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bstract

Lithium-ion batteries (LIBs) are widely used in many fields, such as electric vehicles and energy storage
nd directly impact the device performance and safety. Therefore, the state of health (SOH) assessment is
ritical for LIB usage. However, most of the existing data-driven SOH modeling methods overlook the inherent
ncertainty in battery health prediction, which decreases the reliability of the model. To address this issue
his paper proposes a novel SOH assessment model based on the deep learning framework. The SOH results
re derived from the quantile distribution of deep features, giving the SOH values with associated confidence
tervals. This enhances the reliability and generalization of SOH assessment results. Additionally, to complete
he optimization of the deep model, a Wasserstein distance-based quantile Huber (QH) loss function is developed
his function integrates Huber loss and quantile regression loss, enabling the model to be optimized based on a
istribution output. The proposed method is validated using the NASA dataset, and the results confirm that the
roposed method can effectively estimate the SOH of LIB while accounting for uncertainty. The incorporation
f SOH distribution enhances the reliability and generalization ability of the SOH assessment model.

eywords: Model reliability; State of health; Lithium-ion battery; Wasserstein Distance; Uncertainty;
uantile Distribution

Abbreviation Full Name Abbreviation Full Name
SOH State of Health LIB Lithium-ion Battery
QH Quantile Huber EIS Electrochemical Impedance Spectrosco
CNN Convolutional Neural Network ResNet Residual Network
LSTM Long Short-Term Memory CDF Cumulative Distribution Function
GPR Gaussian Process Regression CV Constant Voltage
CC Constant Current MAE Mean Absolute Error
RMSE Root Mean Square Error

. Introduction

The state of health (SOH) assessment of lithium-ion batteries (LIBs) is crucial in various applications, such
s electric vehicles and renewable energy storage [1]. The SOH of LIBs directly affects the operating performance
f these devices [2]. The SOH assessment provides valuable information about the current condition of a battery
ith the LIBs aging and degrading, the energy capacity and runtime reduce gradually over time [3]. They
ecome more prone to safety issues, such as overheating, thermal runaway, and even fires or explosions [4].In
his regard, SOH assessment allows users to monitor and optimize battery performance in time, which would
elp in identifying potential safety risks and preventing catastrophic failures.
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SOH assessment remains an active area of research and development [5]. The SOH of a LIB denotes its
resent health condition in relation to its nominal performance [6]. Typically, it involves calculating the ratio
f the current-cycle capacity to the initial-cycle capacity [7]. Various methods such as charge/discharge tests
] and Electrochemical Impedance Spectroscopy (EIS) [9, 10], can be used to assess the LIB SOH. These
echniques provide insights into a battery’s capacity, internal resistance, chemical aging and other factors that
ffect its health and performance, but it demands long rest times to avoid the effect of relaxation to the EIS
easurement [11]. This impacts both data accessibility and model construction. With the advent of the Internet
f Things (IoT), collecting data for SOH monitoring has become more convenient [12, 13]. Voltage, current
nd temperature signals obtained from battery management systems during operation have surpassed EIS data
terms of monitoring capabilities, enabling real-time SOH assessment.
Voltage, current, and temperature signals are widely used for modeling SOH assessment. They can reflect

he internal health state of LIB effectively [14]. Researchers have proposed models utilizing these signals for ef
ctive SOH prediction. For instance, Wen et al. devised a battery SOH prediction model based on incrementa
apacity analysis and a BP neural network [15]. This model established a correlation between temperature and
cremental capacity curve characteristics to predict battery SOH values at various temperatures. Similarly
heng et al. proposed an optimal dispatch approach for online SOH estimation [16], accounting for degradation
his online SOH estimation model utilized the Kalman filter for estimation, achieving higher accuracy by inte
rating short-term estimation and long-term prediction results. Jia et al. proposed an indirect health indicators
onstructed from voltage, current, and temperature signals of charging and discharging. Then the short-term
OH prediction is conducted by combining the Gaussian process regression (GPR) method with probability
redictions [17]. These research conducted SOH assessment of LIB based on the widely-used voltage, current
nd temperature data. The SOH results provide important suggestions for LIB maintenance. The application
f these methods prolongs the lifespan of LIB and enhance the sustainability across various applications and
dustries. However, these methods rely heavily on the expertise and prior knowledge to extract the proper
atures, imposing significant limitations on their applicability.
Deep learning-based approaches for LIB SOH assessment have gained attention due to their success in self

daptively modeling complex nonlinear systems [18, 19]. Su et al. proposed a hybrid method that fuses the
attery equivalent circuit model and the convolutional neural network for battery health state monitoring [20]
a et al. developed a novel SOH estimation method by fusing multiple health indicators based on a hybrid
etwork with deep belief network and long short-term memory (LSTM) [21]. Deep features were extracted
ffectively from the monitoring data. Wang et al. proposed a bioinspired spiking spatio-temporal attention
amework for the LIB SOH. This work utilizes precise battery physical and chemical degradation information
nd brain-inspired spiking neural networks for accurate SOH estimation based on the full-life-cycle EIS data [22]
hough deep learning methods attain good performance in the application of LIB SOH assessment, these models
end to give a specific value of the SOH. These outcomes overlook the inherent uncertainty generated in the data
ollection and estimation process [23, 24]. The figure 1 is given as an example to facilitate the understanding o
ncertainty that exists in LIB SOH monitoring data. The figure illustrates the partial variations in the charging
urrent of batteries #5, #6, and #7 from the NASA dataset [25] at the 100th cycle. Theoretically, the current
ariation of the three batteries should be consistent. However, the figure reveals slight variations in current
alues, even at the same cycle. This discrepancy can be attributed to uncertainties during cycling, leading to
npredictable fluctuations in the estimated SOH.
Uncertainty refers to a lack of certainty or confidence in the outcome of a particular event or situation

6]. In the SOH assessment of, uncertainty encompasses two key components. First, aleatoric uncertainty
his type of uncertainty is often related with random events or stochastic processes generated during SOH
onitoring data collection. Second, epistemic uncertainty. It represents the uncertainty that arises from
he absence of SOH assessment knowledge, and it can potentially be reduced or eliminated with additiona
formation, improved models, etc. [27]. Deep learning models, while achieving good performance, may
ot consider these uncertainties, leading to diminished generalization and reliability. Therefore, constructing
trustworthy and reliable model becomes crucial for SOH assessment of LIB, particularly in the context o
eep learning. Efforts have been made to address this issue. Zhou et al. investigated the trustworthy mode
f fault diagnosis in a probabilistic Bayesian deep learning framework [28]. This method incorporated an
ncertainty-aware model to translate the fault information and recognize the monitoring data from unseen
omains. Though this work focused on uncertainty influence, it necessitated additional prior knowledge for
ncertainty modeling. Wang et al. introduced an explainability-driven model improvement framework for
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Figure 1: Current of three batteries at the cycle of 100

IB SOH estimation [29]. This framework delves into further exploration of the explainability of the SOH
odel. However, this research does not address the output reliability of the SOH model. Tagasovska et
l. presented single-model estimates of aleatoric and epistemic uncertainty for deep neural networks using
imultaneous quantile regression [30]. This approach can map out-of-distribution examples to non-zero values
dicating epistemic uncertainty and contributing to the construction of a more trustworthy model. This work
emonstrates the feasibility of constructing a distribution to enhance the trustworthiness of the model.
Inspired by the work on simultaneous quantile regression for uncertainty estimation in deep neural networks

0], this study proposes incorporating quantile regression for SOH distribution estimation. This approach
rovides a distribution of SOH values, considering the inherent uncertainties in the system and measurements
uring cycling. The output offers more reliable information for LIB maintenance, enhancing the precision and
eliability of SOH estimation. This method contributes to the construction of a trustworthy model for LIB
OH assessment. It considers both aleatoric and epistemic uncertainties, thereby improving the precision and
eliability of SOH estimation.

The main contributions are summarized as follows.
1. A novel SOH assessment framework based on deep learning is proposed. This framework includes the

construction of SOH reference distribution, ResNet model training on multi-source data for deep feature
extraction, model test and method evaluation and visualization. Multi-source data can capture compre
hensive information for SOH.

2. A SOH assessment model that considers the uncertainty is proposed for of LIB. A quantile distribution
of deep features is constructed to give a predicted distribution of SOH values with associated confidence
interval. It enhances the reliability of SOH results and obtains a result of high generalization.

3. A Wasserstein distance-based QH loss function has been designed to calculate the inverse cumulative
distribution function(CDF) divergence between estimation and reference of SOH. This loss function in
corporates the Huber loss and the quantile regression loss. It demonstrates better performance than the
traditional loss function of mean absolute error(MAE) and mean square error(MSE).

The rest of this paper is arranged as follows. Section 2 gives the theoretical preliminaries of the proposed
ethod. Section 3 formulates the problem of SOH assessment. Section 4 introduces the construction of the
OH model Section 5 validates the proposed method using the NASA dataset and evaluates the performance
f the proposed method. Section 6 gives the conclusion and discussion of the research.

. Preliminary

This section provides the foundational knowledge essential for introducing our proposed methodology
ithin our approach, the Wasserstein distance is used to optimize the traditional Huber loss and the quan
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ile loss. This optimization process enables the development of a network that yields the SOH distribution as
s outcome. The quantile regression is also introduced. It is used in our methodology for SOH distribution
rediction.

.1. Wasserstein Distance
The Wasserstein distance, also known as the Earth Mover’s distance or optimal transport distance, is a

easure of the distance between two probability distributions over a region. It quantifies the minimum cost
hat is used to transform one distribution into the other. The distance metric proves especially beneficia
scenarios involving distributions with divergent masses or shapes. This function holds the continuous and

ifferentiable property everywhere. It is the basis to derive the proposed loss function in this work.
TheWasserstein distance derivation involves advanced mathematical concepts from optimal transport theory

iven two probability measures U1 and U2 defined on a metric space (X , d), the p-Wasserstein distance is defined
s

Wp(U1, U2) = infγ∈Γ(U1,U2)fX×Xd(x, y)dγ(x, y) (1)

here Γ(U1, U2) is the set of all joint distributions on X ×X with marginals U1 and U2. d is the ground distance
nction representing the cost of transporting mass from x to y.
When U1 and U2 are two probability distributions with cumulative distribution functions, the p-Wasserstein

etric Wp can be defined as [31]

Wp (U1, U2) =

(∫ +∞

−∞

∣∣F−1
U1

(τ)− F−1
U2

(τ)
∣∣dτ

)1/p

(2)

here τ is the quantile. F−1 represents the quantile functions (inverse CDFs). It can be expressed as

F−1
U (τ) := inf {x ∈ R : τ 6 FU (x)} (3)

here FU (x) = Pr(U 6 x) is the CDF of random variable U .

.2. Quantile Regression
Quantile regression is a statistical technique used to model the conditional quantiles of a response variable

nlike traditional regression methods that focus on estimating the conditional mean of the response variable
uantile regression allows for the modeling of different quantiles, providing a more comprehensive view of the
onditional distribution.

Quantiles represent points in a distribution below which a certain proportion of the data falls. Common
uantiles include the median (50th percentile), quartiles (25th and 75th percentiles), and other percentiles. The
bjective of quantile regression is to estimate the conditional quantiles of the response variable. For a given
uantile τ , the objective function is defined as [32]

Qτ =
n∑

i=1

ρτ (yi −Xiβ) (4)

here Qτ is the quantile loss function, yi is the observed response for the i-th observation, Xi is the predictor
atrix for the i-th observation, β is the vector of coefficients to be estimated, and ρτ (u) is a piecewise linear
nction known as the check function.

. Problem Formulation

This section defines the SOH assessment problem with a distributional output to enhance the model relia
ility. The SOH of a LIB is defined as follows [33].

SOH =
Zlmax
Z0

× 100% (5)

here Zlmax indicates the maximum capacity at l-th cycle. C0 represents the initial capacity at the beginning
f its service life. It is typically provided by the manufacturer and serves as a reference point. The SOH is
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pically expressed as a percentage, where 100% represents the battery’s initial capacity and performance when
was new.
Multiple sources of monitoring data, including current, voltage and temperature, can be used as the input

r model construction. The objective of this work is to construct a projection from the monitoring data to the
OH percentage, which can be expressed as

SOH = f
(
X l|θ

)
(6)

here f represents the project function. It maps the monitoring data X l to the SOH assessment result by the
nction f parameterized by θ. X l denotes the single source or multiple sources of monitoring data to reflect
he health state of LIB. In this research, SOH result follows a specific distribution.

SOH l := E [Z (X)] = E [F (X|θ)] (7)

his equation indicates distribution Z can also be represented by a cumulative distribution function F param
terized by θ. Traditionally, SOH is a value which could not be robust and ignores the uncertainty included in
he process of cycling and measurement. This work enhances the reliability of the SOH assessment result with
distributional output. In addition, this work optimizes the loss function to complete the trustworthy mode
raining.

. Methodology

.1. General Procedure
This section introduces the general procedures of the proposed method, which is illustrated in Fig.2. It

onsists of three modules, namely data pre-processing, model training, model test as well as model evaluation
nd feature visualization. The details are described as follows.

1. Data collection and pre-processing. Multi-source data are collected from charging process of a LIB
The maximum capacity of LIB at each cycle can be calculated by the integral of current. This is used
to construct the labels for model training and validation. Then the reference of SOH distribution is
constructed according to the capacity label.

2. Model construction. Partial monitoring data as well as their labels are selected as training data to train
the SOH assessment model. Deep features are extracted by Residual Networks (ResNet) and obtain
the estimated SOH distribution over selected quantiles. This result enhances the reliability of SOH
assessment.

3. Model training. The parameters of the network and predictor are optimized by a Wasserstein distance
based loss function to obtain a well-trained SOH assessment model. This loss function is calculated from
the predicted SOH quantile distribution and the benchmark SOH quantile distribution.

4. Model test. The well-trained models are tested on the test data. The outcomes of the model are compared
with the reference SOH to complete the evaluation of model performance.

5. Model evaluation and feature visualization. Multiple metrics are selected to evaluate the goodness of fit
of SOH quantile distributions the estimation error of SOH values. The extracted features from ResNet
are visualized to analyze the feature performance and enhance the interpretability of the network.

.2. Residual Network
ResNets are employed to extract deep features from multi-source monitoring data. ResNet is a type of deep

eural network architecture designed to address the issue of training deep neural networks. It was introduced
y He et al. [34]. ResNet architectures are designed to effectively train very deep neural networks. In the
ontext of assessing SOH, the LIB’s health status may depend on intricate patterns and features that require
deep understanding of the data. ResNet’s ability to handle deep networks makes it suitable for capturing
omplex relationships within the battery data. The deep feature can capture high-level information. However
he provided dataset could feature small sample of data. Training a deep network on small sample data to obtain
ery deep features is easy to cause overfitting and fail to convergence. The introduction of residual connections
ResNet is a key innovation. These connections allow the model to learn residual information, making it easier
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igure 2: Framework of the proposed method. It consists of four steps, namely data pre-processing, ResNet model training, mode
st and model evaluation and feature visualization.
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