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Abstract
Socially aware robot navigation is gaining popularity with the increase in delivery and assistive robots. The research is
further fueled by a need for socially aware navigation skills in autonomous vehicles to move safely and appropriately in
spaces shared with humans. Although most of these are ground robots, drones are also entering the field. In this paper,
we present a literature survey of the works on socially aware robot navigation in the past 10 years. We propose four
different faceted taxonomies to navigate the literature and examine the field from four different perspectives. Through
the taxonomic review, we discuss the current research directions and the extending scope of applications in various
domains. Further, we put forward a list of current research opportunities and present a discussion on possible future
challenges that are likely to emerge in the field.
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1 Introduction

Socially aware robot navigation has steadily gained interest
in recent years, becoming a research field of its own. With
the increase in the number of service robots and autonomous
vehicles, it is crucial for them to be able to carry out their
tasks around humans efficiently and seamlessly. This applies
not only to their ultimate goals but also to all skills that these
build on top of, including navigation. Socially appropriate
behavior is key for a robot to gain acceptance from humans
and prevent causing any discomfort. In addition to mobile
robots, drones and autonomous vehicles have also entered
this field in recent years, taking inspiration from existing
research on socially aware mobile robot navigation. In this
paper, we conduct a survey and analyze the literature based
on different aspects of socially aware robot navigation,
with special emphasis on how the navigation is currently
implemented in different types of robots and how these
differences affect human perception of comfort and safety
(Fig. 1).

While existing surveys have provided valuable insights,
there is a need for a new comprehensive survey that
addresses a broader range of robots and contributes with a
more inclusive definition of socially aware robot navigation.
Furthermore, our survey analyzes various research areas
required to support and advance the field. These include
studies, tools, methods of evaluation, and human trajectory
and intention prediction techniques. Most importantly, we
present multi-faceted taxonomy-based classifications for
socially aware robot navigation and examine the problem
from different angles. Our aim in proposing taxonomies is
to help the reader navigate the vast number of contributions
and select those that are most relevant to their discipline and
objectives. We hope that this classification will not only be
pertinent to robot developers but also to application designers

Figure 1. An autonomous ground robot figuring its way among
humans.

and evaluators and act as a basis for interdisciplinary
cooperation on the topic.

The remaining of this section introduces essential
definitions and presents a preliminary analysis of the
literature, including previous surveys in the field. In
section 2, we propose a taxonomy that is used to refine the
analysis in section 3 (Types of robots), section 4 (Planning
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and Decision-Making), section 5 (Situation Awareness and
Assessment), and section 6 (Evaluation methods and tools).
Section 7 puts forward a set of recommendations to enhance
socially aware robot navigation. Finally, section 8 covers
prospective challenges in the field.

1.1 Socially Aware Robot Navigation

Navigation is the activity whereby an embodied agent (a
robot or a person) changes its position in an environment
to reach a goal. While navigating, the agent may encounter
other agents who are sharing the same environment.
This subject has received different names in the robotics
community, being the frequently used ones ‘human-
aware navigation’, ‘social navigation’, and ‘socially aware
navigation’. ‘Human-aware’ is used in the sense that
the design and the algorithm need to take into account
specifically the presence of the human in the proximity of the
robot, their activity, and preferences. No assumption is made
in the wording on the fact that the robot acts naturally or
socially. ‘Social navigation’ means navigation that integrates
social rules, protocols, and roles that are generally used
by humans when they act or interact with other humans.
The risk here is the inability to distinguish, at least in the
wording, between human social behavior and robot social
behavior and capabilities. ‘Socially aware navigation’, while
insisting on the social aspect of navigation in the proximity
of humans, does not, in the wording, enforce the need for
the robot social navigation to be identical to human social
navigation. Therefore, we choose to use the term socially
aware robot navigation in the rest of the paper and call
the agents involved in such navigation as social (navigation)
agents.

To move toward specific definitions, we propose a set of
properties for social (robotic) agents. Thus, a robot can be
called socially aware if:

1. It detects human agents and treats them as special
entities, with their safety as the utmost priority.

2. Its behavior is designed to minimize disturbance and
discomfort to human agents and cause little to no
confusion to them.

3. It exhibits its navigation intentions, explicitly or
implicitly.

4. In case of a conflict, it assesses the situation and takes
the action that it expects will resolve the conflict in a
social manner, potentially compromising its own task.

In the above, the term human agent is used to refer not
only to individual humans but also to vehicles and robots
controlled by them. To satisfy the last property (4, above),
the robot requires an understanding of human intentions and
negotiation capabilities. However, human intentions are hard
to predict as they are often context dependent. Therefore,
most of the existing research in socially aware navigation
systems focuses on the first three aspects. Although, to the
best of our knowledge, there is no explicit consensus, in our
opinion, for a robot navigation algorithm to be called socially
aware it should at least satisfy the first two properties, which
can be seen as the minimal requirements.

1.2 Article Collection and Preliminary Analysis
Although socially aware robot navigation has been a topic
of research for over 20 years (Tadokoro et al. 1995; Wilkes
et al. 1998), there has been an increasing number of
publications over the past 6 years. This can be observed
in Fig. 2, where the yearly trend of the number of papers
on socially aware navigation in IEEE Xplore is shown as a
blue line. This trend is approximately exponential, showing
a fast-growing interest in the field. The slight decrease in
2020 could be attributed to COVID-19. We have collected
articles from different sources like IEEE Xplore, ACM
digital library, and Google Scholar that match the search
query, (‘social’ OR ‘human-aware’) AND ‘navigation’ AND
(‘robot’ OR ‘autonomous vehicle’ OR ‘drone’). More than
200 articles have been used to write this survey, which
are either directly associated with socially aware robot
navigation or the supportive literature that is required by the
field. To keep the length of this survey within reasonable
limits, a comprehensive review of the collected papers was
conducted to select distinctive proposals that would form
a representative subset of what has been done in socially
aware robot navigation. For this selection, we have restricted
ourselves to the past 10 years since there are previously
existing surveys like Kruse et al. (2013) that cover most of
the papers until 2012. The papers in the survey at hand and
their distribution by year are presented in Fig. 2. Although
there are papers addressing socially aware navigation in
autonomous vehicles and drones, a large portion of papers
correspond to mobile robots, as it has generally been the core
area of focus. Since our main goal is taxonomic analysis, we
do not think that it suffers from this limitation.

1.3 Previous Surveys
The rise of research in socially aware robot navigation
has led to an increase in surveys in the field. In one of
the early surveys, Kruse et al. (2013) presented diverse
approaches used to tackle socially aware robot navigation
and the accompanying challenges.

It also briefly covered evaluation methodologies. The
survey in (Rios-Martinez et al. 2015) focused on how
proxemics has been adapted to perform socially aware
robot navigation around individuals and groups of people
while taking affordance spaces into account. The review
presented in (Pol and Murugan 2015) covered different
strategies employed for planning, Chik et al. (2016) reviewed
literature based on different navigation frameworks and
their components. A literature survey on the required
level of robot perception, mapping, and awareness to
properly navigate human environments was provided in
(Charalampous et al. 2017). It further provided an integrated
framework for analyzing pedestrian behavior in shared
spaces and described the limitations of the approaches at
the time. Recent works like Ridel et al. (2018) and Rudenko
et al. (2020) present detailed literature reviews on pedestrian
behavior and human motion prediction methodologies.
Honig et al. (2018) presented a comprehensive review
of person-following robots and the different elements
involved in their design and evaluation. In recent years,
research on the social aspects of autonomous vehicles
(AVs) has started to exploit the vast literature available on
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Figure 2. Distribution of papers in this survey by year. Yearly trend of publications in IEEE XPlore is shown in blue.

vehicle-pedestrian interactions. For example, the survey in
(Rasouli and Tsotsos 2019) addresses pedestrian behaviors,
communication modalities, and strategies for AVs. More
recent works like Prédhumeau et al. (2021) study human-
robot-vehicle interactions in shared spaces and propose an
integrated framework to systematically analyze studies in the
field.

The survey in (Mavrogiannis et al. 2023) divides the
problem into three types of challenges (planning, behavioral,
and evaluation) and explains how they are approached in
the literature, along with open questions. The work in
(Möller et al. 2021) views the problem from the perspective
of visual understanding and planning to provide a deeper
understanding of different aspects of socially aware robot
navigation and the available datasets. A list of works in
the field is provided in (Ngo 2021). There are also more
focussed surveys like Gao and Huang (2022) that present
different types of evaluation strategies employed in the field.
The work in (Mirsky et al. 2021) defines conflicts in socially
aware navigation settings and proposes a taxonomy around
them to organize the literature. It presents the possible future
extensions of the taxonomy and provides a checklist to verify
while contributing to the field.

In this context, we extend the boundaries of existing
surveys by providing a comprehensive multi-faceted
classification system. Although Mirsky et al. (2021)
also provide a taxonomy in their recent survey, our
classification covers multiple dimensions of socially aware
robot navigation, taking into account the type of robot,
planning and decision-making aspects, situation awareness
and assessment, as well as evaluation methods and tools.
By adopting this multi-dimensional approach, we aim to
offer a holistic view of the field and address the complex

interplay of the different factors taking place in socially
aware robot navigation. For example, while surveys that
focus on particular types of robots exist (e.g., autonomous
vehicles in (Rasouli and Tsotsos 2019)), ours is the first
explicitly considering the different types of robots and how
their specific features influence navigation.

Furthermore, we incorporate topics that have not received
much attention in previous surveys. This is the case of
contextual information that can be obtained from the
environment, the task, and pedestrian intention detection.
Environmental and task contexts are included as part of
the planning open problems in (Mavrogiannis et al. 2023),
however, we provide a deeper analysis of the related works.
In our review, we extend the literature analysis of these topics
through specific branches of the proposed taxonomy. While
Möller et al. (2021) address different contexts and tasks,
they emphasize human-robot interaction rather than socially
aware navigation. Our primary focus is socially aware
navigation. Additionally, although intentions are analyzed
in (Mavrogiannis et al. 2023), the discussion pertains to how
robots should communicate their intentions. In our survey,
we include the detection of human intentions as a specific
topic in our situation awareness and assessment taxonomy.
The communication of robot intentions is also analyzed in
the proposed planning and decision-making taxonomy.

Regarding evaluation, most recent surveys analyze in
depth the tools used for evaluating socially aware robot
navigation proposals (Gao and Huang 2022; Mavrogiannis
et al. 2023; Möller et al. 2021). These tools encompass
studies, datasets, simulators, and metrics. We extend the
analysis of socially aware navigation evaluation provided
in other reviews by classifying the evaluation methods
into qualitative and quantitative. This classification aims to



offer an additional perspective on the existing evaluation
methodologies, providing deeper insight into the limitations
and challenges in evaluating socially aware navigation.

In summary, our survey stands out by offering a
multi-dimensional perspective on socially aware navigation,
covering aspects often discussed in less depth, and providing
an inclusive classification system. This inclusive approach
fosters a more holistic understanding of the field, offering
a comprehensive overview of the state of the art in
socially aware robot navigation. We believe these unique
features distinguish our work and establish its significance
in complementing existing surveys in the domain.

2 Proposed Taxonomies
We propose multi-faceted taxonomies for classifying and
arranging the literature into four distinct aspects related
to socially aware navigation. For the classification, we
conducted a deductive thematic analysis (Clarke et al. 2015),
where a predefined set of themes (taxonomy trees) are
defined from the start and the articles fit into them. This
section presents the review process and the final taxonomies.

2.1 Review Process
The review procedure started with multiple discussions on
arranging the articles into a unified classification that can
reflect different aspects of socially aware robot navigation.
Four different multi-faceted taxonomies were selected, as
combining multiple non-overlapping perspectives into a
single taxonomy is not ideal.

Once the taxonomies were decided and the nodes were
defined, we used a tag to represent each node. The tags can
be seen as the codes, and the taxonomies can be seen as the
themes in thematic analysis. Using these node definitions
and tags, we reviewed every article collected and made a
summary for each. Some articles were discarded during this
process, and the remaining ones were assigned multiple tags
corresponding to one or more of the four taxonomies. The
exclusion criteria used were: a) the paper refers to socially
aware navigation but it is not the core topic, and b) the
paper provides only a small incremental contribution over
those already covered in the survey (frequently by the same
authors). We did multiple passes on these reviews, which
resulted in improved taxonomies and definitions. There were
major revisions in some of these taxonomies, which required
revisiting the literature and reassigning tags according to the
new classification.

At the end of this process, we were left with 193
articles with multiple tags that were utilized to classify them
across different perspectives. For each article, along with a
summary, we included descriptions of the aspects of the work
associated with each assigned tag to facilitate analysis.

2.2 Taxonomies Description
This section provides a detailed description of the proposed
taxonomies and their associated taxa: robot type, planning
and decision-making, situation awareness and assessment,
and evaluation and tools.

2.2.1 Taxonomy for Robot type: With the advancements
in delivery, logistics, automation, and service sectors, various

types of robots are being deployed in human environments.
Although there are common norms that apply to each type

Personal Mobility
Vehicles (PMVs)

Robot

Ground

Aerial

Mobile Robots

Autonomous
Vehicles

Rotorcraft

Wheeled

Legged

Aquatic

Fixed Wing

Flapping Wing

Aerostat

Figure 3. Taxonomy based on robot type.

of robot, there are also specific norms that differentiate
them. These specificities affect the design of their socially
aware navigation strategies. Therefore, we propose our first
classification of socially aware navigation papers based on
the robot type as shown in Fig. 3. In this taxonomy, the facets
in the leaf nodes are mutually exclusive for most works.

Definitions

1. Ground: This taxon contains all the articles with
robots that maintain contact with ground while they
move.

(a) Mobile Robots: A robot that has the capa-
bilities to sense and move in an environment
autonomously. They do not carry any human
passengers while they move.

i. Wheeled Robots: Any kind of mobile robot
with wheels (differential, omni, Ackermann,
etc.).

ii. Legged Robots: Any kind of legged robot
(bi-ped, tri-ped, quadra-ped, etc.).

(b) Autonomous Vehicles: Autonomous systems
that can sense and move among human
environments while carrying or transporting
human passengers. It includes personal mobility
vehicles (PMVs) as well.

2. Aerial: This taxon consists of the articles with robots
that can move or fly in the air without any physical
support from the ground. This classification is based
on the type of mechanism used to generate the flight
(Hassanalian and Abdelkefi 2017).

(a) Rotorcraft: The rotors are used to generate the
thrust in this of robots. It consists of single rotor
systems like helicopters and multi-rotor drones.

(b) Aerostat: The lighter-than-air flying robots that
float in the air and use small propelling systems
to move around. It contains systems like blimps
and hot-air balloons.

(c) Fixed Wing: All the fixed wing drones like
airplanes and gliders.

(d) Flapping Wing: All the ‘ornithopter’ drones
that use bird or insect type wing flapping
mechanisms.
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3. Aquatic: This taxon contains all the articles that deal
with socially aware navigation in the robots that move
on or under the surface of the water. For now, we have
not included any further classification as this taxon
of robots does not have any works on socially aware
navigation yet.

2.2.2 Taxonomy for Planning and Decision-Making:
This classification includes planning and motion decision-
making, which are core topics in robot navigation. Other
characteristics related to different types of decision-making
have also been included in this classification, namely types
of tasks, communication, and negotiation strategies. Fig. 4
shows this classification and its sub-divisions. Here, the
facets are not mutually exclusive.
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Mobile Robots

Autonomous
Vehicles

Rotorcraft
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Decision-Making

Communication
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Navigation Task
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Explicit

Both

Assistive

Collaborative
Negotiation

Local Motion
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Global motion
decision-making
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Planning
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Learning

Learning

Others

Situation Awareness
and Assessment

Environment

Social Norms

Obstacles

Object
Interactions

Proxemics

Agents

Others

Others

Semantics

Trajectory
Prediction

Interactions
and Actions

Intentions

Others
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Methods
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Quantitative
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Subjective

Simulators

Datasets

Studies
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Benchmarks

Wheeled

Legged

Aquatic

Fixed Wing

Flapping Wing

Aerostat

Figure 4. Taxonomy based on planning and decision making.

Definitions

1. Communication: This taxon considers articles that use
some form of intentional communication where the
robot communicates or responds to humans’ signals.

(a) Implicit: The form of communication where the
recipient is expected to infer the message from
implicit signals like body motion or posture,
force, or gaze.

(b) Explicit: The form of communication is through
speech, video, or gestures, where agents explic-
itly convey their intentions.

(c) Both: Strategies that use a mixture of implicit
and explicit communication forms.

2. Types of Navigation Task: This taxon classifies the
works based on robots’ and humans’ roles in the
navigation task.

(a) Independent: Tasks where the robot performs
socially aware navigation and is not tightly
bound to any human (e.g., crowd navigation,
delivery). The pedestrians are treated as social
dynamic obstacles, but no interaction occurs.

(b) Assistive: The navigation task where a robot or
a vehicle provides assistance or support to one
or more people. Assistance can be provided in
several ways, like following or accompanying
a person, or taking the shape of transportation

services (e.g., pushing a wheelchair or running
a shuttle).

(c) Collaborative: A robot and human agent working
together to coordinate and successfully navigate
through complex environments, such as narrow
hallways or doorways, where cooperative effort
and coordination are needed to reach the desired
destination.

3. Negotiation: This taxon considers articles that adapt
the robot’s navigation based on some form of dynamic
information exchange (e.g., asking for permission to
pass, different forms of inducement).

4. Local Motion Generation: This taxon includes
articles that present methodologies or improvements
for lower-level motion generation like trajectory or
velocity commands.

(a) Planning: Methodologies that rely on trajectory
generation or forward simulations for getting the
robot’s command velocity (e.g., DWA, MPC,
Elastic Bands).

(b) Force: Methodologies that rely on potential
fields and object forces to generate velocity
command for the robot (e.g., Social Force Model,
Artificial Potential Fields).

(c) Learning: Methodologies that use data and/or
learn models to generate the velocity command
directly from the observations (or input).

(d) Others: Any other methodology that cannot be fit
into the above strategies.

5. Global Motion Decision-Making: This taxon includes
the articles that use a global representation to generate
a decision and/or path to assist motion generation.

(a) Planning: Methodologies that use geometric or
formal planning approaches.

(b) Learning: Methodologies that are data-driven
and/or use learned models.

2.2.3 Taxonomy for Situation Awareness and Assess-
ment: This classification covers situation awareness follow-
ing the definition by Ensley (1995): “the perception of the
elements in the environment within a volume of time and
space, the comprehension of their meaning, and the projec-
tion of their status in the near future”. Because the meaning
of the term ‘comprehension’ is debatable when it comes to
robots, this classification will mainly focus on the representa-
tion and prediction of the state of agents and other items that
are modeled for the purpose of socially aware navigation.
This includes other aspects related to physical elements
of the environment and non-tangible elements involved in
socially aware navigation that may affect decision-making,
like the social norms. Fig. 5 shows the main taxa and the
different branches that arise from them.

Definitions

1. Environment: This taxon considers aspects related
to the physical space in which the robot navigates.
Collective issues such as the density of humans are
also considered within this.

(a) Semantics: Approaches that consider informa-
tion related to the type or purpose of the area
where socially aware navigation takes place.
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Figure 5. Taxonomy based on situation awareness and
assessment.

(b) Object Interactions: Approaches that consider
human-object or robot-object relations.

(c) Obstacles: The approaches that represent the
area of the space that is not available for naviga-
tion, regardless of whether the representation is
purely metric (e.g., occupancy grids), symbolic,
or hybrid.

(d) Others: Any other aspect of the environment
apart from those mentioned above.

2. Agents: This taxon describes how are agents
represented in the articles, if any. Although the
definition does not explicitly restrict the concept of
agents to humans, in practice, they are the only
external agents found in the literature, except for the
case of autonomous vehicles.

(a) Trajectory Prediction: Approaches using future
human pose estimations.

(b) Interactions and Actions: Approaches consider-
ing representation and usage of actions, as well
as human-human and human-robot interactions.

(c) Intentions: Approaches that use or detect agent’s
intention for socially aware navigation.

(d) Others: For other aspects of the agents that may
be exploited for the navigation.

3. Social Norms: This taxon includes the articles that
discuss the aspects related to the comfort, safety and
humans’ preferences.

(a) Proxemics: Approaches considering social dis-
tances rather than just collision avoidance.

(b) Others: Approaches including other frequently
used conventions during human navigation (e.g.,
walking on the right or left-hand side).

2.2.4 Taxonomy for Evaluation and Tools: This classifi-
cation considers the strategies employed for the evaluation
of the socially aware navigation schemes. Various types of
evaluation methodologies that are employed to assess the
robot’s behavior and the tools that support or are required
for the evaluation are included in this classification. The taxa
of this classification are shown in Fig. 6.
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Figure 6. Taxonomy for tools and evaluation methods.
Definitions

1. Methods: This taxon contains the articles that have
some form of evaluation of socially aware navigation.

(a) Qualitative: Methods that use numerical/non-
numerical data and use subjective or comparative
analysis for evaluation.

(b) Quantitative: Methods that use numerical data
and objective analysis (based on metrics or
benchmarks) for evaluation.

2. Tools: This taxon contains the articles that provide
or propose tools for advancement and evaluation of
socially aware navigation.

(a) Simulators: Articles that propose new simulators
or strategies to improve the human-robot
navigational interaction in simulation.

(b) Datasets: Articles that propose new datasets
that can advance socially aware navigation. This
could be in the form of human-robot navigational
data or rich human-human interaction data.

(c) Studies: Articles containing user studies in wild
or controlled spaces that analyze human-robot
interaction which could be employed to improve
socially aware navigation.

(d) Metrics and Benchmarks: Articles that propose
new metrics or benchmarks.

3 Types of robots
More than 80% of the articles in this survey use some kind of
robot either physically or in simulation to implement or test
a socially aware navigation scheme, study the interactions
or collect data. Based on the proposed classification, 156
papers are distributed among various types of robots. As it
can be seen from Fig. 7, a large portion of papers (116) fall
under the mobile robots taxon, and the rest are distributed
between autonomous vehicles (22) and aerial robots (18).
Only one paper by Cunningham et al. (2019) applies their
navigation scheme to a mobile robot and an autonomous
car. Aerial robots and autonomous vehicles recently started
exploring the idea of socially aware navigation and there
are preliminary works that use the term ‘social’ or ‘human-
aware’ or ‘socially aware’. The navigation of autonomous
wheelchairs has been a research topic for quite some
time, but the field has not been as active in recent years
(Sivakanthan et al. 2022). We have not found in the literature
any paper dealing with socially aware navigation for sea or
underwater robots. Thus, this section focuses only on ground
and aerial robots.
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Figure 7. Distribution of papers by Robot type. The figure is
best viewed zoomed in using a digital version.

3.1 Ground Robots
Ground robots taxon encompasses a wide variety of
platforms like mobile humanoid robots, simple mobile
bases, wheelchairs, autonomous cars, delivery pods, legged
robots, etc., that majorly operate on the ground. Although
most of the works presented in this survey are based on
wheeled robots (or vehicles), this taxon does not discard
the possibility of having socially aware navigation using
legged robots. For instance, Karnan et al. (2022) uses
Boston Dynamics’ Spot to build the dataset for socially-
aware navigation. Neggers et al. (2022) uses bi-pedal NAO
robot for a user study. Robots like Spot and Cheetah already
have good controllers for mobility (Di Carlo et al. 2018;
Zimmermann et al. 2021) and we expect to see more works
dealing with socially aware navigation using these robots or
other kinds like bi-peds.

socially aware robot navigation originated as a part
of human-robot interaction (HRI) research (Singamaneni
2022). Architectures were developed to deploy an interactive
robot among humans and navigation remained a challenging
task from the very beginning. The initial works on socially
aware navigation always consisted of a higher-order task
to accomplish like guidance or assistance. Due to this,
many of the works on socially aware navigation use mobile
humanoid robots (Singamaneni et al. 2021; Teja S. and
Alami 2020; Hauterville et al. 2022; Ferrer et al. 2013) that
have the appearance of a humanoid but use wheels instead of
legs to move. As time progressed, socially aware navigation
became a field on its own rather than a mere requirement for
other tasks.

Some of the mobile humanoid robots that are used by
the research community are shown in Fig. 8. Although
the PR2 robot is relatively old, it is still being used by
many researchers (Khambhaita and Alami 2017; Mead and
Matarić 2017; Kruse et al. 2014; Teja S. and Alami 2020;
Singamaneni et al. 2021; Ramirez et al. 2016; Lu and
Smart 2013; Khambhaita and Alami 2017; Forer et al. 2018;

Figure 8. Mobile Robots: (a) Spencer (Triebel et al. 2016), (b)
PR2 (Singamaneni et al. 2021), (c) Pepper (Angelopoulos et al.
2022), (d) Ivo (Gil et al. 2021), (e) Tiago (Hauterville et al. 2022)
and (f) Tibi (Ferrer et al. 2013).

Singamaneni et al. 2022) because of its robust hardware,
multiple high fidelity sensors for perception and open
source support of the platform. The other frequently used
humanoid robot for socially aware navigation is Pepper,
which is commercially available and closer to human in
appearance (Teja S. and Alami 2020; Singamaneni et al.
2021; Dugas et al. 2020; Bera et al. 2019; Randhavane
et al. 2019; Bera et al. 2018; Angelopoulos et al. 2022).
Pepper has tactile sensors and multiple language support
for human-robot interaction and is often used to investigate
short-range navigation tasks near humans. Tiago is a more
recent commercial humanoid robot that is being used by the
robot navigation community (Macenski et al. 2020). This
robot is built on an open-source platform which allows the
user to make modifications to the packages as required.
Hauterville et al. (2022) uses this robot to test a socially
aware navigation stack in Gazebo. From time to time,
specialized robots like Tibi (Ferrer et al. 2013), IVO (Gil
et al. 2021), Robovie (Anvari and Wurdemann 2020; Senft
et al. 2020) or SPENCER (Triebel et al. 2016) are built to
have more customizability and to address specific needs of
the researchers. These robots allow the user to modify the
components or the software stacks easier in comparison to
commercial robots.

Given that arms are not strictly necessary to perform
socially aware navigation, most works just use mobile bases
(Boldrer et al. 2022; Vasconcelos et al. 2015; Truong et al.
2017; Liu et al. 2020; Chen et al. 2017; Charalampous et al.
2016; Guldenring et al. 2020; Chen et al. 2020; Banisetty
et al. 2021; Sathyamoorthy et al. 2020; Jiang et al. 2016;
Chen and Lou 2022; Wang et al. 2022). They are typically
fitted with proximity sensors and/or LiDARs to detect and
avoid obstacles, which are used by socially aware navigation
researchers to detect humans using leg detection. Some of the
commonly used mobile bases are shown in Fig. 9. Among the
articles collected in this survey, we found that the Pioneer 3-
DX is used by many works (Chen et al. 2020; Buchegger
et al. 2019; Trautman et al. 2015; Banisetty et al. 2021;



Figure 9. Mobile Bases: (a) Turtlebot (Kollmitz et al. 2015), (b)
Pioneer 3-DX (Chen et al. 2020) , (c) Husky (Hart et al. 2020),
and (d) Beam Pro Robot (Mavrogiannis et al. 2019).

Ciou et al. 2018; Fahad et al. 2020; Rösmann et al. 2017;
Shahrezaie et al. 2022) followed by different versions of
Turtlebot (Che et al. 2020; Sathyamoorthy et al. 2020; Jiang
et al. 2016; Qiu et al. 2022; Kostavelis et al. 2017; Kollmitz
et al. 2015). There are also other commercial platforms
like ClearPath Jackal and MiR100 that are used in crowd
navigation (Liu et al. 2020; Chen et al. 2017; Hart et al. 2020;
Karnan et al. 2022) and warehouse navigation (Guldenring
et al. 2020) respectively. Custom-built robot bases always
offer more personalization compared to commercial robots
and some works in this survey like Lichtenthäler and Kirsch
(2013); Charalampous et al. (2016); Arndt and Berns (2015);
Truong and Ngo (2018) and Shrestha et al. (2015) use these
personalized robots to test their frameworks.

Sometimes the mobile bases are accompanied by screens
to display signs or emulate expressions (Mavrogiannis et al.
2019; Sorrentino et al. 2021; Hart et al. 2020). These robots
are either custom-built (Hart et al. 2020; Araujo et al.
2015; Pimentel and Aquino-Jr 2021; Truong and Ngo 2018)
or chosen from the available ones in the market (Qian
et al. 2013; Mavrogiannis et al. 2019). The idea behind the
extra screen is to make the robot more human-friendly by
displaying faces and communicating intentions. For instance,
Hart et al. (2020) use the additional screen to display
a face to study the communication strategies using gaze,
whereas Mavrogiannis et al. (2019) uses it to just display a
smiley face while studying different navigation algorithms.
In general, simple mobile bases are used in works that do
not include any kind of explicit communication strategies
and rely only on implicit cues (Che et al. 2020; Kannan
et al. 2021; Hetherington et al. 2021; Palinko et al. 2020)
whereas screens or signal lights (or LEDs) are attached
for explicit conveyance in some cases (May et al. 2015;
Mavrogiannis et al. 2019; Hart et al. 2020; Palinko et al.
2020). When mobile robots are equipped with moving heads,
it is also possible to use head movements to communicate
intention and attention (Khambhaita et al. 2016). Wearable
communication devices are a new addition and Che et al.
(2020) use a haptic device along with vision and audio
for explicit communication. Urban delivery robots are the
best examples where socially aware navigation and good
communication strategies are essential. These are discussed
in the works by Kannan et al. (2021); Boos et al. (2022) and
one such robot is shown in Fig. 10 (d).

socially aware autonomous vehicle navigation (Fig. 10
(b)) is a relatively new topic. When autonomous vehicles

Figure 10. Autonomous vehicles and Wheelchairs: (a)
Wheelchair from (Rios-Martinez et al. 2012) (b) Autonomous
Car at INRIA (c) Aurrigo Auto-Pod* (d) CARNET Ona Robot
(Puig-Pey et al. 2023).

such as cars and shuttles share their environment with
pedestrians, the interaction between them needs to be
understood and modeled. This requires additional hardware,
new designs, and protocols that are different from those of
mobile robots. Recently, there has been a growing interest
in pedestrian trajectory or crowd behavior modeling when
they are close to an autonomous vehicle (Prédhumeau et al.
2021; Prédhumeau et al. 2021; Song et al. 2018; Kabtoul
et al. 2020; Hsu et al. 2020; Deo and Trivedi 2017). Some
works have explored this in pedestrian-aware navigation
(Luo et al. 2018; Cunningham et al. 2019; Randhavane
et al. 2019; Kabtoul et al. 2020; Hsu et al. 2020; Kabtoul
et al. 2022). Autonomous cars can also cooperate with other
human drivers in traffic, and this is yet another research area
that came into existence recently, and can be considered as
a part of socially aware navigation. The works by Evens
et al. (2022); Toghi et al. (2021); Valiente et al. (2022)
focus on this issue particularly. Personal mobility vehicles
(PMVs) is an umbrella term for a wide range of devices
including cars, shuttles, wheelchairs, Segways, scooters, etc.,
that can carry one or more persons and usually move at
lower speeds among shared human spaces. Fig. 10 (a, c)
shows some pictures of PMVs used by the researchers.
Although autonomous wheelchair navigation research has
slowed down gradually (Sivakanthan et al. 2022), there are
relevant papers that study autonomous or semi-autonomous
navigation in wheelchairs taking social norms into account
(Rios-Martinez et al. 2012; Vasquez et al. 2013; Narayanan
et al. 2016; Morales et al. 2017; Johnson and Kuipers 2018;
Skrzypczyk 2021). Other kinds of PMVs like Segways
and scooters were also used for developing socially aware
navigation strategies to move among the pedestrians (Luo
et al. 2018; Chen et al. 2019; Paez-Granados et al. 2022).

3.2 Aerial Robots
This taxon considers various kinds of unmanned aerial
robots or vehicles that can be used for deliveries,
construction, signaling, etc. A majority of the works in this

∗https://aurrigo.com/autopod/

https://aurrigo.com/autopod/
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survey fall under the rotorcraft taxon, specifically, multi-
rotor drones. The vast availability, the ease of use and the
precise control of these systems might be a reason for this.
Although the drones in the other taxa like aerostat were
explored in socially aware navigation from time-to-time,
winged drones (fixed and flapping) were not explored much.

Drones are a recent addition to the field of socially
aware navigation and pose a contrasting set of challenges
compared to mobile robots. This sparked a several studies
using drones to investigate proxemics (Duncan and Murphy
2013; Yeh et al. 2017) and communication strategies (Bevins
and Duncan 2021; Szafir et al. 2015, 2014; Cauchard et al.
2015; Jensen et al. 2018; Yao et al. 2019) to enable their
deployment in the real world. Regarding communication,
some of these works include additional hardware like LEDs
(Szafir et al. 2015) to mimic traffic signals while some others
study gestures and flight paths. The noise and wind generated
by multi-rotor drones (Cauchard et al. 2015) coupled with
the lack of familiarity often affect the humans’ perception
of safety, comfort, and reliability - compelling new designs,
studies, and ways to integrate drones in a better way around
humans. The study by Liew and Yairi (2013) suggested
that a blimp might be better for socially aware navigation
compared to a multi-rotor drone as they are quieter. Recently,
Etesami et al. (2021) investigated the design of a social blimp
and found that people felt safer and comfortable around the
blimp.

The current socially aware navigation planning for drones
tries to transfer knowledge from the mobile robot and make
suitable adjustments. For instance, Truc et al. (2022) utilizes
the cost functions from the social mobile robot navigation for
planning socially compliant trajectories for flying robots. A
series of works on the aerial social force model by Garrell
et al. (2017); Carretero (2017); Garrell et al. (2019) modified
the classical social force model to define a 3D social force
and applied it to quad-rotors in simulation and the physical
world. Unlike these, the approach by Yoon et al. (2019)
proposes a hidden Markov model-based social trajectory
generation using a learned model of the human. The works
by Yao et al. (2017, 2019) used a blimp drone to follow
humans indoors while reacting to human gestures. We expect
to see more works on socially aware navigation in drones
and other kinds of aerial robots in the near future that will
populate this taxon.

4 Planning and Decision-Making
In this section, we have included not only classical planning
and decision-making techniques, local motion generation,
and global motion techniques, but also other aspects
that affect planning and decision-making: communication,
negotiation, and the type of navigation task (collaborative,
assistive, or independent). Local motion generation uses
sensing and perception to create trajectory or velocity
commands that guide the robot. The global motion process
requires employing an extensive spatial representation to
provide a command (or decision) that directs the robot’s
motion.

While a robot performs socially aware navigation, it may
move through crowded pedestrian regions autonomously or
take on the role of guiding or escorting one or more people.

All of these situations demand planning and decision-making
techniques that appropriately take into account the existence
of bystanders and/or those in need of aid. In the field of
HRI, the development of two-way communication between
humans and robots is essential for both cooperative and
autonomous robot navigation in a pedestrian environment
with varying motion patterns. Additionally, bidirectional
negotiation is a crucial part of the built-in planning and
decision-making processes. It is worth mentioning that
differentiating papers based on the type of task provides a
useful framework for understanding the current state and the
challenges that remain in socially aware navigation research.

Based on this classification, all the methodological papers
specific to socially aware navigation (149) matched some of
the planning and decision-making criteria. The distribution
is illustrated in Figure 11.

4.1 Communication
The study of effective human-robot communication is a
fast-expanding topic in HRI in general, as well as in socially
aware navigation specifically. For their seamless integration,
robots or humans – for example, pedestrians or accompanied
people – must understand and respond to the communication
signals of the other agent. In the case of robots, they have
to grasp pedestrians’ intentions and let others know about
their own. Humans also have to understand the robot’s
intentions and tell about their intentions. It will be always a
bidirectional communication that will help to improve safety,
efficiency, and comfort. Although research in this area is
especially important to navigate in complex and crowded
environments, communication can enhance the overall user
experience even in less challenging environments (Senft
et al. 2020; Hetherington et al. 2021).

On the one hand, explicit communication between robots
and humans is critical to facilitate successful decision-
making in socially aware navigation. Robots must be able
to comprehend and react to the explicit communication of
humans, such as spoken language and written instructions.
Simultaneously, robots should be able to communicate their
own goals and choices to humans in a way that is simple
to understand. Explicit robot communication strategies
employed by roboticists include verbal (speech) and visual
(display or video, gestures) communications. For instance,
Yeh et al. (2017) present a visual approach using a custom-
designed social drone with a social shape, face, and voice
for human interaction. The work by Kannan et al. (2021)
studies visual robot communication using words, symbols,
and lights while Palinko et al. (2020) use lights along with
gestures to convey the robot’s intention. The work in (Rios-
Martinez et al. 2012) studies gestures in the context of a
robotic wheelchair, and integrates a technique to interpret
user intentions using head movements into a socially aware
motion policy. Further, in (Jensen et al. 2018), three studies
on drones’ gestures to acknowledge human presence and
clarify suitable acknowledging distances are presented. Yao
et al. (2019) use the human gestures to understand their
intentions and provide feedback through LED display. In the
case of mobile robots as well, gestures are explored to show
the robot’s intentions while crossing corridors (Hart et al.
2020; Senft et al. 2020; Angelopoulos et al. 2022) or taking
turns (May et al. 2015; Palinko et al. 2020). Lastly, verbal



communication is used by Dugas et al. (2020) and Boos et al.
(2022) to study the effectiveness of robot’s speech in clearing
its way while Repiso et al. (2022) use it for interaction.

Explicit communication is especially important in
decision-making situations, where clear and accurate
communication is necessary for both parties to make
informed choices (Nishimura and Yonetani 2020; Vega et al.
2019; May et al. 2015; Kollmitz et al. 2020). Research in this
area has the potential to significantly advance the capabilities
of robots in a variety of settings, including aerial and
ground robots. Enhancing robots’ comprehension and use of
explicit communication to increase their effectiveness when
engaging with people has also been studied. For instance,
External Human-Machine Interfaces (eHMI) (Kannan et al.
2021) were enhanced to convey intents to humans; Szafir
et al. (2015) explored the design space regarding explicit
robot communication of flight intentions to nearby viewers;
and Dalmasso et al. (2021) created a new interface
where robots and humans can communicate to perform
collaborative tasks.

On the other hand, implicit communication is frequently
considered a more natural exchange of information (Winkle
and Dautenhahn 2016; Huang et al. 2016). Implementing
implicit communication in HRI, however, can also present
some difficulties because it might be more challenging
for robots to correctly decipher and react to complex
cues and context. This may result in misinterpretations or
communication mistakes that may reduce the effectiveness
of the encounter. Teja S. and Alami (2020) proposed a
new framework combining decision-making and planning
in the human-robot co-navigation scenario to address
such misinterpretations and exhibit pro-actively a proposed
solution for a navigation conflict. This is done by introducing
different modalities of planning and shifting between them
based on the situation at hand. However, the study of implicit
communication in this field is still an underdeveloped

area of research, with relatively few papers addressing
the subject like (Singamaneni et al. 2021; Mavrogiannis
et al. 2018; Hsu et al. 2020; Khambhaita and Alami 2017)
and (Hetherington et al. 2021). Further, it can be difficult
to use implicit communication for complex human-robot
interactions involving decision-making (Repiso et al. 2020).

Despite these challenges, the study of implicit communi-
cation between robots and humans in the context of decision-
making in socially aware navigation is a valuable and impor-
tant area of research. Repiso et al. (2020, 2018) presented
some work where robots became more ubiquitous in society,
and they were increasingly being used in HRI scenarios, con-
cretely, in socially aware navigation. The works by Khamb-
haita and Alami (2017) and Singamaneni et al. (2021) use
early intention-show of robot as implicit communication in
corridor crossing. Hetherington et al. (2021) study different
implicit communication strategies to convey robot’s yielding
intentions in a door-crossing setting.

While both implicit and explicit communication between
robots and humans play important roles in facilitating
successful decision-making in socially aware navigation,
the study of both forms of communication in this context
is limited, for instance (Dey and Terken 2017; Petrak
et al. 2021) and (Che et al. 2020). Instead of looking at
how implicit and explicit communication interact, many
academics have concentrated on one of the two. Robots
might also not be able to express nonverbal signs in the same
manner that people can, such as showing empathy or worry
through body language and facial expressions. Establishing
trust and rapport between the robot and the human might be
challenging as a result, adding to the complexity of decision-
making. This underlines how crucial it is to create efficient
communication plans that consider the special capabilities
and constraints of robots to promote successful interactions.
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Figure 11. Distribution of papers by planning and decision making. The figures are best viewed zoomed in using a digital version.



11

4.2 Types of Navigation Task
socially aware navigation tasks can be broadly classified into
three types: independent, assistive, and collaborative, based
on the interaction between people and the robot while the
navigation task is being accomplished. It has to be noted that
human environments are highly dynamic. Depending on the
context and the evolution of a situation, navigation tasks may
change. For instance, in narrow passages or corridors, it may
happen that an independent navigation task may call for a
collaborative solution.

Collaborative socially aware robot navigation is
especially difficult since the robot and humans must share the
same goal and they aim to navigate along. This means that
robots must be able to model other agents in the environment
(Kollmitz et al. 2015), to include their intentions (Kabtoul
et al. 2020), and to adapt their behavior (Shrestha et al.
2015; Ciou et al. 2018). In such tasks, robots need to
communicate and cooperate with humans to accomplish a
specific navigation task (Luber et al. 2012). For example, the
works by (Khambhaita and Alami 2017; Truong and Ngo
2018; Bera et al. 2018; Singamaneni et al. 2021; Kollmitz
et al. 2020) address the challenge of humans and robots
navigating together sharing the same plan.

Collaborative robot navigation can be effectively
categorized into two major approaches: rule-based methods
(Parhi and Singh 2010; Bayazit et al. 2004) and learning
methods (Wang et al. 2018; Marge et al. 2017). Rule-
based methods involve the formulation of a predefined
set of guidelines and regulations that the robot rigorously
follows to execute its intended navigation behavior. These
rules are often crafted based on a priori knowledge and
established norms, providing a structured framework for
the robot’s interactions with its environment and other
agents. For instance, in scenarios where robots are deployed
in manufacturing facilities, rule-based navigation can be
tailored to ensure safe and efficient movement, adhering
to spatial boundaries and predefined routes (Kabtoul et al.
2020). While rule-based methods offer a high degree of
predictability and safety, they may lack adaptability in
dynamic and unstructured environments, where situations
can change rapidly (Teja S. and Alami 2020; Galvan et al.
2019).

On the other hand, learning methods in collaborative robot
navigation rely on machine learning algorithms to enable
robots to acquire knowledge and adapt their navigation
strategies over time (Gil et al. 2021; Toghi et al. 2021).
These approaches leverage data-driven techniques to make
informed decisions based on the robot’s interactions with its
surroundings and other agents (Garrell et al. 2017, 2019).
For example, reinforcement learning algorithms can enable
robots to learn optimal paths and navigation behaviors
through trial and error, while deep learning models can be
used to recognize and respond to various environmental
cues (Yen and Hickey 2004). Learning methods excel in
scenarios where the environment is constantly changing,
and adaptability is essential. However, they may require
significant amounts of training data and computational
resources to develop robust navigation capabilities, which
can be a challenge in some applications (Toghi et al. 2021;
Kabtoul 2021; Kabtoul et al. 2022; Toghi et al. 2022).
The choice between rule-based and learning methods often

depends on the specific requirements of the collaborative
robot navigation task and the level of adaptability and
autonomy desired.

Assistive socially aware navigation is an important
domain in the field of robotics that seeks to create robotic
systems that can help people with navigation tasks without
requiring either explicit or active cooperation (Rios-Martinez
et al. 2012; Morales et al. 2017; Shin and Yoon 2020; Yao
et al. 2019; Repiso et al. 2019, 2020). This discipline has
been through a huge transition in recent years, mostly due
to rapid advancements in artificial intelligence and machine
learning. These developments in technology have made it
possible to create complex algorithms with context-aware
and sophisticated assistance while navigating (Garrell et al.
2017; Vasquez et al. 2013; Triebel et al. 2016; Yao et al.
2017; Shin and Yoon 2020).

One significant avenue of development in assistive
socially aware navigation is the integration of deep
learning-based techniques (Garrell et al. 2019). These
techniques have demonstrated great potential, especially
in urban environments where robots can produce natural
language instructions specific to the individual’s position
and destination (Chen et al. 2017; Ye et al. 2020). Robots
can interpret user intent, examine the environment, and
communicate instructions in a manner that is human-friendly
by employing deep learning. This method has the potential
to completely transform urban navigation by increasing its
efficiency and accessibility, particularly in complex and
crowded urban settings (Zhu and Zhang 2021; Liang et al.
2018).

Reinforcement learning-based methods are another impor-
tant area in this field, as they allow to factor in variables that
are frequently difficult to handcraft. These methods allow
robots to observe humans and modify their behavior and
actions accordingly (Hua et al. 2021). They have also shown
to be quite beneficial for assisting with transportation-related
activities (Toghi et al. 2022). These methods allow robots
to observe humans and modify their behavior and actions
accordingly. The robot can adapt and adjust its actions to
the dynamic and frequently unexpected traits of real-world
surroundings, such as small-scale public spaces thanks to
reinforcement learning. This flexibility guarantees that the
robot will be able to efficiently address the numerous and
changing demands of those who need help in a navigation
task (Li et al. 2019).

In summary, machine learning and artificial intelligence
are enabling assistive socially aware navigation, which
is rapidly developing intelligent, adaptive, and supportive
robotic systems that can help people navigate challenging
and constantly changing environments. These developments
have the potential to significantly improve people’s mobility
and quality of life in a variety of settings.

Independent socially aware navigation is an important
area where robots autonomously move without direct human
interaction (Peddi et al. 2020; Narayanan et al. 2018; Park
et al. 2016). This paradigm is especially applicable to
situations where robots are working autonomously and need
to navigate through crowded environments (Vasquez et al.
2014; Chen et al. 2020). The use of these techniques is
necessary when navigating through crowded areas in order
to guarantee safe and efficient motion.



Crowd navigation employs a diverse set of strategies. For
instance, Narayanan et al. (2018) and Brito et al. (2021)
predict sub-goals to move towards the goal while (Nishimura
and Yonetani 2020) learns how to efficiently move through
the crowd without freezing or timing out. A similar approach
focused on avoiding robot freezing among human groups
was proposed by Sathyamoorthy et al. (2020). Dugas et al.
(2020) use different communication modalities to assist
in passing through dense spaces. A number of advanced
obstacle avoidance policies are also proposed to pass through
crowds like (Chen et al. 2017, 2019; Bera et al. 2019;
Cunningham et al. 2019; Qiu et al. 2022; Gonon et al. 2022;
Kästner et al. 2022; Wang et al. 2022).

Furthermore, robots moving in warehouses (Fernan-
dez Carmona et al. 2019; Kenk et al. 2019; Guldenring et al.
2020) and approaching people for interaction (Truong and
Ngo 2018; Ramirez et al. 2016) could be included into both
independent and assistive socially aware navigation category.

Despite significant progress in independent socially aware
navigation, several challenges remain. For instance, the
development of algorithms that can handle a wide range of
social environments and cultural contexts, the integration
of multiple modalities for perception and sensing, and
the improvement of safety and privacy in socially aware
navigation (Qiu et al. 2022; Salvini et al. 2022; Narayanan
et al. 2018; Shrestha et al. 2015; Bera et al. 2019).

4.3 Negotiation
Negotiation, in the context of robotics, and particularly
in the domain of robot navigation, refers to the dynamic
interaction and communication between robots and other
entities, including humans and other robots, in order to
accomplish efficient and successful movements. It involves
a process where robots actively exchange information to
coordinate their actions and resolve potential conflicts. Thus,
negotiation strategies, in robot navigation, encompass a
wide spectrum, from simple actions like requesting passage
through a congested area, to more complex decision-making
processes that balance different objectives, eventually
helping in the beneficial interaction of humans and robots
in shared areas.

Therefore, this section explores research that includes
explicit negotiation, which comprises elements such as
requesting permission to move forward or clearly expressing
intentions, and implicit negotiations like dynamic behavior
adaptation by detecting intentions. Agents (human or
robotic) can come to agreements or solve issues through the
process of negotiation.

Negotiation in robot navigation requires the robot to be
able to interpret and respond to the needs and motivations
of pedestrians with whom it is negotiating, as well as
to effectively communicate its own goals and constraints.
In (Dalmasso et al. 2021), the robot computes a multi-
agent plan for both itself and the human which is then
communicated to the human for review; this planner is
based on a decentralized variant of Monte Carlo Tree Search
(MCTS) with one robot and one human as agents. In (Hsu
et al. 2020) researchers contribute with a minimal model to
manage ambiguity and produce actions that are expressive
and encode aspects of humans’ intents. Furthermore, Lobato
et al. (2019) present a socially aware navigation system that

allows to establish a negotiation framework to improve the
socially aware navigation system.

The ability to effectively negotiate in robot navigation can
be a key factor in enabling robots to interact and cooperate
with humans and their environment in a natural and intuitive
manner (Jensen et al. 2018). Vega et al. (2019) focus
on planning algorithms that facilitate negotiation between
robots and humans in dynamic environments. Kabtoul
et al. (2020) propose a proactive negotiation approach to
enhance human-robot collaboration. Dondrup and Hanheide
(2016) explore qualitative spatial reasoning techniques for
negotiating spatial relations in human-robot interaction
scenarios. Furthermore, (Chen et al. 2020) investigate graph
strategies that enable robots to establish relations among
agents and maintain advanced predictions of humans to
negotiate their plan better during navigation tasks. Nishimura
and Yonetani (2020) explore the robot beeping mechanism
to negotiate with the humans to clear the way. These works
contribute valuable insights into the field of negotiation
in socially aware robot navigation, paving the way for
the development of more efficient and interactive robotic
systems.

Another important aspect of negotiation is the ability to
adapt to changing circumstances. The negotiation process
may involve a number of back-and-forth exchanges as
the agents work to reach an agreement, and the robot
must be able to adjust its negotiation strategy as needed
to reach a mutually acceptable solution. Trautman et al.
(2015) explore the use of adaptive negotiation strategies in
the context of human-robot collaboration, emphasizing the
importance of dynamically adjusting negotiation behaviors
based on situational cues. Bera et al. (2018) propose a
socially adaptive negotiation framework that enables robots
to learn and modify their negotiation strategies based on
user preferences and interaction history. Shrestha et al.
(2015) investigate the use of contact-based inducement to
negotiate in a congested scenario. Finally, Ratsamee et al.
(2013) focus on the role of adaptability in negotiation,
demonstrating the need for robots to continuously learn
and adapt their negotiation behaviors to foster successful
human-robot interactions. All these works highlight the
significance of adaptive negotiation strategies in enabling
robots to effectively navigate and interact with humans in
dynamic environments.

In addition to these aspects, negotiation in socially aware
robot navigation may also involve resolving conflicts or
obstacles that arise during task execution (Toghi et al.
2021), as well as coordinating actions and sharing resources
with other robots or autonomous systems. By effectively
negotiating with these parties, the robot can facilitate
cooperation and coordination, enabling it to achieve its goals
and to complete tasks more effectively (Evens et al. 2022).

4.4 Local Motion Generation
Local motion generation, which often involves local sensing
and perception, is the creation of a trajectory or velocity
commands for guiding the robot’s motion at a lower
level (Boldrer et al. 2022). Local motion generation can
be divided into several categories, including planning-
based approaches (Unhelkar et al. 2015; Bera et al. 2017;
Singamaneni et al. 2021; Banisetty et al. 2021; Chen and
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Lou 2022; Gonon et al. 2022), force-based approaches (like
potential fields and social forces) (Patompak et al. 2016;
Cunningham et al. 2019; Repiso et al. 2020; Kivrak et al.
2018; Jiang et al. 2016), learning-based approaches (Liu
et al. 2020; Chen et al. 2017; Sathyamoorthy et al. 2020),
and others, which are not included in the previous categories
(Paez-Granados et al. 2022).

Planning-based approaches involve generating a trajec-
tory for a robot to follow and, then, converting it to velocity
commands. These approaches are often used in complex
environments where obstacles and other dynamic elements
need to be taken into account. Different planning method-
ologies can be used to generate trajectories, such as Model
Predictive Control (MPC), dynamic windows (Truong and
Ngo 2018; Kabtoul et al. 2022), elastic bands (Rösmann et al.
2017; Vega et al. 2019; Singamaneni et al. 2021; Khambhaita
and Alami 2017; Singamaneni et al. 2022), and obstacle
avoidance techniques (Jiang et al. 2022; Gonon et al. 2022;
Bera et al. 2017).

MPC-based approaches use a predictive model of the
robot’s motion to generate an optimal trajectory over a
finite time horizon. The trajectory is generated by solving
an optimization problem that takes into account the robot’s
kinematics, dynamics, and environmental constraints. For
instance, Che et al. (2020) propose a planning framework,
based on MPC, that generates explicit communication
(finite number of discrete signals) and robot motions.
In (Brito et al. 2021), the robot combines a sub-goal
prediction mechanism with an MPC controller to navigate
the environment efficiently. Evens et al. (2022) propose an
MPC-based scheme to handle general traffic situations for
PMVs.

Dynamic window approaches (DWA) involve generating
a set of reachable velocities based on the robot’s kinematics
and dynamics (Truong and Ngo 2018). The set of reachable
velocities is used to select the best velocity command that
will take the robot closer to the goal while avoiding obstacles.
A similar approach presented in (Kabtoul et al. 2022)
uses a dynamic channel to maneuver around pedestrians
while anticipating their cooperation. Dondrup and Hanheide
(2016) propose some modifications to DWA to generate safe
and efficient trajectories to reach the goal while trying to
ensure human acceptance. Due to its conceptual simplicity,
DWA is one of the widely used approaches and can be easily
employed to test new ideas (Truong and Ngo 2018; Dugas
et al. 2020).

Elastic band approaches, on the other hand, require
a slightly more complex implementation. They involve
generating a path for the robot to follow and simulating
an elastic band to smooth the path while stretching (or
compressing) it around obstacles and generate velocity
commands (Khambhaita and Alami 2017; Vega et al. 2019;
Pimentel and Aquino-Jr 2021). Traditional elastic bands
could include only kinematics constraints (Vega-Magro et al.
2018; Vega et al. 2019) whereas the timed elastic bands
proposed by Rösmann et al. (2017) can handle kinodynamic
constraints. Khambhaita and Alami (2017) and Singamaneni
et al. (2021) use these timed elastic bands for proactive
planning to solve complex human-robot navigation settings.

Finally, the dynamic obstacle avoidance techniques that
are prevalent in the motion planning community have also

been modified to accommodate humans and navigate safely
in social environments. The works of Bera et al. (2018, 2019)
rely on the generalized velocity obstacles approach. Very
recent work by Gonon et al. (2022) proposes acceleration
obstacles to handle the case of crowd robot navigation
specifically. Lastly, Sathyamoorthy et al. (2020) proposes
a hybrid approach to avoid freezing by switching between
planned and learned controls.

Force-based approaches like potential fields and social
forces, involve generating velocity commands based on the
potential or force fields in the robot’s environment and the
interaction forces generated by the way people move. They
are widely used in robot navigation to generate velocity
commands based on attractive and repulsive forces. The
first group uses virtual potential fields to generate attractive
forces towards the goal and repulsive forces away from
obstacles (Araujo et al. 2015). The robot’s motion is then
controlled based on the gradient of the potential field. On the
other hand, the social force model (SFM) uses the concept
of social forces, where the forces result from interactions
between individuals or groups and the robot. The forces to
avoid collisions with humans are generated using the relative
velocities between the robot and the pedestrians, and they are
combined with the forces from the other obstacles (Repiso
et al. 2020; Alahi et al. 2017). Finally, these combined forces
are used to generate velocity commands for the robot.

One popular potential field approach is the Artificial
Potential Field (APF) method (Jiang et al. 2016). The
APF method has been widely used in robot navigation and
extended to dynamic environments by incorporating time-
varying potentials and obstacle-avoidance strategies (Ferrara
and Rubagotti 2007). The simplicity of implementation and
computational efficiency of APF makes it ideal for real-time
applications. Considering the adaptive nature of potential
fields, some researchers used it to address both simple (Wang
et al. 2016) and complex socially aware navigation tasks in
dynamic environments like offices (Araujo et al. 2015) or
sparse crowds (Cunningham et al. 2019).

Social force approaches were first proposed by Helbing
and Molnar (1995) to model pedestrian behavior in crowds.
This idea was later adapted to control the robot’s motion
based on the sum of attractive and repulsive forces generated
by the social forces from various kinds of interactions (Ferrer
et al. 2013,; Patompak et al. 2016; Repiso et al. 2017).
Since its inception, social force-based robot control has
been modified and extended to address different kinds of
problems in social robot navigation. Ferrer et al. (2013) used
it to navigate the robot in crowded environments and later
proposed an extension for proactive kinodynamic planning
(Ferrer and Sanfeliu 2014). Building on this extended SFM,
a set of works (Repiso et al. 2018, 2019, 2020, 2022) were
proposed to approach and accompany individual as well as a
group of people. This online adaptive planning in dynamic
environments is achieved by incorporating time-varying
social forces (Repiso et al. 2020,). In the works presented
in (Truong et al. 2017) and (Truong and Ngo 2017), the
SFM is extended to include human-object interactions and
group interactions to address dynamic crowds. SFM has
been adapted to aerial robots as well and the works by
Garrell et al. (2017, 2019) show these extensions called aerial
social force models designed to accompany humans. Some



recent approaches combine policy learning (Cunningham
et al. 2019; Gil and Sanfeliu 2019) and machine learning (Gil
et al. 2021) with SFM to achieve better socially aware robot
navigation policies.

In learning-based approaches velocity commands are
frequently generated directly, without the need to construct
a precise trajectory, through the application of machine
learning algorithms. These approaches typically involve
either reinforcement learning (Chen et al. 2017; Guldenring
et al. 2020; Gil and Sanfeliu 2022), deep learning (Gil et al.
2021; Xie et al. 2021), imitation learning (Garrell et al. 2019;
Fahad et al. 2020; Liu et al. 2020) or inverse reinforcement
learning (Vasquez et al. 2014; Ramirez et al. 2016).

Reinforcement learning (RL) or deep reinforcement
learning (DRL) in general is used by several articles in
this survey to teach socially aware navigation to a robot.
For instance, the works by Chen et al. (2017, 2019, 2020)
use different kinds of networks architectures to capture the
relations and interactions in the crowd and teach a robot to
move socially. They use the deep V-learning where the neural
network is initialized with regression and then trained using
reinforcement learning. In (Qiu et al. 2022) researchers also
propose a hybrid learning approach combining supervised
learning with DRL. The authors learn the interactions among
pedestrians using supervised learning, and this interaction
policy is used within DRL navigation policy training to learn
when to alarm the surrounding pedestrians to clear the path.
This alerting mechanism for path clearing was inspired by
(Nishimura and Yonetani 2020), where the authors learn the
balance between human safety and navigation efficiency in a
similar manner.

As mentioned previously, the works by Gil and Sanfeliu
(2019, 2022) combine DRL with SFM, in order to study
the effects of SFM rewards and human motion prediction
strategies on the navigation policy. The work in (Guldenring
et al. 2020) presents a DRL-based ROS local planner
that is trained to avoid humans in warehouses using 2D
LiDAR data as input. DRL is also explored for learning
the navigation policies for autonomous vehicles (AVs). The
work by Deshpande et al. (2020) uses deep recurrent Q-
network to handle high-level behavioral decision-making
while the AV is navigating among pedestrians. In other
works (Toghi et al. 2021, 2022), different policy learning
mechanisms like A2C and multi-agent RL are used to learn
social behaviors in traffic with emphasis on coordination and
altruism.

Among the other kinds of learning approaches, deep
learning is generally employed for robot perception.
However, there are works like (Xie et al. 2021) that use
deep learning to navigate through crowded environments.
Imitation learning is employed to clone the behavior of
humans in (Fahad et al. 2020) while it is used to assist
robot navigation policy learning in (Liu et al. 2020). Garrell
et al. (2019) use imitation learning to make a neural network
learn to mimic the expert flying a drone. The work in
(Ramirez et al. 2016) uses inverse reinforcement learning to
train a robot to approach humans appropriately while Pérez-
Higueras et al. (2014) use it to navigate robot in public
spaces.

One key advantage of learning-based approaches is that
they can capture the nuances of social interaction, such

as motion dynamics (Chen et al. 2020), social norms,
and respond appropriately to human feedback (Kollmitz
et al. 2020). Hence, learning-based approaches have the
potential to significantly improve the field of socially aware
robot navigation, enabling robots to navigate and interact
with humans in a more natural and intuitive way (Toghi
et al. 2021). These approaches typically require a model
trained on a dataset of sensor inputs and corresponding
command velocities, using a suitable loss function and
optimization algorithm (Triebel et al. 2016; Liu et al. 2020;
Toghi et al. 2022). Researchers are also focusing on more
innovative approaches and applications of socially aware
robot navigation for more complex social environments
(Park et al. 2016; Ciou et al. 2018; Evens et al. 2022; Qiu
et al. 2022).

Last but not least, there exist papers that do not fall
under any of the above groups but deal with low-level
motion generation. They have been classified as others
in our taxonomy. In (Yoon et al. 2019) authors introduce
a novel framework for path planning that considers the
safety perception of humans when a flying robot is
present. With this, they aim to ensure safe and socially
acceptable interactions between humans and flying robots.
Researchers in (Bera et al. 2017) published an approach to
mathematically model social cues in order to predict both
human trajectories and personal/social distances, which are
key components of socially aware navigation planning. To
accomplish this, a Bayesian-based model of personality traits
is used, with video data serving as the source for observing
and quantifying these traits. By leveraging these models of
human behavior, the aim is to enhance the ability of robots
to interact with humans in a safe and socially acceptable
manner. A novel methodology to unfreeze the robot from
unintended collisions with pedestrians is proposed in (Paez-
Granados et al. 2022). They design a special controller
that modulates the velocity upon detection of contact to
mitigate the risks. In the work presented by Jiang et al.
(2022), a pedestrian-aware controller for an autonomous car
was proposed that modulates the speed depending on the
estimated pedestrian density.

4.5 Global Motion Decision-Making
Global motion decision-making, in the context of socially
aware robot navigation is the process of computing a valid
robot trajectory at a coarse level, taking into account the
requirements of socially aware navigation. It often utilizes
a representation of the environment to guide the process, and
considers aspects like collision avoidance and the needs of
bystanders. This differs from local decision-making, which
relies on sensors and the immediate surroundings to guide
motion. The approaches for global motion decision-making
mainly consist of planning-based approaches (search and
sampling) (Korkmaz 2021; Forer et al. 2018; Singamaneni
et al. 2021; Kollmitz et al. 2015; Talebpour et al. 2016; Vega-
Magro et al. 2017; Chen et al. 2017) and learning-based
approaches (Luber et al. 2012; Pérez-Higueras et al. 2018;
Karnan et al. 2022; Brito et al. 2021).

Planning-based approaches are very frequently used to
make global-level decisions and plan the initial path for
the robot to follow. The articles in this survey include
search-based approaches, like A* methods (Luo et al. 2018;
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Banisetty and Feil-Seifer 2018), D* methods (Charalampous
et al. 2016), diffusion maps (Chen et al. 2017), Dijkstra
(Pérez-Higueras et al. 2014; Truong and Ngo 2018), etc.;
and sampling approaches like PRM (Korkmaz 2021), RRT
(Becerra et al. 2020; Shrestha et al. 2015), Risk-RRT
(Narayanan et al. 2018), PRM-RRT (Vega-Magro et al.
2017), Fast Marching methods (Talebpour et al. 2016), etc.

One of the main challenges in this area has been the
ability of the robot to adapt to changing environments or
unexpected obstacles (Repiso et al. 2020). To address this
challenge, some researchers have developed methods that
incorporate real-time feedback or sensory data into the
global planning process (Peddi et al. 2020; Vega-Magro
et al. 2018; Randhavane et al. 2019). Other approaches
use a combination of global and local maps to generate
a decision or plan a better path (Dondrup and Hanheide
2016; Fernandez Carmona et al. 2019; Singamaneni et al.
2022). The global map provides a high-level view of the
environment, while the local map represents the robot’s
immediate surroundings in more detail. By combining these
two types of maps, the robot can generate a path that is both
efficient and able to adapt to local environmental changes
(Teja S. and Alami 2020; Singamaneni et al. 2022; Kollmitz
et al. 2015). Continuous re-planning is also used in some
cases (Korkmaz 2021).

The papers that use learning-based methods involve
training a model on data to make predictions about future
states or decisions. These methods can leverage large
amounts of data to learn patterns and adapt to new situations
but may require significant training time and may not
generalize well to novel situations. These methods make use
of deep reinforcement learning (Brito et al. 2021; Valiente
et al. 2022), deep learning architectures like CNNs (Pérez-
Higueras et al. 2018), and inverse reinforcement learning
(Vasquez et al. 2014). Even with the limitations, these
approaches can help provide a good initial estimate that
assists in better planning (Pérez-Higueras et al. 2018).
Further, they can be used to select sub-goals for guiding a
local planner (Brito et al. 2021). In PMVs as well, they can
be used to make high-level decisions (Valiente et al. 2022).

There are also papers that do not explicitly focus on
either of these approaches, but instead consider additional
aspects of global motion decision-making, such as the
representation of the environment (Arndt and Berns 2015),
the incorporation of social cues, the integration of multiple
modalities of sensing and communication (Che et al. 2020),
or Wizard-of-Oz studies (Lichtenthäler et al. 2013). In
general, the choice of a global motion decision-making
strategy depends on specific demands and features that
characterize the concerned task.

5 Situation Awareness and Assessment
Fig. 12 shows the distribution of the papers according to the
taxonomic aspects of situation awareness and assessment.
Most works exploit elements of the three main branches,
although none of the reviewed proposals considers all
of them. By a large margin, the most frequent aspects
considered in the literature for situation awareness are
obstacles in the environment, trajectory prediction of the
agents, and proxemics constraints as the main social norm.

The remainder of the section presents a detailed analysis of
the different taxa.

5.1 Environment
This taxon considers papers representing aspects related to
the physical space in which the robot navigates other than
the agents in the environment, which are considered in the
next section. Collective issues such as the density of humans
in the area are also considered.

The semantics of the environment is a topic that has
received limited attention in the literature. Some proposals
assume a specific type of space for navigation, such as
the office-like environment in (Araujo et al. 2015) or the
wheelchair navigation system in (Morales et al. 2017) that
estimates corridor width. In (Banisetty et al. 2021), the
navigation system includes a context classification module
that distinguishes between four contexts and is used to guide
the robot in selecting social objectives. Other approaches,
such as the socially aware variant of a NAMO algorithm
in (Renault et al. 2019), use a semantic map with taboo
zones for movable obstacle placement, while Kostavelis
et al. (2016) combine a metric map with a structured
map containing relevant objects and standing positions for
humans that are used to improve future predictions of the
occupancy of different areas. In a similar way, in (Kostavelis
et al. 2017) predefined locations of frequently visited areas of
the environment are used for human presence anticipation.
The work presented by Singamaneni et al. (2022) also
proposes a geometric approach to anticipate the emergence
of humans from occluded locations.

An alternative application of the semantics of the
environment can be found in (Hsu et al. 2020). Their
proposed system provides estimates for the intentions of
pedestrians and nearby pedestrian crossings using semantics
information as input. Other proposals consider environment
information, although not of semantic type (e.g. size,
structure), for navigation (Vega-Magro et al. 2018; Manso
et al. 2019).

In relation to object interaction, most of the proposals
considering this element, model the interaction area using
predefined functions to prevent the robot from traversing
those zones. For instance, Lobato et al. (2019) and Vega et al.
(2019) model the interaction zone as a symmetric trapezoidal
area, while others (Truong and Ngo 2018) use Gaussian
functions. Likewise, Truong and Ngo (2017) and Truong
et al. (2017) consider detected object interaction, creating
a circular object interaction space to avoid. Differently,
in Manso et al. (2019) object interactions are included in the
representation of a scene, but the interaction areas are not
explicitly modeled.

A different perspective on applying human-object inter-
actions for socially aware navigation can be found in
Bruckschen et al. (2020) and Vega et al. (2019). In partic-
ular, Bruckschen et al. (2020) use observed human-object
interactions along with prior knowledge about typical human
transitions to predict the most likely navigation goal of the
human. On the other hand, Vega et al. (2019) consider only
one type of interaction with one type of object, namely doors,
and focuses on the relationship where one or more humans
are blocking the door, which is used in the proposal to ask
for permission to pass.



Other than agents, obstacles constitute the most important
type of physical elements of the environment in the vast
majority of socially aware navigation works. Navigation
algorithms not considering obstacles work on simple
scenarios where humans (or agents in general) are the
only entity robots may collide with (Nishimura and
Yonetani 2020). This is particularly common in simulated
environments. Some of the obstacle-aware approaches to
socially aware navigation do not use a representation that
integrates information over time. Instead, they use the
instantaneous information perceived through the robot’s
sensors (de Vicente and Soto 2021; Guzzi et al. 2013;
Sathyamoorthy et al. 2020; Paez-Granados et al. 2022).

Papers representing obstacles have been classified
according to three types of representation: dense, sparse, and
hybrid. Fig. 13 shows the distribution of a representative
subset of the reviewed papers into these three different types
of representations.

Dense representations consist of a metric map of the
environment where the obstacles are located. In this case,
obstacles cannot be identified as individual entities, but
the representation still allows disregarding areas of the
environment that the robot cannot cross during navigation.
The commonly used dense representations are occupancy
grids and cost maps. This type of obstacle representation is
the most widely used in the literature.

Sparse representations, where each obstacle is an
independent element with its own properties, are found on
the other side of the spectrum. Frequently, works using this
kind of representation consider position and size as the only
properties of the obstacles, assuming circular shapes for them
(Ferrer et al. 2013; Bera et al. 2018).

The third obstacle representation category corresponds to
hybrid approaches, which combines dense and sparse models

for different purposes. Examples of hybrid representations
can be found in (Lobato et al. 2019), (Renault et al. 2019),
and (Vega-Magro et al. 2018). The proposal by Lobato
et al. (2019) uses a sparse obstacle representation, where
detected objects are nodes of a symbolic graph of the
environment and a dense one for modeling the occupied
space. In (Renault et al. 2019) a 2D metric map is built to
compute a first plan. Then, the plan is refined iterating over
movable obstacles. The work in (Vega-Magro et al. 2018)
represents the obstacles of the environment by means of a
cost map, but also incorporates wall descriptors that are later
used by the control system.

Even though most of the environment-related elements
considered for socially aware navigation can be included
in the three already mentioned taxa (semantics of the
environment, object interactions, and obstacles), some works
take into account other aspects of the area where the
navigation takes place. All these aspects are included in
a fourth branch labeled as others. After our review, only
four papers have been found that can be included in this
branch. Specifically, Pérez-Higueras et al. (2018); Ciou et al.
(2018) and Jiang et al. (2022) consider people’s density as an
additional property of the environment. Besides, Johnson and
Kuipers (2018) represent gateways along with other elements
of the area where the robot navigates.

5.2 Agents

This taxon describes how the agents are represented. We
use the term agent instead of human to encompass all
active entities involving humans that may be present in the
environment (e.g., other vehicles in the case of autonomous
driving).
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Figure 12. Distribution of papers by situation awareness and assessment. The figures are best viewed zoomed in using a digital
version.
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Figure 13. Classification of papers according to how obstacles
are represented.

All works dealing with socially aware robot navigation
consider a common set of attributes that provide, in the
simplest case, a minimal representation through which
an agent can be treated as a “special obstacle”. Strictly
speaking, this common set consists of the 2D position of the
agents, although the orientation of the agents is frequently
considered as well. Therefore, our taxonomy ignores these
pose-related attributes in the proposed classification and
focuses on other aspects of the agents for which a more
diverse treatment can be found in the existing literature,
starting with trajectory prediction.

Predicting the trajectory of an agent involves estimating
the agent’s future positions based on its past positions and,
potentially, information about the environment and other
agents. Pedestrian trajectory prediction is a research field
in itself. Numerous works have been proposed on this
topic, although they are not necessarily framed within a
robot navigation proposal. We will begin by focusing on
trajectory prediction proposals that can be directly applied
to robot navigation. Next, we will analyze works that use
trajectory prediction within the context of socially aware
robot navigation.

Given the recurrent nature of trajectory prediction and
the surge in machine learning in recent years, recurrent
neural networks (RNN) have a special role in recent
trajectory prediction approaches. One of these learning-
based approaches is Social-LSTM (Alahi et al. 2016), which
proposes an LSTM-based model that can jointly estimate the
future trajectory of all the people in a scene, using one LSTM
per individual and a pooling layer to share the information
between them. Based on this idea, some variants have been

proposed. For instance, Bisagno et al. (2018) first cluster
people into coherent groups before using Social-LSTM to
predict their trajectories. Varshneya and Srinivasaraghavan
(2017) propose a variant of Social-LSTM that considers
several factors such as the dynamic of neighboring subjects
and the spatial context in which the subject is. In (Bartoli
et al. 2018), human-human and human-space interactions are
incorporated into the Social-LSTM model. Other proposals
applying RNNs to trajectory prediction are the one by
Vemula et al. (2018), which uses RNNs to model the spatial
and temporal dynamics of trajectories in human crowds,
and the work by Manh and Alaghband (2018), an LSTM-
based approach that combines scene information into the
human trajectory prediction. Likewise, Eiffert et al. (2020)
combine Recurrent Neural Networks with Mixture Density
Networks for pedestrians’ trajectory prediction with the goal
of enabling autonomous vehicles to navigate through crowds.

In the context of autonomous driving, other approaches
for trajectory prediction can be found. Kabtoul et al.
(2020) present a model that estimates the pedestrian’s
cooperation with the vehicle and uses this estimation to
predict the trajectory of the pedestrian by a cooperation-
based trajectory planning model. Also, in (Prédhumeau
et al. 2021) a pedestrian trajectory prediction model
is proposed for autonomous vehicles, combining SFM
and a decision model for conflicting pedestrian-vehicle
interactions. Another example is the approach in (Deo
and Trivedi 2017), which proposes an extension of the
Variational Gaussian Mixture Model-based probabilistic
trajectory prediction framework for on-road pedestrians. The
aforementioned proposals constitute a limited subset of the
existing trajectory prediction approaches. Many others can
be found. For a more comprehensive overview of the topic,
readers may refer to specific surveys (Ridel et al. 2018).

Despite advances and new techniques in trajectory
prediction, many works in socially aware navigation propose
their own approach to the problem. Some papers employ
uncomplicated solutions to predict the trajectory of agents,
using no other information than the last positions/velocities
of the agent. Thus, in the works by Guzzi et al. (2013)
and Chen and Lou (2022), all agents are assumed to keep
their current heading and speed. Carretero (2017) estimates
the new velocity of a human as the average of the last 10
velocities. Kivrak et al. (2018) do not predict trajectories
as such, but estimate the time to collision according to the
current positions and velocities of the humans.

More elaborate solutions have also been proposed using
only the past trajectory of the agents. Garrell et al. (2017)
use a prediction module based on online linear regression. In
(Garrell et al. 2019) a neural network takes the last 10 known
positions of a human to predict the new position one second
into the future. Truong and Ngo (2018) and Talebpour et al.
(2015) apply Kalman filters for predicting the future state
of pedestrians. Probabilistic approaches (Bera et al. 2017,
2019; Arndt and Berns 2015; Fisac et al. 2018; Trautman
et al. 2015; Randhavane et al. 2019; Dugas et al. 2020; Luber
et al. 2012; Ferrer et al. 2013; Sathyamoorthy et al. 2020;
Park et al. 2016), Hidden Markov Models (Vasquez et al.
2013; Peddi et al. 2020), and social force models (Ratsamee
et al. 2013; Boldrer et al. 2022) have also been applied for
trajectory forecasting.



Other approaches use additional information for trajectory
prediction. For instance, Unhelkar et al. (2015) use turn
indicators as features in the prediction of human motion
trajectories. In (Park et al. 2016) human intentions are
classified and used to predict their motions. Chen et al.
(2020) use a neural model (MLP) for predicting the next
states of humans using the relations between agents predicted
by a relational graph model.

A subset of proposals predict the goal positions of humans
instead of their trajectories (Bruckschen et al. 2020; Ferrer
et al. 2017) or along with them (Teja S. and Alami 2020;
Singamaneni et al. 2021; Vemula et al. 2018; Kostavelis
et al. 2017). Khambhaita and Alami (2017) use the goal
positions of humans to predict their paths by means of
elastic bands, but the goals are assumed. Finally, it is worth
mentioning that there is a group of proposals that, although
they have not been classified in this taxon since they do not
make predictions, use the past trajectories of pedestrians for
different purposes (Bera et al. 2018).

Interactions and actions constitute the next aspect of
agents taken into account in our classification. The term
interaction can be found frequently in the literature, but, in
some cases, it is used with a different meaning than the one
we want to reflect here. For instance, proposals related to
SFM use the term interaction to refer to the influence of other
agents on the dynamics of an agent. Similarly, in the field
of autonomous driving, the word interaction is commonly
used to specify the mutual influence of two or more road
users in their actions and reactions Wang et al. (2022). In this
review, we adopt a more intuitive interpretation of the term
interaction: an intentional combined action between two or
more agents, implying a collective behavior.

We make a distinction between interactions that involve
the robot (human-robot interactions) and those that are
performed among other agents (human-human interactions).
Regarding the last group, in (Manso et al. 2019), although
no specific detection technique is used, the proposed model
considers interactions between two people standing facing
each other. Vega-Magro et al. (2017) cluster individuals into
groups according to their social interactions. In (Truong
et al. 2017) and (Truong and Ngo 2018) human group
interactions are detected using a variant of the Graph Cuts
of F-formations. Other approaches detect and use human-
robot interactions. An example is the work in Park et al.
(2016), which detects when a human is likely to interact
with or obstruct the robot. In other proposals, both human-
human and human-robot interactions are considered. Thus,
Lobato et al. (2019) consider human-human interactions, but
also includes actions for human-robot interactions through
a dialogue module. Also, Chen et al. (2020) propose
a relational graph learning approach that uses GCNs to
compute interaction features between humans and between
humans and the robot.

The context provided by current activities and actions is
also exploited in a subset of the works reviewed. Some of the
planning-based approaches modify the robot’s path based on
the human actions like in (Mateus et al. 2019) that consider
activities like sitting/standing, and in (Charalampous et al.
2016) which selects a different set of actions: talking,
walking, and working.

The detection of intentions of the agents is certainly an
important feature in a socially aware navigation approach.
The ability to understand the intentions of the agents allows
the robot to anticipate and timely adjust its behavior to the
agents’ preferences and actions. We consider two different
types of intentions: expected and unexpected. Expected
intentions are those that occur regularly in the context in
which the navigation takes place. A pedestrian’s intent to
cross the street is an example of expected intention. On
the contrary, unexpected intentions are linked to unusual
attitudes/actions of the agents, but which could have a
significant impact on navigation, such as for example, the
intention to hinder any movement of the robot.

All the papers detecting intentions included in our taxon-
omy can be classified into the first group (expected inten-
tions). In addition, the intentions considered in some cases
are closely related to trajectory prediction (Ferrer et al. 2017;
Kostavelis et al. 2017), interaction predisposition (Ratsamee
et al. 2013; Park et al. 2016) and interaction detection (Park
et al. 2016). Specifically, in the domain of autonomous vehi-
cles, a variety of works targeting different kinds of intentions
can be found. That is the case of works estimating vehicles’
predisposition to cooperate (Kabtoul et al. 2020; Evens
et al. 2022), forecasting changes in vehicles’ speeds and
trajectories (Chandra et al. 2020), or predicting pedestrians
intentions to cross (Chandra et al. 2020).

Differently, although linked to trajectory prediction, in
(Mavrogiannis et al. 2018) the proposed system reads signals
of intentions or preferences over avoidance strategies. Also,
Skrzypczyk (2021) detects and uses signals of intentions to
cooperate with the robot. Another differentiated approach
to detecting agents’ intentions for socially aware navigation
is the one by Cunningham et al. (2019). In this proposal,
the system simulates forward the robot and the other agents
under their assigned policies to obtain sequences of predicted
states and observations.

Besides these aspects of the agents, some papers consider
other attributes. For instance, Bera et al. (2017) aim at
estimating personality traits, Bera et al. (2019) and Jiang
et al. (2016) estimate the emotional states of the humans
sharing the navigation area with the robot and make the
robot act according to the detected emotions. Another
interesting factor proposed in the context of autonomous
driving is altruism (Toghi et al. 2021), which considers the
performance of other vehicles. Similarly, Toghi et al. (2022)
use the concepts of sympathy and cooperation. Specifically,
sympathy is defined as the autonomous agent’s altruism
toward a human and cooperation is the altruistic behavior
among autonomous agents.

Other works working with other geometrical information
have been classified within other attributes. This is the case
of works that consider gestures (Truong and Ngo 2017), or
the orientation of the humans, which is a proxy to their field
of view (Ratsamee et al. 2013; Truong and Ngo 2017; Truc
et al. 2022).

5.3 Social norms
The last main taxon for situation awareness and assessment
deals with social norms, making a distinction between
proxemics and other social rules. Proxemics is one of the
main elements considered in the vast majority of socially
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aware navigation proposals to make a robot behave more
suitably when navigating around humans than it would do
if using a more general navigation approach.

To integrate the idea of proxemics into the robot’s
navigation system, some proposals consider a uniform
circular area around humans that the robot must avoid
traversing (Bruckschen et al. 2020; Anvari and Wurdemann
2020; Araujo et al. 2015; Wang et al. 2016; Peddi et al.
2020; Korkmaz 2021; Nishimura and Yonetani 2020; Kenk
et al. 2019; Chen et al. 2019; Qiu et al. 2022). Other
approaches model the space around humans using Gaussian
functions to represent different degrees of discomfort based
on proximity (Lobato et al. 2019; Singamaneni et al. 2021;
Vega-Magro et al. 2017; Chen et al. 2020; Patompak et al.
2016; Rios-Martinez et al. 2012; Kostavelis et al. 2017;
Sorrentino et al. 2021; Truong et al. 2017; Truong and Ngo
2018; Kostavelis et al. 2016; Charalampous et al. 2016;
Vega-Magro et al. 2018; Vega et al. 2019; Mateus et al. 2019;
Ratsamee et al. 2013). In some cases, additional factors are
considered when modelling personal spaces. For instance,
Chen et al. (2020) consider a Gaussian variance proportional
to the relative velocity of the person. Also, in (Patompak
et al. 2016), the space around humans is modeled as a 2D
Gaussian function considering the gender, the social distance
(familiar/strange), and the physical distance. Other examples
are the approaches in (Truong and Ngo 2018; Mateus et al.
2019) that take into consideration the status of a human
(e.g. sitting, standing, moving) as well as their potential
interactions with objects to represent their personal space.
Although not using a Gaussian modeling approach, other
proposals build personal space around humans considering
other factors as well, such as the person’s emotion (Bera
et al. 2019; Jiang et al. 2016) or the specific area where
the person is located (Lu and Smart 2013). In addition to
being a frequently used tool for modeling people’s personal
space, Gaussian modeling has also been applied to estimate
the interaction space of groups of people (Lobato et al. 2019;
Vega-Magro et al. 2017; Truong et al. 2017; Truong and Ngo
2018; Rios-Martinez et al. 2012).

The inclusion of proxemics in many proposals on
socially aware navigation focuses on defining forbidden
or inappropriate areas for navigation that the robot must
avoid crossing. Nevertheless, there are approaches in the
current literature in which proxemics is used to perform
kinodynamic control. Specifically, the speed of the robot is
limited or modulated depending on the distance to people
(Garrell et al. 2017; Carretero 2017; Ferrer et al. 2017;
Teja S. and Alami 2020; Singamaneni et al. 2021), alleviating
this way the freezing robot problem in complex situations.

Besides proxemics, some proposals consider other social
norms during navigation. These additional social norms
include walking on a specific side of the navigation area
(Cunningham et al. 2019; Mateus et al. 2019) or passing
a human from their conventionally preferred side (Dondrup
and Hanheide 2016; Ciou et al. 2018; Chen et al. 2017). In
the work by Morales et al. (2017), along with navigating on
a particular side, the proposed system is designed to avoid
zigzag motion effects in order to improve the predictability
of the autonomous vehicle. Khambhaita and Alami (2017)
propose a planning technique based on a graph optimization
approach that considers additional constraints along with

proxemics such as directional constraints that penalize
motions where humans and the robot are moving straight
forward to each other. The planning method proposed by
Bera et al. (2018,) integrates the concept of entitativity
to enhance social invisibility in multi-robot systems. The
norms to communicate crossing intention are considered
in (Hsu et al. 2020). In addition, the proposal by Patompak
et al. (2016) considers the gender, the relative distance the
robot percepts from the human, and the social distance,
distinguishing between familiar humans and strangers, to
assign an acceptable physical distance. Similarly, in (Kästner
et al. 2022), social norms are modified to suit three different
age groups (child, adult and elder) and the robot is trained
to handle such variations. Finally, in a work by Shahrezaie
et al. (2022), the authors proposed different kinds of social
interaction rules based on the subjective analysis of the data
collected through interviews. These rules are then used to
define different social behaviors for the robot.

6 Evaluation
This section discusses the analysis of the papers according to
the taxonomy of evaluation. The distribution of the articles
as per this taxonomy is shown in Fig. 14. For the evaluation,
researchers employ either of the qualitative or quantitative
methodology. In some cases both these methodologies are
applied to gain deeper insights. Among the papers in this
survey, a major portion of tools taxon is dedicated to studies
rather than datasets, simulators, and benchmarks.

6.1 Methods
The subjective and multifaceted nature makes evaluating
socially aware navigation challenging. As a result, different
kinds of methodologies are frequently applied to understand
the full picture. Based on the type of methodology employed,
they can be broadly divided into two types, (i) qualitative
and (ii) quantitative. The qualitative method uses the non-
numerical data to explain the behavior and the social-
awareness of the robot, while the quantitative method tries
to provide more objective analysis based on numbers.

The qualitative approach of evaluating robot’s socially
aware behavior provides some initial cues about navigational
performance. This mode of evaluation is used by many
researchers irrespective of whether it is a mobile robot (Qian
et al. 2013; Araujo et al. 2015; Jiang et al. 2016; Khambhaita
and Alami 2017; Kenk et al. 2019; Guldenring et al. 2020;
Repiso et al. 2020; Chen et al. 2019; Banisetty et al. 2021;
Singamaneni et al. 2021; Gil et al. 2021; Qiu et al. 2022),
wheelchair (Rios-Martinez et al. 2012; Vasquez et al. 2013;
Johnson and Kuipers 2018; Skrzypczyk 2021), PMV (Hsu
et al. 2020; Kabtoul et al. 2020; Evens et al. 2022; Paez-
Granados et al. 2022) or a drone (Yoon et al. 2019; Truc
et al. 2022). Due to the diverse nature of data and techniques
it deals with, qualitative methodology is mostly subjective
and we haven’t found any articles in this survey that does
objective analysis. Typically, the path, trajectory and/or the
velocity profiles of the robot and the human(s) are analyzed
systematically and logical inferences are drawn (Qian et al.
2013; Vasquez et al. 2014; Patompak et al. 2016; Khambhaita
and Alami 2017; Repiso et al. 2017; Banisetty and Feil-
Seifer 2018; Guldenring et al. 2020; Teja S. and Alami
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Figure 14. Distribution of papers by evaluation and tools. The figure is best viewed zoomed in using a digital version.

2020; Nishimura and Yonetani 2020). They are sometimes
accompanied by step-by-step analysis of a situation using
screenshots of simulated (Qian et al. 2013; Khambhaita and
Alami 2017; Repiso et al. 2019; Teja S. and Alami 2020;
Guldenring et al. 2020) and/or real world experiments (Qian
et al. 2013; Ratsamee et al. 2013; Araujo et al. 2015;
Hsu et al. 2020; Teja S. and Alami 2020; Singamaneni
et al. 2021; Paez-Granados et al. 2022; Repiso et al. 2022;
Singamaneni et al. 2022). This kind of analysis focuses on
minute aspects that affect human-robot interaction during
navigation. Sometimes, it can also include comparisons of
the given navigation planner with some other planners (Qian
et al. 2013; Khambhaita and Alami 2017; Chen et al.
2019; Teja S. and Alami 2020; Nishimura and Yonetani
2020; Kabtoul et al. 2020; Qiu et al. 2022) followed by
the explanations about the improvements or deteriorations.
For example, Khambhaita and Alami (2017) qualitatively
compare their socially aware planning system with two
other systems in various simulated scenarios with sets of
screenshots and discusses the advantages of the proposed
system. Qualitative methodology is highly useful during the
initial stages of development and when standards are not
defined, which is the case of socially aware navigation.

The robot navigating and interacting with humans
in the environment needs to have legible motion and
acceptable behavior. These criteria are subjective to humans’
experiences and cannot be analyzed comparatively as above.

Thus, user studies are conducted to collect data through
questionnaires (Lichtenthäler et al. 2012; Kruse et al. 2014;
Szafir et al. 2015; Morales et al. 2017; Jensen et al. 2018;
Repiso et al. 2020; Mavrogiannis et al. 2019; Petrak et al.
2021; Bevins and Duncan 2021; Dalmasso et al. 2021;
Repiso et al. 2022) or interviews (Duncan and Murphy 2013;
Szafir et al. 2015; Cauchard et al. 2015; Mead and Matarić
2017; Senft et al. 2020; Sorrentino et al. 2021; Shahrezaie
et al. 2022) to analyze the humans’ experiences, expectations
and perceptions. The data is then used to subjectively
evaluate a specific system or the behavior of the robot. Some
of the commonly used methods for this employ the Godspeed
Questionnaire with Likert Scale (Weiss and Bartneck 2015;
Carpinella et al. 2017) followed by the analysis of variance
(ANOVA). This kind of analysis is also used in behavior
studies (Lichtenthäler et al. 2012; Kruse et al. 2014; Szafir
et al. 2014; May et al. 2015; Morales et al. 2017; Jensen
et al. 2018; Hart et al. 2020; Hetherington et al. 2021; Senft
et al. 2020) that provide useful insights while designing
new socially aware navigation strategies and behaviors for
a robot, car or a drone. Despite their remarkable usefulness,
user studies require experiments with real humans followed
by statistical analysis and are often not easy to replicate and
organize. In our survey, roughly half of the papers employ
some kind of qualitative methodology during the evaluation
and around 33 of them perform user studies.
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Table 1. Different types of Quantitative metrics. Each metric in the table is for one complete trajectory executed (until an abort or
end) to reach a goal.

Metric Type Metrics

Navigation
success, efficiency, collisions, time to reach the goal (or completion time), distance traveled
(or path length), velocity and acceleration (Chen et al. 2017, 2019; Bera et al. 2018, 2019;
Sathyamoorthy et al. 2020)

Discomfort

human-robot distance, number of social space intrusions (personal and interaction spaces), time
spent in social spaces (personal and interaction spaces), human safety and comfort indices (SII,
SGI, RMI), performance metrics (Vega et al. 2019; Kollmitz et al. 2020; Truong and Ngo 2017;
Kostavelis et al. 2017; Ferrer et al. 2013; Talebpour et al. 2016; Singamaneni et al. 2021; Manso
et al. 2019; Bachiller et al. 2022)

Naturalness average displacement error, final displacement error, non-linear displacement error, cumulative
Heading changes (Vega et al. 2019; Alahi et al. 2017)

Quantitative methods try to measure the effects (Dugas
et al. 2020; Toghi et al. 2021; Mavrogiannis et al. 2018; Peddi
et al. 2020; Hsu et al. 2020) or the performance (Guldenring
et al. 2020; Repiso et al. 2020; Singamaneni et al. 2021;
Teja S. and Alami 2020; Nishimura and Yonetani 2020; Shin
and Yoon 2020; Boldrer et al. 2022; Chen and Lou 2022)
of the robot navigation strategies numerically and provide
good objective means for evaluation. Since socially aware
robot navigation will always have to satisfy the navigation
metrics, a large number of works (Sathyamoorthy et al.
2020; Chen et al. 2020, 2019; Brito et al. 2021;
Fernandez Carmona et al. 2019; Guzzi et al. 2013; Johnson
and Kuipers 2018; Kollmitz et al. 2015; Vega-Magro et al.
2018; Vega et al. 2019; Singamaneni et al. 2022) involve
such objective analysis while assessing their system and
comparing it to other state-of-art systems. Such navigational
metrics include success rate, path length, number of
collisions, etc. Some of the commonly used navigation
metrics are listed in the first row of Table 1.

The socially aware part, however, requires a different set
of metrics that could quantify the social quality of navigation
and the humans’ discomfort. In this article, we call such a
set of metrics discomfort metrics and they try to estimate
how acceptable the robot’s motion around humans is. The
commonly used metrics in this group and some variations
are listed in the second row of Table 1. Even after being an
active field for over 20 years, most of these are still based on
Hall’s Proxemics Theory. There are some metrics like time-
to-collision (ttc) (Biswas et al. 2022) that are recently gaining
more attention. From time to time, some researchers define
specialized metrics combining various criteria. For example,
the works of Repiso et al. (Repiso et al. 2018, 2020,, 2022)
define performance metrics that combine various discomfort
measures to form a single metric. These performance metrics
in each setting are then utilized to evaluate simulated as well
as real-world experiments. Similar performance metrics are
used in (Ferrer et al. 2013, 2017; Garrell et al. 2017, 2019)
as well. The works in (Truong and Ngo 2018, 2017) define
a set of metrics to measure socially aware navigation at
various interaction levels. The Social Individual Index (SII)
is defined based on the proxemics theory to measure the
comfort at the individual level of the human, while the Social
Group Index (SGI) is defined to deal with human groups and
human-object interactions that occur during the navigation of
the robot. They use something similar to ttc, called Relative
Motion Index (RMI) to measure the relative motion between

the human and the robot and state that a lower RMI value
results in more acceptable robot navigation. Another comfort
index called the Social Direction Index (SDI) is defined to
evaluate the direction of approach when the robot approaches
humans. The robot’s behavior is evaluated based on how
close the calculated SDI is to the defined maximum in
the situation. It has to be noted that the maximum desired
value of SDI changes from one situation to another and
also depends on the number of humans. Learning-based
discomfort metrics have also appeared recently in (Manso
et al. 2019; Bachiller et al. 2022).

Another set of metrics that are commonly used in human
trajectory prediction (Alahi et al. 2016; Bisagno et al. 2018;
Manh and Alaghband 2018; Vemula et al. 2018; Song et al.
2018) and sometimes in socially aware navigation planning
are the similarity metrics. The similarity metrics are applied
to the socially aware navigation systems when the robot
tries to mimic or follow a human’s trajectory (or behavior)
like in the case of (de Vicente and Soto 2021; Fahad et al.
2020; Luber et al. 2012). Some of the works in socially
aware robot navigation also measure the path irregularity
by employing measures like counting the unnecessary
heading or orientation changes (Vega et al. 2019,). The
similarity metrics together with the irregularity measures
are grouped together as naturalness metrics (like in (Gao
and Huang 2022)) in our work and are presented in the last
row of Table 1. All these metrics (navigation, discomfort, and
naturalness) are usually well-defined with some analytical
formulation. They could be calculated automatically in a
large number of scenarios to determine the robustness,
advantages, and limitations of the defined socially aware
navigation scheme. The objective nature of this methodology
also makes the comparisons between different systems
simpler. Hence, quantitative methods are often used when
a new socially aware navigational system is proposed. As
seen from Fig. 14, more than 100 articles in this survey
were found to include some form of quantitative evaluation.
Table 1 shows only some of the commonly used metrics.
However, researchers define their own set of metrics from
time to time like in (Cunningham et al. 2019; Repiso et al.
2022; Ferrer et al. 2017; Paez-Granados et al. 2022; Teja S.
and Alami 2020; Kabtoul et al. 2020).

In Table 1, we present the metrics just for one trajectory
to make the presentation homogeneous, but in reality, this
may not be the only way they are used. For example, it is
a common practice to define the rate of success, efficiency,



and performance over a set of trajectories or goals (Ferrer
et al. 2013; Ratsamee et al. 2013; Fisac et al. 2018; Bera
et al. 2018; Mavrogiannis et al. 2019; Repiso et al. 2020;
Chen et al. 2020; Xie et al. 2021; Valiente et al. 2022).
Sometimes, it is applied to collisions as well and the collision
rates are compared (Luo et al. 2018; Chen et al. 2019, 2020;
Guldenring et al. 2020; Liu et al. 2020). Even among the
metrics that are calculated per trajectory, the metrics like
velocity, acceleration, and human safety and comfort indices
present evolution over time for better explanation (Gómez
et al. 2013; Kruse et al. 2014; Truong et al. 2017; Luo
et al. 2018; Truong and Ngo 2018; Mavrogiannis et al. 2019;
Anvari and Wurdemann 2020; Singamaneni et al. 2021; Truc
et al. 2022).

Although not very common, there are papers that use
subjective analysis in quantitative evaluation. The works by
Manso et al. (2019, 2020) use subjective scores provided by
human users to create general metrics that allow different
types of navigation strategies in robots to be compared.
Finally, it should also be noted that the researchers need
not have to employ only one kind of analysis. For instance,
the works in (Qian et al. 2013; Patompak et al. 2016;
Repiso et al. 2020; Wang et al. 2022; Kästner et al.
2022; Mavrogiannis et al. 2019; Gil et al. 2021) use both
quantitative and qualitative evaluation while some works
like (Deshpande et al. 2020; Gonon et al. 2022; Kabtoul
2021) employ only quantitative evaluation.

6.2 Tools
Tools that assist the development and evaluation of a socially
aware navigation system fall under this taxon. Although there
is no restriction what can be considered a tool, we have
identified that studies, simulators, datasets, benchmarks and
new metrics are generally used by researchers in socially
aware robot navigation.

Studies can be seen as one of the powerful tools that
help the field progress by providing deeper understanding
and useful information. For example, the papers studying
communication strategies (Szafir et al. 2014; May et al.
2015; Morales et al. 2017; Che et al. 2020; Hart et al.
2020; Bevins and Duncan 2021; Kannan et al. 2021;
Senft et al. 2020; Boos et al. 2022; Angelopoulos et al.
2022) show different ways of expressing intention and
how they are perceived by humans. The studies and
surveys on pedestrian-vehicle interactions (Ridel et al. 2018;
Rasouli and Tsotsos 2019; Prédhumeau et al. 2021) provide
necessary information to design or improvise interaction
strategies for autonomous vehicles and robots, while the
studies on legibility (Lichtenthäler et al. 2012; Kruse et al.
2014; Hart et al. 2020; Hetherington et al. 2021; Taylor
et al. 2022; Neggers et al. 2022) show how the designed
strategies are assessed by humans. These studies on human-
robot interaction and navigation (Lichtenthäler et al. 2012;
May et al. 2015; Morales et al. 2017; Yeh et al. 2017;
Hetherington et al. 2021; Senft et al. 2020; Salvini et al.
2022; Palinko et al. 2020) are great tools to design human
complaint behaviors of the robot while it’s navigating or
interacting. For example, the work in (Shahrezaie et al. 2022)
uses the user study to design different social behaviors for
the robots. Neggers et al. (2018, 2022,) through a series of

studies provided details on comfortable passing distances
and speeds for different type of robots around humans.

Simulators are the other tools that greatly aid the
development process and help to test the system under
various settings, quickly and efficiently. They can be used to
simulate different human-robot navigation scenarios (Kaur
et al. 2022) with varying densities of humans to
challenge the socially aware navigation system before
its final deployment in the real world. Researchers have
recently recognized the importance and usefulness of
human simulations and proposed various methodologies and
approaches (e.g. Pedsim, ORCA) to include human agents in
robotic simulators. Although there are many simulators for
simulating robots, only a few simulators support HRI (Kaur
et al. 2022). Recently, some new simulation tools were
proposed by Tsoi et al. (Tsoi et al. 2021, 2020, 2022) and
Mizuchi and Inamura (2017) that allow easy data collection
and evaluation with simulated human agents or avatars.
The works in (Tsoi et al. 2021, 2020, 2022) focus on
simulating semi-crowded or crowded navigational scenarios
while that in (Mizuchi and Inamura 2017) focuses on
multi-modal interactions. Besides, there are some interesting
simulators (Favier et al. 2022; Hauterville et al. 2022; Pérez-
Higueras et al. 2022) that allow the simulation of intelligent
human agents with multiple behaviors in small numbers.

Regarding datasets, frequently human-human navigation
datasets (e.g. ETH, UCY, etc.) have been used to test
how close the robot’s navigation behavior is to one of
the humans in the datasets. Nevertheless, humans do
not essentially perceive the robot the same way they
perceive another human. Hence, some recent datasets like
THÖR (Rudenko et al. 2020) and SCAND (Karnan et al.
2022) record the data of the robot navigating in the presence
of humans. THÖR’s data is obtained from a controlled
indoor environment whereas SCAND contains data from
both indoors and outdoors. As these datasets contain the
natural reactions of the people towards a robot navigating
in their environment, it could help researchers to understand
human-robot navigation better and design mechanisms that
incorporate this information. The datasets SocNav1 (Manso
et al. 2020) and SocNav2 (Bachiller et al. 2022) propose
a new approach using graph neural networks (Manso et al.
2019) to learn socially aware navigation conventions by
using human feedback in simulated environments. Some
recent pedestrian datasets like (Wang et al. 2022) provide
enriched navigation information, including the first-person
view, which is more natural compared to the classical top-
down view. Further, all these datasets could also be employed
to benchmark socially aware navigation systems (Jiang et al.
2022).

Benchmarks and metrics are required to enable every
socially aware robot planning system to have some minimum
standards before they could be deployed among humans.
The growing interest in the field has led to the development
of some benchmarking tools like SocialGym (Holtz and
Biswas 2022), Socnavbench (Biswas et al. 2022) and
SEAN (Tsoi et al. 2020, 2022). These benchmarks provide
some performance metrics that could be used to compare
different navigation frameworks numerically. The new
version of SEAN (Tsoi et al. 2022) integrates Socnavbench
and provides some rich environments to learn or test socially
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aware robot navigation strategies and collect data. A very
recent work by Wang et al. (2022) proposes protocols for
benchmarking crowd navigation algorithms with a set of
metrics.

7 Proposals
The presented analysis provides a wide panoramic view
of the current state of socially aware robot navigation.
Although other recent surveys cover most of the relevant
aspects involved in this field, they miss some key elements,
such as the different types of robots and how their specific
characteristics may affect navigation strategies. The effects
of social context and the semantics of the environment are
also frequently missing. The proposed taxonomy intends to
fill those gaps, including all the items that could be present
in any existing and future approach to socially aware robot
navigation. Additionally, this survey has been designed to
learn about what has been done in the field and to identify
areas that need more exploration and research. Regarding
this last point and taking our analysis into consideration, in
this section, we put forward several proposals to enhance the
current state of socially aware robot navigation.

Proposal 1: Enhance human models to improve robot
behaviors in socially aware navigation, including human
intention prediction.
For a robot to select the actions to reach a goal, they
require information about its state and its environment.
The robot’s state is generally composed of its pose (i.e.,
position and orientation) and its current velocity with the
occasional inclusion of acceleration data (Gul et al. 2019).
The environmental information is generally limited to the
area that can be traversed by the robot; either using range or
vision sensors, an obstacle map, or both. This information
is typically enough for robots to navigate in human-free
environments. socially aware robot navigation, however,
requires information about humans, which are treated as
special agents in the environment that robots should not
collide with. Although most of the works reviewed in this
article model humans using their instantaneous position only,
some papers consider their speed, some consider human
intentions to interact (Park et al. 2016; Ratsamee et al.
2013) and some others include immediate motion intent
predictions (Peddi et al. 2020; Hsu et al. 2020) to improve
the social behavior of the robot. Even though extending the
variables considered to optimize robot behavior is positive,
this information is still insufficient to build good human
models. For instance, modeling the reactions of humans or
the possible mental states involves a lot of uncertainty and
variables like positions, velocities or motion intention cannot
capture them efficiently. They require more information
on action-reaction cycles (through studies) and human
psychological models. This limitation on the human models
directly affects the modeling of the robot’s planning and
contributes to unexpected robot behavior from time to time.

Proposal 2: Design user-adaptive robot behaviors. It
requires significant improvement in the robot’s perception of
humans.
Further refinement in the robot’s social behavior can be
realized if the humans can be identified. The perception
modules of robots can provide information about certain

human characteristics (age, gender, height, etc.) that can be
used to filter or shift the robot’s behavior according to the
type of human it is interacting with (Bera et al. 2019; Jiang
et al. 2016; Patompak et al. 2016). With the ever-expanding
applications of Artificial Intelligence in the computer vision
community, we believe that the online realization of adaptive
robot behaviors is not very far.

Proposal 3: Define context-based benchmarks and set up
universal standards in the field. A set of standard contexts
and human actions needs to be identified for benchmarking.
The dependency on context cannot be neglected anymore
in socially aware robot navigation. Each context requires
different types of behaviors and interactions. Even within
the same environment, depending on the action a human
is performing (for example walking leisurely, rushing to a
place, running, approaching a place, etc.) the interactions
change and robots should adapt to this. Human action
recognition is another active field in computer vision that
could soon provide robotic systems with enough information
to handle the interactions better. The lack of universal
standards and benchmarks makes it very hard to compare
different socially aware navigation algorithms.

Proposal 4: Focus on robot-specific parameters (e.g.,
shape, size) that can result in better interactions and develop
strategies that can adapt to different robot characteristics.
Studies have shown that the characteristics of robots affect
interaction preferences (Golchoubian et al. 2021; Rasouli
and Tsotsos 2019; Samarakoon et al. 2022). Surprisingly,
these parameters are disregarded by most socially aware
navigation algorithms.

Proposal 5: Establish good communication protocols to
convey the robot’s intention.
It has been shown that conveying the robot’s intention has
a positive impact on human-robot interaction (Senft et al.
2020). Implicit communication signals inspired by vehicles
and/or humans and acknowledgment of human implicit
communication have already been studied in some of the
reviewed works (Che et al. 2020; Hsu et al. 2020; Szafir et al.
2014; Singamaneni et al. 2021). Some works like (Bevins
and Duncan 2021; Hart et al. 2020; Hetherington et al. 2021;
Toghi et al. 2021) employ explicit communication strategies
to improve navigation and interaction. However, these are
limited and there is very little research on timing and the
means to communicate. This highlights the need for more
user studies on interaction and communication strategies.

Proposal 6: Explore alternatives to proxemics-based
metrics. Well-designed human-robot interaction studies can
provide clues about additional factors that affect human
comfort around robots.
The evaluation of socially aware navigation has always
been challenging. Most discomfort metrics are based on
proxemics theory and are not valid in many situations.
Because of the lack of a clear rationale behind the relevance
of such metrics, researchers tend to propose their own
variations of metrics that are more suited to evaluate
their systems. Further, the thresholds of the metrics are
dependent on the situation, which makes it hard to define
unified standards for socially aware navigation. All these
issues make it difficult to compare the social-awareness
of different socially aware robot navigation algorithms,
and until recently, there were no datasets or tools to



benchmark socially aware navigation. The use of human-
human interaction data to compare human-robot interactions
is not always advisable and may result in false conclusions.
Even though current benchmarks provide rich environments
to test different frameworks under similar conditions, they
use metrics that are not applicable to all human-robot
navigation settings.

Proposal 7: Prioritize considerations of comfort and trust
in addition to safety during the design of socially aware robot
navigation approaches.
While significant research efforts have been devoted to
ensuring safety in socially aware navigation across the
different types of robots, there has been a notable gap in
addressing comfort and trust. However, the critical aspects
of comfort and trust, such as the prediction of the robot’s
motion, transparent decision-making, and reliable behavior,
have received comparatively limited attention (Ferrer et al.
2017; Truong et al. 2017; Che et al. 2020). Further research
efforts are needed to comprehensively address comfort and
trust in socially aware navigation, considering the specific
requirements across different types of robots.

Proposal 8: Include the dynamic models of the other
agents into the planning scheme.
In relation to the dynamics of the physical motion, most of
the works done up to date consider that human and robot
move slowly. As socially aware navigation progresses this
assumption may become more problematic, especially when
considering entities, such as bicycles, motorcycles, or cars.
Higher speeds make crucial for robots to account for these
dynamics. The presence of fast-moving entities in an urban
area introduces additional complexities and potential risks
that the robot must consider when generating its plans and
actions.

8 Future Challenges
All the proposals presented in the previous section can be
considered achievable given the current state of the field.
However, a number of challenges that will require further
long-term research to be addressed and resolved remain. This
section discusses some of these future challenges, including
aspects that range from technological matters to regulations
and considerations about the design of urban spaces.

The relationship between humans and robots poses
unresolved issues despite established social conventions.
Understanding various aspects of this relationship is essential
for robots to effectively assist humans. They need to
comprehend typical human behaviors, predict actions,
and actively engage in cooperative tasks. First, cultural
differences can influence social norms. In the pursuit of
enhancing socially aware navigation, conducting research
on social norms across diverse cultures is indispensable.
Therefore, it is crucial to study how these norms affect
navigational behaviors. Second, individual preferences
influence human behavior and perception. To ensure
successful and comfortable interactions with humans, it
is essential to design socially aware robots with this key
aspect in mind. The inclusion of this feature will play a
vital role in fostering human acceptance of personal robots
in the future. Third, a socially aware navigation system
has to guarantee human acceptability, safety, trust, and

privacy. Fourth, to effectively collaborate with people in
tasks like navigating alongside them, robots need to estimate
the intentions of humans being accompanied. Understanding
and interpreting human intentions play a crucial role in
ensuring seamless coordination and cooperation between
robots and humans. While some research, including the
Perception-Intention-Action model (Domı́nguez-Vidal et al.
2023), has been conducted on Human-Robot Cooperation
tasks, the perception and understanding of human intentions
remain, and that necessitates further investigation. Fifth, the
occurrence of abnormal human behaviors towards robots,
such as vandalism or attempts to obstruct robot navigation
should also be considered. In such cases, robots will need
to adapt their navigation strategies based on the observed
human behaviors. This adaptive approach is essential to
ensure the safety and functionality of the robot in dynamic
and unpredictable environments.

Urban design constitutes another group of important
challenges. Cities and urban areas are not prepared for the
deployment of robots in open areas and buildings. Urban
typology, like wide streets in new cities or narrow streets
in historic districts, may necessitate adjustments in the
type of robots allowed to circulate and the corresponding
regulations. The segregation of areas where robots can
freely navigate is an important issue, particularly in the
context of personal robots or robots involved in goods
delivery. Establishing clear boundaries or designated zones
for robot movement becomes increasingly relevant to ensure
the efficient and safe operation of these robots. Adequate
segregation helps prevent unwanted interactions or conflicts
between robots and humans, ultimately contributing to the
seamless integration of robots into various domains. Finally,
personal mobility devices, bicycles, motorcycles, or cars
share the urban space besides humans. These different kinds
of agents have particularities that will provoke new situations
the robot has to take into account.

Currently, most urban regulations prohibit the circulation
of autonomous robots in urban areas. To enable the
integration of goods delivery robots, specific regulations
similar to those for autonomous cars need to be established.
This regulatory framework is vital in addressing the
challenges unique to these robots and ensuring their
safe and efficient operation in urban environments. By
developing appropriate regulations, we can facilitate the
widespread deployment of personal and goods delivery
robots, prioritizing public safety and societal acceptance.

The research challenges in terms of AI and decision-
making are very diverse. Significant advancements in
learning have been achieved, however, socially aware
navigation is limited by the lack of sufficient work in
the helper domains. For instance, effectively acquiring
knowledge about human preferences, intentions, and
social norms remains a prominent challenge that requires
resolution. Two crucial challenges arise in the context of
robot navigation tasks. First challenge is to comprehend
the current situation encountered by a robot, which is
of utmost importance to complete the task safely. The
detection and understanding of conflict states is the second
major challenge. Short-term predictions and identification of
potential conflict states provide the necessary information to
anticipate the evolution of the current situation within a few
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seconds. This anticipation allows the robot to generate new
plans and actions, adopting a proactive approach.

In tasks involving cooperation or negotiation with both
a robot and a human, prediction skills play an important
role in facilitating coordination and foreseeing possible
future outcomes. By anticipating the task’s dynamics,
predictions can facilitate behavior adaptation, thereby
enhancing effective coordination. This also applies to
trajectory planning, which necessitates reasoning about
multiple aspects in the present and the future, including
the environment, the potential consequences of each agent’s
actions, and the expected behavior of human individuals. By
taking into account these variables, robots can make well-
informed decisions.

Last but not least, evaluating the efficacy and
efficiency of socially aware robot navigation systems is
one of the most difficult tasks. Traditional metrics for
measuring robot navigation, such as path length or collision
avoidance, may not represent the social side of interactions
properly. Subjective aspects such as user experience,
social acceptance, and perceived trustworthiness must be
considered when evaluating socially aware robot navigation.
It is important to develop strong assessment procedures that
include these social characteristics to guarantee that social
robots navigate in a way that is consistent with human
expectations and promotes successful encounters.

9 Conclusions

The growing use of service and assistive robots as well
as autonomous cars in human environments has made
socially aware robot navigation an important research
subject. The growing number of papers on socially aware
robot navigation over the past six years is evidence of its
relevance. Robots must be sociable or artificially sociable in
order to be accepted by people. To evaluate the field from
different angles, we analyzed 193 articles, classifying them
into different taxa spanning across four different faceted
taxonomies. This taxonomic analysis allowed us to identify
the areas that require more attention and further research.
Although the survey includes socially aware navigation for
autonomous cars and drones, the main domain of interest in
the papers found remains mobile robots.

Most of the previous surveys and other prior studies
in the field are referenced in our study. Each of these
studies has added to our understanding of the navigation
of social robots that are aware of humans from several
angles, including proxemics, planning, perception, mapping,
and evaluation techniques. By offering taxonomy-based
classifications of the publications in our survey, we believe
we have contributed to this body of knowledge.

Future research has fresh chances and challenges as
the area expands. The requirement to create more reliable
algorithms and techniques that can precisely forecast and
adapt to human behavior in dynamic contexts is one such
difficulty. In order to properly communicate the robot’s goals
and behaviors to humans, techniques making use of multiple
communication modalities must be developed. There is also
a need to address the ethical and legal issues surrounding
interactions between humans and robots as the usage of

robots in healthcare, education, and other social domains
expands.
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[115] Lichtenthäler C and Kirsch A (2013) Towards legible robot
navigation-how to increase the intend expressiveness of
robot navigation behavior. In: International Conference
on Social Robotics-Workshop Embodied Communication of
Goals and Intentions.
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