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Abstract: 

Transport infrastructure managers need to ensure longevity of their networks to meet pressing 

sustainability demands. Extending the operational life of complex structural systems, such as 

ageing bridges, requires a comprehensive life-expectancy assessment. Given that these 

structures are suffering from local failures that may not necessarily alter their global response, 

engineers need to increase their confidence in detecting and characterising such damage, while 

assessing deterioration rates in localised regions. 

This chapter presents data analysis results from the structural health monitoring of three 

ageing bridges: two masonry arch rail bridges, and a half-joint concrete motorway bridge. The 

aim, in all cases, is to improve deterioration assessment through enhanced sensing of the 

distributed response across the structures. A core sensing technology used in the three schemes 

is the development of fibre Bragg grating (FBG) networks, allowing the study of small dynamic 

strain variations at both the local and global response level. New ways of installing FBGs are 

explored for multi-aspect condition monitoring, while their sensitivity in damage detection is 

enhanced with data analytics and acoustic emission sensors. The chapter discusses that 

complementing information from dynamic strain and acoustic emission sensing networks may 

enable a finer deterioration monitoring of ageing structures driven by data.   
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4.1. Introduction 
Infrastructure managers need to improve the performance and longevity of existing structures 

to reduce carbon emissions and meet increased sustainability demands. Bridges are vital 

transport assets where a serviceability concern could lead to prolonged travel and economic 

disruptions. While ensuring their resilience is essential for the public’s safety and prosperity, 

there are significant uncertainties regarding their structural performance, especially for old 

bridges that were designed using poorly detailed standards and practices.  

In particular, national design standards for bridges were first introduced as late as the 

1960s (BSI, 1962), while wider cross-national standardisation efforts started in 1975 by the 

European Commission led to the publication of the first Eurocodes in 1984. The transition 

period of the 60s-80s marked an era of wide standardisation of building codes, which improved 

the structural quality and performance of bridges while overlooking life-cycle management and 

sustainability aspects. This has raised concerns for the future of existing bridges, which 

deteriorate exponentially as they approach their design life expectancy, typically limited to 

100-120 years.  

Bridges constructed during the 60s-80s transition period, occasionally with poor 

practices, have already reached the second half of their expected operational life as defined in 

modern codes. Furthermore, a significant number of bridges still in use were constructed much 

earlier, without design life specifications, especially in railways. For instance, the number of 

masonry arch bridges and culverts in Europe was estimated to exceed 200,000, corresponding 

to more than 50% of the total railway bridge stock (Orbán, 2004). Most of these structures have 

been in operation for more than a century and experience significantly increased operational 

loads today. 

Ageing bridges designed with poor standards are of particular concern, as their true 

operational life expectancy is typically unknown. The vast number of ageing structures in 

transport networks, their unknown structural details, the complexity of structural systems and 

deterioration mechanisms, and the relative recent adoption of sustainability goals (UN, 2017) 

are just some of the reasons explaining the lack of standardisation in infrastructure maintenance 

guidelines, as opposed to design standards. Currently, there are only a few examples of such 

international standards, which have been developed mostly by individual transport managers 

(UIC 778-4, 2009). 

Moreover, there is an urgent need to deepen our knowledge of the performance of 

deteriorating structures and reduce the uncertainties regarding their behaviour. This uncertainty 
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and absence of standardisation has led to data protectiveness and lack of transparency (in most 

cases) between stakeholders, as well as poor availability of tools and regulations to support the 

development of collaborative frameworks that could prevent catastrophic structural failures, 

such as the Morandi bridge collapse (Calvi et al., 2019). Additionally, this has led to further 

barriers to the inclusion of new technologies in standards, which further impedes investment 

in novel digital maintenance technologies and delays infrastructure digitalisation. 

In this uncertain environment, infrastructure managers are searching for comprehensive 

structural assessment tools to optimise maintenance and operational decisions in their transport 

networks. Various techniques have been proposed to assess the structural condition of civil 

infrastructure. Noteworthy developments in the field of Structural Health Monitoring (SHM) 

include modal-based damage detection, which offers a promising alternative for remote asset 

management of flexible structures such as long-span bridges (Kaloop and Hu, 2015; Santos et 

al., 2016). Separately, a wide range of digital technologies for surveying (‘from distance’) and 

monitoring can now detect geometric anomalies and cracks, offering tools for rapid assessment 

(Acikgoz et al., 2017; Acikgoz et al., 2018a; Chaiyasarn et al., 2018). Nevertheless, most steel, 

concrete and masonry infrastructure are stiff structures suffering from local deterioration that 

initially does not affect global performance or response. Masonry bridges suffer from localised 

failures (e.g., arch ring separation/delamination, and spandrel-arch barrel separation) that may 

induce, at a later stage, partial or global collapse mechanisms. Furthermore, internal 

reinforcement corrosion is the dominant deterioration mode of concrete bridges. For instance, 

66% of deteriorating bridges in Japan are found to suffer mostly from chloride ingress, and 5% 

from carbonation/alkalinity decrease (Mutsuyoshi, 2001). What is common in all these damage 

modes is that (a) early detection is crucial to ensure bridge serviceability, public safety, and 

reduced repair cost, and (b) such local/underlying damage does not necessarily manifest itself 

in the global measures of performance or at the material surface (De Santis and Tomor, 2013; 

Behnia et al. 2014; Alexakis et al. 2021) until the deterioration is extensive and often beyond 

repair. Hence, a much finer level of deterioration monitoring is necessary to assess the detailed 

performance state and deterioration rate of ageing bridges and to intervene in a timely fashion.  

This work presents data analysis results from three ageing bridge SHM projects: two 

masonry arch rail bridges and one concrete motorway bridge. In all three cases, the central idea 

is the development of high-sensitivity sensing networks able to provide information on multiple 

aspects of the structural response, distributed across large critical elements, such as masonry 

arch barrels or concrete half-joint supports. A core technology used in all bridges for the 

creation of these networks is fibre Bragg grating (FBG) sensing, in which the fibres are 
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externally attached via a system of aluminium clamps. New ways of installing FBGs are 

explored in the three projects to capture different structural response aspects under train or 

traffic loading, such as local crack behaviour, 3-dimensional arch barrel deformation and 

identification of collapse mechanisms, out-of-plane arch ‘pumping’, and dynamic deformation 

of half-joint supports. Identification of mechanical damage is enhanced by introducing new 

statistical modeling and machine learning for Civil SHM to detrend the effect of small train 

loading and ambient temperature variations. Information regarding local material degradation 

is enhanced with Acoustic Emission (AE) sensing, which is shown to be a complementary 

sensing technique to strain-based monitoring, as it may provide critical information on the 

deterioration rate and the likelihood of imminent brittle failures. This chapter discusses that 

complementary sensing networks could enable data-driven damage assessment of complex 

ageing infrastructure systems, reducing the uncertainties for infrastructure managers regarding 

the state and deterioration rate of their assets. 

 

4.2. The Marsh Lane Viaduct 

4.2.1. Sensing network and installation novelties 

The Marsh Lane Viaduct is located at the Eastern entrance of the central railway station in 

Leeds, UK, carrying two electrified rail tracks. It was constructed between 1865 and 1869. Fig. 

1 shows the northern view of the investigated section of the viaduct, comprising Arches #37, 

#38 and #39 (from right to left), while Fig. 2 is the plan view highlighting the main visible 

cracks of the arch barrels. 

  
Figure 1. Northern view of the Marsh Lane Viaduct in Leeds, UK.  
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Figure 2. Plan view of Arches #37-39, showing the main damages and FBG sensor locations 

 
Figure 3. FBG strain sensors in Arch #37 

 

The main damages are concentrated above the relieving arches of the piers, especially 

between Arches 37 and 38, due to a sagging mechanism that forces the relieving-arch keystone 

to descend and the pier walls to bow outwards (Acikgoz et al. 2018b). This has caused bending 

cracks that developed along the longitudinal direction from the relieving arches up to the arch-

vault keystones (Fig. 2). Another longitudinal crack has developed in Arch #37 below the North 

rail track. In addition, cracks in the transverse direction are observed at four symmetric 

locations around the pier between Arches #37 and #38 at the height where the rigid internal 

backing meets the backfill (Alexakis et al. 2019a). In an effort to arrest further degradation in 
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these locations, Arches #37-39 were repaired in 2015 by the bridge owner, Network Rail, who 

filled in the relieving arches with concrete and installed steel ties in the transverse direction to 

confine the piers and spandrel walls. 

Fig. 2 indicates, with blue colour, the installation of the FBG network. The small 

squares represent the aluminum clamps used to externally attach the fibre optic cables, also 

shown in Fig. 3 for Arch #37. The FBG strain sensors are located between the clamps at a 

spacing of 1m, monitoring dynamic strain at a 1 kHz sampling rate (further sensors and system 

specs are provided in Alexakis et al. 2019b). The FBG arrays were installed in both the 

longitudinal and transverse directions to intersect perpendicularly with the main transverse and 

longitudinal cracks, respectively, and thus monitor their behaviour. Steel cords with attached 

FBG sensors were installed between the arch springings, below the longitudinal FBG arrays, 

to monitor the pier-to-pier arch span opening response.  

Having two FBG arrays in each direction has allowed the study of the 3D dynamic 

deformation of the vaults during train loading, uncovering the main response mechanisms 

reported in Acikgoz et al. (2018b). Furthermore, installing FBG arrays in the longitudinal 

direction, below the two rail tracks, has been particularly useful for train loading identification 

and classification (Alexakis et al. 2021). For instance, Fig. 4 presents typical responses of 

sensor “37NA5A6”, which is located in the North FBG array of Arch #37, between clamps A5 

and A6 (see Figs. 2, 3), under the most common passenger trains. In Fig. 4, the number of 

positive peaks corresponds to the number of axles, which permits train classification based on 

the number of cars by means of peak detection analysis. Furthermore, having sensors at 

symmetric longitudinal locations in subsequent arch spans allows for cross-correlation of 

signals from different arches to identify time lags, and hence the train speed and direction 

(Alexakis et al. 2021). 

 
Figure 4. Response of the FBG sensor “37NA5A6”, located in the North FBG array of Arch 

#37, between clamps A5 and A6, for the most common passenger trains with two cars (left), 

three cars (center) and four cars (right) 
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This preliminary train classification allowed the study of statistical variations in the 

dynamic deformation of the bridge along the FBG network based on the same train loading, 

and in particular the 3-car passenger trains that represent around 50% of all data. The analysis 

indicated 5 locations where the strain response has been amplified over a period of two years, 

between 2016 and 2018. These locations are the four transverse cracks and south keystone area 

of the most damaged arch, Arch #37, indicated in dashed-line boxes in Fig. 2. In all other 

locations, relatively uniform strain variations were observed, following seasonal temperature 

fluctuation (Alexakis et al. 2019c).  

This analysis so far has not considered small train loading variations within the same 

type of passenger train. For instance, Fig. 4-centre shows three different 3-car passenger train 

classes that result in similar responses, which were hard to distinguish in practice. To do so 

requires a finer signal classification analysis, which would be able to detrend small response 

changes, caused by train loading and environmental effect variations, and would lead to 

enhanced mechanical damage detection.     

 

4.2.2. Statistical shape analysis and results 

Our analysis proceeds with a dataset that consists of M = 1151 3-carriage train passage events 

heading East that occurred between July 2016 and March 2019. All events have dynamic strain 

and temperature data from the FBG network, apart from the first 31 events in July 2016 

(preliminary dataset) where FBG temperature sensors where not available; for those events the      

temperature was taken from the Leeds Weather Archive of the National Centre for Atmospheric 

Science database (Alexakis et. al 2021). 

In order to analyse the bridges' behaviour at a sensor location, a method is required to 

compare train passage events. In our original paper (Alexakis et. al 2021), a modified procedure 

of Ordinary Procrustes Analysis (OPA), a key transformation in Statistical Shape Analysis 

(Dryden and Mardia, 2016), is used to transform one shape of dynamic strain values onto 

another. A shape is described by a finite number of points called landmarks – see Fig. 5 for an 

example train passage event with landmarks. The modified OPA approach transforms one set 

of landmarks onto another. More precisely, the transformation from landmarks X (a matrix) 

onto Y (another matrix) is given by minimizing 

𝐷2(𝑋, 𝑌) = ‖𝑌 − 𝛽 ∘ 𝑋 − 115𝛾‖2 (4.1) 

over β = (β1, β2) and γ, where ‖𝑋‖ = √𝑡𝑟𝑎𝑐𝑒(𝑋𝑇𝑋) and ∘ is the Hadamard product. Minimising 

Eq. 4.1 is straightforward and more importantly leads to interpretable results.  
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Figure 5. Dynamic strain readings from a train passage event from sensor location 37NA6A7 

along with landmarks. 

 

To assess changes in the bridges' response at a particular sensor location, all M = 1151 

events are transformed onto the first chronological event using Eq. 4.1. This transformation 

gives the set of estimates {𝛽̂1(𝑗), 𝛽̂2(𝑗), 𝛾(𝑗); 𝑗 = 1, … , 𝑀}. The estimates have the following 

interpretation: 𝛽̂1(𝑗) is the amount of time-scaling required to map the first chronological event 

onto the jth train passage event. Similarly, 𝛽̂2(𝑗) is the amount of strain-scaling required to map 

the first chronological event onto the jth event. (The parameter γ and its estimate is not of 

interest in this application.) Thus, the estimated values allow us to compare the shape in FBG 

signals relative to the first train passage event record at a given sensor location. Comparing 

dynamic strain values from train events using this modified OPA approach is novel. Typically, 

events are summarised by a single extreme value such as the maximum strain value, as in 

previous studies (Alexakis et al. 2019a-c). The modified OPA approach uses the strain values 

from the landmark locations giving a broader view of the shape of the dynamic strain response. 

Moreover, the parameters from the modified OPA approach have meaningful interpretations 

of direct import to structural health monitoring. In particular, 𝛽̂1 represents variation in train 

speed, and 𝛽̂2 variation in strain amplitude.  

A plot of the estimate strain-scaling values, 𝛽̂2(𝑗), against temperature (see Fig. 6-left), 

reveals two patterns: as temperature increases, the 𝛽̂2 value generally decreases; and the 

magnitude of the 𝛽̂2 value depends on some latent groups in the data which are suggested by 

partitioning lines in Fig. 6-left. Note that the preliminary 31 events in 2016 have estimated 

temperature records, and that 𝛽̂1(𝑗), relating to train speeds, did not show any pattern over time, 

with temperature or with 𝛽̂2. 
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Figure 6. Left – Strain-scaling values, 𝛽̂2(𝑗); j=1,…,M against temperature. Suggested groups 

of data are indicated by the separating partition dashed lines. Right – Predicted train class labels 

given by SVM (coloured dots), along with expected strain-value values (coloured lines) given 

by a linear model. 

 

The patterns, presented in Fig 6-left, are captured and predicted using a statistical 

model, which can be used for damage detection. In order to develop a representative model, 

the latent groups first need to be labelled. This is achieved using a supervised classification 

method called a support vector machine (SVM) (Cortes and Vapnik 1995). The latent groups 

correspond to a large extent with the different train classes.  

First, a SVM is used to classify the two classes of train, (i) Class 185 (heavier, more 

frequent train) and (ii) Class 155/158 or 170 (lighter, less frequent trains), using the 𝛽̂2(𝑗) and 

temperature value of each train passage event. The preliminary dataset was excluded since no 

temperature records exist. The SVM is trained with a limited number of datapoints from the 

two train classes based on site spotting (Alexakis et al. 2021). The trained SVM then predicts 

the class labels of the remaining datapoints. This approach predicts the class of train with high 

accuracy – with only 12 incorrectly predicted labels out of 1116 test labels. The SVM approach 

offers an improved, data-driven approach to classifying trains without the need for “manual” 

labelling. Next, the SVM procedure is performed using three classes as the pattern presented 

in Fig. 6-left suggests three latent groups. The SVM predicted classes are illustrated in Fig. 6-

right. The three groups are suspected to correspond to the three types of train class: (i) Class 

185, (ii) Class 170, and (iii) Class 155/158, which is in accordance with site spotting. 

The statistical relationship between 𝛽̂2 with the temperature and train class is modelled 

using a linear model. The linear model uses the temperature records and the class of train (one 

of the three classes predicted by the SVM) as inputs. The preliminary data are not used to fit 

this model. The expected 𝛽̂2 value from the fitted linear model is illustrated in Fig. 6-right. This 
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model explains the data very well (e.g., R2, a goodness-of-fit measure, of 95%). 

The fitted linear model can be used to monitor deterioration at a sensor location using 

the following procedure:  

1. Divide the full dataset into two separate sets: a training and test set;  

2. Fit a linear model to the 𝛽̂2 values in the training dataset using the temperature and 

train class as input;  

3. Compare the 𝛽̂2 predictions from the fitted linear model to the 𝛽̂2 values in the test 

dataset.  

As an example, in Step 1 take the training set as the main set of data from the permanent FBG 

installation and the test set as the preliminary dataset. This selection was based on the 

preliminary observations by Alexakis et al. (2019a-c) that in five bridge locations, including 

37NA6A7, the peak-to-peak amplitude of the dynamic strain response (e.g., Fig. 5) seemed to 

have been permanently increased between July 2016 (preliminary dataset) and the permanent 

sensing installation starting from November 2017 until today.   

In Step 2, the train classes are given as one of three classes predicted by SVM. Here, 

we select the most frequent 3–carriage passenger train, Class 185.  

In Step 3, the differences between the predicted and the test 𝛽̂2 values indicate changes 

in the dynamic deformation over time, by factoring out any seasonal effect, and in this case, 

the ambient temperature.   

The results of this procedure implemented separately at the two symmetric quarter-span 

locations 37NA6A7 (backfill-backing crack) and 37NA3A4 (no visible deterioration) are 

presented in Fig. 7.  At sensor 37NA6A7, Fig. 7-left, the clear separation between the predicted 

and the preliminary 𝛽̂2 values suggest a change in structural behaviour. This change 

corresponds to a peak-to-peak dynamic strain amplification of 32με. Note that the resolution 

of the y-axis is high enough to detect much smaller strain variations, e.g., below 5με, which 

corresponds to the dynamic strain variation due to only a typical daily temperature fluctuation 

of ~10oC (Alexakis et al. 2019c). Conversely, at 37NA3A4 the deviation is small, indicating 

little evidence of any structural change, which is the case for all sensors, apart from the 5 

locations indicated in Fig. 2 with dashed boxes. Note that some variation of the datapoints 

around the fitted curves is expected due to the stochastic nature of the data due to e.g. a varying 

number of passengers or unrecorded seasonal variations. 
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Figure 7. Comparison between the 𝛽̂2 estimates for the 2016 preliminary events and the 

predicted Class-185 curve (solid line given by the linear model) at sensor location 37NA6A7 

(left) and 37NA3A4 (right). 

 

The entire procedure involves: comparing events using a modified OPA approach,      

classifying train types using SVM,  and monitoring deterioration by investigating changes in 

𝛽̂2 values (strain amplification). This procedure provides a novel data-driven pipeline from 

sensor network data to structural health monitoring information. 

 

4.3. The CFM-5 skewed arch bridge 

4.3.1. Sensing network and installation novelties 

The CFM-5 bridge is a single-span, skewed masonry arch railway bridge in North Yorkshire, 

UK. As shown in Fig. 8(a), it carries two lines of rail traffic over a highway. CFM-5 was built 

in 1868, primarily using stone masonry blockwork although its arch barrel is brickwork, laid 

helicoidally. The main damage is highlighted in Fig. 8(b) and consists of separation cracks 

between the arch and both spandrel walls, as well as a longitudinal crack on the east side of the 

arch approximately aligned with the centerline of the south rail track. This damage was 

addressed in a recent repair in 2016, in which the cracks were stitched at regular intervals and 

ten tie bars were installed through the bridge in its transverse direction. A key goal was to halt 

growth of the separation cracks and restore connectivity between the spandrels and arch, to 

reduce the magnitudes of dynamic arch movements in response to trains passing over the 

bridge. While this has succeeded, the duration over which the repairs will remain effective is 

unclear. This, in turn, has motivated SHM, although the project has also been used as an 
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opportunity to evaluate a range of sensing technologies for broader application in masonry arch 

bridge monitoring (Cocking et. al 2019a). 

 
Figure 8. (a) Elevation view of the CFM-5 bridge, and (b) overview of the main cracking 

damage alongside indications of the recent repair work 

 

Alongside other technologies (Cocking et. al 2019a), distributed arrays of FBGs were 

installed on the arch intrados of the CFM-5 bridge using aluminium clamps. Two novel 

methods were devised to implement these FBGs: (a) rosettes measuring dynamic principal 

strains, and hence the flow of force, through the arch barrel, and (b) ‘FBG pairs’ capturing 

multi-dimensional movements across the separation cracks. The full FBG installation is 

reported in Cocking (2021), which also describes complementary analyses leveraging 

videogrammetry and advanced laser scan analysis, alongside the FBG data. 

As in Fig. 9, FBG rosettes measure a local strain state 𝜖𝑥,𝑦 which can be converted, 

using the Mohr’s circle of strain, to find the magnitudes and orientations of principal strains 

𝜖1,2 (details in Cocking et. al 2019b, and Cocking 2021). ‘FBG pairs’ consist of one FBG 

directly measuring in-plane crack opening, alongside a second which captures both in-plane 

and out-of-plane (shear) movements. Considering the geometry of the A-B-C triangle in Fig. 

9(c), at each instance of time, dynamic shear deflections can be found (Cocking et. al 2021). 
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Figure 9. (a) An FBG strain rosette, from which dynamic principal strains are found using (b) 

the local Mohr’s circle of strain, and (c) an ‘FBG pair’ measuring both in-plane (crack opening) 

and out-of-plane (shear) movements across a crack 

 

4.3.2. Analysis and results 

The ‘FBG pairs’ have revealed an asymmetric distribution of dynamic crack opening 

displacements that is consistent for common groups of train loading. The high sensitivity of 

FBGs enables precise characterization of distributed responses, such as these crack 

displacements and the in-plane arch strains, as well as the quantification of response sensitivity 

to external variables such as train speed, precise applied loading, and ambient temperature 

(Cocking et. al 2021, Cocking 2021, Cocking and DeJong 2022). 

Fig. 10(a) shows the installation locations of the FBG rosettes R1 to R19, which are 

aligned with the northern rail track and longitudinal bridge centerline. Rosette R20 was 

damaged during installation and not ultimately used. Rotational symmetry in the arch response 

(demonstrated in Cocking 2021) allows for data from rosettes R1 to R19, measured for trains 

travelling on the south track, to be used to infer the response at ‘imaginary’ rosettes R20* to 

R30* when trains pass on the north track. In this way, distributions of the principal strains 

measured by FBG rosettes can be mapped across the extent of the arch barrel, to visualize the 
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dynamic flow of force during train loading events. 

Fig. 10(b) gives an example, in which the median distribution of instantaneous principal 

strains that are measured when the critical axles of TransPennine Express trains reach the FBG 

just to the east of the arch crown (marked with a green circle in Fig. 10(b)) are presented. A 

band of tensile (red) principal strains is observed to occur around this loading location, 

suggesting that the thrust line in this region of the arch is shifted towards the extrados. 

Compressive (blue) tensile strains are predominant outside of this region; this is consistent with 

the anticipated thrust line moving towards the intrados in these locations, particularly on the 

opposite side of the arch to the loading location. In general, the principal strains are 

approximately aligned with the skewed span direction, although in some places such as the 

north-eastern (top-right) quadrant of the bridge they are oriented towards the acute corner of 

the skewed arch. 

Fig. 10(c) uses boxplots to show the statistical distribution of principal strains for the 

above loading instance. Data from 1,636 TransPennine Express trains have been included in 

this analysis, with 50% of these travelling on each of the northern and southern tracks. Plotted 

in dark blue, the dots in circles indicate median responses, thick bars represent the interquartile 

ranges (e.g., see 𝜖2 for rosette R17), and thin ‘whiskers’ show the data ranges excluding 

outliers. Outliers are plotted in cyan asterisks. The interquartile ranges are often too small to 

be visible, as the principal strain distributions are highly consistent for the majority of data. 

This indicates a stable response under repeated, common applied loading. 

 
Figure 10. (a) FBG rosette installation plan for the CFM-5 bridge, (b) median principal strain 

distribution measured when the critical axles of TransPennine Express trains reach the arch 
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crown (green circle) with tensile and compressive principal strains shown in red and blue, 

respectively, and (c) boxplots showing the statistical distribution of principal strains 𝜖1 and 𝜖2 

and orientation 𝜙1, for this loading instance. 

It is hypothesized that damage, giving rise to local loss of stiffness, will manifest itself 

in the principal strain data as a permanent change in the force flow distribution. As already 

noted, FBGs are sensitive enough to detect damage at an early stage. Therefore, this FBG 

rosette system offers the means to track changes in the damage state of this bridge over time, 

as incipient or progressive damage occurs. 

To the same end, Alexakis et al. (2020) conducted a parallel experimental study to the 

field monitoring of the two ageing railway bridges described in this and the previous sections, 

to describe the acoustic emission (AE) behavior of masonry under cyclic train loading. The 

study shows that AE sensors can capture increasing AE-energy data trends prior to local brittle 

failures, such as brick/mortar crushing, joint sliding and diagonal shear failures, which may      

not be reflected in the strain responses. This suggests that AE and FBG (dynamic strain) are 

complementary sensing techniques, with the potential, if combined, to provide a more 

comprehensive structural assessment at both the local and global response level. This idea has 

been the main motivation for the sensing deployment described in the following section. 

 

4.4. Reinforced concrete half-joint motorway bridge  
Half-joints are designed with a reduced section depth at the ends and were particularly favoured 

for car parks and bridges owing to a simplified design process and their suitability for precast 

construction. Despite the advantages, it has been found that this type of joint often deteriorates      

due to water seepage resulting in water stagnation in the nibs and ultimately corrosion of the 

reinforcement (Desnerck et al., 2016). In addition, in many cases they are particularly difficult 

to inspect as the inner part is not designed to be accessible. In the UK, the National Highways 

has implemented a dedicated management and inspection regime for half-joints to ensure risk 

mitigation and sufficient maintenance practices for deteriorated bridge decks with half-joints 

(English Highway Structures & Bridges Inspection & Assessment, 2020). Within this context, 

a reinforced concrete half-joint has been selected for monitoring purposes to evaluate the 

effectiveness of AE testing on damage detection and condition assessment during short and 

long-term field campaigns, which is complemented by environmental data and FBG-based 

dynamic strain sensing.  
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4.4.1. Sensing network and installation novelties 

The selected half-joint is within the Strategic Road Network (SRN) in England and is located 

on a Class A motorway carrying traffic in four lanes, with a width of 15 m in each direction 

and a total width of approximately 40 m. Pictures of the bridge incorporating the half-joints are 

shown in Figure 11, taken during an inspection in December 2019. Access to the bearing shelf 

is limited on the monitored half-joint which is under an annual visual inspection regime by the 

asset operator. Its current condition is considered to be satisfactory1. 

 
Figure 11: (a) Side Elevation of the bridge, (b) Traffic on the Northbound direction 

The half-joint has been instrumented with a monitoring system comprising AE sensors, 

FBG strain and temperature sensors, and a weather station. The sensors were installed across 

the whole width of the half-joint covering both North and Southbound directions. A total of 24 

piezoelectric AE sensors of the type PK6i were installed along the nib and the sides of the half-

joint. The sensors have a resonant frequency of 55 kHz and an integral preamplifier of 26 dB. 

Behnia et al. (2014) suggests that this type of sensor has been shown to perform well on 

concrete bridges. The AE sensors form a linear array with a distance of 2 m between them, 

whereas the last two sensors were installed on the east side of the joint. A two-part rapid setting 

resin was used for acoustic coupling and a bolted clamp was used to ensure the sensors remain 

on the concrete surface. The array configuration was found to be appropriate to monitor the 

entire width of the bridge, taking into account the acoustic signal attenuation within the 

concrete body following calibration studies. Data are acquired continually with a sampling rate 

of 1 MHz using the commercially available Sensor Highway III (SH-III) system. 

A Vaisala WXT530 series 6 weather station was installed and connected to SH-III to 

monitor weather parameters such as air temperature, rainfall accumulation and humidity. Four 

FBG-cable arrays of 20 sensors each, were installed along the half-joint. Three arrays were 

 
1 Personal communication with asset operator. 
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attached on the concrete surface using aluminium clamps to monitor strain in the longitudinal, 

transverse and vertical directions (corresponding to all three spatial directions) in a 2-m spacing 

along the half-joint. A fourth array was split in two with a 20 m extension and was attached on 

the east and west side of the joint. All the arrays were pre-tensioned to a minimum of 500 με. 

A sampling frequency of 50 Hz was found appropriate for monitoring. Each group of FBG 

sensors in 3-directions was installed adjacent to an AE sensor to ensure that AE data and strain 

can be correlated. A plan view of the location of AE and FBG sensors is shown in Figure 12a 

along with the locations of AE sensors on the East side (Figure 12b). 

 
Figure 12: (a) Locations of AE and FBG sensors and (b) AE and FBG sensors on the half joint 

Following successful installation of the AE sensors, a comprehensive calibration 

protocol was followed to ensure that the acoustic coupling between the sensors and the concrete 

surface is sufficient and also to determine the background noise, in order for an appropriate AE 

detection threshold to be set. The calibration was carried out during normal operating 

conditions using a HSU-Nielsen source as defined in EN 1330-9 (2017). 

To verify the sensor sensitivity, pencil lead breaks were performed next to each 

individual sensor. Subsequently, pencil lead breaks were carried out at different locations and 

direction between sensors to obtain the attenuation of the elastic waves within the material. A 

series of calibrations tests was performed involving pencil breaks between consecutive AE 

sensors. Attenuation was investigated in the longitudinal and transverse directions for sensor 

AE 2 at fixed intervals of 50, 250, 500, 1000, 2000 mm (Figure 13a). The attenuation across 

the joint (vertical direction) was studied by performing centre punches at the drop in span. Lead 

breaks are shown in Figure 13b, where absolute energy is plotted against the recorded peak 

amplitudes. Such lead breaks are events of particularly high energy, imitating concrete 

cracking. Figure 13c shows the amplitude decay in the longitudinal directions against distance 
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from sensor AE 2. The indicative pencil breaks between sensors AE 1, 2, 19, 20 are also shown 

(Figures 13d, e) 

 
Figure 13: Calibration of Acoustic Emission sensors. (a) Locations of transverse and 

longitudinal pencil breaks, (b) Indicative correlation between Absolute Energy and Amplitude, 

(c) Longitudinal attenuation from sensor AE 2, (d-e) Indicative pencil breaks between sensors 

AE 1, 2, 19, 20 



CHAPTER 4 

19 

 

4.4.2. Analysis and results 

The overall strain distribution from the vertical FBG sensors is shown in Figure 14. 

Each line in the boxplot, corresponds to the median value of the peak strain recorded per 5 

minute interval for September 2020 at each sensor location, whereas the box limits define the 

25th and 75th percentiles. The corresponding sensor locations are given in Figure 11a. It is 

shown that the strains are distributed symmetrically. Lane one, highlighted in light blue, carries 

the heaviest traffic, with similar average peak strains recorded for both traffic directions. 

 
Figure 14: Boxplots of strain data for each FBG sensor from array 3 during September 2020. 

Blue regions indicate the lanes with the heavier traffic 

For in-service bridges, recorded AE hits are emitted due to traffic, noise and/or 

deterioration processes, given that the bridge is continually under load, which is the 

fundamental principle for acoustic waves being emitted. Hence, one needs to distinguish 

between different sources, although preliminary findings can be extracted by looking at the 

total number of AE hits recorded from each sensor. Taking into account the calibration tests, 

the AE data were pre-processed by removing AE hits with a peak amplitude below 59 dB. 

Furthermore, only hits with counts larger than 5 and less than 10,000 were considered. This 

further increase of the threshold was justified from the attenuation data, where the minimum 

amplitude recorded at the maximum distance between two sensors was 60 dB. In addition, all 

hits with zero energy were also removed as this commonly represents spurious data rather than 

useful data (Tziavos et al., 2020). It was found that the majority of hits with zero energy were 

below 60 dB. 

The AE activity on the half-joint expressed by the total number of recorded hits is given 

in Figure 15. The presented data, collected during September 2020 (Figure 15a), confirm that 

AE activity is dependent on the stresses applied on the bridge, as expected. It is also apparent 

that the AE sensors installed underneath the first lanes in each direction recorded a higher 

number of hits, indicating that larger stressors on the half-joint were responsible for the higher 
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activity. Although AE hits are consistently higher in the same locations for both northbound 

and southbound directions, for the latter it is shown that a significantly higher number of hits 

were recorded, particularly for AE 19. 

In Figure 15b the number of hits recorded by each sensor for the first four months of 

acquisition is illustrated. A total of 17 days of continuous monitoring for each month are 

included. The findings from September are further confirmed for the subsequent months, 

indicating that the AE activity is significantly higher on the first two lanes of the southbound 

direction. This is despite the fact that the recorded peak strains from the FBG sensors are 

consistent between the two lanes. A further deduction from these two figures is that AE can be 

also used for short-term monitoring campaigns in order to provide structural engineers with a 

preliminary analysis on the activity on the structure under in-service conditions, as areas of 

higher AE activity are commonly associated with deterioration mechanisms as the 

environmental and traffic influence on both lanes is found to be similar. 

 
Figure 15: Number of hits per channel along the AE array for Northbound and Southbound 

directions for a) September and b) September – December  
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4.5. Conclusions 
This chapter summarises results from three ageing bridge monitoring projects. In all cases, the 

sensing networks installed cover large areas with high densities of sensing points, monitoring 

multiple aspects of the structural response at both the local and global level. 

 FBG networks are installed in different configurations with the use of aluminium 

clamps. This technique has been proven to be robust during long monitoring periods (5 years 

so far) and allows versatility in installation. In particular, the technique allows: (i) flexibility in 

choosing the in-plane sensing direction (e.g. to adjust to a particular cracking pattern or 

imminent failure mechanism), (ii) the formation of consecutive strain rosettes (e.g. to study the 

force flow within arch barrels), (iii) out-of-plane displacement monitoring (e.g. to study arch 

‘pumping’), and (iv) altering the sensing physical parameter per FBG location (i.e. to choose 

between dynamic strain and ambient temperature). 

 Furthermore, FBG data from selective locations can be used for loading classification 

(e.g. identification of train speed, class and direction). When statistical shape analysis was 

enhanced with a support vector machine, small changes in response due to slight loading and 

temperature variations could be distinguished, showing potential to detect mechanical 

deterioration that alters locally the dynamic strain response below any thermal effect. 

Analysis of the AE field data of the concrete bridge has identified locations of higher 

AE activity compared to other symmetric locations of similar loading and dynamic strain 

response, as shown by the FBG data. This indicates even when FBG data may not detect a 

difference in strain, complementary AE sensing may help in detecting underlying deterioration, 

though this requires further research for validation. Experimental studies on the AE behaviour 

of masonry under cyclic loading that were conducted in parallel with the field installations, 

confirm the detection of data trends that are not necessarily shown in strain data, especially for 

brittle failure modes. On the other hand, while AE sensing alone may enhance the information 

locally, without FBG sensing it is difficult to interpret. FBG and AE sensing seem to be highly 

complementary techniques, and creating unified systems that integrate statistical modelling 

may enhance further the damage assessment of complex deteriorating systems. 
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