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bstract

Lithium-ion batteries (LIBs) are widely used in many fields, such as electric vehicles and energy storage
nd directly impact the device performance and safety. Therefore, the state of health (SOH) assessment is
ritical for LIB usage. However, most of the existing data-driven SOH modeling methods overlook the inherent
ncertainty in battery health prediction, which decreases the reliability of the model. To address this issue
his paper proposes a novel SOH assessment model based on the deep learning framework. The SOH results
re derived from the quantile distribution of deep features, giving the SOH values with associated confidence
tervals. This enhances the reliability and generalization of SOH assessment results. Additionally, to complete

he optimization of the deep model, a Wasserstein distance-based quantile Huber (QH) loss function is developed
his function integrates Huber loss and quantile regression loss, enabling the model to be optimized based on a
istribution output. The proposed method is validated using the NASA dataset, and the results confirm that the
roposed method can effectively estimate the SOH of LIB while accounting for uncertainty. The incorporation
f SOH distribution enhances the reliability and generalization ability of the SOH assessment model.

eywords: Model reliability; State of health; Lithium-ion battery; Wasserstein Distance; Uncertainty;
uantile Distribution

Abbreviation Full Name Abbreviation Full Name
SOH State of Health LIB Lithium-ion Battery
QH Quantile Huber EIS Electrochemical Impedance Spectrosco
CNN Convolutional Neural Network ResNet Residual Network
LSTM Long Short-Term Memory CDF Cumulative Distribution Function
GPR Gaussian Process Regression CV Constant Voltage
CC Constant Current MAE Mean Absolute Error
RMSE Root Mean Square Error

. Introduction

The state of health (SOH) assessment of lithium-ion batteries (LIBs) is crucial in various applications, such
s electric vehicles and renewable energy storage [1]. The SOH of LIBs directly affects the operating performance
f these devices [2]. The SOH assessment provides valuable information about the current condition of a battery
ith the LIBs aging and degrading, the energy capacity and runtime reduce gradually over time [3]. They

ecome more prone to safety issues, such as overheating, thermal runaway, and even fires or explosions [4].In
his regard, SOH assessment allows users to monitor and optimize battery performance in time, which would
elp in identifying potential safety risks and preventing catastrophic failures.
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SOH assessment remains an active area of research and development [5]. The SOH of a LIB denotes its
resent health condition in relation to its nominal performance [6]. Typically, it involves calculating the ratio
f the current-cycle capacity to the initial-cycle capacity [7]. Various methods such as charge/discharge tests
] and Electrochemical Impedance Spectroscopy (EIS) [9, 10], can be used to assess the LIB SOH. These

echniques provide insights into a battery’s capacity, internal resistance, chemical aging and other factors that
ffect its health and performance, but it demands long rest times to avoid the effect of relaxation to the EIS
easurement [11]. This impacts both data accessibility and model construction. With the advent of the Internet

f Things (IoT), collecting data for SOH monitoring has become more convenient [12, 13]. Voltage, current
nd temperature signals obtained from battery management systems during operation have surpassed EIS data

terms of monitoring capabilities, enabling real-time SOH assessment.
Voltage, current, and temperature signals are widely used for modeling SOH assessment. They can reflect

he internal health state of LIB effectively [14]. Researchers have proposed models utilizing these signals for ef
ctive SOH prediction. For instance, Wen et al. devised a battery SOH prediction model based on incrementa
apacity analysis and a BP neural network [15]. This model established a correlation between temperature and
cremental capacity curve characteristics to predict battery SOH values at various temperatures. Similarly
heng et al. proposed an optimal dispatch approach for online SOH estimation [16], accounting for degradation
his online SOH estimation model utilized the Kalman filter for estimation, achieving higher accuracy by inte
rating short-term estimation and long-term prediction results. Jia et al. proposed an indirect health indicators
onstructed from voltage, current, and temperature signals of charging and discharging. Then the short-term
OH prediction is conducted by combining the Gaussian process regression (GPR) method with probability
redictions [17]. These research conducted SOH assessment of LIB based on the widely-used voltage, current
nd temperature data. The SOH results provide important suggestions for LIB maintenance. The application
f these methods prolongs the lifespan of LIB and enhance the sustainability across various applications and
dustries. However, these methods rely heavily on the expertise and prior knowledge to extract the proper
atures, imposing significant limitations on their applicability.

Deep learning-based approaches for LIB SOH assessment have gained attention due to their success in self
daptively modeling complex nonlinear systems [18, 19]. Su et al. proposed a hybrid method that fuses the
attery equivalent circuit model and the convolutional neural network for battery health state monitoring [20]
a et al. developed a novel SOH estimation method by fusing multiple health indicators based on a hybrid

etwork with deep belief network and long short-term memory (LSTM) [21]. Deep features were extracted
ffectively from the monitoring data. Wang et al. proposed a bioinspired spiking spatio-temporal attention
amework for the LIB SOH. This work utilizes precise battery physical and chemical degradation information
nd brain-inspired spiking neural networks for accurate SOH estimation based on the full-life-cycle EIS data [22]
hough deep learning methods attain good performance in the application of LIB SOH assessment, these models

end to give a specific value of the SOH. These outcomes overlook the inherent uncertainty generated in the data
ollection and estimation process [23, 24]. The figure 1 is given as an example to facilitate the understanding o
ncertainty that exists in LIB SOH monitoring data. The figure illustrates the partial variations in the charging
urrent of batteries #5, #6, and #7 from the NASA dataset [25] at the 100th cycle. Theoretically, the current
ariation of the three batteries should be consistent. However, the figure reveals slight variations in current
alues, even at the same cycle. This discrepancy can be attributed to uncertainties during cycling, leading to
npredictable fluctuations in the estimated SOH.

Uncertainty refers to a lack of certainty or confidence in the outcome of a particular event or situation
6]. In the SOH assessment of, uncertainty encompasses two key components. First, aleatoric uncertainty
his type of uncertainty is often related with random events or stochastic processes generated during SOH
onitoring data collection. Second, epistemic uncertainty. It represents the uncertainty that arises from

he absence of SOH assessment knowledge, and it can potentially be reduced or eliminated with additiona
formation, improved models, etc. [27]. Deep learning models, while achieving good performance, may
ot consider these uncertainties, leading to diminished generalization and reliability. Therefore, constructing
trustworthy and reliable model becomes crucial for SOH assessment of LIB, particularly in the context o

eep learning. Efforts have been made to address this issue. Zhou et al. investigated the trustworthy mode
f fault diagnosis in a probabilistic Bayesian deep learning framework [28]. This method incorporated an
ncertainty-aware model to translate the fault information and recognize the monitoring data from unseen
omains. Though this work focused on uncertainty influence, it necessitated additional prior knowledge for
ncertainty modeling. Wang et al. introduced an explainability-driven model improvement framework for
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Figure 1: Current of three batteries at the cycle of 100

IB SOH estimation [29]. This framework delves into further exploration of the explainability of the SOH
odel. However, this research does not address the output reliability of the SOH model. Tagasovska et

l. presented single-model estimates of aleatoric and epistemic uncertainty for deep neural networks using
imultaneous quantile regression [30]. This approach can map out-of-distribution examples to non-zero values
dicating epistemic uncertainty and contributing to the construction of a more trustworthy model. This work
emonstrates the feasibility of constructing a distribution to enhance the trustworthiness of the model.

Inspired by the work on simultaneous quantile regression for uncertainty estimation in deep neural networks
0], this study proposes incorporating quantile regression for SOH distribution estimation. This approach
rovides a distribution of SOH values, considering the inherent uncertainties in the system and measurements
uring cycling. The output offers more reliable information for LIB maintenance, enhancing the precision and
eliability of SOH estimation. This method contributes to the construction of a trustworthy model for LIB
OH assessment. It considers both aleatoric and epistemic uncertainties, thereby improving the precision and
eliability of SOH estimation.

The main contributions are summarized as follows.
1. A novel SOH assessment framework based on deep learning is proposed. This framework includes the

construction of SOH reference distribution, ResNet model training on multi-source data for deep feature
extraction, model test and method evaluation and visualization. Multi-source data can capture compre
hensive information for SOH.

2. A SOH assessment model that considers the uncertainty is proposed for of LIB. A quantile distribution
of deep features is constructed to give a predicted distribution of SOH values with associated confidence
interval. It enhances the reliability of SOH results and obtains a result of high generalization.

3. A Wasserstein distance-based QH loss function has been designed to calculate the inverse cumulative
distribution function(CDF) divergence between estimation and reference of SOH. This loss function in
corporates the Huber loss and the quantile regression loss. It demonstrates better performance than the
traditional loss function of mean absolute error(MAE) and mean square error(MSE).

The rest of this paper is arranged as follows. Section 2 gives the theoretical preliminaries of the proposed
ethod. Section 3 formulates the problem of SOH assessment. Section 4 introduces the construction of the
OH model Section 5 validates the proposed method using the NASA dataset and evaluates the performance
f the proposed method. Section 6 gives the conclusion and discussion of the research.

. Preliminary

This section provides the foundational knowledge essential for introducing our proposed methodology
ithin our approach, the Wasserstein distance is used to optimize the traditional Huber loss and the quan

3
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ile loss. This optimization process enables the development of a network that yields the SOH distribution as
s outcome. The quantile regression is also introduced. It is used in our methodology for SOH distribution
rediction.

.1. Wasserstein Distance
The Wasserstein distance, also known as the Earth Mover’s distance or optimal transport distance, is a

easure of the distance between two probability distributions over a region. It quantifies the minimum cost
hat is used to transform one distribution into the other. The distance metric proves especially beneficia

scenarios involving distributions with divergent masses or shapes. This function holds the continuous and
ifferentiable property everywhere. It is the basis to derive the proposed loss function in this work.

The Wasserstein distance derivation involves advanced mathematical concepts from optimal transport theory
iven two probability measures U1 and U2 defined on a metric space (X , d), the p-Wasserstein distance is defined
s

Wp(U1, U2) = infγ∈Γ(U1,U2)fX×Xd(x, y)dγ(x, y) (1)

here Γ(U1, U2) is the set of all joint distributions on X ×X with marginals U1 and U2. d is the ground distance
nction representing the cost of transporting mass from x to y.
When U1 and U2 are two probability distributions with cumulative distribution functions, the p-Wasserstein

etric Wp can be defined as [31]

Wp (U1, U2) =

(∫ +∞

−∞

∣∣F−1
U1

(τ)− F−1
U2

(τ)
∣∣dτ

)1/p

(2)

here τ is the quantile. F−1 represents the quantile functions (inverse CDFs). It can be expressed as

F−1
U (τ) := inf {x ∈ R : τ ⩽ FU (x)} (3)

here FU (x) = Pr(U ⩽ x) is the CDF of random variable U .

.2. Quantile Regression
Quantile regression is a statistical technique used to model the conditional quantiles of a response variable

nlike traditional regression methods that focus on estimating the conditional mean of the response variable
uantile regression allows for the modeling of different quantiles, providing a more comprehensive view of the
onditional distribution.

Quantiles represent points in a distribution below which a certain proportion of the data falls. Common
uantiles include the median (50th percentile), quartiles (25th and 75th percentiles), and other percentiles. The
bjective of quantile regression is to estimate the conditional quantiles of the response variable. For a given
uantile τ , the objective function is defined as [32]

Qτ =
n∑

i=1

ρτ (yi −Xiβ) (4)

here Qτ is the quantile loss function, yi is the observed response for the i-th observation, Xi is the predictor
atrix for the i-th observation, β is the vector of coefficients to be estimated, and ρτ (u) is a piecewise linear
nction known as the check function.

. Problem Formulation

This section defines the SOH assessment problem with a distributional output to enhance the model relia
ility. The SOH of a LIB is defined as follows [33].

SOH =
Zl
max

Z0
× 100% (5)

here Zl
max indicates the maximum capacity at l-th cycle. C0 represents the initial capacity at the beginning

f its service life. It is typically provided by the manufacturer and serves as a reference point. The SOH is

4



Journal Pre-proof

ty
it

fo
S

w
fu
t

T -
e
t
a l
t

4

4

c
a

.

-

4

n
b
c
a
c ,
t
v
in
Jo
ur

na
l P

re
-p

ro
of

pically expressed as a percentage, where 100% represents the battery’s initial capacity and performance when
was new.
Multiple sources of monitoring data, including current, voltage and temperature, can be used as the input

r model construction. The objective of this work is to construct a projection from the monitoring data to the
OH percentage, which can be expressed as

SOH = f
(
X l|θ

)
(6)

here f represents the project function. It maps the monitoring data X l to the SOH assessment result by the
nction f parameterized by θ. X l denotes the single source or multiple sources of monitoring data to reflect

he health state of LIB. In this research, SOH result follows a specific distribution.

SOH l := E [Z (X)] = E [F (X|θ)] (7)

his equation indicates distribution Z can also be represented by a cumulative distribution function F param
terized by θ. Traditionally, SOH is a value which could not be robust and ignores the uncertainty included in
he process of cycling and measurement. This work enhances the reliability of the SOH assessment result with
distributional output. In addition, this work optimizes the loss function to complete the trustworthy mode

raining.

. Methodology

.1. General Procedure
This section introduces the general procedures of the proposed method, which is illustrated in Fig.2. It

onsists of three modules, namely data pre-processing, model training, model test as well as model evaluation
nd feature visualization. The details are described as follows.

1. Data collection and pre-processing. Multi-source data are collected from charging process of a LIB
The maximum capacity of LIB at each cycle can be calculated by the integral of current. This is used
to construct the labels for model training and validation. Then the reference of SOH distribution is
constructed according to the capacity label.

2. Model construction. Partial monitoring data as well as their labels are selected as training data to train
the SOH assessment model. Deep features are extracted by Residual Networks (ResNet) and obtain
the estimated SOH distribution over selected quantiles. This result enhances the reliability of SOH
assessment.

3. Model training. The parameters of the network and predictor are optimized by a Wasserstein distance
based loss function to obtain a well-trained SOH assessment model. This loss function is calculated from
the predicted SOH quantile distribution and the benchmark SOH quantile distribution.

4. Model test. The well-trained models are tested on the test data. The outcomes of the model are compared
with the reference SOH to complete the evaluation of model performance.

5. Model evaluation and feature visualization. Multiple metrics are selected to evaluate the goodness of fit
of SOH quantile distributions the estimation error of SOH values. The extracted features from ResNet
are visualized to analyze the feature performance and enhance the interpretability of the network.

.2. Residual Network
ResNets are employed to extract deep features from multi-source monitoring data. ResNet is a type of deep

eural network architecture designed to address the issue of training deep neural networks. It was introduced
y He et al. [34]. ResNet architectures are designed to effectively train very deep neural networks. In the
ontext of assessing SOH, the LIB’s health status may depend on intricate patterns and features that require
deep understanding of the data. ResNet’s ability to handle deep networks makes it suitable for capturing

omplex relationships within the battery data. The deep feature can capture high-level information. However
he provided dataset could feature small sample of data. Training a deep network on small sample data to obtain
ery deep features is easy to cause overfitting and fail to convergence. The introduction of residual connections
ResNet is a key innovation. These connections allow the model to learn residual information, making it easier

5
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igure 2: Framework of the proposed method. It consists of four steps, namely data pre-processing, ResNet model training, mode
st and model evaluation and feature visualization.
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igure 3: An example of residual block structure. It is composed of the identity path and the residual path. The output of the
lock summarizes the output of identity and residual paths.

o train deep networks. In the context of SOH assessment, where subtle changes in LIB behavior over time
re crucial, these connections help capture and retain important information that might be lost in shallower
rchitectures. In addition, LIB monitoring data often have temporal dependencies, and the health status may
e influenced by how certain patterns evolve over time. ResNet’s architecture, with its residual connections, is
ell-suited to capture and model temporal dependencies.

The innovative design of ResNet involves the use of residual blocks. It contains skip connections or shortcuts
hat allow the network to skip one or more layers. This design can mitigate the vanishing gradient problem
hat often occurs in deep networks. Residual blocks are the basic building block of a ResNet. A residual block
onsists of two main paths: the identity path and the residual path. The identity path simply passes the input
hrough, while the residual path utilizes a set of computations to the input. The output of the block summarizes
he output of identity and residual paths. Fig.3 illustrates a structure of the residual block. In the example
he residual connection skips two layers.

Suppose that the output of the l-th residual block is the input to the (l + 1)-th residual block, then the
etwork obtains the following result [35].

x(l+1) = F (x(l)) + x(l) (8)

the block,
F (x) = W2σ(BN(W1σ(BN(x)) + b1)) + b2 (9)

here BN represents the batch normalization operation. The term W1σ(BN(x)) + b1 represents the output
f the first convolutional layer, and the subsequent operations are similar to the structure. With this block
onducted recursively, the output can be expressed by

x(L) =

L−1∑

i=1

F (x(i))) + x(l) (10)

Residual learning offers an additional advantage by partially mitigating the vanishing gradient problem
evertheless, it is important to recognize that the degradation issue is not solely attributable to the vanishing
radient problem, as normalization layers have already been employed to address it. By differentiating with

7
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espect to x(l) based on the aforementioned forward propagation, the derivation is obtained [36]

∂L
∂x(l)

=
∂L

∂x(L)

∂x(L)

∂x(l)

=
∂L

∂x(L)

(
1 +

∂
∑L−1

i=1

(
F (x(i))

)

∂x(l)

)

=
∂L

∂x(L)
+

∂L
∂x(L)

∂
∑L−1

i=1

(
F (x(i))

)

∂x(l)

(11)

here L is the loss function to be selected for parameter optimization. This expression implies that when
omputing the gradient of a shallow layer ∂L

∂x(l) , there consistently exists a component ∂L
∂x(L) directly incorporated

can effectively avoid the gradient vanishing problem even if the gradient of F (x(i)) is small.

.3. Reliable SOH Assessment
The proposed method predicts the quantiles of the SOH value distribution Z. The discrete SOH values

erived from CDF of Z are τ1, · · · , τN , where τi = 1/N , for i = 1, · · · , N . Then the SOH quantile distribution
θ ∈ Z maps the observation x to a distribution parameterized by θi(x), which is given by

Zθ (x) :=
N∑

i=1

δθi(x) (12)

here δ represents the Dirac delta function. In this work, the Wasserstein metric-based method is proposed for
odel optimization and a quantile regression [37] implements the SOH distribution prediction.

.4. Wasserstein Distance-based QH loss
To complete the optimization with a quantile regression result, a novel Wasserstein distance-based QH loss

proposed and constructed based on the quantile regression loss and typical Huber loss. The Huber loss is
xpressed by [38]

Lκ (u) =

{
1
2u

2 , if |u| ⩽ κ
κ
(
|u| − 1

2κ
)

, otherwise (13)

he quantile regression loss is define as

Lτ
QR := EẐ∼Z

[
ρτ

(
Ẑ − Z

)]
(14)

here
ρτ (u) = u

(
τ − δ{u<0}

)
,∀u ∈ R (15)

: {z1, z2, · · · , zn} means the value of quantile function F−1
Z (τ), τ ∈ [0, 1]. The combination of the two losses

erives [39]
ρκτ (u) = |τ − δu<0|Lκ (u) (16)

ue to the ground-truth label of capacity y is a distribution function rather than a value in the quantile Huber
ss. Consequently, a CDF of target distribution FZ(y) is designed with the capacity label y. The CDF is
ssumed to follow the Gaussian distribution function, which is denoted as follows.

FZ (y) =
1

σ
√
2π

∫ y

−∞
exp

(
− (τ − µ)

2

2σ2

)
dt (17)

terms of the above derivation and Wasserstein distance, a novel loss is proposed for the proposed method
he Wasserstein distance-based QH loss is expressed as

LW =
N∑

i=1

E
[
ρκτ̂i
(
F−1
Z (τ̂i)−GP (τ̂i|GF (x))

)]
(18)

here GF and GP represent the function of deep feature extraction and the capacity distribution predictor
nd then GP (τ̂i|GF (x)) indicates the predicted quantile distribution at every quantile τ̂i. By minimizing the
bove loss function, the optimal parameters of deep network and quantile regression for SOH evaluation can be
chieved.

8



Journal Pre-proof

F ,
c

5

5

t ,
d
fo
m
(
c ,
r .
T
r
#

5

e ,
a
d
a

a
d ,
a
r .
T
 Jo

ur
na

l P
re

-p
ro

of

igure 4: Monitoring data over cycles (a)Voltage (b)Current (c) Temperature. These figures showcase the variations of voltage
urrent and temperature signals over cycles during charging.

. Experimental Validation

.1. Data Description
Three lithium-ion batteries (referred to as #5, #6, and #7) from the NASA data set [25] were employed

o validate the proposed method. These batteries were subjected to three distinct operational profiles (charge
ischarge, and impedance) while maintained at room temperature. The charging process for these batteries
llowed a constant current-constant voltage (CC-CV) mode. Charging commenced in a constant current (CC)
ode at a rate of 1.5A until the battery voltage reached 4.2V. It then transitioned to a constant voltage

CV) mode until the charge current decreased to 20mA. Discharging, on the other hand, was carried out at a
onstant current (CC) of 2A until the battery voltage reached 2.7V, 2.5V, and 2.2V for batteries 5, 6, and 7
espectively. The aging of these batteries was accelerated through repeated cycles of charging and discharging
he experiments were terminated when the batteries met the end-of-life criteria, which was defined as a 30%
eduction in their rated capacity. Fig. 4 (a)-(c) display the voltage, current, and temperature data for battery
5 throughout the entire charging cycles.

.2. SOH Assessment
The three LIBs are used to validate the proposed method. The experiments were conducted on a computer

quipped with a single Nvidia GeForce GTX 2060 GPU, an Intel Core i7-10750H CPU running at 2.60 GHz
nd 16 GB of memory. After the data are pre-processed, they are split into training data and test data. The
etailed information for the split is shown in Tab. 1. In the three conditions, two LIB datasets are used to train
model and the rest one is used to test the model.

Table 1: Experimental Data Split

Condition Training Data Test Data

1 6# battery
7# battery 5# battery

2 5# battery
7# battery 6# battery

3 5# battery
6# battery 7# battery

These data are first input into a ResNet model to extract deep features. The designed structure of ResNet
nd feature extractor are given in Tab.2. In the table, the feature extractor gives the overall frame of the
esigned ResNet for SOH assessment. It consists of 4 ResNet blocks, each of which consists of a base layer
match layer and a shortcut connection layer. The output of the ResNet is input into a predictor to give a

eliable result of SOH distribution. The parameter settings of the proposed method are summarized in Tab.3
hey are optimized with the proposed Wasserstein Distance-based QH loss.

9
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Table 2: Feature Mapping Structure of ResNet

Block Layer type Kernel Stride
Channels

in out
Fe

at
ur

e
E

xt
ra

ct
or

1

Convolution 7× 1 2× 1

1 16ReLU

Max Pooling 3× 1 2× 1

2 ResNet Block 16 32

3 ResNet Block 32 64

4 ResNet Block 64 64

5 ResNet Block 64 64

R
es

N
et

B
lo

ck

B
as

e
la

ye
r

Convolution 3× 1 1× 1

Nin NoutBatchNorm

ReLU

Convolution 3× 1 1× 1
Nout Nout

BatchNorm

M
at

ch
La

ye
r Convolution 1× 1 1× 1

Nin Nout

BatchNorm

Sh
or

tc
ut

C
on

ne
ct

io
ns

if Nin = Nout: y = F (x,Wi) + x

else: y = F (x,Wi) +Wsx

Where: Wi is Base Block and Ws is the Match Block

ReLU y = ReLU(y)

Table 3: Parameter setting of the proposed method

Parameters Value

Learning rate 0.001

Batch size 32

Maximum epochs 500

Nτ 33

κ value 1.0

Target distribution factor σ 0.2

10
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The outcomes of SOH assessment are demonstrated in Fig.5(a)(c)(e), where the black dotted line and the
olor line indicate the ground truth of SOH and the predicted SOH distribution; each color line represents
he SOH distribution at the corresponding cycle; the dots on the color lines represent the medium of SOH
alue; the color changes from the blue to green, indicating the SOH degradation degree of LIB varies from
he normal condition to the failure condition. Figs.5(b)(d)(f) show the 3-D visualization of the cumulative
istribution of evaluated SOH at each cycle. The three axes indicate cycle number, quantiles and SOH values
espectively. They show the estimated SOH across cycles and quantiles. These figures reveal a noteworthy
onsistency between the predicted results and the actual SOH values. Furthermore, it can be seen that the
onfidence interval includes a range of value around the median SOH. These estimated distributions considered
he uncertainty that occurred during data collection or modeling. The visual representation of SOH distribution

the proposed method demonstrates the model can not only assess the SOH values of LIB but also capture
ncertainty at each cycle, which enhances the reliability of the proposed method and the SOH results. The
ptimized model exhibits precise outcomes of SOH, successfully learning the LIB degradation patterns from
raining data.

However, the uncertainty presents different variations in different results. For 5# LIB and 6#LIB, the
ncertainty does not present obvious variation. This means the system remains stable over cycles. By contrast
#LIB presents a decreasing trend. This may be caused by the random events or absence of knowledge for mode
onstruction. In Figs.5(c), the performance of 6#battery appears to be suboptimal. One potential explanation
r this observation could be the significant difference in the degradation pattern of the LIB compared to 5# and
# LIBs. In the case of condition 2, the model was trained on data from 5# and 7#LIBs but tested on data o
#LIB . Despite the enhanced generalization ability of the proposed method, it exhibits a certain limitation in
andling distinct degradation patterns. In contrast, the degradation patterns of 5#LIB and 7#LIB may exhibit
imilarity, leading to better performance when the model is trained on mixed data from LIB 5 and tested on
IB 7 or vice versa.

In addition, one phenomenon that cannot be neglected is that the distributions exist estimated SOH values
hat exceed one, especially in the initial cycles. In many cases, SOH values are normalized for easy interpretation
ith 1 representing the optimal or healthy state. This normalization allows for a standardized scale across
ifferent systems. However, our model gives the SOH distribution as the evaluation result. In a distribution
ontext, normalization to a strict range may not be applicable for every individual data point. The distribution
ay naturally extend beyond this range, reflecting the variability in the health states of different elements
ithin the system. Especially in the intial cycles, the SOH values tend to be quite close to one, and the SOH
istribution gives the maximum probability at one (or close to 1). To give a complete distribution, it is avoidable
hat values that exceed 1 exist. This is one possible explanation. On the other hand, values exceeding one do
ot necessarily indicate an error or anomaly. Instead, they represent instances where certain components or
lements in the system may be healthier than the intial state.

.3. Analysis of Convergence Ability
Fig.6 illustrates the convergence of the Wasserstein distance-based QH loss for optimization throughout the

raining process on the three LIBs. From these figures, it is evident that the proposed loss function can converge
uccessfully. This visualization underscores the effectiveness of the new Wasserstein distance-based QH loss in
onvergence.

.4. Method Comparison
Three metrics are adopted in the section to evaluate the performance of the proposed method for the SoH

f LIBs quantitively, which consists of the mean absolute error (MAE), the root mean square error (RMSE)
nd the R2 score.

The MAE measures the average absolute difference between the predicted and actual values. It is calculated
y taking the mean of the absolute differences between each predicted and actual value.

The RMSE is similar to MAE but gives more weight to large errors. It is calculated by taking the square
oot of the average of the squared differences between the predicted and actual values.

The R2 score, also known as the coefficient of determination, is a statistical metric used to evaluate the
oodness of fit of a regression model. The R2 score ranges from 0 to 1, where 0 indicates that the model does

11
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igure 5: The SOH assessment.(a) The ground-truth and predicted SOH result of 5#LIB (b) Multi-view 3-D visualization o
OH distribution of 5#LIB (c) The ground-truth and predicted SOH result of 6#LIB (d) Multi-view 3-D visualization of SOH
istribution of 6#LIB.(e) The ground-truth and predicted SOH result of 7#LIB (f) Multi-view 3-D visualization of SOH distribution
f 7#LIB. The 2D view depicts the variation of the SOH distribution over cycles; the 3D view illustrates the coupled representation
f the SOH distribution with confidence intervals across quantiles and cycles.
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igure 6: The convergence of model with Wasserstein distance-based QH loss. (a) convergence of 5#LIB (b) convergence of 6#LIB
) convergence of 7#LIB. These figure gives the convergence process during training with the proposed loss, which proves it

onvergence ability.

ot explain any of the variability in the target variable, and 1 indicates that the model perfectly fit to the target
ariable. These metrics are displayed as follows.

MAE =
1

K

K∑

k=1

∣∣∣Ĉk − Ck

∣∣∣ (19)

RMSE =

√√√√ 1

K

K∑

k=1

(
Ĉk − Ck

)2
(20)

R2 = 1−
∑K

k=1

(
Ĉk − Ck

)2

∑K
k=1

(
C̄k − Ck

)2 (21)

here K is the total number of charge cycle. Ĉk is the predicted capacity, and Ck is the reference capacity.

.4.1. Comparison with Other Loss Functions
The proposed Wasserstein distance-based QH loss is compared with the conventional MSE and MAE loss

nctions in this application.
The evaluation metric used for comparison is R2, and the outcomes, depicted in Fig.7, clearly illustrate

he superior performance of the proposed Wasserstein distance-based QH loss function over MSE and MAE
hen employing the same model structure. The network optimized with the proposed loss function achieves the
ighest R2 score. This means that the predicted SOH distribution fits the true distribution with the highest
recision when the network is optimized by the proposed loss.
.4.2. Comparison with Other Deep Networks

To further demonstrate the superiority of the proposed method, three additional deep feature mapping
tructures (LSTM, CNN and DenseNet) are selected for comparison with the ResNet structure in the proposed
ethod. The detailed structures of networks are summarized as follows.

The DenseNet has five blocks similar to CNN in the proposed method, but they are following the structure
f DenseNet in reference [40].

The CNN consists of three convolutional blocks, each performing convolution, followed by a ReLU function
r nonlinear transformation, and max pooling for downsampling. In the three blocks, the kernel sizes are 5×1
× 1, and 3× 1, respectively, with a pooling ratio set to 2 for all.

The LSTM structure follows the reference [41]. It consists of three LSTM units. The training process was
onducted for 50 epochs by utilizing a learning rate scheduling. The initial learning rate of 0.01 was dropped
ith a factor of 0.2 after seven epochs.

13
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igure 7: R2 of the different loss functions. This figure demonstrates the discrepancies of SOH distribution calculated by the ResNe
ith MAE, MSE and the proposed QH loss for condition 1-3, respectively. The evaluation of these discrepancies is performed using
e R2.

The quantified results are presented in Table 4. By examining the MAE and RMSE, it becomes evident
hat the ResNet model attains the lowest error values. The predicted values exhibit the least deviation from
he ground truth. In addition, the output of ResNet achieves the highest value of R2 metric. This suggests
hat the output of ResNet consistently aligns with the ground-truth SOH distribution. Overall, the ResNet
as achieved the best performance in comparison with CNN, LSTM and DenseNet. It can avoid the gradient
anishing problem and improve the efficiency of model training. Therefore, the ResNet structure is selected in
he application to extract deep features for SOH prediction.

Table 4: Comparison with other deep neural network

Compared Network Evaluation Metric
LIB Battery

5# 6# 7#

LSTM

MAE 0.0943 0.1551 0.1662

RMSE 0.1032 0.1653 0.1768

R2 0.8171 0.7245 0.7933

DenseNet

MAE 0.1788 0.1372 0.2310

RMSE 0.1892 0.1483 0.3586

R2 0.7881 0.7102 0.6541

CNN

MAE 0.1088 0.0985 0.1499

RMSE 0.1254 0.1056 0.1587

R2 0.7051 0.7192 0.6684

ResNet

MAE 0.0792 0.0806 0.0432

RMSE 0.0885 0.0951 0.0506

R2 0.8871 0.8596 0.9523

.4.3. SOH Feature Visualization
To further assess the efficacy of the proposed method to implement SOH assessment of LIBs, the features

xtracted from the linear layer located before the output layer are selected for visualization. The t-SNE is utilized
o condense these high-dimensional features into two-dimensional visual representations. The visualization can
ain more insights to the SOH degradation pattern.

The test data of 3 batteries are selected for feature visualization. The visualization results are depicted in
ig. 8, where the color bar ranges from 0 (red) to 100 (blue), representing the normalized ground truth SOH with

14
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igure 8: Feature Visualization. (a)Feature of training data of condition 1 (b)Feature of training data of condition 2 (c)Feature o
aining data of condition 3. These figures exhibit a regular transition of feature from 100 to 0 without evident mis-classification
hich proves the effectiveness and generalization of the deep representation obtained from the well-trained network for LIB SOH

scaling factor of 100 applied for better visibility. The diverse feature visualization outcomes of the training
ata in condition 1-3 of Tab.1, as shown in Fig. 8(a), (b), (c), indicate well-trained models, as the labeled
atures exhibit a regular transition from 100 to 0 without evident mis-classification. The high generalization
apability of the proposed method is confirmed by results from the unseen test data, presented in Fig.8(d)
e), (f). Despite the model not being exposed to the test data during training, it effectively recognizes varying
egrees of SOH degradation.The proposed method captures the degradation pattern of LIB SOH effectively.

. Conclusion and Discussion

This paper introduces a novel framework for SOH assessment based on deep learning. The proposed frame
ork encompasses several key components, including the construction of a reference SOH distribution, mode
raining with multi-source data, optimization using a Wasserstein distance-based QH loss, model test as wel
s model evaluation and feature visualization. This method enhances the precision of SOH estimation with
omprehensive information.

A novel SOH assessment model, accounting for uncertainty, is introduced in this paper. The model constructs
quantile distribution of deep features, enabling the prediction of a SOH distribution with an associated

onfidence intervals. This approach enhances the reliability of SOH assessment and generalization ability o
he SOH model. The quantile distribution is computed using deep features derived from the CNN. This
trategy reduces reliance on domain expertise for the design of feature extraction schemes. Overall, the proposed
pproach not only considers uncertainty in SOH assessment but also leverages advanced loss functions and
ature extraction methods, leading to a more reliable and generalized outcome.

A Wasserstein distance-based QH loss function is devised to implement the optimization of the proposed
ethod. This loss function allows the proposed method to complete the optimization by quantifying the
isparity between the estimated and ground truth of SOH distributions.

This proposed method is validated on the NASA dataset. The result demonstrates the effectiveness of the
roposed method on enhancing the reliability of the SOH model. The visualization of the feature distribution
hows the generalization ability of the model.
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Though the proposed method achieves excellent performance in SOH assessment, a limitation of our proposed
odel is the presence of estimated SOH values exceeding one, particularly during the initial cycles. Addressing

nd optimizing this issue could be a focus for our future research.
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