj � cjð4jþ 2Þ� �
¼ �B0

1
df
dt

d2;j þ dj�1 � djþ1 � n
j� 1
2j� 1

bj�1 þ jþ 2
2jþ 3

bjþ1

� �
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for j � 1. We can eliminate dj from this equation to obtain

1
Ca

ðj� 2Þðjþ 1Þbj � cjð4jþ 2Þ� �
¼ �B0

1
df
dt

d2;j þ qaj�1aj�1 þ qbj�1bj�1 þ qcj�1cj�1

� qajþ1ajþ1 � qbjþ1bjþ1 � qcjþ1cjþ1

� n
j� 1
2j� 1

bj�1 þ jþ 2
2jþ 3

bjþ1

� �
for j � 1: (67)

Hence, our system of equations consists now of Eqs. (65)–(67) which
we need to solve to obtain aj, bj, and cj. Once bj is known, we can
obtain Kj from Eq. (59), and then, using Eq. (42), we can obtain f, and
then, from r ¼ 1þ ef , we can obtain the shape of the droplet. Using
Eqs. (56)–(58), we can obtain Â

1
j ; Ĉ

1
j , and D1

j . The streamfunctions
and the pressures can then be obtained from Eqs. (44), (45), and (53).

VII. DRAG, VOLUME, AND CENTER OF MASS
OF DROPLET

The drag on the droplet only acts in the z direction and is given
by

Df ¼
ð ð

~sn � ezd~S ¼ lUcRcCd;

where the drag coefficient is given by

Cd ¼
ð ð

sn � ezdS: (68)

In Appendix D, we find that the drag coefficient is given by Eq. (68),
namely,

Cd ¼ 4pB0
1 þ

4
3
ep Â

1
1 þ Ĉ

1
1 � D1

1

	 

¼ 4pB0

1 þ
4
3
ep 3B0

1a1 þ abc1
� �þ 2

3
epð15� 23B0

1 þ 10ðB0
1Þ2Þb1:

Notice, the relation for the drag coefficient reduces to the one for the
unforced case that of a free droplet given by Leal.39 The volume of the
droplet is given by

V ¼
ð2p
0

ðp
0

ð1þef

0
r2 sinðhÞ drdhd/

¼ 2p
3

ðp
0
ð1þ ef Þ3 sinðhÞ dh ¼ 2p

3

ð1
�1

ð1þ ef Þ3 dg:

Linearizing in e gives

V � 2p
3

ð1
�1

1þ 3ef dg ¼ 4p
3
þ 2pe

ð1
�1

f dg:

Using Eqs. (42) and (C9), we obtain

ð1
�1

f dg ¼
ð1
�1

1
Q1

X1
j¼1

KjQjdg

¼
X1
j¼1

2K2j�1

jð2j� 1Þ ¼
X1
j¼1

2b2j�1:

Conservation of mass dictates that for the droplet to have a volume of
4p=3, corresponding to the volume of the undisturbed droplet, a
sphere of radius 1, we require that

Ð 1
�1 f dg ¼ 0, or

X1
j¼1

b2j�1 ¼ 0: (69)

We note that as the droplet is falling and that the domain is being
forced to move in the vertical direction, the center of the mass of the
droplet will also be moving vertically in the domain. We shall now
consider how the center of mass changes in our coordinate system.
The center of mass of the droplet is at ð0; 0; zcÞ, where zc is given by

zc ¼

ð2p
0

ðp
0

ð1þef

0
zr2 sinðhÞ drdhd/ð2p

0

ðp
0

ð1þef

0
r2 sinðhÞ drdhd/

¼
3
ð1
�1

ð1þ ef Þ4g dg

4
ð1
�1

ð1þ ef Þ3 dg
�

3
ð1
�1
ð1þ 4ef Þg dg

4
ð1
�1

1þ 3ef dg

¼ 3e
2

ð1
�1

f g dg ¼ 3e
2

X1
j¼1

Kj

ð1
�1

Q0
1

Q1
Qjdg

using
Ð 1
�1 f dg ¼ 0, so that the droplet volume remains as 4p=3. Using

Eq. (C10), we obtain

zc � 3e
X1
k¼1

K2k

kð2kþ 1Þ (70)

for the vertical coordinate of the center of the droplet.

VIII. SMALL CAPILLARY NUMBER—STEADY-STATE
SOLUTION

Before considering the case when the droplet is forced to oscillate,
in this section, we consider the case when the droplet is falling and
allowed to deform. For a steady flow field, Eq. (65) reduces to

ajþ1 ¼ aj�1 for j � 1:

This means that a2j ¼ 0 and a2j�1 ¼ a1 for j � 1. However, if the
a2j�1 s are all equal, then this means that the X2j�1 s tend to infinity
as j tends to infinity, which means that at least one of the Âj s, Ĉ j s, or
Dj s would diverge. Hence, in order to obtain a convergent solution,
we require that a1 ¼ 0. Equation (66) reduces to

cj ¼
X1
i¼1

b2iþj for j � 1:

Substituting this into Eq. (67) yields

1
Ca

ðj� 2Þðjþ 1Þbj � ð4jþ 2Þ
X1
i¼1

b2iþj

 !

¼ qbj�1bj�1 � qbjþ1bjþ1 þ qcj�1

X1
i¼1

b2iþj�1 � qcjþ1

X1
i¼1

b2iþjþ1

� n
j� 1
2j� 1

bj�1 þ jþ 2
2jþ 3

bjþ1

� �
for j � 1: (71)
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Using Eq. (69) for a steady state, we have

X1
i¼1

b2iþ2j�1 ¼
X1
i¼1

b2i�1 �
Xj
i¼1

b2i�1 ¼ �
Xj
i¼1

b2i�1:

For convenience, we introduce the constant I0 defined as

I0 ¼
X1
i¼1

b2i so
X1
i¼1

b2iþ2j ¼
X1
i¼1

b2i �
Xj
i¼1

b2i ¼ I0 �
Xj
i¼1

b2i:

Then, using the odd values in Eq. (71) and simplifying we have

2
Ca

jð2j� 3Þb2j�1 þ ð4j� 1Þ
Xj

i¼1

b2i�1

 !

¼ qb2j�2 �
2j� 2
4j� 3

n
� �

b2j�2 þ ðqc2j�2 � qc2jÞI0

� qb2j � qc2j�2 þ
2jþ 1
4jþ 1

n
� �

b2j þ ðqc2j � qc2j�2Þ
Xj
i¼1

b2i

for j � 1. Next, using the even values in Eq. (71) and simplifying we
have

2
Ca

ðj� 1Þð2jþ 1Þb2j � ð4jþ 1Þ I0 �
Xj
i¼1

b2i

 ! !

¼ qb2j�1 �
2j� 1
4j� 1

n
� �

b2j�1 þ ðqc2jþ1 � qc2j�1Þ
Xj
i¼1

b2i�1

þ qc2jþ1 � qb2jþ1 �
2jþ 2
4jþ 3

n
� �

b2jþ1

for j � 1. To solve these in the small-capillary-number limit, we let
b2 ¼ v, where v is an undetermined constant that measures the defor-
mation of the surface of the droplet. We can now obtain a non-trivial
solution and use the expansions

I0 ¼ vþ Ca2Ið2Þ0 þ OðCa4Þ;
b2j�1 ¼ Cabð1Þ2j�1 þ OðCa3Þ for j � 1;

b2j ¼ vd1;j þ Ca2bð2Þ2j þ OðCa4Þ for j � 1:

Substituting these into the odd equations at leading order gives

2jð2j� 3Þbð1Þ2j�1 þ 2ð4j� 1Þ
Xj
i¼1

bð1Þ2i�1

¼ v qb2 �
2
5
n

� �
d2;j � v qb2 þ

3
5
n

� �
d1;j for j � 1:

Solving this yields

bð1Þ1 ¼ � v
4

qb2 þ
3
5
n

� �
; bð1Þ3 ¼ v

4
qb2 þ

17
45

n

� �
;

bð1Þ2j�1 ¼ � ð4j� 1Þ
ð2j� 1Þðjþ 1Þ

Xj�1

i¼1

bð1Þ2i�1 for j � 2: (72)

Solving the recursion equation in Eq. (72) gives

bð1Þ2j�1 ¼
ð4j� 1Þvn

2jðjþ 1Þð2j� 1Þð2j� 3Þ for j � 3:

Using now Eq. (66), we have

c2j ¼ OðCa2Þ and c2j�1 ¼ �
Xj
i¼1

b2i�1 for j � 1:

Hence,

c1 ¼ vCa
4

qb2 þ
3
5
n

� �
þ OðCa3Þ;

c3 ¼ vn
18

Caþ OðCa3Þ;

c2j�1 ¼ vCan
2ðjþ 1Þð2j� 1Þ þ OðCa3Þ for j � 3:

Using Eq. (68) for the drag coefficient, we have

Cd ¼ 4pB0
1 �

evp
10

Ca 3ðB0
1Þ2� 38B0

1þ 50
	 


58ðB0
1Þ2� 155B0

1þ 105
	 


:

We notice that when v > 0, the OðCaÞ term is reducing the drag coef-
ficient as long as

B0
1 <

19� ffiffiffiffiffiffiffi
211

p

3
� 1:4914;

which corresponds to k ¼ 28þ 2
ffiffiffiffiffiffiffi
211

p � 57:05. Using Eq. (59), we
obtain

K1 ¼ � vCa
4

qb2 þ
3
5
n

� �
þ OðCa3Þ; K2 ¼ 3v;

K3 ¼ 3vCa
2

qb2 þ
17
45

n

� �
þ OðCa3Þ;

K2j ¼ OðCa2Þ for j � 2;

K2j�1 ¼ vCanð4j� 1Þ
2ðjþ 1Þð2j� 3Þ þ OðCa3Þ for j � 3:

Using Eq. (70), we find that the vertical coordinate of the center of
mass of the droplet is given by zc ¼ 3evþ OðCa2Þ. Furthermore, from
Eq. (42), we obtain

f ¼ 3vQ2

Q1
� vCa

4
qb2 þ

3
5
n

� �
þ 3vCa

2
qb2 þ

17
45

n

� �
Q3

Q1

þ
X1
j¼3

vCanð4j� 1Þ
2ðjþ 1Þð2j� 3Þ

Q2j�1

Q1
þ OðCa2Þ: (73)

Using x ¼ r cosðhÞ and z ¼ r sinðhÞ with g ¼ cosðhÞ and r ¼ 1þ ef ,
we can construct the droplet interface. For convenience, we truncated
the series in Eq. (73) to the first 25 terms. Typical droplet interface pro-
files are displayed in Fig. 3 using e ¼ 1

16 and Ca ¼ 1
4 for various values

of k with (a) v¼ 1 and (b) v ¼ �1. It can be inferred from Fig. 3 that
the droplet interface appears both vertically and horizontally symmet-
ric. In Fig. 3(a), when v¼ 1, for large values of k, which corresponds to
a viscous droplet surrounded by a much less viscous fluid, the droplet
is slightly squashed vertically. For small values of k, corresponding to a
viscous droplet surrounded by a much more viscous fluid, the droplet
appears vertically stretched. In Fig. 3(b), when v ¼ �1, for large values
of k, which corresponds to a viscous droplet surrounded by a much
less viscous fluid, the droplet is slightly squashed vertically while for
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small values of k, which corresponds to a less viscous droplet sur-
rounded by a much more viscous fluid, the droplet appears vertically
squashed in the middle. We notice that the interfacial shape in the
vicinity of the north and south poles resembles the shape of a jet in the
south pole of a rising bubble; the jet grows as the bubble rises and
eventually collapses.

Some steady-state streamlines are illustrated in Fig. 4 for
e ¼ 1

16 ; Ca ¼ 1
4, and k ¼ 0:5 with (a) v¼ 1 and (b) v ¼ �1.

We note that ð1
�1

fdg ¼ OðCa2Þ;

which is consistent with the condition
Ð 1
�1 fdg ¼ 0, so the volume of

the droplet remains the same for all parameters.
In Appendix E, we demonstrate that the steady-state droplet

shape function f converges at various points but diverges when
g ¼ 61. In other words, the solution is valid almost everywhere except
for the poles.

IX. SMALL CAPILLARY NUMBER—UNSTEADY SOLUTION

By differentiating Eq. (66) with respect to t and substituting in
Eq. (65), we obtain

FIG. 3. Steady-state droplet interface profiles for e ¼ 1
16 and Ca ¼ 1

4 using the first
25 terms in Eq. (73) with (a) v¼ 1 and (b) v ¼ �1 for k equal to 0.001 (red), 0.2
(blue), 0.5 (green), 0.9 (orange), 1.5 (yellow), 2.5 (brown), 5 (pink), 10 (gray), and
500 (purple).

FIG. 4. Steady-state streamlines for e ¼ 1
16, Ca ¼ 1

4, and k ¼ 0:5 using the first 25
terms in Eq. (73) with (a) v¼ 1 and (b) v ¼ �1.
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dcj
dt

¼ �ajþ1 for j � 1: (74)

Differentiating Eq. (67) with respect to t and subbing in Eqs. (65) and
(74), we obtain

1
Ca

jðjþ3Þajþ1�ðj�2Þðjþ1Þaj�1
� �

¼ qaj�1

daj�1

dt
�qajþ1

dajþ1

dt
�aj�2 qbj�1�n

j�1
2j�1

� �

�B0
1
d2f
dt2

d2;jþaj qbj�1�qcj�1þqbjþ1�n
j�1
2j�1

þn
jþ2
2jþ3

� �

þajþ2 qcjþ1�qbjþ1�n
jþ2
2jþ3

� �
for j� 1: (75)

We shall now consider the solution in the small-capillary-number limit
by defining

a1 ¼ dK
dt

and aj ¼ Caað1Þj þ OðCa2Þ for j � 2;

where K is an unknown function introduced so that a1 is defined.
Using this expansion, the O(1) terms in Eq. (75) are

að1Þjþ1 ¼
ðj� 2Þðjþ 1Þ

jðjþ 3Þ að1Þj�1 �
d2;j
10

dM
dt

þ d1;j
4

qb2 þ
3
5
n

� �
� d3;j

18
qb2 �

2
5
n

� �� �
dK
dt

(76)

for j � 1 where

M ¼ B0
1
df
dt

� qa1
dK
dt

: (77)

Using Eq. (76), we obtain the recursion relation

að1Þ2 ¼ 1
4

qb2 þ
3
5
n

� �
dK
dt

; að1Þ3 ¼ � 1
10

dM
dt

; að1Þ4 ¼ n
18

dK
dt

;

and að1Þjþ1 ¼
ðj� 2Þðjþ 1Þ

jðjþ 3Þ að1Þj�1 for j � 4;

which can be solved to yield

að1Þ2j�1 ¼ � 1
2ðj� 1Þð2jþ 1Þ

dM
dt

for j � 2;

að1Þ2j ¼ n
2ðjþ 1Þð2j� 1Þ

dK
dt

for j � 2:

We can integrate Eq. (74) to yield

c1 ¼ Ca
4

v� Kð Þ qb2 þ
3
5
n

� �
þ OðCa2Þ;

c2j ¼ MCa
2jð2jþ 3Þ þ OðCa2Þ for j � 1;

c2j�1 ¼ nCaðv� KÞ
2ðjþ 1Þð2j� 1Þ þ OðCa2Þ for j � 2:

We can integrate Eq. (65) to yield

b1 ¼ Ca
4

K � vð Þ qb2 þ
3
5
n

� �
þ OðCa2Þ;

b2 ¼ v� K � CaM
10

þ OðCa2Þ;

b3 ¼ Ca
4

v� Kð Þ qb2 þ
17n
45

� �
þ OðCa2Þ;

b2j ¼ CaMð4jþ 1Þ
2ðj� 1Þjð2jþ 1Þð2jþ 3Þ þ OðCa2Þ for j � 2;

b2j�1 ¼ Canðv� KÞð4j� 1Þ
2jðjþ 1Þð2j� 3Þð2j� 1Þ þ OðCa2Þ for j � 3:

Using Eq. (68), we have

Cd ¼ 4pB0
1 þ 4epB0

1
dK
dt

þ CaðK � vÞ
6

ep qb2 þ
3
5
n

� �
105� 155B0

1 þ 58ðB0
1Þ2

	 

:

We notice that the condition for the volume of the droplet to remain
4p=3 given by Eq. (69) can be written as

X1
i¼1

b2iþ1 ¼ �b1:

Substituting this into Eq. (66) when j¼ 1 gives

b1 þ c1 ¼ 0;

which is already satisfied. Using Eq. (59), we find that to leading order

K1 ¼ Ca
4

K � vð Þ qb2 þ
3
5
n

� �
þ OðCa2Þ;

K2 ¼ 3v� 3K � 3CaM
10

þ OðCa2Þ;

K3 ¼ 3Ca
2

v� Kð Þ qb2 þ
17n
45

� �
þ OðCa2Þ;

K2j ¼ CaMð4jþ 1Þ
2ðj� 1Þð2jþ 3Þ þ OðCa2Þ for j � 2;

K2j�1 ¼ Canðv� KÞð4j� 1Þ
2ðjþ 1Þð2j� 3Þ þ OðCa2Þ for j � 3:

Using Eq. (70), we find that the vertical coordinate of the center of
mass of the droplet is

zc ¼ 3eðv� KÞ þ OðCa2Þ:
Using Eq. (42), we have

f ¼Ca
4

K � vð Þ qb2 þ
3
5
n

� �
þ v�K�CaM

10

� �
3Q2

Q1

þ 3Ca
2

v�Kð Þ qb2 þ
17n
45

� �
Q3

Q1
þ
X1
j¼2

CaMð4jþ 1Þ
2ðj� 1Þð2jþ 3Þ

Q2j

Q1

þ
X1
j¼3

Canðv�KÞð4j� 1Þ
2ðjþ 1Þð2j� 3Þ

Q2j�1

Q1
þOðCa2Þ; (78)

where the shape of the droplet is given by r ¼ 1þ ef . Using Eq.
(C12), we find that at g ¼ 61, we have
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f jg¼61 ¼ � 5Ca
4

K � vð Þ qb2 þ
n
3

� �
63 v� K � CaM

10

� �

6
X1
j¼2

CaMð4jþ 1Þ
2ðj� 1Þð2jþ 3Þ þ

X1
j¼3

Canðv� KÞð4j� 1Þ
2ðjþ 1Þð2j� 3Þ

plus terms of OðCa2Þ. Hence, again our solution is not valid at the
poles. Notice our solution still involves two unknowns: K and the con-
stant v. To proceed, we shall consider two cases.

A. Case (i): Odd modes

If we assume that the shape of the droplet only includes the odd
modes in g, then K ¼ v, so that a1 ¼ OðCaÞ. This means that M ¼
B0
1
df
dt and the solution is now defined. We notice

að1Þ2j ¼ 0 for j � 1; að1Þ3 ¼ �B0
1

10
d2f
dt2

;

að1Þ2j�1 ¼ � B0
1

2ðj� 1Þð2jþ 1Þ
d2f
dt2

for j � 2:

Then, c2j�1 ¼ OðCa2Þ for j � 1 along with

c2j ¼ B0
1Ca

2jð2jþ 3Þ
df
dt

þ OðCa2Þ for j � 1:

Then, b2j�1 ¼ OðCa2Þ for j � 1 along with

b2 ¼ �CaB0
1

10
df
dt

þ OðCa2Þ;

b2j ¼ CaB0
1ð4jþ 1Þ

2ðj� 1Þjð2jþ 1Þð2jþ 3Þ
df
dt

þ OðCa2Þ

for j � 2. This leads to Cd ¼ 4pB0
1 þ OðCa2Þ. We find that

K2j�1 ¼ OðCa2Þ for j � 1;

K2 ¼ � 3CaB0
1

10
df
dt

þ OðCa2Þ;

K2j ¼ CaB0
1ð4jþ 1Þ

2ðj� 1Þð2jþ 3Þ
df
dt

þ OðCa2Þ for j � 2:

Using Eq. (70), we find that the vertical coordinate of the center of
mass of the droplet is zc ¼ OðCa2Þ, so the center of mass of the droplet
does not change in our moving coordinate system. Using Eq. (42), we
then have

f ¼ � 3Q2

5
þ
X1
j¼2

ð4jþ 1ÞQ2j

ðj� 1Þð2jþ 3Þ

 !
CaB0

1

2Q1

df
dt

(79)

plus terms of OðCa2Þ. Figure 5 illustrates the droplet shape using
h ¼ eRc sinðptÞ=ðAcFr2Þ, k ¼ 3

2 ; e ¼ 0:03, and Ca ¼ 1
4 at various

times. Figure 5 appears to shows that the droplet interface resembles
three-dimensional axisymmetric heart-shaped solutions oscillating
vertically in time, when only odd modes are present. Furthermore, in
Fig. 6, we display the streaklines for the same parameters at times 1

2, 1,

and 3
2. The streaklines are contours of ŵ

0 þ eŵ
1
for r< 1 and contours

of w0 þ ew1 for r> 1 using Eqs. (34), (35), (44), and (45). Figure 6
shows the flow pattern within the droplet and reveal as expected that
the center of the recirculation zone within the droplet appears to move
to the vertical position where the droplet is widest.

B. Case (ii): Almost even modes

To remove the odd modes from the infinite sum in Eq. (78), we
requireM¼ 0; however, the single Q2=Q1 odd term will remain. Hence,
B0
1
df
dt ¼ qa1

dK
dt . Notice that q

a
1 ¼ 3B0

1, so K ¼ f=3. The solution is now
defined up to an integration constant v. Using Eq. (76), we obtain

að1Þ2j�1 ¼ 0 for j � 2;

að1Þ2 ¼ qb2 þ
3
5
n

� �
1
12

df
dt

;

að1Þ2j ¼ n
6ðjþ 1Þð2j� 1Þ

df
dt

for j � 2:

Then, c2j ¼ OðCa2Þ for j � 1 along with

c1 ¼ Ca
12

3v� fð Þ qb2 þ
3
5
n

� �
þ OðCa2Þ;

c2j�1 ¼ nCað3v� fÞ
6ðjþ 1Þð2j� 1Þ þ OðCa2Þ for j � 2:

We can integrate Eq. (65) to yield

b1 ¼ Ca
12

f� 3vð Þ qb2 þ
3
5
n

� �
þ OðCa2Þ;

b2 ¼ v� f
3
þ OðCa2Þ;

b3 ¼ Ca
12

3v� fð Þ qb2 þ
17n
45

� �
þ OðCa2Þ;

b2j ¼ OðCa2Þ for j � 2;

b2j�1 ¼ Canð3v� fÞð4j� 1Þ
6jðjþ 1Þð2j� 3Þð2j� 1Þ þ OðCa2Þ for j � 3:

FIG. 5. Unsteady droplet interfaces for case (i) using the first 25 terms in Eq. (79)
for h ¼ eRc sinðptÞ=ðAcFr2Þ, with k ¼ 3

2 ; e ¼ 0:03, and Ca ¼ 1
4 at times

1
2 (red),

3
4

(blue), 0.9 (green), 1 (orange), 1.1 (yellow), 54 (brown), and
3
2 (pink).
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Using Eq. (68), we have

Cd ¼ 4pB0
1 þ 4ep

B0
1

3
df
dt

þ Caðf� 3vÞ
18

ep qb2 þ
3
5
n

� �
105� 155B0

1 þ 58ðB0
1Þ2

	 

:

Using Eq. (59), we find that to leading order

K1 ¼ Ca
12

f� 3vð Þ qb2 þ
3
5
n

� �
þ OðCa2Þ

K2 ¼ 3v� fþ OðCa2Þ;

K3 ¼ Ca
2

3v� fð Þ qb2 þ
17n
45

� �
þ OðCa2Þ

K2j ¼ OðCa2Þ for j � 2

K2j�1 ¼ Canð3v� fÞð4j� 1Þ
6ðjþ 1Þð2j� 3Þ þ OðCa2Þ for j � 3:

Using Eq. (70), we find that the vertical coordinate of the center of
mass of the droplet is zc ¼ eð3v� fÞ þ OðCa2Þ. Using Eq. (42) and
removing terms OðCa2Þ, we get

f ¼ ðf� 3vÞCa
12

qb2þ
3n
5

� �
�ðf� 3vÞQ2

Q1

�ðf� 3vÞCa
6Q1

3qb2þ
17n
15

� �
Q3�ðf� 3vÞCa

6Q1

X1
j¼3

nð4j� 1ÞQ2j�1

ðjþ 1Þð2j� 3Þ :

(80)

It is evident from Eq. (80) that the value of v, without loss of generality,
can be chosen to be zero or absorbed into f. Figure 7 depicts the drop-
let shape using h ¼ eRc sinðptÞ=ðAcFr2Þ, k ¼ 3

2, v¼ 0, e ¼ 0:03, and
Ca ¼ 1

4 at various times.

FIG. 6. Streaklines for case (i) using the first 25 terms in the series for
h ¼ eRc sinðptÞ=ðAcFr2Þ, with k ¼ 3

2 ; e ¼ 0:03 and Ca ¼ 1
4 at times (a)

1
2, (b) 1,

and (c) 32.

FIG. 7. Unsteady-state droplet interfaces for case (ii) using the first 25 terms in Eq.
(80) for h ¼ eRc sinðptÞ=ðAcFr2Þ, with k ¼ 3

2, v¼ 0, e ¼ 0:03 and Ca ¼ 1
4 at times

0 (red), 14 (blue), 0.4 (green),
1
2 (orange), 0.6 (yellow),

3
4 (brown), and 1 (pink).
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Figure 7 shows that the droplet undergoes axisymmetric
stretching and squeezing in time, when only even modes are pre-
sent. Finally, Fig. 8 plots the streaklines h ¼ eRc sinðptÞ=ðAcFr2Þ,
with k ¼ 1

2 ; e ¼ 0:01, and Ca ¼ 1
4 at times 1

2, 1, and 3
2. Figure

8 shows the flow pattern remains almost symmetrical throughout
the oscillations.

X. DISCUSSION AND CONCLUSIONS

In this study, we have considered the effect of a vertically oscil-
lating flow field on a viscous slightly deformable axisymmetric drop-
let falling through a fluid using the Stokes flow equations. An
expansion in the amplitude of the deformation of the droplet allowed
the equations to be expanded. The zeroth-order solution yielded the
well-known solutions by Rybczynski17 and Hadamard.18 The first-
order equations we obtained for a droplet in a vertically oscillating
flow field in axisymmetric spherical polar coordinates by expressing
the solution to Stokes flow as a series involving the modified
Gegenbauer polynomials. Using the interfacial conditions along with
the far-field conditions and the velocities remain finite at the origin,
the problem was reduced to an infinite system of linear ordinary dif-
ferential equations. In the small-capillary limit, the system was ana-
lytically solved, which led to a droplet with singularities at its poles.
Additionally, the drag in the vertical direction and center of mass of
the droplet was obtained.

Three-dimensional axisymmetric vertically oscillating heart-
shaped solutions were obtained when only odd modes are present.
Heart-shaped solutions of droplets have been found in the literature,
see Sostarecz and Belmonte,32 Norouzi and Davoodi.37 In the case
when only even modes are present, the droplet now exhibits axi-
symmetric stretching and squeezing. As experiments have shown
that droplets do deform from a sphere, our results do appear to be
consistent with the early stages of the deformation of a spherical
droplet. Experiments and numerical simulations by Pozrikidis22 and
Machu et al.23 found that droplets deformations are present and
increase in time. Such results may explain why the solution exhib-
ited singularities at the poles of the droplet. One notes that singular-
ities are common in fluid flows; for example, cusps were found by
Joseph et al.,40 when partially submerged cylinders are rotated, and
by Jeong and Moffatt,41 when fully submerged cylinders are rotated.
Hence, the breakdown of the solution at the poles should have been
expected.

This study was not able to obtain the conditions for when the
droplet resonates as only the first-order terms in the expansion were
obtained. Perhaps, if the expansion had been taken further, such a con-
dition would have emerged. It would be interesting to see whether
experiments could provide additional insights into the early stages of
how a spherical droplet deforms in a vertically oscillating flow field. In
order for the experiments to agree with this study, they would need to
ensure that a pair of immiscible fluids are chosen that satisfy
Re¼Oðe2Þ, Fr¼Oðe�1Þ, and Ac=Rc ¼ Oðe�1Þ along with a small
capillary number. One expects that such an experiment would require
a relatively small droplet falling through a very viscous fluid. If the
droplet radius was too large, one would expect much larger variations
in the droplet shape than considered in this study. Furthermore, if the
liquid was not sufficiently viscous, the use of Stokes flow would not be
appropriate. If the density ratio is too large, i.e., when j is large, then
inertial effects would come into play, which have been neglected in this
study.

FIG. 8. Streaklines for case (ii) using the first 25 terms in the series for
h ¼ eRc sinðptÞ=ðAcFr2Þ, with k ¼ 1

2 ; e ¼ 0:01, and Ca ¼ 1
4 at times (a)

1
2, (b) 1,

and (c) 32.
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APPENDIX A: STREAMFUNCTION FORMULATION

We write the velocities in terms of derivatives of the stream-
functions w and ŵ using

u ¼ $� A; û ¼ $� Â;

where

A ¼ wðr; hÞ
r sinðhÞ e/; Â ¼ ŵðr; hÞ

r sinðhÞ e/

and e/ is a unit vector perpendicular to the plane of motion (azi-
muthal direction). These satisfy $ � u ¼ 0 and $ � û ¼ 0. The veloc-
ity components are given by

ur ¼ wh

r2 sinðhÞ ; uh ¼ � wr

r sinðhÞ ; (A1)

ûr ¼ ŵh

r2 sinðhÞ ; ûh ¼ � ŵr

r sinðhÞ : (A2)

We find that

$� u ¼ �$2A; $2u ¼ $� ð$2AÞ;
$� û ¼ �$2Â; $2û ¼ $� ð$2ÂÞ:

Hence, the Stokes flow equations become

$� ð$2AÞ ¼ $p and k$� ð$2ÂÞ ¼ $p̂;

and we obtain

$4A ¼ 0 and $4Â ¼ 0:

Now,

$2A ¼ 1
r

@

@r
wr

sinðhÞ
� �

þ @

@h
wh

r2 sinðhÞ
� �� �

e/;

$2Â ¼ 1
r

@

@r
ŵr

sinðhÞ

 !
þ @

@h
ŵh

r2 sinðhÞ

 ! !
e/ ;

and so, by introducing the operator E2 defined by

E2w ¼ sinðhÞ @

@r
wr

sinðhÞ
� �

þ @

@h
wh

r2 sinðhÞ
� �� �

;

we can write

$2A ¼ E2w
r sinðhÞ e/; $4A ¼ E4w

r sinðhÞ e/;

$2Â ¼ E2ŵ
r sinðhÞ e/; $4Â ¼ E4ŵ

r sinðhÞ e/:

Hence, we have

E4w ¼ 0 and E4ŵ ¼ 0: (A3)

Finally, we introduce g ¼ cosðhÞ to get

E2w ¼ @2w
@r2

þ 1� g2

r2
@2w
@g2

:

APPENDIX B: SOLVING E4w ¼ 0

To solve E4w ¼ 0, we let w ¼ E2w so that E2w ¼ 0. To solve
the later partial differential equation, we use the method of separa-
tion of variables and let w ¼ RjðrÞQjðgÞ, and the equation is rewrit-
ten as

R00
j Qj þ 1� g2

r2
RjQ

00
j ¼ 0 ) r2

R00
j

Rj
¼ g2 � 1
� �Q00

j

Qj
¼ �I:

The separation constant is given by I ¼ �jðjþ 1Þ, where j is a non-
negative integer, and we find that

Rj ¼ ~Arjþ1 þ ~Br�j; g2 � 1
� �

Q00
j � jðjþ 1ÞQj ¼ 0: (B1)

By letting Lj ¼ Q0
j, we see that

1� g2
� �

L00j � 2gL0j þ jðjþ 1ÞLj ¼ 0;

which is the Legendre differential equation. The Ljs are orthogonal
functions with a weight function of 1 [see Leal39 Eq. (7-120)], sinceð1

�1
LiLj dg ¼ 2di;j

2jþ 1
;

where Kronecker delta di;j is zero unless i¼ j in which case it
becomes 1. The Ljs are the Legendre polynomials. The first few
Legendre polynomials are as follows:

L0 ¼ 1; L1 ¼ g; L2 ¼ 3
2
g2 � 1

2
; L3 ¼ 5

2
g3 � 3

2
g;…

We note that we are assuming the flow to be axisymmetric so along
with no / dependence, we have uh ¼ 0 on h¼ 0 and h ¼ p, i.e., at
g ¼ 61. This implies wr ¼ 0 at g ¼ 61; hence, w is constant at
g ¼ 61. From the far-field condition, the constant vanishes, hence,
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w ¼ 0 at g ¼ 61:

We therefore define

Qj ¼
ðg
�1

LjðgÞ dg

so that Qj¼ 0 at g ¼ �1. Here, Qj are a modified set of orthogonal
Gegenbauer polynomials. The first few such polynomials are

Q0 ¼ gþ 1; Q1 ¼ 1
2

g2 � 1
� �

;
Q2

Q1
¼ g;

Q3

Q1
¼ 1

4
ð5g2 � 1Þ;…

Hence, the general solution for w is given by

w ¼
X1
j¼1

~Ajr
jþ1 þ ~Bjr

�j
	 


Qj:

It should be noted that we start at j¼ 1, since Q0 does not satisfy the
axisymmetric condition. To solve now solve w ¼ E2w, we let w ¼
wI þ wc and

E2wI ¼ w ¼ ~Ajr
jþ1 þ ~Bjr

�j
	 


Qj: (B2)

At the same time, we notice that

E2 NrrQj
� � ¼ Nrr�2ðrðr� 1Þ � jðjþ 1ÞÞQj;

using Eq. (B1). Now, we compare the powers of r. If we let Nj ¼ Aj

with jþ 1 ¼ r� 2 ) r ¼ jþ 3, then ~Aj ¼ Ajð4jþ 6Þ. If we let
Nj ¼ Bj with �j ¼ r� 2 ) r ¼ 2� j, then ~Bj ¼ Bjð2� 4jÞ.
Hence,

wI ¼
X1
j¼1

Ajr
jþ3 þ Bjr

2�j
	 


Qj;

where

E2wI ¼
X1
j¼1

Ajð4jþ 6Þrjþ1 þ Bjð2� 4jÞr�j
	 


Qj:

Now, E2wc ¼ 0, so that

wc ¼
X1
j¼1

Cjr
jþ1 þ Djr

�j
	 


Qj:

Hence, we have found that

w ¼
X1
j¼1

Ajr
jþ3 þ Cjr

jþ1 þ Bjr
2�j þ Djr

�j
	 


Qj; (B3)

ŵ ¼
X1
j¼1

Âjr
jþ3 þ Ĉ jr

jþ1 þ B̂jr
2�j þ D̂jr

�j
	 


Qj: (B4)

Now, $2u ¼ $p, so $� ð$� uÞ ¼ �$p. Hence,

$� u ¼ � 1
r sinðhÞ E2w

� �
e/;

which implies that

$p ¼ $� 1
r sinðhÞ E2w

� �
e/

� �
:

By using the curl in spherical polar coordinates, we obtain

$p ¼ 1
r2 sinðhÞ

@ E2w
� �
@h

er � 1
r sinðhÞ

@ E2w
� �
@r

eh:

By using the gradient in spherical polar coordinates, we obtain

@p
@r

¼ 1
r2 sinðhÞ

@ E2w
� �
@h

and
1
r
@p
@h

¼ � 1
r sinðhÞ

@ E2w
� �
@r

:

Using g ¼ cosðhÞ, we obtain
@p
@r

¼ � 1
r2
@ E2w
� �
@g

and
@p
@g

¼ 1
1� g2

@ E2w
� �
@r

:

Now, w ¼ E2wI , where

E2wI ¼
X1
j¼1

Ajð4jþ 6Þrjþ1 þ Bjð2� 4jÞr�j
	 


Qj:

Solving for p yields

p ¼ p0 þ
X1
j¼1

�Aj
4jþ 6

j
rj þ Bj

2� 4j
jþ 1

r�j�1
� �

Q0
j; (B5)

and similarly,

p̂ ¼ p̂0 þ k
X1
j¼1

�Âj
4jþ 6

j
rj þ B̂j

2� 4j
jþ 1

r�j�1
� �

Q0
j: (B6)

APPENDIX C: PROPERTIES OF THE GEGENBAUER
POLYNOMIALS

The Qjs are a modified set of Gegenbauer polynomials satisfy-
ing the ordinary differential equation

2Q1Q
00
j ¼ jðjþ 1ÞQj for j 2 N (C1)

along with Qj¼ 0 at g ¼ 61. The Qjs are orthogonal functions with
a weight function of Q�1

1 [Leal39 Eq. (7-123)] sinceð1
�1

QiQj

Q1
dg ¼ � 4di;j

jðjþ 1Þð2jþ 1Þ :

Similarly, Q0
j s and the Q00

j s are linearly independent when applying
the weight functions 1 and Q1, respectively. We find thatð1

�1
Qi

0Q0
j dg ¼ 2di;j

2jþ 1
;

ð1
�1

Q1Q
00
i Q

00
j dg ¼ � jðjþ 1Þdi;j

2jþ 1
:

We notice that the polynomials satisfy the recursion relations

Qjþ1 ¼
jQ0

1Qj þ 2Q1Q0
j

jþ 2
for j � 0; (C2)

Qj�1 ¼
ðjþ 1ÞQ0

1Qj � 2Q1Q0
j

j� 1
for j � 2: (C3)

For j � 1, we have

Q2
1

Qj

Q1

� �0 !0

	 Q00
j Q1 � Qj ¼ 1

2
ðjþ 2Þðj� 1ÞQj; (C4)
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Q1Q
0
j ¼

ðjþ 1Þðjþ 2ÞQjþ1 � jðj� 1ÞQj�1

2ð2jþ 1Þ ; (C5)

Q0
1Qj ¼ ðjþ 2ÞQjþ1 þ ðj� 1ÞQj�1

2jþ 1
: (C6)

Furthermore, for j � 3, we have

Q1Q
0
1

Qj

Q1

� �0
¼
Xj�2

m¼1

1þ ð�1Þj�m

2jðjþ 1Þ mðmþ 1Þð2mþ 1ÞQm þ ðj� 1ÞQj:

(C7)

We notice thatð1
�1

Qjdg ¼ � 2
3
d1;j;

ð1
�1

gQ0
jdg ¼ 2

3
d1;j; (C8)

ð1
�1

Q2j

Q1
dg ¼ 0;

ð1
�1

Q2j�1

Q1
dg ¼ 2

jð2j� 1Þ ; (C9)

ð1
�1

Q0
1Q2j�1

Q1
dg ¼ 0;

ð1
�1

Q0
1Q2j

Q1
dg ¼ 2

jð2jþ 1Þ : (C10)

Furthermore, we notice that

Qk

Q1
¼ 1 on g ¼ 1; (C11)

Qk

Q1
¼ ð�1Þkþ1 on g ¼ �1: (C12)

We can write each Qj as a sum in powers of g, i.e.,

Qj ¼
Xjþ1

m¼0

kmg
m;

where

kmþ2 ¼ km
mðm� 1Þ � jðjþ 1Þ
ðmþ 1Þðmþ 2Þ for 0 � m � j� 1:

If j is even, then k0 ¼ 0 and k1 ¼ ð�1Þj=2ðj�1Þ!
2j�1 j

2ð Þ! j
2�1ð Þ!, while if j is odd, then

k1 ¼ 0 and k0 ¼ ð�1Þðjþ1Þ=2ðj�1Þ!
2j jþ1

2ð Þ! j�1
2ð Þ! .

APPENDIX D: DRAG ON THE DROPLET

The equation for the surface of the droplet is given by Eq. (27),
and so, we have

rh ¼ ð1þ ef Þeh � efg sinðhÞer and r/ ¼ ð1þ ef Þ sinðhÞe/:
The vector cross product of these vectors is

rh � r/ ¼ ð1þ ef Þ2 sinðhÞer þ efgð1þ ef Þ sin 2ðhÞeh:
Hence,

jrh � r/j ¼ ð1þ ef Þ sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ef Þ2 þ e2f 2g sin 2ðhÞ

q
;

which reduces to jrh � r/j � ð1þ 2ef Þ sinðhÞ in the small e-limit.
We then have

Cd ¼
ð2p
0

ðp
0
s n � ezð1þ 2ef Þ sinðhÞdhd/

¼ 2p
ð1
�1

sn � ezð1þ 2ef Þdg

¼ 2p
ð1
�1

1þ 2ef
N

gð2err � pÞdg

þ 4p
ð1
�1

1þ 2ef
N

e
r
gfg � 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
erhdg

� 2p
ð1
�1

1þ 2ef
N

e
r
fgð1� g2Þð2ehh � pÞ

� �
dg

¼ 2p
ð1
�1

1þ 2ef
N

g
4
r3
wg �

2wrg

r2
� p

� �
dg

þ 4p
ð1
�1

1þ 2ef
rN

e
r
gfg � 1

� �
wr

r
� wrr

2
� Q1

r2
wgg

� �
dg

þ 8pe
ð1
�1

1þ 2ef
r3N

fgQ1 wrg �
gwr

2Q1
� wg

r
� p
2r2

� �
dg;

where r is evaluated on the surface of the droplet, i.e., Eq. (19),
which is substituted in and linearizing we obtain

Cd ¼ 2p
ð1
�1

g 4w0
g�2w0

rg�p0
	 


�2w0
r þw0

rr þ2Q1w
0
ggdg

þ2ep
ð1
�1

g 4w1
g�2w1

rg�p1
	 


�2w1
r þw1

rr þ2Q1w
1
ggdg

þ2ep
ð1
�1

f g 4w0
gr �4w0

g�2w0
rrg�p0r �2p0

	 

dg

�2ep
ð1
�1

fgg½w0
rr þ2Q1w

0
gg�dg

�4ep
ð1
�1

fgQ1ðp0þ2w0
g�2w0

rgÞdg

þ2ep
ð1
�1

f ½�w0
rr þw0

rrr þ2Q1ðw0
ggr �w0

ggÞ�dg: (D1)

Using integration by parts on the last line in Eq. (D1) and simplify-
ing, we obtain

Cd ¼ 2p
ð1
�1

g 4w0
g � 2w0

rg � p0
	 


� 2w0
r þ w0

rr þ 2Q1w
0
ggdg

þ 2ep
ð1
�1

g 4w1
g � 2w1

rg � p1
	 


� 2w1
r þ w1

rr þ 2Q1w
1
ggdg

þ 2ep
ð1
�1

f ½2Q1p
0
g � gp0r þ ð4g2 � 2Þw0

gg�dg

þ 2ep
ð1
�1

f ½w0
rrr � gw0

rrg � 2Q1w
0
ggr�dg:

Using the zeroth-order solutions in Eqs. (34), (35), and (38), we
obtain

Cd ¼ p
ð1
�1

g2ð9� 6B0
1Þ � gp0 þ 3B0

1 � 3dg

þ 2ep
ð1
�1

g 4w1
g � 2w1

rg � p1
	 


� 2w1
r þ w1

rr þ 2Q1w
1
ggdg ;
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which further reduces to

Cd ¼ 4pB0
1 þ 2ep

ð1
�1

g 4w1
g � 2w1

rg � p1
	 


dg

� 2ep
ð1
�1

2w1
r � w1

rr � 2Q1w
1
ggdg:

Substituting in the first-order solutions (44), (45), and (53) and sim-
plifying yields

Cd ¼ 4pB0
1 þ 4ep

ð1
�1

g
X1
j¼1

Q0
jðÂ

1
j þ Ĉ

1
j Þ j� 2þ 3

jþ 1

� �
dg

þ 4ep
ð1
�1

g
X1
j¼1

Q0
jD

1
j 4� 3

jþ 1

� �
dg

þ 2ep
ð1
�1

X1
j¼1

Qj ðÂ1
j þ Ĉ

1
j Þð2j2 � 2Þ þ D1

j ð2þ 4jÞ
	 


dg:

Finally, using the equations in Eq. (C8), we obtain

Cd ¼ 4pB0
1 þ

4
3
ep Â

1
1 þ Ĉ

1
1 � D1

1

	 


¼ 4pB0
1 þ

4
3
ep 3B0

1a1 þ abc1
� �

þ 2
3
epð15� 23B0

1 þ 10ðB0
1Þ2Þb1: (D2)

APPENDIX E: EVALUATING THE STEADY-STATE
DROPLET SHAPE FUNCTION f

Evaluating Eq. (73) at g¼ 0 yields

f jg¼0 ¼ � vCa
4

nþ 5
2
qb2

� �
þ OðCa2Þ

using the value of k0 in Appendix C. This shows that f converges at
g¼ 0. The solution appears to converge for other values of g as well,
for example, at g ¼ 1

2,

f jg¼1
2
� 3v

2
� 5vCaqb2

32
� 0:162 847vCanþ OðCa2Þ

and at g ¼ cos p
12

� � ¼ ffiffi
6

p þ ffiffi
2

p
4 � 0:965 926,

f j
g¼
ffiffi
6

p þ ffiffi2p
4

� 3v

ffiffiffi
6

p þ ffiffiffi
2

p

4
þ 5vCaqb2

8
5þ 3

ffiffiffi
3

p� �
þ 2:991 395vCanþ OðCa2Þ:

However, using Eq. (C12), we find that

f jg¼61 ¼ 3v6
5vCa
12

3qb2 þ n
	 


6
X1
j¼3

vCanð4j� 1Þ
2ðjþ 1Þð2j� 3Þ þ OðCa2Þ:

Notice each term in the series is of Oðj�1Þ for large j, so the series
does not converge, which means that f does not exist at g ¼ 61.
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