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Thesis Summary 

There is an increasing pressure for the UK to move towards a low carbon emission. The 
Electric power system has a major contribution by shifting to the decarbonization of power sector 
for a low emission target.  It is important to know that the electric generation is not the only sector 
in the power system that affect the CO2 emissions, there is also an indirect emission as results of 
losses. This Thesis presents a novel approach to coordinate the simultaneous operation of network 
reconfiguration with the sizing and the allocation of energy storage systems in distribution networks 
for losses reduction aim. The major challenge of this work is to solve this hard-stochastic 
optimization problem with an algorithm that has the capability to find the optimum solution in a 
reasonable computational time to help utilities to use it for online applications. 

This thesis proposes a developed optimization technique for network reconfiguration to enhance the 
search space and improve the computational time and the convergence issue of the particle swarm 
optimization. The thesis also presents a novel comparison between a previously adopted engineering 
approach used by Western Power Distribution Company and the new proposed modified algorithm 
in term of losses reduction, and computational time. The similarities, the differences, the advantages 
and the shortcomings for both approaches were highlighted. Moreover, two different utilizations for 
Monte Carlo Approach were investigated in this thesis. The first is aimed to decrease the search space 
of the proposed modified algorithm by proposing Multi Stages Modified Particle Swarm approach 
for distribution network reconfiguration problem solution. The second application for Monte Carlo 
Method is for sizing the battery storage units for more losses’ reduction. 

Results show that merging the network reconfiguration and the sizing and the allocation of battery 
storage systems in distribution networks allow more losses reduction more than using each strategy 
in isolation. Furthermore, it was concluded that the new developed algorithm technique could be 
applied using the real distribution network giving the optimum losses reduction in a reasonable 
computational time, which in turn could be used for online implementation.  

Keywords: Carbon Dioxide Emission Reduction, Distribution Losses Reduction, Distribution 
Network Reconfiguration, Energy Storage Systems, Particle Swarm Optimization, Monte Carlo 
Simulation, Minimum Node Voltage Method, Distribution Network  
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1 CHAPTER 1  INTRODUCTION 

 Overview 
There is an increasing pressure for the UK to move towards a low carbon emission. Electric, 

business, transportation, residential, industrial and other sectors are culprits.  Electricity generation 

is not the only sector in the power system that affect the CO2 emissions, there is also an indirect 

emission as results of losses. The work presented in this thesis concentrates on network 

reconfiguration and, the integration of distributed energy resources in distribution networks for losses 

reduction. 

Distribution Network Reconfiguration (DNR) is recommended not only as a losses’ reduction 

scheme but also in emergency situations for example, in case of any failures. It is a necessity to 

understand that the hard-decision-making process due to the hard-mathematical stochastic DNR 

problem representation, is one of the main challenges for this approach. There is no one correct 

method of solving this problem, and several methods have been suggested. Utilities are looking for 

a technique that merges the benefits of finding an optimum solution at sufficient speed to allow for 

real-time network configuration. The majority of researchers have validated their algorithm choices 

through simulation on different size test networks. Although these test networks could help 

researchers to compare their theoretical studies with the previous work done in that point, it is not 

apparent if the advantages claimed can make the transition to a real-world situation.  Real networks 

give a clear picture of how the solution method could be applied in real life with real value of variable 

loads and what are the problems that could be faced to meet the utilities expectations. 

The work in this thesis expands on the work presented by previous authors by looking at 

modifications to the particle swarm optimization technique to speed its solution time. A novel Multi 

Stage Modified Particle Swarm Optimization was developed in this thesis for improving the search 

space, the computational time and the convergence of the technique which represent the major issues 

of this algorithm using a test distribution network and an 11 kV OHL network in Milton Keynes, 

UK. 

A key challenge of adding distributed energy resources such as wind or solar units is their uncertain 

nature as they are dependent on weather condition. For this reason, it is convenient to consider energy 

storage as an additional component in the Network. This introduces another challenge which is 

selecting the correct size and location and managing their operation because a wrong selection could 

represent a burden and may increase the losses instead of reducing it. 

The published literature in peer-reviewed journals indicates that there is a gap for the simultaneous 

network reconfiguration, sizing and allocation of battery energy storages in distribution network for 

losses reduction. For this reason, the thesis will focus on finding a novel approach to coordinate 
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between the selection of the right size and location for the battery energy storage while having the 

flexibility of changing the normally operating points for optimum losses reduction.  

Furthermore, this thesis conducts a novel comparison between the performance of the proposed 

algorithm for network reconfiguration and a previously engineering based algorithm using two 

distribution networks in terms of losses reduction and the computational time using the test and the 

real OHL distribution network. 

 Thesis aim and objective 
The main aim of this thesis is reducing the losses in distribution networks to reduce the CO2 emission 

through multi stages levels. The first level is through network reconfiguration for static and variable 

load. The second level is by merging the energy storages in conjunction with the network 

reconfiguration considering charging and discharging operational modes. To achieve this aim, the 

following objectives were included: 

1. Carry out a detailed survey about the DNR definition, advantages and challenges and the 

different algorithms used for solution. 

2. Classify the DNR solution techniques into 4 categories: heuristic, meta heuristic, 

mathematical and hybrid and compare between them in term of global solution, 

computational time and network validation 

3. Propose a new modification to the particle swarm technique to improve the issues related to 

convergence and computational time. 

4. Validate the proposed modified particle swarm technique using a test distribution network 

and compares between the proposed modification and the previous modifications by 

previous researchers using the same network. 

5. Suggest a new Multi Stage Modified Particle Swarm Optimization technique that merges the 

modified PSO to Monte Carlo for better computational time and validate it using the previous 

test network. 

6. Conduct a simultaneous network reconfiguration in conjunction with battery energy storage 

sizing and allocation for losses reduction. In this scope, a Monte Carlo technique is suggested 

to size the energy storage while the modified PSO was used for DNR. 

7. Validate the proposed modified particle swarm using a section of the 11kV OHL network in 

the Milton Keynes area, located in the United Kingdom, to allow a validation of the 

methodology within a more representative situation 

8. Implement a previously used engineering method using both the test and the real distribution 

network. 
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9.  Compares between the performance of the proposed modified particle swarm and a 

previously used engineering method in terms of similarities, differences, advantages and 

shortcomings. 

 Thesis Statement  
In this thesis, Optimum network reconfiguration and sizing and allocation of storage batteries are 

merged to reduce the distribution losses. A New Hybrid technique is suggested considering both the 

accuracy and the computational time. 

 Thesis Organization 
This thesis consists of eight chapters organized in the following manner: 

The first chapter gives a brief introduction about the main topic of this thesis, aim and objectives. 

Also presents a layout for the rest of the thesis. 

Chapter 2 reviews two strategies for losses reduction in distribution network. The first is through 

distribution network reconfiguration (DNR). In this section, DNR problem is explained showing the 

reasons of considering it a hard optimization problem. A literature review has been presented 

including all the intelligent and hybrid techniques used by previous researchers for solving this 

problem. Another strategy has been presented for losses reduction is the integration of storage 

batteries in distribution networks. A survey has been conducted looking closely about the different 

techniques used for determining the storage size and site for optimum losses reduction. The studies 

joining both approaches together are also reviewed. 

Chapter 3 presents how losses could be reduced for a DNR optimization problem through a modified 

version of particle swarm optimization algorithm (MPSO). The IEEE 33 network is selected to 

validate the technique. In this chapter, the theory of the particle swarm algorithm is explained. The 

modifications added to the basic technique are stated. A comparison is held between the modified 

particle swarm and other versions of based swarm techniques to show the effectiveness of the 

modifications in terms of losses reduction, voltage improvement and computational time to suggest 

a technique that could be valid to real network implementation. 

Chapter 4 presents a new developed methodology, Multi Stage Modified Particle Swarm algorithm 

(MSMPSO) that benefit from the MPSO results applied in the previous chapter, tests its flexibility 

to respond to variable load for an active DNR problem while reducing the computational time. This 

proposed methodology includes three stages and hence come the suggested name.   MSMPSO is 

validated through the IEEE 33 network. Monte Carlo Simulation (MCS) is selected to simulate load 

uncertainty in distribution network. This chapter compares between the MPSO and MSMPSO 

performance with respect to losses reduction, voltage improvement and computational time. 
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Chapter 5 merges the energy storage sizing and allocations in parallel with the network 

reconfiguration for losses reduction. Monte Carlo simulation technique was suggested for sizing the 

batteries while the modified particle swarm was used for network reconfiguration considering both 

the charging and discharging modes and not any of them in isolation using the test network.  

Chapter 6 validates the MPSO for finding the best normally opened point for optimum losses via a 

large 11 kV OHL distribution network located in Milton Keynes, UK. This study considered a winter 

and a summer day representing the maximum and the minimum load respectively.  

Chapter 7 validate a previously used engineering heuristic technique, the Minimum Node Voltage 

method using the IEEE 33 bus network and the large 11 kV OHL distribution network located in 

Milton Keynes, UK. A comparison was carried out for both the proposed MPSO and the Min Node 

Voltage Method showing the similarities, the differences, the advantages and the shortcomings.  

Chapter 8 concludes the thesis and explains several points that can be investigated as future work.   
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2 CHAPTER 2  BACKGROUND 

 Problem Description 
UK plays a vital role in securing the Paris Agreement, 2015, where 195 countries adopted the first 

universal global climate deal by setting a plan to avoid dangerous climate change. The main aim of 

this agreement was limiting the temperature rise to below 2ᵒ C above pre industrial levels [1]. As a 

part of the agreement, $100 bn should be mobilized yearly in climate finance to developing countries 

by 2020. UK pledged to provide £5.8 bn between 2016-2020, where the Business, Energy and 

Industrial Strategy (BEIS) manages £2bn. Deforestation, Energy Decarbonization, Green Finance 

and Climate Legislation and governance are the four sectors of the BEIS technical assistance program 

to reach the Paris Agreement aim. The UK developed a set of Key Performance Indicators (KPI) 

published in Climate Finance Results report for 2018 [2] to track the results where the Greenhouse 

gas emission reduction was one of them. 

There is increasing pressure for the UK to move towards a low carbon emission. A Committee on 

Climate Change (CCC) was launched 10 years ago to advise the UK Government and Devolved 

Administrations on emissions targets and report to Parliament on progress made in reducing 

greenhouse gas (GHG) emissions and tackling climate change [3]. It was recommended that the UK 

reduce the GHG emission 80% below the 1990 by 2050 ideally without sacrificing the benefits of 

economic growth and rising prosperity. In 2018, The department for Business, Energy and Industrial 

Strategy published on the progress executed for GHG emission reduction of UK up to 2017 [4]. This 

progress is illustrated in Figure 2-1. In this figure, it was shown that Carbon Dioxide (CO2) is the 

main culprit in GHG emissions. For Example, the GHG emission in 1990 is 794.2 MtCO2e; 75% of 

this value is due to the CO2 emission. The Power sector has the dominant share of CO2 emission 

compared to other sectors as clearly shown in Figure 2-2. This figure shows the UK annual CO2 

emission from different sectors during 1990 -2017. It is observed that the CO2 emission from the 

power sector in 1990 is 242 of 594 MtCO2e compared with 105 of 456 MtCO2e in 2017. This high 

decay of the energy supply was mainly due to the decarbonisation of the power sector to achieve the 

emission reduction target. The decarbonisation of the power sector has been achieved by switching 

from coal and gas power stations to renewable generation in particular, many low scale distributed 

energy resources (DERs) such as wind power and solar panels. 
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Figure 2-1 UK Annual GHG Emission during 1990-2017 

 

 

Figure 2-2 Total UK Emission of CO2 

 

Electricity generation is not the only sector in the power system that affect the CO2 

emissions, there is also an indirect emission as results of losses. The total losses of the UK are 8% of 

the total generation as reported by the department for Business, Energy and Industrial Strategy in 

2018 [5]. In this report the emission factor that convert from 1 kWh to 1 kg CO2e was calculated for 

both the generation, and the combined transmission and distribution losses for 2016 to be 0.28266 

and 0.0249 respectively. It should be noted that this factor changes annually as well as with the fuel 

mix consumed in UK power station changes. For this reason, the emission factors reported for 2016 

are less than the emission factors calculated for 1990 (0.70395 for the generation and 0.0506 for the 
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transmission and distribution losses). Since the total CO2 emission from the generation sector for UK 

is 84,007 k tones of CO2, then the equivalent losses emission is 6,720 k tones. Reducing the losses 

on the Network will reduce the overall emissions and help the UK to achieve the 2050 target. 

In 2009, A report was prepared for the Office Gas and Electricity Market (OFGEM) to 

understand the main factors of Electric Losses in Distribution Networks. In this report, the electric 

losses were defined as the difference between the measured input energy to the distribution system 

and that leaving it [6]. There are two types of distribution losses: technical losses (TL) and non-

technical losses (NTL). TL are caused by the physical properties of the power system components. 

the main reasons of the technical losses are listed in [6] and are summarized in the following points: 

1. The waste of energy due to the heat resultant from the current path through the underground 

cables or overhead transmission lines.  

2.  Poor power factor. 

3. 2-3% of the total technical losses are consumed by the meters. 

4. Third of the technical losses are wasted in the transformers and known as “Fixed losses” 

because it does not depend on the load. 

5. The way the distribution network is configured.  

In contrast, (NTL) are also known as commercial losses. They are due to: 

1. Meters inaccuracy; defined by the difference between the amount of energy delivered 

through the meters and the amount registered by the meters. 

2. Electricity theft; defined by the Energy delivered to customers and not measured by the 

energy meters. This could be done by disconnecting the meters, reversing them, bypassing 

them to remove measurements or by cyber-attack to information systems.  

 Losses Reduction Schemes in Distribution Networks (DNs) 
Technical losses (TL) are the main concern of this thesis. TL could be addressed directly as well as 

indirectly.  The main methodologies participating  directly in losses reduction goal were reviewed in 

[6] and [7] .Demand Side Management (DSM) is an example of indirect methods used for losses 

reduction. DSM is  defined in [8] by the planning, implementation and monitoring of utility activities 

that are designed to influence customer use of electricity. As a result, it changes the time pattern and 

magnitude of utility’s load. The main goal of DSM is encouraging the clients to reduce their power 

consumption during the peak demand or shift their energy use to off peak hours to flatten the load 

curve. Consumers are gaining benefit through DSM by reducing their meters reading. On the other 

hands, utilities get indirect benefit by avoiding paying high power purchase during peak hours, and 

load reduction during peak hours. This will decrease the losses through transformers and line losses, 

thus will reduce the fuel used and correspondingly, the amount of the greenhouse gas emission.  

Examples of common direct losses reduction schemes are illustrated in Figure 2-3. The first scheme 

is regulating the network voltage by controlling reactive power flow in a system through shunt 
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capacitor placement. The capacitor is a source of reactive power that could reduce the inductive 

reactance of the line loading, thus reducing the reactive losses. Identifying the required numbers of 

capacitors, their site and size are the major challenge for this scheme. Recently, this scheme has been 

merged with Conservation Voltage Regulation (CVR) scheme leading to a significant demand 

reduction in distribution networks and accordingly more losses reduction. CVR is lowering the 

distribution voltage in a controlled manner while keeping the lowest customer utilization voltage 

suitable with the level determined by the standard organizations [9]. A study was published in [10] 

tested the impact of selecting the right value for a capacitor at different voltage values. It was 

concluded that the losses increased significantly by increasing the voltage by 10% of the rated values 

as well as reducing the voltage below the rated values (90-99% of the rated values). In contrast, 

regulating the voltage at the rated values with optimum placement of capacitor reduced the IEEE 33 

Network losses. The second approach listed in Figure 2-3 for losses reduction, is the Distribution 

Network Reconfiguration (DNR). It is another approach to save the electric energy in low voltage 

networks. DNR is defined by “the process of changing the structure of the distribution network by 

changing the status of sectionalizing switches (normally closed switches) and tie switches (normally 

open switches) to maintain the radial topology of the distribution network in order to maintain the 

operation and the protection as simple as possible [11]. This scheme is considered highly complex 

decision making for dispatchers and require an extensive numerical computation. The convergence, 

the accuracy, and the computational time for these techniques are the major challenges for DNR. 

Apart from this, frequent changes in the configuration may cause the miscoordination of protective 

devices. The third scheme for losses minimization in DN is the integration of DER which may 

include energy storage. The advantages gained by different renewable DG technologies can be 

classified into technical, economic and environmental benefits [12]. Technical benefits include 

nullifying the need for grid reinforcement, increased power loss reduction, improved reliability, 

voltage stability, power quality improvement and supply security. Despite these several benefits 

offered by renewable DGs, several challenges still exist in the integration of DGs in current power 

distribution networks. The unsuitable placement and sizing of DERs as well as the mismanagement 

of charging and discharging time in case of having Distributed Energy Storage can result in high 

power losses, voltage instability, and power quality and protection degradation in the power 

distribution networks. Very few Researchers that have thought about DNR previously, have also 

included other elements such as DER and capacitors and such work is very recent [13, 14]. The 

survey of this thesis is divided in two sections. The first covers the DNR scheme while the second 

focuses on sizing and allocating the ESS in DN and the way they could affect the losses reduction.  

This thesis is designed to consider both DNR and then DNR in conjunction with DER as it felt that 

these can no longer be considered in isolation and a consolidated optimization offers the best way 

forward for losses reduction. A summary of work undertaken looking at both DNR and DER is also 

described. 
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 Distribution Network Reconfiguration  

 DNR Definition, Advantages, and Challenges  
Distribution networks consist of many interconnected circuits linked by switches designed for 

management and protection schemes. There are two types of switches: the first is sectionalizing 

switches which are normally closed; the second is tie line switches which are normally opened 

providing separation between feeders. Usually, tie switches are closed to transfer loads from one 

feeder to another while sectionalizing switches are opened to restore the radial structure or to isolate 

areas during faults. Distribution Feeder / network reconfiguration (DRF/ DNR) is the process of 

changing the network structure by changing the status of these linking switches, thus redirecting the 

power flow for a better network performance keeping the radial structure. The DNR importance is 

highlighted in emergencies; During a fault, the fault location should be identified immediately, the 

smallest part of the system should be isolated to minimize the number of affected consumers, then a 

solution should be developed to correct the fault that occurred and finally the switches are changed 

again to maintain their normal status [15, 16]. DNR features do not only include contingency 

conditions but also, their merits could improve the distribution network to obtain an efficient and 

secure power system. This could be achieved by reducing the losses, protecting the line from 

overloading via load balancing. Transferring the loads from highly loaded feeders or transformers to 

lightly loaded ones, help to smooth out the load demand, thus postponing the investment of building 

new generation stations. DNR could also reduce the generation cost by facilitating the integration of 

renewable resources especially in peak. Figure 2-4 summarizes the features and challenges of DNR.  

Figure 2-3 Losses Reduction Schemes in Distribution Networks 

Losses Reduction Schemes in Distribution Networks 
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In contrast, the major challenge for DNR is the possible impact on the coordination of the protective 

devices.  As the configuration changes, the direction of the power flow and the faults level in the 

branches change. This in turn may cause malfunction of the protective devices (usually set on fixed 

values of short current magnitude) used in the distribution networks. Recently , this issue was 

considered in [17] by implementing hourly reconfiguration in a smart distribution systems 

considering the operational conditions of the protective devices.  

Another challenge for DNR concluded from the previous researches, is the complexity of decision-

making process [7], as it requires an extensive numerical calculation. DNR is considered 

complicated, nonlinear, discrete, constrained combinatorial, stochastic optimization problem. Its 

complex combinatorial nature is due to the large probability obtained by changing the switches to 

find the optimum configuration to realize the objective function within the constraints. Its stochastic 

nature is due to the continuous change of demand hourly. Its discrete nature is due to the state of 

switches with change between on and off. Many solution techniques have been proposed and 

modified. At present DNR is done by the dispatcher in an emergency only based on a heuristic 

methodology derived from understanding the Network alternatives for any given situation. The 

advantages of being able to solve the optimization computationally in real time will allow a more 

accurate means of undertaking the network reconfiguration under normal operation as well as 

emergency running. 
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Figure 2-4 Advantages and Challenges of DNR 
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 General Objective functions and Constraints 

Since DNR is considered a complex optimization problem, seeking an optimum solution requires 

satisfying the objectives functions and the constraints. Losses and switching reduction, load 

balancing, voltage drop improvement, service restoration and DG integration are the most 

relevant objectives functions used for DNR problem. Figure 2-5 summarize the general 

constraints of the DNR.  Keeping the values of node voltage, line current and protective devices 

current within the operating limits while maintaining the radial topology of the network after 

switching, are considered the main operational constraints.  Integration of DGs, which is one of 

the advantages gained of DNR, will add other constraints that need to be considered such as the 

allowed energy to be penetrated in the system and others. Installing DG in a distribution network 

has an impact on power flow, voltage and reliability indices. This impact will be positive if they 

are correctly coordinated with the rest of the network. DG back up generation could feed the 

loads in case of any fault. Therefore, the duration of the outage could be decreased. Moreover, 

DG could enable the injection of power into the network when utility generation could not supply 

the load demand especially in peak time. As a result, the probability, the duration and the number 

of failures could be reduced. To accomplish the previous aim, the allocation and the sizing of 

DGs could be considered in DNR analysis. 
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 DNR Optimization Algorithms Classification 
 DNR Solution techniques are surveyed in [11, 18-20] . In this thesis, they are generalized into 4 

categories: heuristic, meta heuristic, mathematical and hybrid solution techniques. Figure 2-6 shows 

the classification of the techniques used for solving the DNR problem. 

 Heuristic techniques 

These techniques are knowledge-based approaches. They select the optimal switches configuration 

based on knowledge and operational experience. This experience is developed based on power 

system simulation under different operating conditions. Although the heuristic algorithms are very 

fast to solve the reconfiguration problems, which is one of the main requirements of real time 

distribution automation, these algorithms achieve an approximate solution (near optimum solution) 

rather than a global optimum solution. Table 2-1 includes examples of the heuristic techniques used 

for DNR, their theory and the studies used them for losses reduction. Loop Cutting algorithm [21], 

Branch Exchange technique [22], Trial and Error [23], Optimum Load Flow methodology [24], Loop 

Eliminating method [25] and Minimum Node Voltage method [26] are examples of heuristic 

techniques used in DNR solution. Because most of these techniques struggle to find a global 

minimum, they will mostly not be considered further in this thesis except for the Minimum Node 

Voltage method which is discussed in Chapter 7. 

 Meta Heuristic Techniques 

Meta Heuristic techniques mean upper level methodologies that deal with the network 

reconfiguration as an optimization problem and solve them iteratively using learning strategies and 

intelligently combining different concepts that will help to improve the search space. They achieve 

global optimum solution, but the computational time is too high due to their probabilistic nature 

and their random selection which made the convergence speed slow. Meta Heuristic techniques 

used for DNR solution are described in Table 2-2. This table also includes some example of the 

studies working with these techniques for losses reduction.   
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Figure 2-6 DNR Solution Technique Classification 
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Table 2-1 Examples of Heuristic techniques used in DNR solution 

Technique Year Methodology Description Studies 

Loop 

Cutting 

1989 This method is also known as “Sequential Branch Method”. The 

network is initially meshed, and then a load flow is carried out to 

determine the branches current. Finally, the radial structure is 

gained by opening the switch carrying the minimum power in 

each loop. 

[21] 

 

Branch 

Exchange 

1989 This methodology open one switch and closed another and the 

switching pairs should yield the best losses reduction. 

[22] 

Trial and 

Error 

2000 The method looks for suitable options to reduce losses through a 

minimal tree-search. A simple formula for power loss was 

developed to determine the switching option that will result in 

minimum power loss. 

[23] 

Optimal 

Power 

Flow 

(OPF) 

2006 all branches are initially closed, and from the OPF results, a 

heuristic technique based on sensitivity analysis is used to 

determine the next loop to be broken by opening one switch. Then 

the list of switches that are candidates to be opened is updated, 

and the above process is repeated until all loops are broken, 

making the distribution system radial. 

[24] 

Loop 

Eliminating 

method 

2010 The network is initially meshed and the switches with large 

voltage differences were opened because they could cause more 

system losses. 

[25] 

Minimum 

Node 

Voltage 

method 

2016 All branches are initially closed. Then running a power flow to 

determine the nodes having the minimum independent node 

voltage. The branches having the lowest power flow are 

considered the new NOP. 

[26] 
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Table 2-2 Meta Heuristic techniques Description used in DNR 

Methodology Description References 

Genetic Algorithm 

(GA) 

GA was proposed by Holland in 1975. It applies the principles 

of genetic evolution to make change in the population the 

evolution process includes three stages: crossover, selection 

and mutation. Genetic Algorithm, Evolutionary Algorithm, 

Evolutionary Programming, Differential Programing are very 

closed techniques to same genetic concept. 

[27] 

 

Simulating 

Annealing (SA) 

SA was presented in 1983 in  [28]. This technique is based on 

the cooling process of a melting metal to solidify in its 

minimum energy state.  

[29-31] 

 

Artificial Neural 

Network (ANN) 

Neural Network works in two modes: the first is offline using 

a large data base of all possible operating conditions; the 

second mode is online responsible of optimum 

reconfiguration. 

[32] 

 

Tabu Search (TS) It was presented by Glover in two series during 1989 and 

1990. This technique models the human memory process.   

[33-36]  

Ant Colony 

Optimization 

(ACO) 

ACO was proposed in 1992 by M. Dorigio. It was inspired 

from the behavior of real ants while searching their food. 

Transition state, local update and global update are the 3 steps 

of the algorithm. 

[37-42] 

 

Particle Swarm 

Algorithm (PSO) 

In 1995, J. Kennedy and R. Eberhart have mathematically 

simulated the social behavior of bird flock and fish schools 

searching their corn presenting a new meta heuristic 

technique, the PSO [43]. There are many variants on this 

search approach available that be will be discussed latter in 

chapter 3. 

[44, 45] 

 

Honey Bee Mating  HBM is a method inspired from the behavior of bees [46]  

Harmony Search 

Algorithm (HSA) 

HAS was presented by Geem et al. in 2001. It was inspired by 

the reproduction of musicians’ behavior during playing their 

musical instruments which represent the population to obtain 

[47-50] 
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 certain pleasing harmony (the global solution required) based 

on the given objective function. 

Bacterial Foraging 

Optimization 

Algorithm  

It was developed in 2002. It is based on the behavior of the 

bacteria in human intestine.  

[51] 

 

Bat Algorithm  The main idea was borrowed from the behavior of bats for 

finding food. 

[52]  

Immune Algorithm  This technique imitates the behavior of genes and antibodies 

while defending the human body from viruses and bacteria. 

[53]  

Shuffled Frog 

leaping Algorithm  

This method was proposed in 2003 including two kind of 

search: local and global. A population of frogs is divided into 

several parallel communities called memeplex [54]. The local 

search is performed for each memeplex resembling the PSO 

concept. For the global exchange of information, the best 

selected frogs from each memeplex will be redistributed in the 

whole population ensuring a good quality evolution of total 

population. In this global exchange of information frogs are 

shuffled periodically which is like shuffled complex evolution 

algorithm. 

[55]  

Quantum Fire Fly  It was developed by K.N.Krishnanad and D.Ghose in 2005. 

This methodology is based on the flashing characteristics of 

fireflies. This method has not been applied to the problem area 

discussed in this thesis to date but was used for reliability and 

power quality through network reconfiguration.  

[56]  

Cucoo Search 

(CSA) 

CSA was developed by Yang and Deb in 2009. It was inspired 

by some species of a bird family called cuckoo. These birds 

put their eggs in the nests of other host birds by selecting the 

recently spawned nests and removing existing eggs that 

increase hatching probability of their eggs. The host bird takes 

care of the eggs presuming that the eggs are their own, but 

when they discover that the eggs are not their own, they will 

either throw out the eggs or build new nests in new places. 

[57, 58] 
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Each egg in a nest represents a solution and a cuckoo egg 

represents a new solution. 

Group Search 

Optimization 

(GSO) 

GSO is an optimization algorithm based on animal searching 

behavior and their group-living theory developed in 2009. 

[59] 

 

Fire Work 

Algorithm 

(FWA) 

FWA is a swarm intelligence based stochastic search 

technique, recently developed by Tan and Zhu in 2010 [60]. 

In FWA, The FWA is presented and implemented by 

simulating the explosion process of fireworks. In the FWA, 

two explosion (search) processes are employed and 

mechanisms for keeping diversity of sparks are also well 

designed. 

[61] 

 

 

 Mathematical Techniques 

Mathematical modeling technique such as Graph Theory, Mixed Integer Programming [62], 

Lagrange relaxation [63] and others were also suggested to solve the DNR. Although they can give 

global optimum solution, they take too long time to create the model. This time increase 

exponentially with the size of the network [64]. Therefore, these will not be considered further in 

this thesis. 

 Hybrid Techniques 

It was concluded from the previous researches that knowledge-based algorithms did not reach the 

global solutions and most of the time fall into local ones. Furthermore, probabilistic techniques 

are time consuming due to their high probabilistic nature, which could affect their 

implementation on real time distribution reconfiguration although reaching optimal solutions. 

Based on this, the need for introducing a new approach to combine between the accuracy, the 

time consuming and feasible solutions led the researches to suggest combinatorial or hybrid 

techniques. These methodologies combine between different algorithms to improve the search 

space, achieving global solution in a fewer number of iterations which speed up the 

computational time. So far, several hybrid techniques have been proposed to solve the 

reconfiguration problems as well as the allocation and sizing of DGs for losses reduction. Table 

2-3 highlights some hybrid approaches used for DNR solution.  
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Table 2-3 Examples of Hybrid techniques for DNR for losses reduction 

Ref Hybrid 

technique 

Reason Objective  Reference 

[65] SA-ACO 

 

To improve the 

computational time and 

the accuracy of the SA 

 (Losses reduction, 

Voltage Improvement and 

Minimum Switching 

Operation) 

Real 

Network 

[66] ACO- GA 

 

To improve the search 

performance of 

crossover operators in 

Genetic Algorithm.  

 

Losses Reduction 

Theoretical 

 

[67] PSO+ HBMO 

 

To enhance the 

performance of HMBO 

and avoid the 

convergence to local 

optimal solution  

 

Losses Reduction 

Test 

Network 

 

[68] Fuzzy -ACO 

 

 

 

To Speed up the 

computational time. 

 To improve both the 

accuracy and the global 

search of the swarm 

algorithms  

Losses Reduction and 

Load Restoration 

Real 

Network 

[69] PSO-ACO 

 

Losses reduction and 

voltage improvement 

Theoretical 

[70] REPSO 

(Evolutionary 

Programing and 

PSO) 

 

Losses Reduction Theoretical 

[71] GA-PSO  

 

Losses Reduction and 

Voltage Improvement 

Theoretical 
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 Discussion 
Table 2-4 compares between the previous classified methodologies in term of theory, advantages and 

drawbacks suggesting that hybrid methodologies could give better results than individual algorithms 

in terms of computational time and accuracy. For this reason, in this thesis, a hybrid optimization 

algorithm is suggested to solve the DNR problem considering losses reduction in DNs. 

Table 2-4 Comparison between the methodologies used for DNR solution 

 Heuristic Meta Heuristic Mathematical Hybrid 

Theory Based on expert 
knowledge 

Based on Nature 
methodologies. 

Based on 
deterministic 

rules 

Combine 
between 

techniques 

Advantages Fast Global optimum 

solution with the 

possibility of 

falling in local 

optimum solution 

in case of multi 

objective function  

Deterministic 

Global solution  

Less 
computational 
time compared 

to meta heuristic 
and 

mathematical 

Global optimum 
solution 

Drawbacks Local optimal Time consuming 

Convergence 

Not suitable for 
large network as 
the time increase 

exponentially 
with the size 

 

 

 

Particle Swarm algorithm was selected as a starting point for this research because  it has many useful 

aspects, stated in [72] and summarized as: 

1. the straightforward concept, easy implementation, and very few parameters that need to be 

adjusted, as explained latter in chapter 3, compared to HSA and SA. 

2. In PSO, every particle remembers its own previous best value as well as the neighborhood 

best; therefore, it has a more effective memory capability than the GA. 

3. Unlike SA, the final solution does not depend on the initial iterations.  

4. It is considered a fast technique compared to ANN, SA and HSA that take lot of iterations 

to reach the optimum solution  

The possibility of falling in local minimum solution for multi objective function problems, the 

large probabilities of initial random positions and the convergence of the algorithm are the main 

issues of this technique. By solving any of them, PSO could be modified for real network 
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validation. For this reason, many trials were implemented to modify the basic PSO for enhancing 

the performance. These trials are surveyed   in Table 2-5. 

Table 2-5 Different Modification added to basic PSO technique for DNR Solution 

Year Modified PSO Version Reference 

2006 The improved PSO use the chaos optimization to overcome the influence of 

particles’ random initialization and realize detail searching in solution space.  

[73] 

 

2009 Changing the inertia weight to decrease linearly from 0.9 to 0.2 for 1500 

iterations.  Another modification is the implementation of a position check to 

make sure that none of the particles have flied out of the search space bounds 

or violated the constraints. In this study the author has used only 5 particles. 

[74] 

 

2010 In this version of swarm, the author suggests varying the value of inertia weight 

from 0-9 to 0.2 for 1000 iterations compared to (0.9 to 0.4) for the typical PSO. 

It was concluded that the optimum solution was found after 300 runs.  

[75] 

 

2012 In this method, the particle gets information from all the neighbor not only the 

best one. Also, another equation for velocity was used.  

[76] 

 

2014  To improve the total search ability of the PSO algorithm, the proposed method 

gets use of the mutation and crossover operators to increase the diversity of the 

population.  

[77] 

 

2015 An Improved PSO based on statistics has been presented.  Scenarios library is 

formulated during the optimization process to influence the evolution of 

particle swarm by calculating the Pearson correlation coefficient between the 

fitness value and each dimension of the particles.  

[78] 

 

An Adaptive Bi group PSO based on BPSO has been proposed by R. Cheng to 

strengthen the swarm’s global optimum ability and enhancing the slow 

convergence of the algorithm.  

[79] 

 

2016-
2017 

A modified version of swarm based on the work undertaken in this thesis was 

suggested by integrating both the concept of tree diagram and voltage and 

current constraints for filtering the initial positions of the PSO to improve the 

search space and reduce the computational time of the algorithm. 

[80, 81] 

A Unified PSO is presented to include 500 iterations for reducing the 

shortcoming of swarm technique. 

[82] 
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 Distributed Energy Resources in Distribution Network 
Integrating DER in Distribution Networks is another proposed scheme for losses reduction in low 

voltage networks. The merits and the challenges of this scheme are surveyed in this section.  For 

achieving the maximum benefit, both the size and the allocation should be studied as well as the type 

of DER should be specified, to meet the required goal of losses reduction. In this scope, the previous 

research papers studying both the capacity and the allocation of DER are classified in this section 

based on the target of their studies. 

 DER Advantages and Challenges  

In addition to the potential for CO2 reduction from renewables, DERs may be favorable for the 

electricity market because they represent a key solution for utilities and electricity market operators 

to reduce the investments in transmission and distribution system along with the option of decreasing 

the losses. Also, they offer the opportunity for community energy and energy cost reduction through 

peer-peer trading. It could also play a key role to reduce the cost of the supply during peak demand 

hours. They also could provide a spinning reserve during contingency. More advantages were 

discussed in section 2.2. Despite these several benefits offered by DERs, several challenges should 

be considered [83]: 

1. An increased share of DG may induce power flows from the low voltage into the medium 

voltage, thus protection schemes at both voltage levels must be designed accordingly. 

2. DERs that needs power electronic converters to be connected to the grid contribute to 

higher harmonics.  

3. Inappropriate DG allocation can cause low or over voltage in the network. 

It is the responsibility of the system operator to manage the operation of DERs considering the 

previous challenges for better power system and secured performance. 

 Energy Storage Sizing and Allocation in Distribution Network  
Integrating DER in a distribution network, is the second approach suggested for losses reduction. 

DER can come in many forms such as wind power and solar panels. Due to the uncertain nature of 

renewable energy, it is convenient to consider energy storages. There are five categories of energy 

storage: mechanical, electro-chemical, thermal, electrical and chemical [84] .However, Battery 

energy storage (BESS) deployment is increasing, because it can react very quickly and therefore 

assist with grid stability much better than some of the other forms of storage. The major benefits of 

BESS are frequency balancing control, load shaving/levelling, helping with renewable generation 

integration, to help avoid outages and to offer local power quality improvement [85]. BESS sizing 

and allocating in distribution network is important, because suboptimal location and capacity could 

represent extra losses and cost. Research papers have addressed the sizing and the placement of 
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batteries in distribution system from three main point of views: facilitating the integration of 

renewable energy sources, economic benefit through appropriate planning and peak shaving and load 

leveling. 

Current literature has focused on facilitating the integration of renewable energy in distribution 

network by coordinating the charging and discharging times. In [86], a genetic algorithm based on 

formulating a multi objective function that considers both losses and voltage deviations is used for 

optimum sizing of BESS in the presence of PV. A PSO approach based on loss sensitivity index for 

battery placement considering BESS parameters is presented in [87] . Another study for calculating 

the minimum size required for battery to meet both uncertainties in load demand and wind is 

presented in [88]. The methodology is tested on a system consisting of commercial facilities deriving 

their energy requirements from wind turbine. A Monte-Carlo simulation approach is used for 

calculating the reliability indices presented by the authors to maintain the reliability. Furthermore, 

power injection and losses indices for identifying the appropriate size and location of battery source 

inverters (BSI) used with PV units are introduced in [89]. It was found through theoretical and 

practical networks validation that; BESS optimal capacity and placement in the presence of 

Renewable Energy Source (RES) has an important effect on losses reduction and voltage profile 

enhancement. 

Alternative work has looked at the Economic benefit for optimum BESS size and placement. A bi-

level optimization technique is presented in [90] for minimizing the cost. BESS is modeled through 

many parameters such as state of charge (SOC) limits and round-trip efficiency. A modified 33 bus 

IEEE network with PV units and wind turbines is used for validation. A hybrid Tabu Search (TS) - 

PSO was proposed in [91] for sizing and allocating the BESS in a 21-node distribution network 

incorporating a wind turbine. It was concluded that the right selection for BESS capacity and size, is 

a part of the optimal power system planning while satisfying technical constraints. 

Both peak shaving and load leveling are suggested for deferring the annual generation upgrade and 

reducing the running fuel for spinning reserve. Peak shaving is defined as removing the peak demand 

consumption, while peak leveling is decreasing the difference between the maximum and the 

minimum valley in demand curve. In [92], a statistical method based on specific indices, is used for 

scheduling the operation of batteries in a 63/20 kV distribution network in Iran. The maximum power 

offered or absorbed by the BESS is adjusted by applying weighted minimum module ideal point 

method based on PSO for optimal BESS allocation in 21-node distribution network including 

different RES in [32].It was found that allocating BESS near to weak bus voltage improve the 

voltage, while placing them at the points having heavy loads, or adjacent to RES nodes, optimizes 

their power offer, and maximizes their power absorption respectively. Research papers [93-97] reveal 

that both BESS sizing and allocation for peak shaving or load leveling are correlated to the economic 
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benefit. In [93], the cost saving is calculated considering the batteries’ cost, maintenance, investment 

and operational cost after installing the batteries at law voltage side of the transformer in an 11-bus 

distribution network in Germany. The PSO algorithm was proposed in [94] to solve the multi 

objective problem for maximizing the economic benefit from a BESS installation considering losses 

reduction, load shifting, the investment, maintenance and operational cost in the presence of wind 

turbines. A planning strategy based on GA and linear programing is suggested in [95] to develop 

both BESS location and capacity to defer system upgrades and getting the maximum arbitrage benefit 

through the IEEE-33 bus network through different scenarios. A daily active power adjustment to 

shave peak load demand for one month is studied in the first stage of an exhaustive search method 

in [96]. The second stage is studying the maximum cost benefit through one year, by repeating the 

algorithm for the rest of the months for one year. Another power management strategy for BESS 

sizing for peak load shaving in a university campus is presented in [97] to maximize the annual profit 

for the campus in the presence of PV units. The strategy is based on coordinating the BESS charging 

in law cost price or during the excess of PV output.  

 Simultaneous Reconfiguration, Sizing and Allocation of ESS in DN 
The distribution network reconfiguration and the optimum integration of DG have been always 

studied separately. However, the integration of these two strategies could bring more merits to the 

whole system. Only few studies have aimed to consider both. These studies are regrouped in Table 

2-6. Table 2-6 explains the aim of these studies, the solution technique used per each author and the 

networks used for validation. It was concluded from this table that there is a gap in the literature for 

the simultaneous network reconfiguration, sizing and allocation of Energy Storage in distribution 

network for losses reduction. For this reason, the thesis will spotlight a method of finding an approach 

to coordinate between selection of the right size and location for ESS while having the flexibility of 

changing the NOP for optimum losses reduction. The vast majority of this work has been undertaken 

in parallel with developments within this thesis and so was unavailable while the bulk of this work 

in this thesis was being undertaken. The remaining reference used a heuristic methodology which is 

considered non-optimal.  

Table 2-6 Simultaneous Reconfigurations and Optimum DG integration in Distribution Network 
Studies 

Reference Objective Solution technique Type of DG 

used 

Network 

Validation 

[98] 

 

Keeping the radial 

network topology 

while minimizing the 

Strength Pareto 

Evolution algorithm 

was proposed to solve 

Solar panels 

and wind 

turbine. 

The IEEE 33 

network  
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active losses, the 

annual operational 

cost and the pollutant 

gas emission 

the multi objective 

function problem. A 

decision making based 

on fuzzy set has been 

used to compromise 

the best solution. 

[61] 

 

Optimal 

reconfiguration and 

DG placement in DN 

for minimum losses 

reduction, and 

voltage deviation 

index. 

Fireworks Algorithm 

was proposed to 

simultaneously 

reconfigure the 

network and allocate 

the DG units. Voltage 

Index Stability is used 

to identify the DGs 

locations. 

The type of 

DGs are not 

specified 

The IEEE 33 and 

the IEEE 69 

networks. 

[99] 

 

Optimal 

reconfiguration and 

DG sizing 

simultaneously while 

assuming constant 

locations to DGs. 

Evolutionary Particle 

Swarm Algorithm 

(EPSO) has been 

proposed to hybrid the 

Evolutionary 

Programming (EP) to 

Particle Swarm (PSO) 

The type of 

DGs are not 

specified 

The IEEE 33 

network modified 

with 4 DGs 

connected at 

fixed bus 

locations at 

6,18,22 and 29. 

[100] 

 

Optimal allocation 

and sizing for DG 

units and shunt 

capacitors for losses 

reduction and voltage 

profile improvement. 

Hybrid Harmony 

Search with the 

artificial Bee Colony 

Algorithm. 

Spanning Tree has 

been used for keeping 

the radial structure of 

the networks. 

The type of 

DGs are not 

specified 

The IEEE 69 

network and the 

IEEE 118 node 

[101] 

 

Optimal siting and 

sizing simultaneously 

with network 

A heuristic technique 

based on uniform 

voltage distribution 

The type of 

DGs are not 

specified 

The IEEE 33 

network is used 

for validation. 
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reconfiguration for 

losses reduction. 

Algorithm has been 

used. 

[102] 

 

Optimal network 

reconfiguration and 

DG placement 

Adaptive Cucoo 

search Algorithm 

The type of 

DGs are not 

specified 

The IEEE 33, the 

IEEE 69 and the 

IEEE 119 bus 

networks were 

used for 

validation 

 

[103] 

 

Minimizing the 

Energy Not supplied 

as well as the cost for 

an optimum 

deployment of DGs, 

EES with network 

reconfiguration. 

A stochastic mixed 

integer linear 

programming model 

was developed. 

Wind, Solar 

and EES 

The IEEE 119 bus 

networks was 

used for 

validation  

[104] 

 

Simultaneous DNR 

and optimum DG 

power penetration in 

DN for minimum 

power losses, 

operation cost, and 

pollutant gas 

emissions as well as 

maximizing the 

voltage stability 

index  

Multi-objective 

Hybrid Big Bang-Big 

Crunch. 

Graph Rules are used 

for radiality check. 

 

Three DGs 

with the 

technology of 

wind Turbine, 

FC, and PV. 

Their size and 

locations were 

initially 

assumed by 

the author. 

The IEEE 32 and 

25 bus networks. 

[105] 

 

Instantaneous 

distributed resources 

allocation 

considering the 

reconfiguration 

concept to maximize 

A new Teaching 

Learning Based 

Optimization 

technique was 

proposed for solution.  

The type of 

DGs are not 

specified 

The IEEE 33 

network 

considering 

different load 

levels. 
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the annual energy 

loss reduction while 

maintaining a better 

node voltage profile. 

The proposed 

integrated approach 

employs NR after the 

optimal allocation of 

DGs. 

[106] 

 

Simultaneous 

Reconfiguration and 

DG placement  

GA was proposed for 

DG placement.  

A heuristic 

methodology (Tie 

Loop Lines Matrix) 

has been used for 

reconfiguration. 

The type of 

DGs are not 

specified 

Test and real 

network in Yazd 

City were used. 

[107] 

 

Reduce the network 

loss with the 

simultaneous utilize 

of DNR and DG 

allocation. 

An evolutionary 

algorithm, Invasive 

Weed Optimization, is 

proposed for this 

problem. 

The type of 

DGs are not 

specified 

IEEE 33 network 

and real network 

[108] 

 

Optimal allocating 

the DG with DNR for 

reducing the costs of 

line upgrades, energy 

losses, switching 

operations required, 

and DG capital, 

operation and 

maintenance costs), 

as well as 

environmental 

emission reduction  

Non-dominated 

sorting genetic 

algorithm was 

proposed to solve the 

problem. 

photovoltaic 

(PV) modules, 

wind turbines 

(WT), and gas 

turbines (GT). 

The IEEE 38 and 

the IEEE 119 bus 

network  

[109] 

 

Simultaneously 

allocate DGs and 

Shunt capacitors in 

DN within an 

Improved PSO 

Also, node sensitivity-

based guided search 

algorithm (GSA) is 

The type of 

DGs are not 

specified 

The IEEE 33 and 

69 bus networks 
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optimum DNR to 

maximize the annual 

profit for utilities by 

reducing the annual 

charges on energy 

losses, peak power 

losses, and substation 

capacity release 

against the annual 

charges incurred to 

purchase DERs.  

also suggested to 

enhance the overall 

performance of the 

optimizing tool. 

[13] 

 

Solving the loss 

minimization 

problem with the 

optimal sizing and 

allocation of DGs and 

capacitors with and 

without Network 

reconfiguration under 

7 cases.  

Autonomous Group 

Particle Swarm 

Optimization was 

suggested for solution.  

The type of 

DGs are not 

specified 

The IEEE 69 

Network 

[14] Finding a radial 

topology with 

optimum of DG and 

capacitor installation 

to minimize the 

power loses while 

satisfying the 

operational 

constraints under 5 

cases. 

Genetic Algorithm 

using MATLAB 

Optimization toolbox 

Sensitivity Analysis 

was used to determine 

the locations for the 

DGs in the test 

network. 

The type of 

DGs are not 

specified 

The IEEE 33 

Network 

 

 Summary 
In this chapter, the background around the electric sector as a main contribution for CO2 emissions 

in UK was introduced. Reducing the electric losses in the distribution network in the UK, is 

considered one of the approaches that could be used to decrease CO2 emissions. Network 

Reconfiguration, Integration of DG and the addition of capacitors are some of the main schemes for 
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losses reduction in DN. This chapter surveys two of these approaches: DNR and the DGs integration 

in DN.  

Network Reconfiguration is the ability to change the NOP while keeping the radial structure of 

distribution network and maintain the voltage and the branches current within the limits. DNR was 

described as a hard optimization, stochastic, nonlinear problem. The solution techniques were 

classified into four categories: heuristic, meta heuristic, mathematical and hybrid techniques. A 

comparison was carried out to explain the advantages and the disadvantages of each of them. 

Although heuristic techniques were considered fast solution, they are not widely used as they could 

not reach the global solution. Hybrid techniques are favorable in term of accuracy, and computational 

time compared to meta heuristic techniques.  Particle Swarm Optimization was selected as a base for 

studying the DN in this thesis due to the straightforward concept, easy implementation and only few 

parameters to adjust. For this reason, it is widely used for this type of application. 

Integrating Distributed Energy Resources (DERs) in DN was widely used to solve the overloading 

capacity problem or reducing the outage occurrence for a secured power system. In this thesis, the 

DER integration has been introduced as an approach for losses reduction, since it is typically 

connected closed to loads, so they work in parallel with the utility grid. To get the maximum benefit 

of this approach, both the size and the location should be studied. DER has many forms, this thesis 

considers Energy Storage systems as these may be used to represent DER in times of high load but 

also required charging at low load. By studying ESS, DERs are automatically a subset of this study 

It was concluded from the literature that several researches were conducted to study the DNR, and 

the sizing and the allocation of DGs separately while only few researches mix both approaches 

together. It was also found that research papers addressed the sizing and placement of batteries in 

distribution system for three perspectives: facilitating the integration of renewable energy sources, 

economic benefit through an appropriate planning and peak shaving and load leveling. Furthermore, 

there is a gap in the literature for the simultaneous network reconfiguration, sizing and allocation of 

Battery Energy Storage in distribution network for losses reduction. For this reason, the thesis will 

spotlight a method of finding an approach to coordinate between selection of the right size and 

location for BEES while having the flexibility of changing the NOP for optimum losses reduction.  

However, other authors have been undertaking similar work in parallel with the work undertaken as 

part of the research presented in this thesis. The dates of their publications are 2017 and 2018. The 

difference between their work and the work presented in this thesis is highlighted in Table 2-7. 
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Table 2-7 A comparison between the studies considering the simultaneous DNR and EES 
deployment 

Ref. Aim of the study The network 

used 

Solution Method Differences 

[110] A planning study 

based on coordinating 

the soft open points 

locations, DG inverters 

for reactive power 

adjustment, and the 

Distributed Energy 

Storages with the DNR 

to minimize the cost 

investment 

The IEEE 33 

bus network 

is used 

Mixed Integer 

second order 

optimization 

technique using 

MATLAB 

The work presented in 

this reference assumed 

both the size and the 

locations for 6 DGs of 1.8 

MW and 1 MW of battery 

with 81% of efficiency. 

[103] 

 

The main goal of the 

simultaneous 

consideration of DNR 

with DG and EES 

deployment is 

supporting a large scale 

of renewable energy 

integration by 

minimizing the energy 

not supplied as well as 

the cost. 

The IEEE 

119 bus 

network 

Stochastic 

Mixed Integer 

Linear 

Programming 

(S-MILP) 

method was 

used.  

The work presented in this 

reference is a planning 

study for 3 years, where 

the author assumed the 

size of energy storage used 

of 1MW with an expected 

life time of 15 years. 

This 

Thesis 

Finding the best NOP 

simultaneously with 

the best size and site 

for 5 batteries for 

maximum losses 

reduction. 

The IEEE 33 

bus network 

is used 

Hybrid 

algorithm based 

on PSO was 

used for DNR 

while Monte 

Carlo was used 

for BESS sizing. 

The work presented in 

this thesis did not assume 

neither the size nor the 

locations of the batteries. 

Each loop is separately 

optimized, and this 

justifies the reason of 

having 5 batteries. 
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3 CHAPTER 3 MODIFIED PARTICLE SWARM 

OPTIMIZATION 

 Background  
In chapter 2, the importance of energy storage and dynamic network reconfiguration was discussed 

to reduce losses in the Network. Different optimization techniques were introduced, and it was 

decided that particle swarm approach was appropriate optimization routine for investigation. As the 

process of optimization on a Network is complicated it is first desirable to test the processes that will 

be undertaken on a small test Network. The United Kingdom Generic Distribution System (UKGDS) 

is a collection of power system network model that represents UK distribution networks.  They were 

developed by the Centre for Sustainable Electricity and Distributed Generation (SEDG). Six 

different models were available at [111]. It was found that these models are high voltage networks. 

By this way, the resistance losses reduction - which is the main concern of this thesis - will not be 

effective in this voltage level. For this reason, no previous published research papers were using them 

for network reconfiguration problem. The IEEE have a collection of different test networks that can 

be used for research such as IEEE-123 bus, IEEE -34 bus, IEEE -13 bus, IEEE-37 bus presented in 

1991 [112] and updated in 2001 [113]. Research conducted by the Power and Energy Research Group 

in Queensland University in Australia, 2011, summarizes the most used test network in educational 

research and classify them into 3 categories transmission, distribution and unbalanced test networks 

[114]. It was recommended that the best distribution networks for research study are the IEEE 16 

bus, IEEE 30 bus, IEEE 33 bus, IEEE 94 bus, IEEE 69 bus and IEEE 119 bus. It was found in chapter 

2, that most of research papers studying DNR, used the IEEE 33 bus or IEEE 69 bus. The IEEE 33 

bus network was chosen in this thesis because it has a reasonable number of loops and is a single 

feeder. It is convenient for comparing the proposed Modified Particle Swarm Optimization (MPSO) 

to other previous researches using the same network with different forms of PSO algorithms. The 

IEEE 16 bus and the IEEE 30 bus don’t have sufficient loops to properly investigate DNR.  In 

contrast , the IEEE 94 bus network is not used previously by researchers for DNR application due to 

the presence of a high number of feeders and tie switches (11 feeders and 13 tie switches)[114]. 

When the tie switches number increases, the number of loops and the number of the solution 

probabilities increases which add more complexity and time consumption for researchers to test the 

performance of their suggested solution techniques. Also, less authors refer to the IEEE 69 in 

conjunction with DNR compared to the IEEE 33 Network. 

 Case Study 
The IEEE 33 bus network, 12.6 kV, shown in Figure 3-1, was selected for optimum configuration 

for losses reduction. The IEEE 33 network consists of 32 normally closed switches (sectionalizing 

switches) and 5 normally open switches (Tie line switches). The system load is assumed to be 

http://www.sedg.ac.uk/
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constant. The initial tie lines switches of the network are from bus 33 to bus 37 before any 

reconfiguration. The total number of loops that should be formed by closing the tie switches is 5 

loops. The system load is 3715 kW and 2300 kVAr. The network load and line data are given in [22]. 

 
 Nominal NOP 

Figure 3-1 IEEE 33 bus Network (IPSA Window) 

 Problem Formulation  
In this research, multiple objective function problem is not considered as the work in this thesis is 

mainly directed for line losses minimization as it is proportional to the carbon dioxide reduction. 

Therefore, the main objective function for the DNR optimization problem could be described as: 

 
Min Power𝑙𝑜𝑠𝑠𝑒𝑠 = ∑ (𝐼𝑗

2)
𝑁𝑏𝑟

𝑗=1
𝑅𝑗   

(1) 
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Where: 

Ij the current through branch j 

j Branch index 

Nbr the total number of branches 

Rj the resistance at branch j 

 General Constraints  
Three constraints are needed for optimum losses reduction: 

o Node voltage limit 

The bus voltage magnitude should be within the permissible limits to maintain power quality. The 

minimum value of the voltage is chosen to be 0.9 and the feeder voltage is set up to 1.0 pu. 

  𝑉𝑚𝑖𝑛 ≤ 𝑉𝑏𝑢𝑠 ≤ 𝑉𝑚𝑎𝑥      (2) 

o Feeder capacity limit  

The magnitude of the feeder’s branch current (Ij) should not exceed the maximum value of the 

allowed current passing in the branch (Imax) eliminating the insulation failures assuming that thermal 

limits are achieved. 

 Ij ≤ Imax                                   (3) 

o Maintain the radial topology  

To maintain a straightforward operation at conditions and avoid issues with adaptive protection of 

the distribution power grid, a radial configuration is preferred. It is stated that each loop should 

contain a tie line and a corresponding sectionalizing switch. Thus, to retain a radial network structure, 

when a tie is closed in a loop, only one switch should be open in the same loop. To retain this 

topology, the following criteria should be considered: 

o The total number of main loops obtained by closing all the ties 

 𝑁𝑚𝑎𝑖𝑛 𝑙𝑜𝑜𝑝𝑠 =    (𝑁𝑏𝑟 − 𝑁𝑏𝑢𝑠) + 1           (4)[115] 

Where: 

𝑁𝑚𝑎𝑖𝑛 𝑙𝑜𝑜𝑝𝑠   the total number of main loops in distribution network 

𝑁𝑏𝑢𝑠 The total number of bus in distribution network 
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o The total number of closed switches (𝑁𝐶𝑆) 

 𝑁𝐶𝑆 = 𝑁𝑏𝑢𝑠 − 1 (5) [116]  

o The total number of tie switches should be the same as the number of main loops 

The Interactive Power System Analysis (IPSA) tool was used for network simulation and load flow 

calculations using python programming language. 

 DNR using typical Particle Swarm Optimization (PSO) 

 Particle Swarm Optimization (PSO) background, terminologies and symbols   
 As explained in chapter 2, The typical PSO is a mathematical representation to the social behavior 

of a group animals or birds working in a given area searching for food (bee) as shown in figure 3.2 

[43]. Particles move through the search space adjusting their velocities and their positions according 

to their own experience and to their neighbouring particles experience to find the optimal solution 

based on equations 6 and 7 respectively [117]. The searching space is composed of all the 

possibilities that could represent a solution for the fitness function. This in turn explains the high 

processing time used to perform the calculations. This technique has some common terminologies 

and constants defined in table 3.1 and 3.2 respectively. 

 
Figure 3-2 PSO biological concept 

Table 3-1 PSO symbols and terminologies 

Particle  𝑖 Each bird or (possible solution) in the swarm is referred to a particle  

Position 𝑋𝑖 A bird location with respect to the corn 

Personal best 𝑃𝑏𝑒𝑠𝑡 the best location found individually by each bird with respect to the food. 

Each bird compares the current location to 𝑃𝑏𝑒𝑠𝑡 , if the current location 

is better, then 𝑃𝑏𝑒𝑠𝑡 is updated. 
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Global best 𝐺𝑏𝑒𝑠𝑡 the best location found by all birds in the swarm with respect to the corn. 

Best bird location is compared to  𝐺𝑏𝑒𝑠𝑡, if it is better, then the 𝐺𝑏𝑒𝑠𝑡 is 

updated. 

 

Table 3-2 PSO constant definition [117] 

Swarm Size 𝑆  Swarm Size and known as Population size is the number of particles in 

swarm. A swarm is commonly used from 20 to 50 particles. 

Inertia 

Weight 

𝜔 Inertia Weight constant; is a parameter that represents the fluidity of the 

medium where the particles moves. It is introduced by Shi and Eberhart 

in 1998. This is a time decreasing function, calculated using (8). Many 

researches were conducted to specify the range for 𝜔 .It was found the 

max and min 𝜔 giving the best solution is from 0.9 to 0.4.  

Acceleration 

constant 

𝑐1  , 𝑐2   Acceleration constants control the movement of the particles toward  

𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡. R. Eberhart proposed to set these constants to 2.0 for 

almost all applications  

 

𝑉𝑖
𝐾+1  = 𝜔 ∗ 𝑉𝑖

𝑘 + 𝑐1  ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑘 
− 𝑋𝑖𝑘) +  𝑐2 *𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑏𝑒𝑠𝑡𝑘

− 𝑋𝑖𝑘) (6) 

 𝑋𝑖
𝑘+1 =  𝑋𝑖𝑘

+ 𝑉𝑖
𝑘+1    (7) 

 
𝑤𝑘 =

(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑘𝑚𝑎𝑥
∗ k     

(8) 

Where: 

𝑉𝑖
𝑘  Particle velocity at iteration (𝑘) 

𝜔 Inertia Weight constant  

𝑐1  , 𝑐2   Acceleration constant  

𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2 Random number between 0, 1. 

𝑃𝑏𝑒𝑠𝑡𝑘 
 Best position for particle (𝑖) based on its own experience at iteration (𝑘) 

𝐺𝑏𝑒𝑠𝑡𝑘
 Best position achieved by the entire particles in the swarm at iteration (𝑘) 



  

51 
 

𝑋𝑖𝑘
 Position of particle (𝑖)  in iteration (𝑘) 

 Particle Position, 𝑷𝒃𝒆𝒔𝒕 and 𝑮𝒃𝒆𝒔𝒕 Representation in DNR problem 

Most of research presented in chapter 2 investigating the DNR using different IEEE network through 

PSO based algorithms represented the individual particle (𝑖)  in their search space by selecting 

random switches. This could justify their infinite search space due to the enormous number of 

probabilities that could include non-feasible configurations initially. The position of the particle (𝑋𝑖) 

is the index of the switch per loop [118]. It should be stated that the particles positions should be 

positive numbers and integer as they represent switches indices. During each iteration, 𝑃𝑏𝑒𝑠𝑡 and 

𝐺𝑏𝑒𝑠𝑡 are updated and recorded based on the objective function. 𝑃𝑏𝑒𝑠𝑡  is the configuration realizing 

best fitness function (losses reduction) for the same particle (𝑖); while 𝐺𝑏𝑒𝑠𝑡 is the configuration 

achieving best losses reduction for all the particles in the swarm during one iteration.  

 DNR using typical and variants PSO  
In chapter two, many researches used PSO, modified versions of PSO and other swarm algorithm 

such as ACO to solve the DNR problem on different IEEE test networks, but in this section, we will 

focus on which of these researches used the IEEE 33 test network for validation for losses reduction, 

voltage improvement and computational time as it is necessary to reduce the time to be closer to real 

time. Table 3.3 compares these references in term of losses reduction, best configuration found and 

the computational time. It was found that the highest losses reduction achieved using typical PSO 

were conducted in [44] ,and [45] as illustrated in table 3.3 who  reported that the losses were reduced 

to around 126 kW, but unfortunately after applying their suggested configuration of tie switches and 

running a simple load flow using IPSA, the losses are calculated differently  from those described 

and the values they publish as shown in table 3-3. For this reason, the results calculated by both 

researches are being treated as suspicious even though they quote to give the minimum computational 

time and lowest losses. The remainder of research using typical PSO in [119], did not reach the 

minimum solution and their solutions probably fell into local minima rather than covering the global 

search space. For this reason, the majority of research work modifies the technique by hybridizing it 

with others AI techniques such as PSO Evolutionary Algorithm (EPSO) [99], and Rank Evolutionary 

PSO (REPSO) [70], Genetic Algorithm (GA-PSO) and others. Under this criteria , the lowest losses 

reported was 120 kW, conducted by M.F.Sulaima  using EPSO [99] . The author published another 

paper using the  same network , and compared his technique to typical PSO modified version 

(REPSO) in [70] suggesting it also, as it reached 120.7kW while EPSO reaches 131 kW as shown in 

table 3. The highest losses found were achieved using bit shift operator based PSO. Research papers 

using BPSO gives slightly higher losses compared to SPSO, ACO, AACO with Graph theory, GA-

PSO and MCPSO that suggested the same configuration. It is noticed that the computational time is 

not always calculated or given within the literature, and the lowest computational time reported was 
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achieved using GA-PSO is 5.7 seconds. The configuration from each study was coded into IPSA to 

cross check the quoted values. In most cases these look accurate. 

Table 3-3 Results of research studies applying typical PSO in the IEEE 33 bus network 

Ref. 

Number 

Year Algorithm Losses 

(kW) 

Suggested 

Configuration 

Computational 

time (sec) 

Min. 

Voltage 

Losses 

(kW) / 

IPSA 

[120] 2010 ACO 137 7-9-14-28-32 Not calculated ___ 140 

[39] 2010 ACO 139.68 7-9-14-37-32 Not calculated 0.937 136 

[121] 2011 AACO- 

graph 

theory 

139.55 7-9-14-37-32 Not calculated 0.937 136 

[44] 2012 PSO 126.4 7-10-28-14-32 16.2 0.893 170 

[45] 2014 PSO 125.8 8-17-33-34-28 25.06 0.998 150 

[70] 2014 PSO 146 6-14-33-28-34 28.65 ___ 177.8 

[122] 2014 BPSO 141.6 7-9-14-28-32 24.34 0.936 140 

SPSO 138.92 7-9-14-37-32 21.35 0.942 136 

[99] 2014 EPSO 120 16-7-10-25-13 Not calculated 165.2 

[70]  

2014 

EPSO 131.1 14-33-17-26-8 13.62 ___ 157.7 

REPSO 120.7 32-28-11-33-

34 

9.97 ___ 142.3 

[123] 2015 ACO-

FUZZY 

143.69 31-37-7-14-9 Not calculated 140.5 

[124] 2015 PCMH 139.7 7-9-14-32-33 10.96 0.97 136 

[125] 2015 GA-PSO 139.6 7-9-14-37-32 5.7 0.937 136 

[126] 2015 IPSO 126 7,9,14,28,32 Not calculated 0.945 140 

[119] 2015 PSO 147.49 9-14-7-17-37 Not calculated 0.927 143.14 
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[79] 2015 Adaptive 

Bi group 

PSO 

122.67 7-9-14-28-32 Not calculated ___ 140 

[127] 2016 MCPSO 138.9 7-9-14-37-32 Not calculated 0.942 136 

[128] 2016 Bit Shift 

operator 

based 

PSO 

164.37 13,16,27,33,35 Not calculated 0.929 172.5 

[82] 2017 UPSO 140 7-9-14-28-32 Not calculated ___ 140 

 

 DNR using Modified Particle Swarm Optimization (MPSO) 

 Sectionalizing the network and search space formulation using tree diagram 
In this thesis, the idea of sectionalizing the network presented by Ankush Tandon in [122], was 

collaborated with the basic knowledge of probabilities, tree diagram; to generate the probabilities 

including one switch from each of the five-loop. Tree diagrams present a more straightforward 

method than previous research, to simulate the radial concept presenting one of the modifications 

suggested by the thesis to PSO algorithm helping to reduce the search space (16128 configurations). 

Previous researches used to search any 5 switches to be opened and any 5 to be closed. Thus, their 

search space could include infinite number of failed probabilities.  The IEEE 33 network is divided 

in five loops, the elements for each loop are presented in Figure 3-3(a). This figure explains how a 

configuration such as (S8, S2, S12, S15, and S22) could be formulated based on tree diagram. The 

first element of each of the 4 loops should pass through all the elements existing in the 5th loop. It 

should be noted that S1 is not included in the search space as it connects the network to the main 

supply. Also, the switches common between different loops, illustrated in Table 3-4, are only stated 

once to avoid their duplication. For example, if S33 is considered an option in loop 2, it would result 

in an invalid network configuration. Figure 3-3(b) shows the 5 loops of the test network and their 

elements of switches. 
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Table 3-4 Common switches between loops for the IEEE 33 Network 

Switch Number Common loops Switch Number Common loops 

S33 Loop1 & loop 2 S7 Loop 2 & loop 5 

S9 Loop1 &loop 3 S8 Loop 1& loop 5 

S10 Loop1 & loop 3 S34 Loop 3 & loop5 

S11 Loop 1 & loop 3 S28 Loop 4 & loop 5 

S3 Loop 2 & loop4 S27 Loop 4 & loop 5 

S4 Loop 2& loop 4 S26 Loop 4 & loop 5 

S5 Loop 2& loop 4 S25 Loop 4 & loop 5 

S6 Loop 2& loop 5   

 

 

(a) 
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(b) 

Figure 3-3 IEEE 33 bus network’s loops and their elements 
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 Filtered Initial Positions in search space 
Initial positions in typical PSO algorithm are always selected randomly, but in this thesis, the losses, 

voltage and current constraints using equations (1-3) are applied in the first position selection  as 

explained in Figure 3-4 to reduce the number of iterations used to reach the optimum solution and 

hence the computational time. For example, the configuration shown in Figure 3-3 (a) -(S8, S2, S12, 

S15, and S22) -gives total losses of 803 kW, much higher than the initial losses of the network and 

for this reason it was discarded. In contrast, (S8, S7, S34, S28, S16) is another example that gives 

total losses of 153 kW and satisfies all the previous constraints. For this reason, it could be included 

in the initial positions.  

 

 

 

Update the Particles’ length 

N 

Simulate the network on IPSA 

Store the initial losses, voltage limits and branch capacities 

Insert the swarm size, representing the length of the particles 

Generate all possible configurations based on tree diagram as shown 

in Figure 3-3(a) 

Select a configuration from the search space of the initial iteration 

Do Load Flow 

Calculate the fitness function using (1) 

Losses Check Voltage Check 

Current Check 

Length=max END 

N 

N Y 

Y 

Y 

START 

Figure 3-4 Filtered Random Initial Positions 
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 Software Implementation  
In chapter 2, it was realized that most published research papers studying DNR used MATLAB to 

build their models. In this thesis, Interactive Power System Analysis (IPSA) is used to simulate the 

network and build the optimization algorithm used. IPSA allows easy user interface for load flow 

calculations and gives the opportunity to control the network through individual designed programs 

using python language. Figure 3-5 shows the mechanism for using the IPSA software, where the 

coded python script includes the proposed optimization algorithm (shown in Figure 3-7 and Figure 

3-8) is called by IPSA to control the inputs of the network simulated in Figure 3-1. 

 

Figure 3-5 IPSA Software Theory of Operation 

 Position Control and Conversion criteria 
After updating the particles positions by adding the velocity using equation (7), some positions 

(switches indices) could exceed the total number of switches in the existing network, (S37 in this 

network), or could be negative number, which is illogical as shown in Figure 3-6 (a). In this case, 

the position control will replace the switch having an index more than the maximum index in the 

network (S57), by the maximum one in the network (S37) as shown in Figure 3-6 (b). In typical 

versions of swarm, these infeasible positions were discarded automatically, then losing some 

probabilities. This position control algorithm was suggested in  [74] and was applied in this thesis.  

Although, this algorithm retains all the particles in the search space, it could duplicate some switches 

in the same particle position, and violate the total tie switch number conditions, which are calculated 

to be five, and only in this case the particle should be discarded.  Figure 3-6 (c-d) shows an example 

of discarded probability after applying the position control. By replacing S57 by the S37, the total 

number of suggested ties switches will be four instead of five as explained above in section 3.4, and 

for this reason this probability is discarded. 

calls

Designed Python scripts 

for optimum DNR using 

MPSO procedures 

Network Parameters 

IPSA Simulation 

window 

Inputs 

Line and 

load data  

Pre-set 
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One of the main keys to obtain accurate results using IPSA is to initialize the software after each load 

flow calculation for each position, because it was found that, the software gives inaccurate results 

after successive switching if a non-logical network configuration is used as a starting point. If there 

is no starting point for each position, each time the program will compute the load flow solution to 

find the losses at this position, it will calculate a new generated active power and new generated 

reactive power for the network. These calculated values will be used latter as given data base for the 

next new position, which could be not compatible with it.  For this reason, a known configuration 

should be selected to be an initial attempt before each trial. In this study, the initial attempt is meshing 

the network after each trial.  

 MPSO Procedures  

The integration of sectionalizing the network into five loops and using tree diagram to formulate a 

search space including radial configurations, introducing losses, voltage and current constraints for 

filtering the initial positions, and applying the position control algorithm to retain the particles within 

the search space are the main modifications added to the typical PSO for better performance. The 

procedures for the modified particle swarm are explained below in Figure 3-7. 

  

(a) (c) 

  

(b) (d) 

 

36 33 34 35 57 37 33 34 35 57 

36 33 34 35 37 37 33 34 35 37 

Figure 3-6 Example of position control procedures 
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 Figure 3-7 MPSO Procedures 

START 

𝑘 = 1 

Generate all possible radial configurations using Tree diagram (Figure 3-3) 

Apply the proposed filtered position sequence (Figure 3-4) 

Select a configuration and Perform Load Flow Calculations using IPSA 

Calculate the fitness (losses) using (1) 

1< k ≤ 𝑘𝑚𝑎𝑥  k == 1 

Input the Swarm parameters 

 Set the  Pbest = (𝑋1) 

Gbest = position 

(minimum fitness (𝑋1)) 

Apply the constraints 

 Update   (Pbest , Gbest ) for all 

the particles as shown Figure 3-8 

N 

y y 

yes yes 

END 

Calculate the velocity, the position using (6) and (7) 

𝑋𝑖 ≥ 𝑋𝑚𝑎𝑥𝑖  𝑋𝑖 ≤ 𝑋𝑚𝑖𝑛𝑖 

𝑋𝑖 = 𝑋𝑚𝑎𝑥𝑖 𝑋𝑖 = 𝑋𝑚𝑖𝑛𝑖 

Increase the iteration by one (k + 1 ) 

 k == 𝑘𝑚𝑎𝑥 

No 

y N 

Position Control 

M
od

ifi
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 Results and Discussion  
The IEEE 33 network was simulated using IPSA software for losses, load flow and optimization 

technique implementation.  Developed software has been designed to implement the (MPSO) using 

PYTHON 2.7.8, on a 2.4GHz, core (TM) i7-5500CPU with 8.0- GB RAM. The initial ties switches 

were set to 33 to 37 yielding a total loss of 193.6 kW. After applying the suggested algorithm, the 

losses are reduced to 136.36 kW reducing 29.68% of the initial value.  Due to the stochastic nature 

of swarm algorithms, 50 runs are performed to find the best number of particles and iterations for 

optimum fitness function. In each trial, the best, the worst and the average value of the computational 

time were noted in Table 3-5. Also, the mode which represents how often the best losses occurred 

during one trial, is recorded. To decide the corresponding swarm size and the maximum iterations 

number for this problem, 25 ,50 and 70 iterations were tried for 50 runs for different swarm size. It 

was noticed that 25 iterations and a population size of 50 particles were reasonable choice because 

during the different iterations test, the algorithm gives the same losses value which means that there 

is unlikely to be a requirement to increase the iterations number. It should be noted that a single run 

includes 25 iterations.  Figure 3-9 shows the convergence characteristic for the proposed algorithm. 

An improvement in the theoretical voltage profile is observed after applying the suggested algorithm. 

The minimum bus voltage after reconfiguration raised to 0.94 at bus 32 instead of 0.918 at bus 18 

before reconfiguration, as shown in Figure 3-10. 

No 

yes 

yes 

No 

𝐼𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋𝑛𝑒𝑤𝑖)

≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠( 𝑃𝑏𝑒𝑠𝑡
𝑘−1) 

The new Pbest = (𝑋𝑛𝑒𝑤𝑖) 

 𝑚𝑖𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋𝑛𝑒𝑤𝑖))𝑘)

≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠( 𝐺𝑏𝑒𝑠𝑡
𝑘−1) 

(Pbest ) =( 𝑃𝑏𝑒𝑠𝑡
𝑘−1) 

Gbest = 

𝑚𝑖𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋𝑛𝑒𝑤𝑖) 𝑖𝑛 )𝑘) 
(Gbest ) =( 𝐺𝑏𝑒𝑠𝑡

𝑘−1) 

Figure 3-8 Position and velocities update procedures 
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Figure 3-9 MPSO Fitness function convergence 

 

 

Figure 3-10 Voltage Profile improvement using the suggested NOP of MSPO 
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Table 3-5 Statistical Results of MPSO 

Swarm Size Iterations  Best losses Mode Worst losses Average time 

50 25 136.36 kW 52% 143 17.5 sec 

 

A Comparison between the MPSO results and previous researches is presented in Table 3-3. 

The proposed modifications added to a typical PSO achieved 29% of losses reduction. This 

proposed MPSO suggested the same configuration as the SPSO, ACO, AACO with Graph 

theory, GA-PSO and MCPSO methods. However, it is a more straightforward method to use 

without adding extra equations to the basic technique. To check the optimum losses obtained, 

a program was designed to include all the possible configurations. This was used to calculate 

the losses across the entire search space using a simple load flow without any optimization 

algorithm. The minimum losses obtained confirm the optimization results found by MPSO. 

 Conclusion  
In this chapter, the IEEE 33 distribution network was selected for validating DNR open 

points positions using optimization algorithms. Based on a comparison in chapter 2 between 

the different AI algorithms, swarm algorithms were the most applicable to this work. Since 

a typical PSO did not reach the global minimum solution and takes a large computational 

time due to the infinite probabilities in search space, previous researchers modified and 

hybridized others technique with the basic PSO for better performance. The collaboration of 

sectionalizing the network into five loops and using tree diagram to formulate a search space 

including radial configurations, introducing losses, voltage and current constraints for 

filtering the initial positions, and the position control algorithm to retain the particles within 

the search space were added to the typical PSO for better performance. It was found that the 

proposed MPSO reduced the calculated active power losses to 136 kW, suggesting the same 

configuration [S7-S9-S14-S37-S32] suggested by SPSO, ACO, AACO with Graph theory, 

GA-PSO and MCPS in a more straightforward method. Developed modifications allow the 

algorithm to be performed in a much more reasonable time span of 17.5 seconds which is 

still high for real time applications. It should be noted that the computational time was 

calculated for comparison purpose only. The results were compared to previous research. 

The time span is important as the loads in a network are continuously varying and not static. 

Therefore, it is important to think about the impact of a variable load, and to understand if 

analysis under variable load can be used to adopt the technique further to improve the 

performance of the optimization method. Chapter four will investigate this case.   
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4 CHAPTER 4 MULTI STAGE MODIFIED PARTICLE 

SWARM OPTIMIZATION 

 Background 
In chapter three, a modified version of particle swarm algorithm (MPSO) was presented looking 

closely at the initial random particles position selection and a tree diagram algorithm was proposed 

to generate all the possible configurations including only one possible tie switch from each loop for 

keeping the radial structure of the network.  The initial positions are filtered after applying the losses, 

voltage and current constraints, which in turn accelerates the computational time required for 

reaching the optimum solution instead of the random position selection of typical PSO techniques. 

A position control algorithm was applied in this research to maintain the particle positions within the 

feasible solution regions. It was concluded that the suggested modification improved both the 

calculated losses and the computational time after being validated using the IEEE 33 distribution 

network by suggesting [S7-S9-S14-S37-S32] to be the optimum NOP. assuming the basic IEEE static 

load which is not the case in real power system. This chapter concentrates on applying the MPSO 

algorithm under variable load to test the efficiency of the technique to support active DNR on one 

hand and on the other hand, to reduce the time required to undertake the optimization for this network 

by reducing the search space by discarding the switches that would not be feasible solutions under 

varying load conditions. 

 Uncertainty in Power System causes and solution methodologies 
Electric power networks are complex systems that work on satisfying customer demand by 

controlling the outputs of the available generation units. The main reasons of uncertainty in power 

system are summarized in Figure 4-1. Unplanned outage, equipment failures, the dynamic fuel prices 

as well as the availability of renewable energy resources such as wind, and solar cells represent 

examples of uncertainty causes affecting the generation system. Other forms of uncertainty are due 

to customers demand as they depend on the environmental variation in climate and economic load 

growth. The changing in weather does not only affect the customer loads but also, can be proportional 

to line loading and cable current capacity in transmission systems. 
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Figure 4-1 Sources of uncertainty in power system 

Uncertainty in power system should be represented because neglecting the variation could lead to 

higher losses through poorer network configuration. There are two basic types of mathematical 

representation quantitative and qualitative uncertainty [129]. The quantitative uncertainty is 

quantifiable in numerical terms by mathematical functions with deterministic parameters. Three 

basic methodologies are mostly used for the modeling of this type of uncertainty in power systems, 

namely Probabilistic Analysis, Interval Arithmetic and Monte Carlo Simulations [130]. The 

qualitative uncertainty is initially expressed in vague, non-numeric terms such as “approximately 

equal to” or “a small percentage”. For the treatment of this type of uncertainty, Fuzzy Arithmetic 

Analysis is used. In this chapter, Monte Carlo Simulation (MCS) Analysis was selected to simulate 

the uncertainty of loads in distribution networks. MCS has significant advantages compared to other 

stated methods as they are analytical methods, and the basic computational part (the second step) for 

MCS is deterministic, therefore there is no need to simplify the mathematical models for the 

application to be applicable [130]. But, for obtaining good results, the sampling procedure must be 

repeated many times, and this makes the method rather time consuming when applied to large 

systems. 

 Monte Carlo Simulation (MCS)Technique 
Monte Carlo simulation is a very useful mathematical technique for analyzing uncertain scenarios 

and providing probabilistic analysis of different situations. It is a type of numerical simulation that 

relies on repeated random sampling and statistical analysis to compute the results of a stochastic 

process by taking into consideration the risks of input parameters that could affect this process [131].  

MCS was given its name by Stanislaw Ulam and John von Neumann, who invented the method to 
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solve neutron diffusion problems at Los Alamos in the mid-1940s. MCS procedures are explained in 

[130, 131] and summarized in Figure 4-2. Three steps are the core for MCS; the first is building a 

deterministic model. In this step, the basic model or the one close to real scenario is used, where the 

mathematical model is solved to obtain the desired solution. To accomplish this step, it is necessary 

to need to identify the risk components which are dependent on stochastic variable and for this 

reason, random numbers are generated to allow variance. After performing this step, the model is 

run, and the deterministic model is recalculated each time the random number are generated to build 

a history of data and finally a statistical analysis is performed after thousands of trials. 

 

Figure 4-2 Monte Carlo Procedures 

MCS has been used in wide range of application in power system to study uncertainty in different 

topics such as reliability and security evaluation , probabilistic load flow , unit commitment and 

others [132]. In this thesis, MCS was selected to simulate the uncertainty in load demand location 

for a fixed value of load and their reflection on the selection of optimum NOP for best losses 

reduction. 

 Load Representation with respect to DNR in previous researches 
It is well known that loads in electric power system are varying continuously per day depending on 

the weather conditions and customer behaviors as stated previously in Figure 4-1. For a secure power 

system, the feeder capacities and the protection devices ratings should be considered when load 

change. Researchers work on finding methodologies to simulate the load to study the power system 

under variable load conditions. As previously explained in chapter two, many research papers 

directed their work to study DNR. Most of them considered the load static such as [44-47, 49-51, 53, 

55, 57-59, 65-68]. Few research papers represented the changing in load in different methodologies 

as illustrated in table 4-1. 
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Table 4-1 Variable load representation in previous research papers 

Ref year Algorithm  Variable load representation 

[133] 2012 Simulated 

Annealing 

A load level coefficient is used to reflect the changing in loads to 

obtain an actual operating power load. This coefficient changes 

between [1.00,1.02, 1. 04,1.06, 1.07 ,1.08]  

[48] 2013 HSA The light, normal and heavy load were simulated by using a load 

factor varying between 0.5, 1,1.6 respectively 

[116] 2014 NSPSO Average load profile is assumed to be forecast and divided into 6 

periods. In each period, the load is considered constant. 

[134] 2014 SPSO 4 load conditions are simulated: base case, light, medium and high (-

5%, +5% and 10% of base case load) 

[61] 2014 FWA In both papers, the light, normal and heavy load were simulated by 

using a load factor varying between 0.5, 1,1.5 respectively 
[71] 2014 GA-PSO  

[27] 2015 GA The bus locations for residential, industrial, commercial and school 

customers were assumed. The load hours are divided into four cases 

where in each case consists of approximately similar load patterns in 

a given period of time. 

 

In this chapter, load demand variation is represented by generating 32 random numbers representing 

the new generated bus loads to meet the same IEEE total load. This allows the uncertainty of where 

the load is located and how it could change with time to be represented. Keeping the total load, the 

same, allows for a clearer validation of the gain in losses reduction. In other words, redistributing the 

load randomly during peak hour by changing the percentage loading of each bus. This could imitate 

what happen in real network when a sub feeder goes out of service during peak hour.   The procedures 

for random load generation is shown in Figure 4-3 . 
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 Proposed Multi Stage Modified PSO (MSMPSO) 
One of the main disadvantages of using the swarm technique is the infinite search space, this was 

partially solved in chapter three by suggesting tree diagram and integrating some constraints in the 

initial positions’ selection, that helped to formulate a reasonable search space composed of 16128 

configurations, each is composed of one switch from each loop. In this chapter, a new method 

MSMPSO is suggested, where the MPSO- proposed previously in chapter 3- is considered the first 

stage of this new suggested technique and will be tested under variable random load during the 

second stage to imitate the realistic system on one hand and to reduce the search space in the third 

stage on the other hand. Proposed MSMPSO is another modification added to MPSO by adding 

another two stages after implementing the MPSO, and therefore called by Multi stages Modified 

MPSO.  

 Stage two: MCS-MPSO for random load generation 

In this stage, the proposed technique integrates the Monte Carlo Simulation (MCS) concept to MPSO 

as shown in Figure 4-4 to simulate the load variation during 1000 trials during peak hours. In each 

trial, the new generated load is given to MPSO, previously explained in chapter three to find the 

configuration giving the optimum losses during 25 iterations. 

Figure 4-3 Random Load Generation Procedures 

START 

END 

Generate 32 random numbers representing loads in each bus 

Sum the generated 32 random loads 

Divide each generated load by the total random sum 

Multiply the random percentage by the total initial loads  
(3700 kW) 
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Figure 4-5 shows the normal distribution of losses during 1000 trials, while Figure 4-6 shows the 

losses range during the different trials. It was found that 58 trials achieved losses less than 130 kW 

while only 20 trials having losses more than 160kW. Both having low probabilities to occur. The 

highest range of losses is between [140-145] kW through 235 trials. The lowest losses found is 122.3 

kW at trial number 239, while the maximum losses are 176 kW found at trial number 95. The 

generated random load at each bus for both trials is shown in Figure 4-7 and Figure 4-8 respectively. 

Both figures illustrate how Monte Carlo could randomly vary the load through each bus bar by 

changing the percentage loading while keeping the same IEEE total load. For example, the load at 

bus 2 in trial No.239 is 97.08 kW while in trial No.95 is 5.024 kW. The least load generated in trial 

239 and 95 are 37.632 kW and 5.0326 kW at bus 11 and bus 2 respectively. Maximum load generated 

 

 

 

START 

Generate 32 random numbers representing loads in 
each bus as explained in Figure 4-3  

Initialize trial number  

trial number +1 

END 

Apply MPSO Algorithm as explained in Figure 3-7 
and Figure 3-8 

Store the best configuration giving the minimum 
losses 

Update trial numbers  

trial number = 1000 
No 

Yes 

Figure 4-4 MPSO using Variable load via MCS 
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in both trials did not exceed 250 kW. Table 4-2 includes the configurations suggested by MPSO to 

reach the optimum losses. It is clearly shown that the best configuration for trial 239 is achieved after 

22 iterations while for trial No. 95 is achieved in 14 iterations. These values were cross checked by 

being manually entered in the substation loads of the IEEE model simulated in IPSA window without 

using any optimization algorithm for losses calculation for checking the values calculated by MPSO, 

and the results are very closed to the output. 

 

Figure 4-5 Normal distribution of losses during 1000 trials 

 

 

Figure 4-6 losses during 1000 trials 
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Table 4-2 Trials No.239 and No.95 results in 1000 trials 

losses Trial Configuration Losses using 

MPSO (kW) 

iteration Losses using IPSA 

load flow (kW) 

Min  239 [10, 7, 14, 28, 32] 122.3 22 122.7 

Max  95 [9, 7, 14, 28, 16] 176.0 14 176.46 

 

 

Figure 4-7 loads in MW per bus distribution in trial No.239 achieving less losses 

 

Figure 4-8 loads in MW per bus distribution in trial No.95 achieving highest losses 
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To benefit from the data saved during the 1000 searches, switches that are mostly commonly 

identified as optimum NOP by MPSO, represent the most likely configuration for the tie switches in 

the case of a varying load (The 5 most common become the starting position). Table 4-3 shows the 

number of repeated switches during the trials. The five most repeated switches are [9, 7, 14, 16 and 

28]. These switches were the most repeated per each 200 trials of the 1000 trials as shown in Figure 

4-9. This figure indicates how many times each of the suggested tie switches is repeated per each 

200 trials and confirms that there is no need to increase the number of trials more than 1000 since 

there is no results variation.  This configuration differs than the result obtained by MPSO [9-7-14-

37-32] as detailed in chapter three. In other words, the NOP configuration is not the same during 

static and variable load. It should be noted that 21 switches are not repeated during the search which 

means that they could not represent an optimum tie switch. Each color represents an individual loop 

as represented in Figure 3-3 (b). The elements of each loop were previously stated in Figure 3-3(a). 

Table 4-3 Repeated switches in 1000 searches 

Switches S2 S3 S4 S5 S6 S7 

No/1000 trials 0 0 0 0 31 969 

Switches S8 S9 S10 S11 S12 S13 

 No/1000 trials 0 463 405 132 1 86 

Switches S14 S15 S16 S17 S18 S19 

 No/1000 trials 781 84 380 373 0 0 

Switches S20 S21 S22 S23 S24 S25 

 No/1000 trials 0 0 0 0 0 0 

Switches S26 S27 S28 S29 S30 S31 

 No/1000 trials 0 13 979 0 0 1 

Switches S32 S33 S34 S35 S36 S37 

 No/1000 trials 27 0 132 0 135 8 

 



  

72 
 

 

Figure 4-9 The Most repeated tie switches in 1000 trials 

 Third Stage: Search Space Reduction  
 The main aim of this stage is to reduce the search space by neglecting the non-repeated switches 

illustrated in Table 4-3 as they could not represent a solution for 1000 trials of variable random loads. 

By this way a new search space is generated including 270 configurations compared to 16128 

configurations in the suggested MPSO in the first stage. The new elements of each loop are illustrated 

in Table 4-4.This in turns reduces the computational time and enhances the conversion criteria of the 

initial stage of MPSO, as will be discussed in next section. A stopping criterion is added to stop the 

algorithm when the optimum configuration is found without completing all the given iterations 

numbers set to 25 as stated in chapter three. This criterion starts by comparing the calculated losses 

in each iteration to the previous one, if the difference is less than 0.5 kW, then a counter will start to 

count to 10; which means if the calculated losses did not change significantly for 10 continuous 

iterations, the algorithm will stop. The counter value is selected after trying different number 

combinations manually; 5,10, 15 and 20.  It was found that the least average computational time is 

achieved by setting the counter to 5. In this case, the average computational time was calculated to 

be 5.7 seconds- same value achieved by [125] presented in Table 3-3. The highest value of 

computational time is found by setting the counter to 20. To decide the accurate value for the counter, 

50 trials are performed; In each trial the optimum losses, the corresponding configuration and the 

computational time were stored. It was found that by decreasing the value of the counter to 5, the 

optimum configuration is repeated 35 out of 50 trials, compared to 46 trials in case of setting the 

counter to 10. For this reason, the counter was set to 10 to reduce the risk of not getting the best 

solution, and there is no need to add extra time by setting the counter to 15 or 20. This value of mode-
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which represents how often the best solution is repeated during the run- is not always stated by the 

researchers.  

Table 4-4 New Search Space Elements per each loop 

Loops No. 1 2 3 4 5 

New Elements S9-S10-

S11 

S6-S7 S13-S14-

S34 

S15-S16-

S17-S32-

S36 

S27-S28-

S37 

 

 Results and Discussion 
The main target of this chapter was reached by testing the MPSO through variable load using MCS 

and enhancing the computational time of the algorithm by reducing the search space to only 270 

configurations.  By giving this new search space to MPSO, [S7-S9-S14-S37-S32] is suggested as 

an optimum configuration for the IEEE 33 network confirming the output found from the first 

stage. MSMSPO reduced the computational time of the basic swarm algorithm to 17.5 seconds in 

stage one by applying MPSO, and then it was reduced again by neglecting the non-repeated 

switches to be 9 seconds. The stopping criterion added allow the algorithm to stop after reaching 

the optimum value without completing the maximum number of iterations given. Figure 4-10 

shows that both MSMPSO and MPSO reached the optimum solution but MSMPSO stopped at the 

14th while the MPSO proceeded to all the given maximum number of iterations. Both reduce the 

losses to 136 kW, but the convergence and the computational time of the MSMPSO are much 

better, as shown in Figure 4-10, which represents a comparison between the fitness losses function 

obtained by both techniques. In this figure, the proposed MSMPSO is faster than the MPSO and 

reaches the optimum losses in iterations number less than MPSO, which confirm the effectiveness 

of the technique with respect to convergence and computational time. 
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Figure 4-10 Fitness function for both MPSO and MSMPSO algorithms 

Due to the stochastic nature of swarm algorithms, 50 runs are performed to find the best number of 

particles for optimum fitness function. In each trial, the best, and the worst value of the fitness 

function (the losses) are recorded as well as the computational time, as illustrated in Table 4-5. In 

additions, the mode, which represents how often the configuration giving the best losses is repeated 

during the 50 trials. It should be noted that the second and the third stages of the suggested MSMPSO 

enhanced mainly the accuracy of the algorithm, and this is concluded from the value of mode, that 

increased from 52% to 92%, as illustrated in Table 4-5. Figure 4-11 shows the NOP locations in 

IEEE 33 network in static and variable load. 

Table 4-5 MSPSO -MPSO Statistical results 

Algorithms Best Losses (kW) Worst Losses (kW) %Mode Time (sec) 

MPSO 136 143 52% 17.5 

MSMPSO 136 139.6 92% 9 
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 Original  MPSO 

Static load 

 

 MPSO 

Variable load 

 MSMPSO 

Figure 4-11 Optimum ties location in IEEE 33 network 

 Conclusion 
In this chapter, the main reasons of uncertainty in power system generation, transmission, distribution 

and demand were stated. Probabilistic Analysis, Interval Arithmetic, Monte Carlo Simulations 

(MCS) and Fuzzy Arithmetic Analysis are examples of the mathematical methodologies used to 

model uncertainty. In this work, Monte Carlo Simulation (MCS) was selected to simulate load 

uncertainty in a distribution network. A Multistage Modified Particle Swarm methodology 

(MSMPSO) was proposed for improving the computational time of MPSO and implementing an 
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active DNR through variable load. The proposed process is composed of three stages; the first is 

implementing MPSO; The second is using Monte Carlo (MCS) for generating variable load during 

1000 trials. The third stage is building on the results of the second stage, by performing MPSO again 

after adjusting the search space. It was found that the five most repeated switches are [9, 7, 14, 16 

and 28] represent the most likely configuration for the tie switches in the case of a varying load. This 

configuration differs than the result obtained by MPSO [9-7-14-37-32] for static load. In other words, 

the NOP configuration is not the same during static and variable load. Another finding was recorded 

during the thousand trials, that 21 switches were not repeated and hence they could be neglected from 

the search space.  A new search space consisting of 270 configurations is given to MPSO in stage 3 

of MSMPSO.  Both MSMPSO and MPSO suggest the same configuration for losses reduction at 

static load. The performance of MSMPSO is much better in convergence rate and computational 

time. MSMPSO reduced the overall time to only 9 seconds which could be reasonable for real time 

applications. 

Since Power networks are systems consisting of DERs, many researchers have suggested their 

integration using DNR for enhancing the active losses reduction. DERs could be renewable energy 

sources such as wind turbines or solar cells, or other sources of energy storage. To integrate them, 

the size, the location should be adjusted to do not represent a burden on the system. The next chapter 

will study the effect of DERs integrating on losses reduction in the IEEE 33 bus network. 

Research Novelty: Development of MPSO technique by integrating MCS for load variation and 

search space reduction and proposing Multi stage Modified Particle Swarm Optimization. 
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5 CHAPTER 5 ENERGY STORAGE (ES) IN IEEE -33 

DISTRIBUTION NETWORK 

 Background 
Previous chapters discussed how dynamic reconfiguration is applied on a distribution network to 

reduce the losses. To help with this, particle swarm algorithm is modified through multi stages during 

static load via MPSO and variable load through MSMPSO for getting an optimum DNR. The IEEE 

33 test network calculated losses were reduced from 193 to 136 kW during only 9 seconds. This 

computational time was achieved after implementing MCS which served to simulate the uncertainty 

of load distribution on one hand and on the other hand adjusting the search space of the MPSO based 

on statistical analysis.  Based on the survey presented in chapter two, it was demonstrated that there 

are several strategies to reduce the losses in distribution network. Changing the NOP is one of them 

as was explained in chapters 3, and 4. A second strategy is the integration of DGs to the distribution 

network. To help with this, the number, the type as well as the sizing and the location of the DG need 

to be identified. A mix between both strategies also has suggested showing how DNR could be 

effective in distribution network in terms of losses reduction after integrating DGs. The authors in 

[135] assumed the best locations and then they focused on sizing the DGs, then they implemented 

DNR for better losses reduction comparing between different optimization techniques. Reference 

[136] focused on finding the optimum location and size for integrating DGs in the distribution 

network without DNR. Furthermore, [27, 40, 44, 133] focused on DNR after modifying the test 

networks by assuming both the location and the size of DGs added to the networks. Chapter 2 reveals 

that few references studied the simultaneous reconfiguration with the sizing and the allocations of 

DGs units. Most of them did not specify the kind of DGs used in their studies such as [61, 101, 102, 

105-107, 109] while other research papers used PV or Wind for their studies such as [98, 108]. Only 

[103, 110] used EES in conjunction with DGs to maximize the renewable energy share in distribution 

network through a planning study. Both papers assumed the size of EES. This chapter investigates 

the integration of standalone storage units for minimum losses. For achieving this goal, the size and 

the location for the storage units should be calculated. The literature presented in chapter 2 shows 

that previous researches studied the sizing of BESS from three perspectives; the first is facilitating 

the integration of renewable energy in distribution network; the second is for planning purpose; the 

third is for peak shaving and load leveling for deferring the annual generation upgrade and reducing 

the running fuel for spinning reserve. The work in this research is different because it focusses 

primary on losses reduction in the presence of active DNR. The main aim is to calculate the best 

sizing and location for batteries in the IEEE 33 network for losses reduction while at the same time 

keeping the flexibility around being able to change the open point in the network for maximum losses 

reduction. The combination between them is not straightforward. ES sizing and allocation are studied 
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in an operational mode that combine between the discharging and the charging mode. This has not 

been considered before in previous literature. 

 Study Assumption  
This study is based on three assumptions: the first is a fixed total capacity for added storage units; 

the second is the proportion of off-peak load with respect to the full peak load during charging mode. 

The third assumption is the battery efficiency. Each of these is described below. 

1. The total amount of added stored energy is set to 500 kW. This is not at a fixed location and 

its distribution needs to be solved as part of the process. This is representative of 75% the 

total share of renewable energy in UK, including wind and PV only that need to be connected 

to storage batteries to solve their nature of being weather condition nature. The total share of 

renewable energy in UK is around 20% of the total generation [137].  

2. Since battery charging and discharging time management is important from the perspective 

of peak load. The battery should be charged during off-peak hours. The off-peak load for 33 

IEEE network is assumed to be 73% of the initial given load. 

3. Batteries losses are negligible compared to the losses within the network. In this work, the 

capacity of the batteries used are not considered only their power ratings. 

4. Batteries’ capacities are considered large enough to continue charging/discharging as long 

as the system is needing them. 

 Sizing & Siting Energy Storage (ES) in distribution network 
To identify the optimum size of Battery Energy storage system (BESS) if DNR is considered, Monte 

Carlo simulation method (MCS) was suggested for sizing while DNR problem was solved by the 

proposed MPSO. Both MPSO and MCS are explained in chapter three and four respectively. Figure 

5-1 shows a proposed BESS sizing procedure. In this research, both the storage batteries ’sizes and 

locations are suggested to be studied in an operational mode that merges between both the 

discharging (at full peak load) and charging mode ( at off peak load) respectively and not considering 

any of them in isolation as the best location and size during charging will be different than during 

discharging.  The study begins by connecting 32 storage units to all buses, with a random size 

generated using MCS during a thousand trials; their summation always fixed at 500 kW (as 

previously explained in section 5.2). In each trial, the optimum NOPs were found based on MPSO. 

MSMPSO was not proposed in this application because it gives the same result as MPSO (but better 

performance in computational time and conversion characteristic. Since the computational time is 

not the target here, MPSO was preferred). A statistical analysis has been performed latter to filter the 

most repeated 5 ties to represent the optimum open switches for each mode. The BESS size achieving 

the minimum total losses during both charging and discharging was selected to be the best size.  
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(a) 

 

Discharging mode ON 

& trial counter =1000 

No 

Yes 

A 

No 

Upload the generated random size as generating sources or charging loads 

based on the operational mode 

START 

Simulate the 33 IEEE on IPSA software window and Initialize a trial counter  

Generate random size for each battery based on MCS (Figure 5-3) and upload 

their values in the network 

Apply MPSO [(Figure 3-7) and (Figure 3-8)] to get the optimum ties for 

minimum losses 

Enable discharging Mode by enabling the added generation at each bus at the 

simulation window as shown in Figure 5-2 

Trial counter 

=1000 

Store the optimum NOP and their corresponding losses 

Increase the trial 

counter by one 

Yes 

Disable the generation units  

Enable the charging mode  

Upload off Peak load  
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(b) 

Table 5-1 illustrates the differences and similarities through the different operational modes. The 

main difference between charging and discharging mode was the way the storage units were 

represented in the IEEE network. During discharging mode, BESS were simulated as generating 

units, while in charging mode BESS were represented as loads. BESS representation is not the only 

difference but also the demand load. In discharging mode, the full IEEE load are considered while 

in charging mode, the off-peak values are used; off peak loads are assumed to be 73% of full peak 

IEEE loads as explained in section 5.2. The sizing procedures for both charging and discharging were 

previously explained in Figure 5-1. 

Table 5-1 Differences and Similarities between BESS operational modes 

 Differences Similarities 

BESS Representation Demand load  

BESS sizing 

procedures shown 

in Figure 5-1 are 

similar in all 

modes. 

Charging Mode 32 random generated 

loads 

Off peak load  

(73% full load) 

Discharging Mode 32 random generating 

units 

Full peak load  

 

END 

A 

Select the most repeated 5 switches and set them as optimum tie switches 

Calculate the total losses during discharging and charging mode 

Select the size achieving minimum losses and set it as optimum batteries size 

Calculate the capacity for each loop, representing the size of 5 storage 

batteries to be in the network. 

Figure 5-1 Energy Storage Sizing procedures in both operational modes 
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 Discharging Mode (Mode 1) 
Discharging mode is initially operated by activating the generating units connected to each bus 

representing the storages batteries. Figure 5-2 shows the BESS representation in the IEEE 33 

distribution network using IPSA during discharging mode. 32 random size are generated to represent 

the BESS size based on MCS as explained in Figure 5-3 for 1000 trials. In each trial, the 32 generated 

size, the optimum configuration found by MPSO, and the calculated losses are stored.  

 

Figure 5-2 BESS representation during discharging mode 

Table 5-2 shows the number of repeated open switches during 1000 trials for a fixed load and random 

generation based on MCS for getting minimum losses in the IEEE 33 test network shown in Figure 

5-3. It was concluded that [S7-S9-S14-S37-S32] are the most repeated switches and for this reason 

they are suggested to be best NOP during discharging mode. Figure 5-4 shows the optimum open 

points in discharging mode. It is remarked that these open points are same as the ones suggested by 

MPSO in Chapter 3.  
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Table 5-2 Frequency of switches during 1000 trials in discharging mode 

Switches S2 S3 S4 S5 S6 S7 

No/1000 trials 0 0 0 0 203 797 

Switches S8 S9 S10 S11 S12 S13 

 No/1000 trials 10 566 193 231 0 113 

Switches S14 S15 S16 S17 S18 S19 

 No/1000 trials 711 0 0 25 0 0 

Switches S20 S21 S22 S23 S24 S25 

 No/1000 trials 0 0 0 0 0 0 

Switches S26 S27 S28 S29 S30 S31 

 No/1000 trials 0 1 13 0 0 45 

Switches S32 S33 S34 S35 S36 S37 

 No/1000 trials 852 0 276 0 78 986 

 

START 

END 

Generate 32 random numbers representing BESS size in each bus 

Sum the generated 32 random size 

Divide each generated size by the total random sum 

Multiply the random percentage by the total energy storage size 
(500 kW) 

Figure 5-3 Random BESS Sizing Procedures  
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Figure 5-4  Suggested Optimum Tie Switches in Discharging Mode 



  

84 
 

 Charging Mode (Mode 2) 
After disabling the discharging mode as previously explained in Figure 5-1, the charging mode was 

operated by simulating the storage batteries as loads randomly distributed and highlighted over all 

buses as shown in the IEEE 33 network in Figure 5-5. In this mode, the batteries are assumed to 

charge at off peak hours, for this reason the off-peak loads are assumed to be 73% of the total full 

IEEE load as stated in section 5.2. The procedures followed to find the best size for BESS, were 

shown in Figure 5-1.MCS was selected for expecting the best size of BESS as explained in Figure 

5-3, while MPSO was applied to find the best NOP during 1000 trials during the charging mode. The 

number of NOP switches found each time during the different trials are presented in Table 5-3.This 

table shows the number of repeated normally open switches during 1000 trials for a fixed load based 

on MCS for getting minimum losses of the IEEE 33 network shown in Figure 5-5. It was concluded 

that [S7-S9-S14-S37-S32] are the most repeated switches during charging mode. 503 trials suggest 

this configuration for NOP which is the same configuration suggested during discharging mode. For 

this reason, this configuration was suggested as an optimum configuration for the network during 

both operational modes confirming the results found in chapter 3.  

Table 5-3 Frequency of NOP during charging mode 

Switches S2 S3 S4 S5 S6 S7 

No/1000 trials 0 0 0 0 58 942 

Switches S8 S9 S10 S11 S12 S13 

 No/1000 trials 1 692 124 183 1 16 

Switches S14 S15 S16 S17 S18 S19 

 No/1000 trials 800 0 0 34 0 0 

Switches S20 S21 S22 S23 S24 S25 

 No/1000 trials 0 0 0 0 0 0 

Switches S26 S27 S28 S29 S30 S31 

 No/1000 trials 0 2 193 0 0 2 

Switches S32 S33 S34 S35 S36 S37 

 No/1000 trials 826 0 183 0 138 805 
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Figure 5-5 BESS representation during charging mode 

Figure 5-6 shows the optimum tie switches found by MPSO after the 1000 trials in the distribution 

network during charging mode. 
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Figure 5-6 Optimum NOP in charging mode 
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The complexity in adding storage to the network arises because the best location for charging the 

batteries (close to the grid infeed) is different from the best location for discharging the batteries (far 

away from the grid infeed). Figure 5-7 shows the calculated total losses’ range during 1000 trials 

during both modes. The lowest and the highest value of total losses are 228 and 240 kW respectively. 

The most repeated range (373 trials) is between 230-232 kW. The size achieving the lowest total 

losses during the thousand trials, was presented in Table 5-4, and was selected to be the optimum for 

both modes.  

 

Figure 5-7 Losses range in both operational modes 

It was found that trial No. 308 recorded the lowest total calculated losses for both operational modes 

suggesting the ties switches to be S7, S9, S14, S37 and S32. The size of energy storages at this trial 

was presented in Table 5-4 and was proposed to be the optimum for losses reduction during both 

operational modes. To simplify the 32 energy storages’ size to only 5, one per each loop, the capacity 

for each loop was calculated as illustrated in Table 5-5. In this table, these calculated capacities are 

approximated to the nearest industrial available range to meet the standards [138] . To decrease the 

number of storage locations to only 5, one pear each loop, the sites having a battery size less than 10 

kW (highlighted in green in Table 5-4) are ignored as they have negligible impact. That is, 9 of 32 

of the storage sites are neglected. In other words, at these bus locations [2-4-5-11-12-16-18-25-33] 

batteries should not be connected. Table 5-5 shows the possible sites per each loop and the calculated 

capacities for each loop. For example, the first loop in this table, is fed from G8, G9, G10, G11, G12, 

G21, and G22. Then the size for the capacity of all generating units feeding loop1 is 107.13 kW. 

Since the optimum size found by MCS for G11 and G12 is less than 10 kW, then their locations are 

neglected from this loop. In other words, it is possible to allocate only one storage battery of 

107.13kW at bus 8, 9, 10, 21 or 22. 
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Table 5-4 Suggested Storage Size in both operational mode 

BESS Sites G2 G3 G4 G5 G6 G7 

BESS Sizes 6.23 15.63 1.09 4.21 11.42 14.19 

BESS Sites G8 G9 G10 G11 G12 G13 

BESS Sizes 24.80 26.306 12.057 0.63 4.09 28.32 

BESS Sites G14 G15 G16 G17 G18 G19 

BESS Sizes 24.7 23.47 0.69 14.59 1.038 25.44 

BESS Sites G20 G21 G22 G23 G24 G25 

BESS Sizes 24.69 13.84 25.38 25.61 27.8 2.365 

BESS Sites G26 G27 G28 G29 G30 G31 

BESS Sizes 15.40 19.03 14.36 25.03 27.22 23.71 

BESS Sites G32 G33  

BESS Sizes 13.09 3.4 

 

Table 5-5 Expected Storage Capacities for both operational modes 

Loops 1 2 3 4 5 

Batteries sites/ 

each loop 

G8-G9-G10-

G11-G12-

G22-G21 

G2-G3-

G4-G5-

G6-G7-

G19-G20 

G13-

G14-G15 

G16-G17-

G18-G30-

G31-G32-

G33 

B23-B24-B25-

B26-B27-B28-

B29 

Updated sites/ 

each loop 

G8- G9-G10-

G21-G22 

G3- G6-

G7-G19-

G20 

G13-

G14-G15 

G17-G30-

G31-G32 

G23-G24-G26-

G27-G28-G29 

Capacity in KW 107.13 102.9 76.55 83.76 129.6 

Approximated 

capacities in kW 

110 105 80 85 130 
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To allocate the 5 storages into the updated sites presented in Table 5-5, the procedures used are shown 

in Figure 5-8. It should be noted that: 

1. The number of remaining locations was calculated to be 23. This was mainly depending on 

the excluded buses having size less than 10 kW, as previously stated in Table 5-4. 

2. The total number of probabilities calculated based on tree diagram to get all the possibilities 

of having 5 batteries’ locations, one per each loop is 1800 possibilities. 

It was demonstrated that the best batteries locations are at bus 21,19,15,31 and 24, reducing the 

losses to 115.7 kW in discharging mode and 113.8 kW in charging mode. It should be noted that 

these locations and capacities suggested were based on MCS after running 1000 trials studying 

these suggested sizes during both charging and discharging and not any of them in isolation. The 

best NOP found based on MPSO are S7, S9, S14, S37 and S32. These optimum locations as well 

as the best NOP for the IEEE 33 test network are shown in Figure 5-9 . 
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Figure 5-8 Optimum Allocation Procedures 
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Figure 5-9 Best NOP and Storages locations during both operational modes 

 

 BESS Sites Justification 
To justify the optimum locations for adding electric storage units found by employing Monte-Carlo 

technique, other locations are studied based on the electrical concept for locating the storage batteries 

stating that " the closest to the feeder, the less losses achieved during charging, and the furthest from 

the feeder is the less losses during discharging " assuming that there are no other forms of generation 

, only the grid. Since the IEEE 33 bus network is divided into 5 loops based on the initial tie switches 

given in the basic model, a storage unit was proposed to supply each loop. The closest and the furthest 

bus with respect to the feeder supplying each loop are illustrated in Table 5-6 and their justification 

in each of the 5 loops are explained in Table 5-7. It should be noted that the minimum charging losses 
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highlighted in Table 5-8 is achieved when the storage units are located at 21-2-13-30-23, near to the 

feeder of each loop, as expected.  The calculated charging losses in this case is 111.03 kW. This 

value is slightly less than that calculated by the suggested optimum site for both operational mode 

(at 21,19,15,31 ,24) found by MCS after 1000 trials reducing the charging losses to 113.67kW. This 

is because allocating the storages near to the feeders, reduces the impedance to the ES and thus the 

losses. Based on Table 5-6, 4 possible charging configurations and one discharging configuration 

could be formulated as stated in Table 5-8 and Table 5-9 respectively. All of them need to be studied 

in terms of losses to find the best for both charging and discharging mode. At these locations, the 

capacities calculated in Table 5-5 are configurations tested in IPSA through a load flow during 

charging (at off peak load) and discharging (at full IEEE load) to calculate the total losses for both 

operational modes.  

Table 5-6 the closest and the furthest bus with respect to the feeder in IEEE 33 Network 

Loops 1 2 3 4 5 

Bus 8-9-10-11-

12-22-21 

2-3-4-5-6-7-

19-20 

13-14-15 16-17-18-

30-31-32-33 

23-24-25-

26-27-28-29 

Feeding branch S20 S1 S35 S15 -S29 S22-S25 

The closest bus 

to the feeding 

branch 

21 2 13 16-30 23-26 

The furthest 

bus from the 

feeding branch 

10 7 15 33 29 
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Table 5-7 Closed and Furthest bus Justification in each loop of the IEEE 33 bus network 

Loop  Closed and Furthest Bus Justification 

One  

 

S20 is the feeding branch of the first loop. 

Consequently, bus 21 is the closed bus to 

S20. For this reason, it is the best to locate 

the storage unit in the charging mode. The 

furthest bus is bus 10 as S9 is the NOP for 

this loop. In this case the current will pass 

through Z1+Z18+Z19+Z20+Z21+Z35 

+Z11+Z10. The impedance in this case to 

bus 10 is 7.58 Ω. 

Two  

 

Since S1 is feeding both bus 2 and bus 19, 

the closest bus is bus 2 because it is the 

nearest to the feeding branch S1. To get 

the farthest bus, the impedance from bus 2 

to bus 7 is calculated (Z1+Z2+Z3+Z4 

+Z5+Z6=3.2 Ω), and the impedance from 

bus 19 to 21 is calculated 

(Z1+Z18+Z19+Z20=2.938 Ω). For this 

reason, bus 7 is farther than bus 19 from 

the feeding point as the impedance is 

directly proportional to cable length. 

Three 

 

In loop 3, since S8, S9, S10 and S11 are 

already included in loop1. They are 

excluded from loop 3. The parameters of 

this loop are S12, S13, S14 and S34. The 

feeding branch to this loop is considered 

S35. The closest bus is bus 13 and the 

furthest bus is bus 15. 
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Four 

 

 

In loop 4, S22 and S25 are two feeding 

branches to this loop. The closest buses to 

S22 and S25 are bus 23 and bus 26 

respectively. Then the furthest bus to S22 

is S25 since S37 is NOP. In this case the 

current will pass through 

Z1+Z2+Z22+Z23+Z24. The impedance 

to bus 25 is 3.48 Ohm. The furthest bus to 

S25 is bus 29. The impedance in this case 

is Z1+Z2+Z3+Z4+Z5+Z25+Z26+Z27 

+Z28 and equal to 5.1709 Ω. For this 

reason, bus 29 is the best selected to locate 

the BESS during the discharging mode. 

 

 

Five 

 

 

In loop 5, there are two feeding branches 

S15 and S29. The nearest bus to S15 is bus 

16, while bus 30 is the closest to S29. The 

furthest bus to S15, is bus 33, because S32 

is already a NOP. The current path will be 

in this case passing by Z1+Z18+Z19+Z20 

+Z33+Z8+Z34+515+Z16+Z17+Z36. The 

impedance is calculated in this case to be 

12.5303 Ω. The furthest bus to S29 is bus 

32 because bus S32 is a NOP. In this case 

the current will pass through: 

Z1+Z2+Z3+Z4+Z5+Z25+Z26+Z27+Z28

+Z29+Z30+Z31. The impedance in this 

case is =8.0119 Ω. For this reason, bus 33 

was selected the furthest in this loop for 

locating the batteries in discharging mode. 
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It was found that the best charging losses highlighted in Table 5-8 are achieved when the storage 

units are located at 21-2-13-30-23, near to the feeder of each loop, as expected.  The calculated 

charging losses in this case is 111.03 kW. This value is slightly less than that calculated by the 

suggested optimum site for both operational mode (at 21,19,15,31 ,24) found by MCS after 1000 

trials reducing the charging losses to 113.67kW. This is because allocating the storages near to the 

feeders, reduces the impedance path to the BESS and then the losses. However, the discharging losses 

at this configuration is much higher than the optimum for both operational modes (at 21,19,15,31 

and 24). Table 5-9 includes the best discharging locations for adding the 5 storage units in the IEEE 

33 network -far than the feeders - reducing the losses to 107.6 kW, as expected. This site decreased 

the losses in discharging mode compared to the best locations found by MCS for both operational 

mode at 21,19,15,31 and 24. This indicates that the MCS selects the optimum locations meeting the 

lowest losses for both charging and discharging modes. Figure 5-10 and  Figure 5-11 show the best 

possible site for adding 5 storages in charging mode (near to the feeder) and discharging mode 

(further from the feeder) respectively. It should be noted the NOP are set during both modes to S7, 

S9, S14, S37 and S32. 

Table 5-8 Other Possible charging locations 

New locations Charging losses Discharging losses Total losses 

21-2-13-23-16 111.48 119.65 231.13 

21-2-13-26-16 114.078 116.72 230.8 

21-2-13-23-30 111.03 118.93 229.96 

21-2-13-26-30 113.98 116.16 230.14 

 

Table 5-9 Other Possible discharging location 

New locations Charging losses Discharging losses Total losses 

10-7-15-33-29 124.47 107.608 232.078 
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Figure 5-10 Best BESS locations closest to the feeders during charging only 
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Figure 5-11 Best BESS locations furthest from the feeders during discharging only 
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 Results and discussion 
This chapter suggests the integration of standalone storage units considering network reconfiguration 

for decreasing the calculated losses than 136 kW. This value was found by MPSO (chapter 3) and 

MSMPSO (chapter 4) after changing the initial ties switches of the IEEE 33 bus network to S7, S9, 

S14, S37, S32 at static load. A wrong size or location could represent an extra burden on the power 

system during charging and discharging modes. For this reason, this chapter’s main aim was studying 

the best size and location of adding storage units in the presence of an active DNR. An operational 

mode considering both the charging and discharging mode, was suggested to propose only one 

solution for sizing and allocating the storage batteries in the distribution network. In this mode, the 

same random size was tested for both operational mode (Figure 5-1) and the total losses were 

calculated. It was found that the best batteries locations would be at bus 21,19,15,31 and 24 (Figure 

5-9), reducing the losses to 115.7 kW in discharging mode and 113.8 kW in charging mode, with 

suggested capacities of 110, 105, 80, 85 and 130 kW respectively as illustrated in Table 5-10.  

Table 5-10 Suggested Site, Size of the BESS and NOP during the proposed operational mode 

 Operational Mode 

Storage locations 21,19,15,31,24 

Storage capacities 110, 105, 80, 85 and 130 

Ties Switches S7, S9, S14, S37, S32 

Charging losses (off-peak) 113.8 kW 

Discharging losses (full-peak) 115.7 kW 

Total losses (kW) 229.5 

 

This operational mode gives clearer picture for decision making process and for this reason, both the 

calculated capacities and sites are considered the best for this network. Figure 5-12 shows the losses 

reduction improvement through the different scenarios, starting from the initial IEEE case, passing 

by the DNR by changing the ties switches position (in chapter 3 and 4) and finally by adding storage 

devices during discharging and charging mode. It was concluded that adjusting the size and the 

locations of storage units in the presence of an adequate tie switches selection enhance the 

distribution losses. Figure 5-13 shows a significant improvement in voltage profile after 

implementing the tie switch reconfiguration. The minimum voltage is raised to be 0.94 at bus 32 
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instead of 0.91 at bus 18, from the original IEEE model. A slight improvement is observed after 

adding storage batteries for losses reduction during charging mode to reach 0.945.  

 

Figure 5-12 Losses Improvement in the IEEE 33 Network 

 

Figure 5-13 Voltage Improvement in the IEEE 33 network 

Based on the report presented by the department for Business, Energy and Industrial Strategy in 2018 

[5], the emission factor that convert from 1 kWh to 1 kg CO2e was calculated for the combined 

transmission and distribution losses for 2016 to be 0.0249. The tie switches reconfiguration decreased 

the losses by 56 kW per hour equivalent to 1.39 kg CO2e per hour at peak load, while the optimum 

site and capacity for BESS achieve around 1.9 kg CO2e per hour reduction 

 Conclusion  
The main target of this chapter was sizing and allocation of energy storage units in the IEEE 33 

distribution network considering DNR. MCS was suggested for sizing the storage units by generating 
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random size at each bus within a total size of 500 kW during 1000 trials. During each trial, MPSO 

was used to find the optimum NOP. The size achieving the lowest losses was selected to be the 

optimum size for energy storages. To reduce the storage units to a lower number, 5 storage units, one 

supplying each loop of the network, the capacity for each loop was calculated by adding the size of 

the battery at each bus existing in this loop. To allocate these 5 storages units, one per each loop, the 

buses having negligible size was excluded from the search and the total number of probabilities was 

calculated. These procedures of sizing and siting the storage units are undertaken in an operational 

mode that merges between the discharging mode and the charging mode respectively. This is 

achieved by testing the same generated random size- using MCS- considering both the charging and 

the discharging to have a global picture to decide both the best size and location for the storage units 

for total losses reduction.   During the discharging mode, the storage units are simulated as generating 

units added to each bus bar at the IEEE 33 network at full load. In contrast, the storage devices are 

represented as load at each bus, at off peak load during the charging mode. The off-peak loads are 

assumed to be 73% of the full peak IEEE load. It was found that the same NOP was suggested for 

both charging and discharging by declaring S7, S9, S14, S37 and S32 the optimum ties for best losses 

reduction. The sites and the sizes calculated through this mode did not give the minimum losses 

during charging mode nor the discharging mode, but it gives the optimum with respect to the total 

calculated losses during both modes. 

Furthermore, it was concluded that adjusting the size and the locations of storage units in distribution 

networks considering DNR decreased the losses through the different scenarios implemented: Tie 

Switches Reconfiguration (using MPSO at static load in chapter 3), Tie switches reconfiguration 

(using MCS at variable load in chapter 4), and by adding storage devices in charging and discharging 

modes. The losses have been reduced to 115.7 and 113.7 kW in discharging and charging mode 

respectively.  

These performed scenarios (chapter 3 - chapter 5) did not only enhance the losses but also the 

minimum voltage bus that raised from 0.91 at bus 18 in the initial case to 0.945 by the integration of 

storage units considering the DNR at bus 32.  

Research Novelty: Sizing standalone storage batteries in the IEEE 33 network using Monte Carlo 

Simulation Method in the presence of network reconfiguration using Modified Particle Swarm 

Optimization Technique. To have a full picture, the total losses during both charging and 

discharging mode need to be considered together and each mode should not be considered in 

isolation. 
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6 CHAPTER 6 11 kV OHL DISTRIBUTION NETWORK 

 Background 
Different strategies for losses reduction in distribution networks have been explained through the 

previous chapters. The concept of network reconfiguration by changing the normally open points 

was the first strategy presented. The addition of storage units is another existing methodology for 

achieving the thesis target. Charging and discharging scenarios were studied for identifying the best 

storage units’ locations and capacities for minimum losses in the presence of DNR. All the stated 

strategies were tested using the IEEE 33 test network- as it was common through lot of research 

papers for comparing the losses reduction results- to identify a specific mathematical optimization 

technique that could be adopted to be used in case of a real distribution network. This mathematical 

method should reach the global optimum solution in a reasonable computational time. Also, it should 

have the ability to respond to variable load due to the changing demand. The PSO algorithm was 

modified in chapter 3 and was suggested as a DNR solution within the IEEE 33 bus network. The 

main aim of this chapter is to validate the MPSO using a real distribution network, a section of the 

11kV OHL network in the Milton Keynes area, located in the United Kingdom, to allow a validation 

of the methodology within a more representative situation. The coded programs were adjusted using 

python language to the distribution network and simulated through IPSA.  

 11kV Network Description  
The 11 kV OHL distribution network of Milton Keynes, shown in figure 6-1, is composed of 262 

buses and 265 branches, fed from two substations, the first is near WINSLOW, 1.71 MW and the 

second is at NEWTON ROAD, 6.38 MW.  The network is composed of five feeders: Way 3, WAY 

6 at WINSLOW, and another three feeders at NEWTON ROAD, Way 5, Way 8 and Way 4. Table 

6-1 describes the 11kV network.  Figure 6-1 is a representation for the whole OHL network while 

Figure 6-2 shows the network in the simulation window of IPSA. The total losses were calculated 

using the nominal NOP- as shown in table 6-2-to be 85 kW based on a simple load flow using IPSA. 

The Demand load was estimated by Western Power Distribution based on the load type on each 

feeder and then scaled for the measured feeder load current. A day in winter (23rd of January) was 

chosen as this represents close to maximum demand where losses will be highest and the impact of 

DNR more widely beneficial. Another summer day (the 3rd of July) was also studied representing the 

minimum load and minimum losses reduction for this network. 
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Table 6-1 11 kV OHL network description 

 nodes branches loads substations feeder NOP 

 262 265 127 2 5 5 

 

Table 6-2 Nominal NOP for the 11 kV OHL distribution network 

Tie Switch 

Given 

Name 

From bus Bus Name To bus Bus Name 

S13 262042 Swanbourne Station 202014 Swanbourne Station  

S34 261701 Swanbourne Station 200988 Stewkley 

Sewage 

S64 265395 Cresent Bletchley 265392 St.George Road Bletchley 

S82 264874 Newton LongVille 242292 Brookfield Road 

S105 261705 Stwekley Sewage 275789 Wing Road Stewkely 

 

 

 

Figure 6-1 11kV OHL distribution network 
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Figure 6-2 11kV OHL distribution network in IPSA Simulation Window 
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  Problem Formulation and General Constraints 
 Problem definition and the constraints used in this network are the same discussed in section 

3.2.1 , for the IEEE 33 Network. Losses reduction is the main goal of this thesis and it was 

calculated based on (1) in section 3.2.1. Three constraints were considered: 

1. Bus voltage limits 

The bus voltage magnitude should be within the permissible limits as stated in (2) in section 

3.2.2. The minimum value of the voltage was chosen for this network to be 0.95 and the 

main primary voltage is set to 1.05 pu. 

2. Feeder Capacities 

The magnitude of the branch current should not exceed the maximum value of the allowed 

current passing in the feeder’s branch as previously explained in (3) in section 3.2.2. It 

should be noted that the main 5 feeders’ capacities and MVA of the 11 kV OHL represented 

in Figure 6-1 are included in table 6-3. 

Table 6-3 Feeder Current Capacity 

Feeder Winter MVA rating 
(MVA) 

Calculated current Capacity (A) 

S1 9 490 

S31 4 255 

S58 9 500 

S59 10 570 

S65 10 570 

 

3. Radial structure  

To keep a radial structure, only one switch in each loop should be open. It should be noted 

that the total number of loops is equal to the total number of existing ties switches. 

Therefore, 5 switches will be suggested to be NOP in this network. 

 DNR using MPSO in the 11 kV OHL Network  
In chapter 3, MPSO was suggested as a method to solve the DNR stochastic optimization 

problem for selecting the optimum NOP for minimum losses. Sectionalizing the network into 

many loops and using tree diagram to formulate a search space including radial configurations, 

introducing losses, voltage and current constraints for filtering the initial positions, and the 

position control algorithm to retain the particles within the search space were the modification 
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added to the typical PSO for better performance. It was found that MPSO reaches the global 

optimum solution in a reasonable computational time when it was validated through the IEEE 

33 network.  Furthermore, this technique was flexible enough to respond to variable load -

generated by Monte Carlo technique-as explained in chapter 4, aiming to be applied for real 

distribution networks. In this section, MPSO was validated through the 11kV distribution 

network for best losses reduction. The different modifications added to the basic technique were 

explained in  section 3.4 while the procedures and the flow chart of MSPO was explained in  

3.4.5 

 Sectionalizing the 11kV OHL distribution network 

As previously explained in chapter 3, sectionalizing the network is the first step for 

implementing MPSO to formulate the search space. To help with this, the 11kV distribution 

network is divided into 5 loops as represented in Figure 6-3 .The parameters of each loop are 

included in table 6-4 and represented in Figure 6-4. Figure 6-4 (a) represents the elements of 

loop A. Figure 6-4 (b), Figure 6-4 (c), Figure 6-4 (d) represent the switches in loop B, C, D 

respectively. Loop E is very large and for this reason it was divided in two sections shown in 

Figure 6-4 (e) and Figure 6-4 (f) respectively including the switches from S32 to S57 of loop 

E.  The switches common between more than one loops, are stated only once, to avoid the 

duplication of switches in a single configuration. For example, S11 is shared between the first 

and the second loop, but it is only stated in loop A to avoid duplication that would result in 

invalid configurations, as stated in Table 6-4. It should be noted that some branches are 

excluded as they connect the main feeders to the substations such as S1, S31 for loop A, S58 

and S59 in loop B and S65 in loop C. The Excluded branches are represented in Table 6-4. 

Table 6-4 11 kV Distribution network loop elements 

loops Loops Elements No. of switches 

/loop 

Excluded Parameters 

A [S2:S30] 29 S1, S31 

B [S32: S57] 26 S58, S59 

C S60, S61, S62, S63  

S64 and S127 

6 S65 

D [S66: S83] 18 None 

E [S84:S126] 43 None 
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Figure 6-3 Representation of the 11kV distribution network loops 
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(a) Loop A 
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(b) Loop B 

B 

B 
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(c) Loop C 

 

(d) Loop D 
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(e) Section 1 of loop E 

 

A 
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(f) section 2 of loop E 

Figure 6-4 Switches distribution per loops in the OHL 

 

 

A 
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 Filtered Initial Position 
Unlike the typical PSO that selects their initial positions randomly, MPSO benefits from the 

previous step of sectionalizing the distribution networks into many loops and worked on using 

tree diagram algorithm to generate a search space including radial configurations by selecting 

only one switch from each loop. [S2, S32, S60, S66, S84] – highlighted in Table 6-5 and shown 

in Figure 6-5 (a) is an example of a configuration generated by tree diagram. Filtering the initial 

positions does not mean only build a search space consisting of radial configurations but also 

selecting the configurations satisfying voltage and current constraints with losses less than the 

initial losses achieved by nominal ties switches calculated to be 85 kW. This filtration process 

previously explained in chapter 3 and was shown in Figure 3-4 is performed to reduce the 

number of iterations used to reach the optimum configuration.  Although the highlighted 

configuration in Table 6-5 is radial configuration, it will not be selected in the initial positions  

as shown in Figure 6-5 (a), because the calculated losses are 316 kW and the lowest bus voltage 

was calculated to be 0.902 p.u., lower than the minimum bus voltage limits set to this network 

(0.95 p.u). On the other hand, [ S17, S45, S62, S82 and S99] is an example of an accepted initial 

position represented in Figure 6-5 (b), because the calculated losses are 80 kW, the minimum 

and the maximum value of the bus voltage are 0.99 and 1.026 respectively. Figure 6-5 shows 

the snapshots of the results window of the coded optimization program. 

Table 6-5 Examples of Generated Configurations in the search Space by Tree Diagram 
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Loop A Loop 
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Loop 
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S2 
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S60  
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S33 S62 S67 

S3 S34 S63 S68 S85 
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S28 
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| 
| 

S55 

S70 
| 
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S81 
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S124 

S29 S56 S82 S125 

S30 S57 S83 S126 
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(a) 

 

 

 
(b) 

Figure 6-5 Examples of initial positions selections 

 

 Position Control  
Another modification added to typical PSO was the position control, that was applied in the 

IEEE 33 network to prevent the non-feasible positions after updating the particles velocities 

using equations (6) and particles positions (7) and will be applied in this distribution network 

too after adjusting the maximum and the minimum boundaries of particle positions to be 

adopted to this network. These non-feasible positions could occur only when the new calculated 

S66 S2 S32 S60 S84 

S82 S17 S45 S62 S99 
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positions exceed the largest or the lowest switch index in this network. It should be noted that 

the particles positions are represented as switches indices in the distribution network. The 

largest switch index for this network was set to S127, and the lowest index was considered S2, 

as S1 was already excluded from the search space because it is one of the 5 feeders connecting 

the network to the generating source. Instead of just discarding these possibilities as previously 

done in the typical swarm technique, the position control algorithm used in MPSO work on 

correcting this possibility by checking the index value. For example, if the switch index, was 

calculated to be S128, then the position control will adjust the switch index to be S127. On the 

other hand, if the new calculated position was S1, it will be automatically replaced by S2. 

Although this algorithm maintains the particles within the search space, but it could duplicate 

some positions, and only in this case, this possibility will be discarded. The Position Control 

Algorithm is represented in Figure 3-7.  

 MPSO Procedures 
The procedures of MPSO were explained in chapter 3 in Figure 3-7 and Figure 3-8 and they 

are briefly summarized in this section. MPSO is the modification of typical PSO, and then the 

terminologies explained in Table 3-1 are the same used for MPSO. It should be noted that the 

particles positions (𝑋𝑖) are represented as the switches’ indices.  𝑃𝑏𝑒𝑠𝑡  is the configuration 

realizing best fitness function (losses reduction) for the same particle (𝑖); while 𝐺𝑏𝑒𝑠𝑡 is the 

configuration achieving best losses reduction for all the particles in the swarm during one 

iteration. MPSO solution steps are: 

1. Sectionalize the 11kV distribution network to 5 loops as shown in  Figure 6-3 

2. Generate all the possible configurations using tree diagram to select only one switch 

from each of the 5 loops as illustrated in Table 6-4 to generate the whole search space. 

By this way, the search space consists of 3,501,576 configurations. This number was 

calculated by multiplying the number of switches belonging to each of the 5 loops 

[ 29*26*6*18*43]. 

3. Select 50 configurations to be the initial positions after applying the filtration process 

explained in section 6.4.2, by applying losses, voltage and current constraints.  

4. Initialize two counters, the first to count the iterations and the second for the particles 

5. Update the iteration counter  

6. Calculate the losses using (1) and checking current and voltage constraints for each 

particle of the 50 initial positions 

7. Consider the initial positions to be the 𝑃𝑏𝑒𝑠𝑡  if this is the first iteration and then identify 

the 𝐺𝑏𝑒𝑠𝑡  ; if this was not the first iteration, follow the procedures explained in Figure 

3-8 to identify both 𝑃𝑏𝑒𝑠𝑡   for each particle and  𝐺𝑏𝑒𝑠𝑡 for all the particles  . 



  

115 
 

8. Calculate the particle velocities and the positions using (6) and (7) respectively. 

9. Check the iteration counter, if it reaches the maximum stop the algorithm else repeat 

the steps from 5 to 9. 

 MPSO Results for a Winter day (Maximum Load) 

 Losses and Voltage Improvement 

The 11kV distribution network was simulated using IPSA software for losses, load flow 

calculation and optimization technique. The initial ties switches were S13, S34, S64, S82 and 

S105. The calculated losses were 85 kW. After applying the suggested algorithm, the losses 

were reduced to 61.7 kW.  To select the maximum number of iterations required to reach the 

best NOP, 25, 50 and 70 iterations were run for 50 trials for best NOP selection. It was noticed 

that 25 iterations were reasonable choice because during the 25, 50 and 70 iterations test, the 

algorithm gives the same losses value which means that there is unlikely to be a requirement to 

increase the iterations number. Due to the nature of this network, which is an overhead Network 

with many small farms along long lengths of line small impedances between different switches 

in a loop, and low values of loads, in the addition to the stochastic nature of swarm technique, 

the algorithm suggests many configurations giving nearly the same value of optimum losses. 

This is not unexpected and indicates that multiple switch positions would be suitable. For 

Example, to select the tie switch in loop A, the NOP suggested by MPSO fluctuates between 

S11 to S21, and this is logical since a zero value of load has been estimated at bus 262042, and 

another small load at bus 201046. The same case is repeated for the selection of the tie switch 

in both loops D and E. In loop D, S79, S80, and S81 are very close to each other, and there is 

no connected load between them. For these reasons there are not much difference in the 

calculation of losses by selecting any of them. In loop E, MPSO oscillates between S110, S111 

and S112; both S111 and S112 are very close to each other's and there is no load connected to 

either of them. The connected load at bus 281148- connected between S110 and S111- is only 

6 kW.  S18, S46, S64, S81 and S110 is an example of the suggested configurations by MPSO 

for reaching the optimum losses for this network of 61.7 kW. Table 6-6 includes the suggested 

NOP and their connected bus in the OHL network. Figure 6-6 shows the convergence of the 

fitness function for the previous suggested configuration to the OHL network during 25 

iterations. This optimum loss was achieved in the 17th iteration. The results were crossed check 

by manually setting the switches suggested by MPSO to be open points and running an IPSA 

load flow without any optimization program. Figure 6-7 shows both the nominal and the new 

normally open points for the 11kV distribution network. Furthermore, it was noticed that the 

suggested NOP configuration improved the voltage profile for the 11kV network. The 

minimum voltage node using the nominal configuration was 0.986 pu at bus 544014. This value 



  

116 
 

has been raised and the new min voltage node becomes 0.999 pu at bus 224920.Figure 6-8 

shows the voltage profile enhancement compared to nominal NOP. 

Table 6-6 New Suggested Ties by MPSO during a Winter day 

NOP From bus Bus Name To bus Bus Name 

S18 201046 The Lodge Winslow Road S 256168  

S46 205975 Whaddon Road 261643 
NEWTON 

LONGVILLE 
WHADDON 

 

S64 265395 Caernarvon Cresent Blet 265392 
ST GEORGES ROAD 

BLETCHLE 
 

S81 242292 BrookFiled Road Newton L 281280 
Brookfield Road 

Newton L. 

S110 224920 Dove Street Stwekley 281148 ---- 

 

 

Figure 6-6 MPSO Fitness Function for the 11kV network 
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 Nominal Normally Open Point  Suggested Normally Open Points by MPSO  

Figure 6-7 Suggested NOP by MPSO for the 11kV network during a winter day 
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Figure 6-8 Voltage Profile Improvement for Maximum Load 

 

 Computational time 

The computational time of MPSO mainly depends on many factors: the generated initial search 

space which is calculated based on the number of switches per each loop, the particles number 

that represents the swarm size and the iterations numbers. The generated initial search space 

for this network was very large and consists of 3,501,576 configurations as explained in 6.4.4. 

To identify both the particles and the iterations number, 50 trials have been run to test the 50 

and 100 particles within 25, 50 and 70 iterations. An inaccurate selection for both numbers 

increases the risk of falling in local optimum solution. It was found that 50 particles within 25 

iterations are enough to reach the optimum solution. The average computational time for this 

network was calculated to be 67 seconds. This time includes the time spent to select the initial 

50 positions satisfying the losses, the voltage and the current constraints for the 11 kV OHL 

network as mentioned in 6.4.2, added to the time spent to perform the algorithm to reach the 

optimum solution. It should be noted that the initial positions are important as they accelerate 

the algorithm to reach the optimum solution in a smaller number of iterations. The 67 seconds 

is a value that is approaching real time and this method offers a feasible means of selecting 

DNR compared to other methodologies such as Genetic Algorithm , Adaptive PSO or Adaptive  

Ant Colony technique that performed their optimum results after being applied for a 135 bus 

test network within 403 , 723 and 391.3 seconds respectively [37].  
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 MPSO Results for a Summer day (Minimum Load) 

 Losses and Voltage Improvement 

The main aim of this section is to apply the MPSO procedures explained in section 6.4.4 for 

the 11-kV distribution network during a summer day to calculate the losses reduction for a 

minimum load. By this way, the losses reduction of this network that could be achieved in 

summer will be studied as well as during the winter. The 3rd of July was selected based on 

Western Power Distribution Company report after simulating the network via IPSA software. 

It was found that the calculated losses using the initial tie switches in summer is 3.36 kW. After 

applying the suggested algorithm to find the best tie switches, the losses were reduced to 2.6 

kW. To select the maximum number of iterations required to reach the best NOP during winter, 

25, 50 and 70 iterations were run for 50 trials for best NOP selection. It was noticed that 25 

iterations were enough as explained previously in section 6.4.4. For this reason, 25 iterations 

were also selected to be the maximum number of iterations to find the best NOP during summer 

too. Due to the nature of this network – previously explained in section 6.4.4. – and the 

stochastic nature of PSO algorithm, many configurations were suggested giving the same losses 

reduction value. [S17, S46, S64, S79, S112] is an example of a suggested configuration for the 

Summer. Table 6-7 includes the suggested NOP and their connected bus in the OHL network. 

Figure 6-9 shows the convergence of the fitness function for the previous suggested 

configuration to the OHL network during 25 iterations. The optimum loss was achieved in the 

17th iteration. The results were crossed check by manually setting the switches suggested by 

MPSO to be open points and running an IPSA load flow without any optimization program. 

Figure 6-10 shows the voltage profile enhancement compared to nominal NOP. Figure 6-11 

shows both the nominal and the new NOP for the 11kV network during a summer load.  

Table 6-7 New Suggested Ties by MPSO during a Summer Day 

NOP From bus Bus Name To bus Bus Name 

S17 256168 ______ 256169 ______ 

S46 205975 Whaddon Road 261643 
NEWTON 

LONGVILLE 
WHADDON 

 

S64 265395 Caernarvon Cresent Blet 265392 
ST GEORGES ROAD 

BLETCHLE 
 

S79 253261 ______ 201093 ______ 

S112 259370 ______ 208052 ______ 
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Figure 6-9 MPSO Fitness Function for the 11kV network during a summer day 

 

Figure 6-10 Voltage Profile Improvement for Minimum Load 

Figure 6-10 shows that the suggested NOP configuration improved the voltage profile for the 

11kV network. The suggested open points raised slightly the minimum bus voltage for the OHL 

network during the summer loads to 1.02028 pu. at node 281148 compared to 1.018 at node 

543732 using the nominal configuration.
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  Nominal NOP  Suggested NOP using MPSO during the summer day. 

 

 

Figure 6-11 Suggested NOP by MPSO for the 11kV network during a Summer day 
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 Computational time 

To calculate the average computational time for the proposed MPSO to reach the optimum 

solution, 50 trials have been performed. In each trial, the losses of the Network have been 

calculated as well as the suggested open points and the time that the proposed algorithm 

undertake to reach this reduction. It was found that the average time that the algorithm is using 

to reach the optimum solution is 35.5 seconds. It should be noted that this time is less than the 

average time that the algorithm undertakes to reach the optimum solution in winter (67seconds). 

 Conclusion 
The main target of this chapter was to confirm that MPSO was as feasible solution for 

undertaking optimization on a real Network as well as on the IEEE networks which is much 

smaller than a real Network. In this case, MPSO was used to investigate DNR for a real 

distribution network for optimum losses reduction. An 11kV OHL of Milton Keynes 

distribution network consisting of 265 branches and 262 bus bars was used and simulated in 

IPSA. MPSO, was suggested in chapter 3 for DNR solution. It is an optimization algorithm 

based on modifying the particle swarm by sectionalizing the networks into many loops and 

integrating tree diagram to formulate a radial search space, then introducing losses, voltage and 

current constraints to filter the initial positions aiming to reduce the number of iterations for 

reaching the optimum NOP. 

It was concluded that MPSO is reaching the optimum solution for the large real distribution 

network with losses reduction of 27.4% during maximum load in a winter day and with 22% 

during a summer day. The calculated minimum voltage point is raised from 0.985 to 0.999 pu 

for the 11 kV OHL network during winter and from 1.018 pu to 1.020 during a summer day. 

The results were cross checked by manually setting the suggested NOP found by each technique 

in IPSA and running a load flow without any optimization algorithm for losses calculation while 

testing the current and voltage boundaries set for this network. It was found that the results were 

identical for both techniques. 

As there were no batteries connected to this Network it is not considered useful to apply the 

battery sizing and location technique as it would not be possible to easily validate this. 

Research Novelty: MPSO was applied to a real distribution Network. during both a winter 

and a summer day for maximum and minimum load. The results show that the MPSO 

method gives good results in a sufficiently time scale to be of practical consideration for use 

on a large Network. 
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7 CHAPTER 7 MINIMUM NODE VOLTAGE METHOD 

COMPARISON 

 Background 
Previously the DNR problem has been defined in chapter 2 and PSO has been modified through 

chapter 3 and chapter 4 to find the best NOP for maximum losses reduction. This technique 

was validated through two case study: the IEEE 33 network and an 11kV distribution network 

in Milton Keynes, UK. It was found that the proposed optimization algorithm reaches the 

optimum losses for both small and large real networks. It was demonstrated that the 

computational time of the algorithm is higher for the 11kV distribution network than the small 

one and this is due to the large search space including several probabilities. In this chapter, an 

adopted Engineering-based technique, Minimum Node Voltage Method (MNV), was 

introduced in [139] under project FALCON “Flexible Approaches for Low Carbon Optimized 

network” managed by the Western Power Distribution (WPD) company. FALCON aimed to 

look at new flexible ways to manage and enhance the distribution network in the future. The 

11kV distribution network of Milton Keynes area was a part of the project. MNV was one of 

the methodologies suggested to be used for finding the best NOP [26] . This method was 

previously used to validate the impacts of DNR as a means of reducing losses and adding 

network flexibility. For this reason, this methodology was validated against the IEEE 33 

network as well as the 11 kV OHL network to compare the results found by the proposed MPSO 

to MNV in respect to losses reduction, voltage improvement and the computational time. 

 Min Node Voltage Method (MNV) Concept  
Minimum Node Voltage method is an adaptation of the sequential opening method. Both start 

by meshing the network initially by closing all the existing ties. The sequential method sorts 

the branches having the lowest power and start by opening one branch at a time, through many 

load flows runs until reaching the required number of ties. In contrast, MNV carries out a single 

load flow analysis, and the lowest nodes voltage having more input current than outputs were 

determined. Examples of the minimum node voltages are included in Figure 7-1. In this figure 

different cases are included. In this figure, bus 2  is considered a minimum node voltage for  

different Network configuration types described in Figure 7-1(a) , Figure 7-1(b) and Figure 

7-1(c).  Figure 7-1(a) illustrates the minimum voltage node at bus 2 where two branches 

carrying reverse currents flow are feeding a single load. Figure 7-1(b) shows two branches 

carrying two reverse current supplying a third branch. Figure 7-1 (c) is an example of a node 

having three input branches feeding a single load. Figure 7-1 (d) is a distribution point so it 

could not be selected as a minimum node. The branches connected to these minimum node 
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voltages having the lowest power flow are established. Once the right number of NOPs is 

reached, the new configuration is announced. MNV procedures are shown in Figure 7-2. 

 

 

Bus 1 Bus 2 Bus 3 

 

 

Bus 1 Bus 2 Bus 3 

 

   Bus 1 Bus 2 Bus 3 

 

Bus 1 Bus 2 Bus 3 

 

 

 

 

 

 

 

 

 

 

 

 

Bus 4 
(d) Bus 4 

(c) 
Load 

Load 
(a) 

Bus 4 
(b) 

Identify the number of connected adjacent branches to each node 

Select the minimum nodes voltage having more inputs than outputs 

Identify the branches having the minimum power at each node and set 

them as the new NOP 

Meshing all the network 

Run a single load flow analysis 

Calculate the voltage per each node 

END 

Start 

Rerun a single load flow analysis & Calculate the losses 

Figure 7-2 Minimum Node Voltage Method Procedures 

Figure 7-1 Examples of minimum nodes voltage in a distribution network 
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 Case Study 1: IEEE 33 Network Reconfiguration using MNV 
The minimum node voltage method was validated against two case studies, the first is the IEEE 

33 network and the second is the 11kV distribution network by running the Network in the 

original configuration, then changing the Network and running in the configuration suggested 

by the following method.  

 MNV Validation 
The IEEE 33 network shown in Figure 3-1 was described in section 3.2. It consists of 32 closed 

switches and 5 NOP. The initial ties switches were S33, S34, S35, S36 and S37. The initial 

losses for the test network were calculated 193.6 kW. Unlike the proposed MPSO, either 

sectionalizing the network in loops nor voltage and current limits were considered in the MNV. 

The new NOP for the IEEE network were found by following the procedures explained in 

Figure 7-2. A python script has been coded to validate the MNV using IPSA for losses and 

computational time calculation. The IEEE 33 network was initially meshed. Then a load flow 

study has been performed using IPSA to identify the minimum voltage nodes within the 

distribution network. The minimum voltage nodes for the IEEE 33 network are circled in  

Figure 7-3. These nodes are bus 11 connected to S10 and S11, bus 15 connected to branch S14, 

S15 and S34, bus 29 connected to branch S37, S28 and S29, bus 32 connected to branch S31 

and S32, and bus 8 connected to branch S7, S8 and S33. After identifying the nodes having the 

minimum voltage, the adjacent branches connected to these nodes having the lowest power 

were selected to be the new NOP. The power of the adjacent branches connected to the 

minimum nodes are illustrated in Table 7-1 .The suggested new NOP based on MNV (S7, S10, 

S14, S32 and S37) are shown in Figure 7-4. The losses are reduced to 137 kW calculated in 

0.16 seconds. This value of losses has been checked by switching off the suggested new ties 

manually and running a load flow. The losses obtained were identical to the calculated by MNV 

under the same load conditions. 

Table 7-1 Suggested branches to be NOP based on MNV for the IEEE network 

 

 Bus 11 Bus 15 Bus 29 Bus 32 Bus 8 

Branch S10 S11 S14 S15 S34 S37 S28 S29 S31 S32 S7 S8 S33 

Power 

(MW) 

0.01 0.027 0.042 0.21 0.23 0.36 0.37 0.62 0.26 0.06 0.26 0.36 0.31 

NOP S10 S14 S37 S32 S7 
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  Minimum Node Voltage 

 

 

  

Figure 7-3 Minimum Voltage Points for the IEEE 33 network 
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 Minimum Node Voltage  Suggested NOP  

 

 

 Comparative Study  
The IEEE 33 network was studied using two different techniques; The first is the Minimum 

Node Voltage method, which is an example of an engineering-based methodology. The second 

is the MPSO, example of an optimization algorithm, previously explained in chapter 3. Both 

techniques have been cross checked by manually opening the suggested NOP and running a 

load flow for losses calculation using IPSA. The main aim of this section is to compare the 

results found by both the MNV and the MPSO for the same working network under the same 

Figure 7-4 Suggested NOP for the IEEE 33 network 
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load conditions. It was demonstrated in chapter 3 that MPSO has achieved the optimum losses 

by proposing S7, S9, S14, S37 and S32 as new NOP for the IEEE 33 network. This tie switches 

configuration is very closed to the NOP suggested by MNV shown in Figure 7-4 (S7, S10, S14, 

S37 and S32).  

 Losses and Voltage Improvement 

Following the MPSO procedures described in Figure 3-7 and Figure 3-8 , the losses of IEEE 

33 network was reduced as previously noted in chapter 3 in section 3.5 to 136.36 kW reducing 

29.68% of the initial value. This value is slightly less than the losses reduction achieved by Min 

Node Voltage method that decreased the losses to 137 kW. The main reason for this that both 

methodologies suggested 4 similar NOP (S7, S14, S37, S32). The 5th tie is different as the 

heuristic technique proposed S10 while the optimization technique recommended S9, because 

S10 has less power compared to S9 as shown previously in Table 7-1. 

Losses reduction is not considered the only benefit gained from DNR but also the voltage 

improvement. Both techniques the MPSO and MNV have improved the voltage profile of the 

IEEE 33 network similarly as shown in Figure 7-5. In this graph, the minimum bus voltage 

after reconfiguration using both MNV and MPSO raised to 0.94 at bus 32 instead of 

0.918 at bus 18 before reconfiguration in the initial case as demonstrated earlier in 

chapter 3. Figure 7-6 shows the initial NOP of the IEEE 33 network compared to the NOP 

obtained by the MNV and the proposed MPSO. 

 

Figure 7-5 Voltage Profile Improvement Comparison 
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 Nominal   The proposed 

MPSO 

 Min Node Method 

 

  

 Computational time 

The losses reduction and the computational time are considered the main factors deciding the 

performance of any algorithm applied in the DNR. MNV is a knowledge-based technique based 

on engineering expert and for this reason, the NOP configuration found was based on a single 

load flow. Unlike the proposed MPSO, which is a probability-based optimization technique 

that used many load flows runs through many iterations to reach the optimum solution. It was 

found that the MNV achieved a very closed losses reduction to the proposed MPSO for 0.16 

seconds. This time is very short compared to the proposed MPSO which takes around 17.5 

seconds.  

Figure 7-6  Comparison between the suggested NOP for the IEEE 33 network 
using different solution techniques 
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 Case Study 2: The 11 kV Network Reconfiguration using MNV 

 MNV Validation  
The 11 kV OHL network, described in chapter 6, is composed of 262 buses and 265 branches, 

fed from two substations. The initial losses for this network was 85 kW. The initial NOP are 

illustrated in Table 6-2 to be S13, S34, S64, S82 and S105. Following the procedures of the 

minimum node voltage methodology shown in Figure 7-2, the 11 kV OHL distribution network 

has been initially meshed. The nodes branches carrying input current more than the branches 

carrying output currents described previously in Figure 7-1, were identified after running a 

single load flow using IPSA.  Figure 7-7 shows the minimum voltage point in the 11kV 

network.  Figure 7-7 (a) shows that the lowest voltage node is at 232208 connected to S21, S22 

and S84. Although bus 232205, bus 266170 and bus 232208 seems to have the same voltage 

magnitude, the lowest is bus 232208 which has a calculated voltage equal to 1.015163p.u. 

compared to 1.015162 p.u. at bus 232205 and 1.01578p.u. at bus 266170. Obviously, it is not 

possible with the level of accuracy of the load flow to assume that this is the correct answer – 

but it provides an indication of the correct location. S21 was selected to be a NOP because it 

has the lowest power rating compared to other adjacent branches. The same steps used to 

identify the first least voltage point and the corresponding NOP are the same procedures 

followed in the rest of the other minimum nodes voltage as shown in Figure 7-7 (b, c, d, e) 

respectively. Table 7-2 represents the adjacent branches linked to each of the lowest voltage 

point showing the power rating of each of them to justify the NOP selection.  

 

(a) loop A 
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Loop B 

 

(a) Loop C 

 

 

(b)  loop D 
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(c) Loop E 

Figure 7-7 Minimum Voltage Point in the 11kV network 

 

Table 7-3 includes the suggested NOP and their connected bus bars areas in the 11kV 

distribution network. It was found that S21, S42, S127, S81 and S109 shown in Figure 7-8 are 

the best NOP, reducing the losses to 69.kW. 

Table 7-2 Suggested branches to be NOP based on Minimum Node Voltage Method 

Bus 232208 247942 296838 242292 244920 

Connected 

branches 

S21 S22 S42 S43 S55 S56 S127 S81 S82 S109 S110 

Power 

(MW) 

0.34 0.49 0.95 0.96 1.97 1.68 0.29 0.04 0.18 0.15 0.2 

NOP S21 S42 S127 S81 S109 

 

Table 7-3 New Ties by Min Node Voltage Method 

NOP From bus Bus Name To bus Bus Name 

S21 232208 Farm A 266170 Farm A 

S42 247941 Farm B 247942 ---- 

S127 296838 ----- 265392 --- 

S81 242292 ----- 281280 Brookfield Road Newton  

S109 224920 Dove Street Stwekley 250484 ---- 
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 Nominal NOP  NOP found by MNV 

 Figure 7-8  Suggested NOP by Minimum Node Voltage Method for the 11kV network 
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 Comparative Analysis  
The 11kV distribution network has been studied using the Min Voltage Node method and the 

proposed MPSO explained in chapter 6 for investigating using DNR for losses reduction. The 

main aim of this section is to compare the results found by both the MNV and the proposed 

MPSO for the same working network. As previously explained in chapter 6, MPSO starts by 

sectionalizing the network into 5 loops (A, B, C, D, and E) as described earlier in Figure 6-3. 

The elements of each of these loops were included in Figure 6-4. Sectionalizing the network 

helped to generate the search space for the proposed MPSO based on tree diagram which 

guarantee the generation of radial NOP selection as it selects a single switch from each loop. 

Examples of generated NOP configurations based on tree diagram were included in Table 6-5. 

Losses reduction was the primary goal for this study. The network has been simulated via IPSA 

and the best NOP found from both techniques (MPSO and MNV) have been cross checked by 

manually setting them open points and then running a load flow without any optimization 

algorithm. It was demonstrated in chapter 6 that MPSO has reached the optimum losses via 

many configurations due to the nature of the network, which is an overhead Network with many 

small farms along long lengths of line small impedances between different switches in a loop. 

S18, S46, S64, S81 and S110 is an example of configurations suggested by the proposed MPSO 

achieving the optimum losses as previously mentioned in chapter 6 in section 6.4.5. In this 

chapter, these tie switches configuration, will be compared with the NOP suggested by the 

MNV (S21, S42, S127, S81 and S109) with respect to losses reduction, voltage improvement 

and computational time. 

 Losses and Voltage Improvement 

Table 7-4 compares between the NOP in the nominal case and the NOP by each method and 

their corresponding losses. It is noticed that both techniques suggested S81 to be a NOP, but 

the rest of suggested NOP are different but very closed to each other. Both techniques gave 

similar percentage of losses reduction of 29 % for the IEEE 33 network. The proposed MPSO 

surpassed the MNV for the 11 kV OHL network reaching 61kW compared to 69 kW achieved 

by MNV. The main reason for obtaining very close NOP locations is the nature of this network 

having low values for impedance and connected loads between the switches.  Figure 7-9 shows 

the locations of the non-identical NOP found by both techniques in loop A, B and C and E 

respectively. For Example, S18 is selected to be best NOP for loop A by MPSO while S21 is 

considered the best open switch for the same loop by the min node voltage method. They are 

geographically and electrically close to each other as they are separated by a low value of 

impedance and only 1 kW of load located at bus number 201046 as shown in Figure 7-9 (a). 

The same case is repeated for loop B , C and D  as shown in Figure 7-9 (b,c,d); In loop B, S46 

and S42 are separated by very low impedance and although there are different loads located at 
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bus number 247942, 256290 and 256291, but their sum is 39 kW. In loop C, S127 and S64 are 

both connected to bus number 265392 from different sides and the same case is repeated in 

loop E. 

Table 7-4 Best NOP for the 11kV distribution network 

 A B C D E Losses kW 

Nominal S13 S34 S64 S82 S105 85 

MPSO S18 S46 S64 S81 S110 61.7 

Min Node Voltage S21 S42 S127 S81 S109 69 

 

 

 

 

 

 

 

 

Loop A 

 

 

 

 

 

 

Loop B 
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Loop C 

 

 

 

 

 

Loop E 

 NOP found By Min Voltage 
Method 

 NOP found by 
MPSO 

 

 

Figure 7-10 shows both the nominal and the optimum NOP found by both techniques in the 11 

kV OHL distribution network. Figure 7-11 compares between the voltage improvement in the 

11kV network through the nominal NOP and the open ties suggested by both techniques. It is 

noticed that the minimum voltage node using the nominal configuration is 0.986 pu at bus 

544014. This value has been raised and the new min voltage node becomes 0.999 pu at bus 

224920 by both techniques. 

 Computational time 

The computational time for the technique is significant only in case of validating DNR online. 

Since MNV is a based engineering technique, that depends on a single load flow operation. It 

suggests the NOP in 0.7 seconds. This time is very short compared to MPSO that take 67 

seconds for suggesting the right configuration. This large computational time of MPSO was 

due to the large search space composed of 3,501,576 configurations as explained in 6.4.4.  

Figure 7-9 Non-Identical NOP locations found by both techniques for the 11 OHL 
network 
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 Nominal NOP  MPSO NOP  Min Node Voltage Method NOP 

 Figure 7-10 Optimum NOP by both techniques 



  

138 
 

 

Figure 7-11 Voltage Profile Improvement for the 11 kV OHL network 

 Results Discussion 
The MNV and the MPSO methods have been compared to each other in section 7.4. In this section, 

the difference and the similarities of both techniques are highlighted in   

Table 7-5.  

Table 7-5 Similarities and Differences between MNV and MPSO 

 MNV MPSO 

Similarities 1. Both have been implemented against small and large networks 

2. Both improved the voltage by the same level. The voltage curve 

for the IEEE 33 and the 11kV OHL network have been 

superposed as shown in Figure 7-5 and Figure 7-11. 

Differences 

1. Losses 
Reduction 

Losses have been decreased for 

the IEEE 33 bus by 29.2% from 

the initial value and for the large 

11 kV OHL network by 18.8 %. 

from the initial value. 

Losses have been decreased for the 

IEEE 33 bus by 29.5% from the 

initial value and for the large 11 kV 

OHL network by 27.4%. from the 

initial value.  
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 MNV MPSO 

 

2. Computational 
Time 

Very fast for both small and large 

networks. The computational time 

for the IEEE 33 bus network is 0.16 

seconds and for the 11 kV OHL 

network is 0.76 seconds. 

The MPSO is considered fast 

compared to other algorithms as 

proved in chapter 3. However, 

compared to MNV, the MPSO is 

considered time consuming. The 

MPSO takes around 17.5 seconds 

to reach the optimum losses for the 

IEEE 33 networks. This time has 

been increased for the 11kV 

network to 67 seconds. 

 

Min Node Voltage method is more straightforward compared to the proposed MPSO, also it does 

not require high mathematical optimization backgrounds. Further work is required to prove the 

flexibility of MNV to be used for large networks at this time if they include any extra DGs or storage 

devices. As this is a very fast heuristic method it also offers benefits for real-time DNR. Although 

the MNV reaches a losses reduction value for the IEEE 33 network (137 kW) very closed to the 

optimum results found by MPSO (136 kW) in a very short time (0.16 seconds) compared to the 

computational time consumed by both MPSO (17.5 seconds) or the MSMPSO (9 seconds calculated 

in chapter 4), this technique has some disadvantages that are recommended to be modified: 

1. This technique does not guarantee to keep the voltage nor the current within the limits 

because there are no constraints for current or voltage to control them. 

2. This technique did not find the minimum losses for large distribution network 

3. This technique does need to check that minimum voltage node locations are not adjacent to 

already found existing minimum voltage location or at the end of a feeder and this is complex 

to code with the level of accuracy of the load flow. 

In contrast, the main disadvantage of the MPSO is the time compared to the MNV. For this reason, 

the hybridization of the technique with other algorithms is suggested to accelerate the algorithm. This 

idea has been already presented and implemented in chapter 4 by introducing the Multi Stage 

Modified MPSO that uses Monte-Carlo for enhancing the search space. This hybridization reduced 

the time for the MPSO for the IEEE 33 network to 9 seconds. Although this time is still higher than 

the time used by MNV for the same network (0.16 seconds), but MPSO have the following 

advantages that are not satisfied by the MNV: 
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1. It guarantees radial configurations through Tree Diagram as explained in chapter 3. 

2. This algorithm achieved the optimum losses for both small and large distribution networks 

3. The voltage and the current are kept within the limits due to the given constraints. 

 Conclusion 
In this chapter, a previously used engineering-based technique, the Minimum Node Voltage Method, 

has been explained and compared. The procedures for this technique have been described. Two cases 

studies were used to validate the methodology to suggest the best NOP for maximum losses 

reduction. The first network was the IEEE 33 bus network while the second was the 11kV distribution 

network in Milton Keynes, U.K. The main goal of this chapter was to compare the performance of 

this technique to the proposed MPSO explained previously in chapter 3. It was demonstrated that 

both techniques give very close losses reduction percentage for small network while the MPSO 

surpasses the MNV for the larger distribution network. The MNV is very fast technique compared 

to the MPSO for both working networks. For this reason, it could be applicable for online DNR after 

covering the shortcomings of this technique with respect to both voltage and current limits and radial 

topology. By improving these shortcomings, this methodology could be applied in close to real time. 
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8 CHAPTER 8 CONCLUSION & FUTURE WORK 

 General Conclusion & Innovation 
The main aim of this thesis is to investigate DNR as a method to reduce the active losses in 

distribution network thus helping to research a method to reduce carbon dioxide emissions. Losses 

reduction could defer building of new steam generation units to compensate for the annual demand 

growth rate. Two strategies for reducing losses were considered; network reconfiguration of the 

distribution network and integrating storage devices in the network. This research uses a novel 

approach in the way it considers implementation of both methods in conjunction while at the same 

time considering the impact of variable load. 

Network Reconfiguration is considered a complex stochastic optimization problem and for this 

reason many researchers work on selecting, improving and hybridizing the algorithms suggested for 

finding the best NOP for the distribution network. There are 4 main categories of undertaking 

calculations behind network reconfiguration: the heuristic, the meta heuristic, the mathematical and 

the hybrid technique. Heuristic technique based on expert knowledge gives approximate solution, 

but can be fast to implement, however, they are not preferred method for real Networks. 

Mathematical methods give deterministic solution, but these are hard to apply on large networks 

because the time to solution increases exponentially with the size of the network.  Meta heuristic 

techniques, known as intelligent techniques, are preferred as they give optimum solution but in high 

computational time. Hybrid technique work on integrating many solution methods to obtain the 

optimum solution within a reasonable computational time 

In this thesis, a new technique based on particle swarm optimization algorithm- Multi stages 

Modified particle Swarm optimization technique (MSMPSO)- was developed to find the optimum 

normally open point in the distribution network.  

o The first stage of the technique starts by modifying the basic particle swarm algorithm 

(MPSO) in chapter 3 by generating a search space of radial configurations using the concept 

of tree diagram, filtering the initial positions (by the addition of losses, voltage and current 

constraints) and applying the position control that retain all the particles to be within the 

search space.  

[Novel contribution to knowledge: Modified Optimization technique to decrease the 

search space and increase the performance time] 

o These modifications were validated using the IEEE 33 test distribution network using a static 

load. The results of MPSO were compared to previous researchers that used the same 

network with respect to losses reduction, voltage improvement and computational time. It 
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was found that the MPSO suggests the same configuration proposed by some based PSO 

techniques in a much reasonable computational time, which is still high for real applications.  

[Novel contribution to knowledge: Theoretical validation of Modified Optimization 

technique and comparison to other solutions] 

As the load is not static but continually varying, a Monte Carlo technique was 

integrated to MPSO to test its flexibility to respond to variable generated load.  

[Novel contribution to knowledge: Integration of Monte-Carlo load variations in conjunction 

with a modified particle swam algorithm] 

o The results of the Monte-Carlo analysis showed that despite a random variation in load that 

only a small subsection of switches was ever utilised. This resulted in a further development 

of the MPSO called the Multi Stage Modified Particle Swarm Optimization, MSMPSO, 

which use Monte-Carlo analysis to further reduce the search space and improve the 

performance time. 

[Novel contribution to knowledge: Integration of results of Monte-Carlo analysis to further 

reduce the search space of the MPSO algorithm] 

o It was concluded that both MPSO and MSMPSO suggests the same optimum configuration 

for the IEEE 33 network and hence same losses reduction, but in a lower computational time 

reaching only 9 seconds enhancing the convergence of the algorithm and confirming its 

ability to respond to variable load aiming to be implemented in real network. 

The second method suggested for losses reduction is the integration of storage units in the distribution 

network described in chapter 5. To help with this both the size and the location should be correctly 

considered because inaccurate capacity or site could represent an extra burden on the power system. 

The majority of previous research studied the sizing of BESS from three points of views: facilitating 

the integration of renewable energy, planning purpose and for peak shaving and load leveling. This 

thesis looked at the problem in conjunction with DNR. 

The work presented in this thesis is different because it studies the optimum size and site for 

integrating BESS in the presence of an active distribution network focusing primary on losses 

reduction. In other word, the best size and site for BESS is calculated while keeping the flexibility 

of changing the NOP for maximum losses reduction. For achieving this, it was suggested to use 

Monte Carlo technique for sizing five different batteries, one per each loop of the IEEE 33 network, 

while finding the best NOP using MPSO.  
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This thesis suggests an operational mode that includes both modes simultaneously considering 

uploading off-peak load during charging mode and peak load during discharging operational mode 

to have a full picture for decision making process. 

 [Novel contribution to knowledge: The development of a new method of sizing energy 

storage in a system in conjunction with DNR] 

It was concluded that mixing both strategies together, the optimum selection of NOP while 

integrating storage units with suitable size and location reduced the losses from 193 kW at the initial 

case to 116 kW and 114 kW in discharging and charging mode respectively for the IEEE 33 network. 

The voltage has been raised from 0.91 p u initially to 0.945 p u. 

By this way the main target of this thesis to look at ways of reducing losses and carbon dioxide 

emission reduction have been studied and validated through the IEEE 33 distribution network. To 

check the ability to validate this for real network, an 11 kV OHL distribution network was used in 

chapter 6. This network is larger than the test network used before, consisting of 262 buses and 265 

branches.  

[Novel contribution to knowledge: The use of MPSO in investigating loss reduction on an existing 

11kV distribution Network] 

The MPSO, which is a modified version of particle swarm algorithm and represents the first stage of 

the new developed technique, Multi Stage Modified PSO, has been tested through the OHL network.  

o It was found that MPSO reach the optimum solution for both small and large network with 

calculated losses reduction of 29.5 % and 27.4% respectively using maximum load. 

o The computational time of MPSO varies from small to large network. In the IEEE 33 

network, the average computational time reached 17.5 seconds compared to 67 seconds for 

the 11kV network for maximum load. The main reason for this is the large search space used 

for selecting the initial position. This search space is mainly depending on the number of 

branches connected to the nodes. In the IEEE network, the search space includes 16128 

configurations compared to 3,501,576 in the 11kV network. 

o The minimum calculated voltage has been raised from 0.98 to 0.99 pu using maximum load. 

Since it is expected that MPSO and MSMPSO reach the same optimal value of losses as was proved 

through chapter 3 and 4 before, only the MPSO was used on the real network.  The results generated 

by this have been compared to those produced using heuristic method based on engineering 

background called, Min Node Voltage method. 
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[Novel contribution to knowledge: comparison of minimum voltage method with MPSO 

method on an 11kV Network] 

The Minimum Node Voltage point has been compared in chapter 7, using two distribution networks, 

the IEEE 33 bus network and the OHL network using the same load for MPSO. A comparison was 

held between the MPSO, which is based on intelligent algorithm and the minimum node voltage 

method, which is based on engineering background, showing the similarities and the differences of 

both techniques after being validated for both distribution networks.  It was demonstrated that both 

the heuristic and intelligent methods give very close losses reduction percentage for small network 

while the MPSO surpass the MNV for the larger distribution network. under same load conditions. 

Both achieved nearly the same voltage improvement for the same portion of the network under the 

same load conditions.  

The main contributions of this thesis are summarised in the following points: 

1. Integrating the concept of tree diagram method to the sectionalizing of the distribution 

network to formulate a determined search space for the basic particle swarm algorithm 

instead of using random switches. 

2. Filtering the initial positions selection by adding the constraints to improve the selection of 

particle positions in the early iterations and hence accelerate the algorithm.  

3. Developing a modified optimization technique, Multi Stage Modified MPSO, composed of 

three stages to benefit from the modifications added to the basic swarm algorithm in the first 

stage, test the flexibility to respond to variable load by the addition of Monte Carlo algorithm 

in the second stage and then reduce the computational time through the third stage.  

4. Sizing and allocating the batteries storage devices in the distribution network while keeping 

the flexibility to optimally reconfiguring the network for minimum losses and CO2 reduction. 

5. Comparing the developed MPSO to Minimum Node Voltage method using both test and real 

distribution networks through the IEEE 33 and the 11kV OHL distribution network. 
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 Future Work 
This thesis presents different strategies for losses reduction in a distribution network. However, the 

following list gives a selection of ideas that could be considered for further work: 

Theoretical Analysis 

• In this research, the losses reduction was considered the main objective function for network 

reconfiguration as it is very correlated to carbon dioxide reduction. In this point another area 

could be considered by studying, the fault level, and the number of switching. 

• The network reconfiguration has been merged with the integration of battery storages for 

maximum losses reduction in distribution networks. There is another scope to study the 

combination of both to demand side management for optimum benefit. 

• In this work, Monte Carlo Simulation- example of a statistical technique -is used to look for 

the best size for storage batteries that should be integrated in the distribution network. The 

next step in this area is to study the best sizing using an optimization technique and then 

compare with the results found by Monte Carlo in term of losses reduction assuming having 

the same percentage of storage energy share. 

• The siting procedures used in this work are valid for small networks because after calculating 

the capacity of each loop, and after simplifying the search space, all the probabilities have 

been studied to decide the optimum bus to locate the storage device per loop.  Further 

theoretical study needs to be applied in case of large distribution networks. 

• There is scope for future work to look at the cost study of the addition of 5 storage batteries 

for the IEEE 33 network. In this research point, the type of the suggested storage batteries is 

required to be identified, and then a compulsory industrial research should to be undertaken 

to know the price of both the batteries and the power electronics converters that must be 

included. Then a payback study is required to know the total economic benefit compared to 

losses reduction.  

•  This research assumes that the battery charge and discharge at its maximum power rating 

and efficiency is inherently dealt with by assuming that the time of charge/discharge is 

adjusted.  There is a need to extend the study to consider the following constraints: 

o Maximum power injection 

o Daily charging and discharging cycles 

o Daily Stored Energy  

o Efficiencies of the energy storage system 

• More theoretical analysis is required to modify the shortcomings of Minimum Node Voltage 

technique by including both the power flow and the radiality constraints to guarantee the 

secured operation while being implemented for distribution networks.  
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Real Network Validation 

• Although it is expected that the Multi Stage Modified Particle Swarm Optimization gives 

the same losses reduction for the 11 kV OHL network achieved by MPSO, but there is a 

need to know how much this technique will be effective in computational time reduction. 

• In General, this thesis targets the losses reduction in distribution network by investigating 

the DNR in conjunction with sizing and allocating the storage units as a proposed solution 

strategy. Initially, DNR has been studied against two distribution networks. However, the 

combination of sizing and allocating the storage devices in the presence of an active DNR is 

only validated using the IEEE 33 bus network. Further work is certainly required to validate 

this combination against the 11 kV OHL network for improving the losses reduction obtained 

by changing the NOP. 

• Running a field trial for sizing and allocating battery storage units simultaneously with DNR 

in distribution networks would be desirable as a final validation. To undertake such a trial 

the following would need to be considered: 

o The practical network should be well understood and sectionalised into loops  

o Locations of practical DNR switching should be identified to help reduce search 

spaces further. 

o The load and any primary feeders should be continuously measured to get good 

historical data and close to real time data. 

o The methodology described within this thesis should be used to size and locate 

energy storage at a fixed value along with relative DNR location for different 

historical loads. 

o The nearest practical battery storage locations to those decided optimally should be 

selected - taking into consideration the requirement to be distant from people from 

a noise perspective.  

o The battery storage should be charged at low load and discharged at high load and 

recorded load at each substation and within each storage unit should used to 

determine the DNR open switch configuration in close to real time from those 

practically available and calculate the theoretical saving in losses.  

o This theoretical value should be compared to any reduction in the feeder loads to 

help establish if the loss reductions are practically occurring as expected. A week on 

and week off type operation is suggested so that performance without the DNR and 

energy storage can be compared. 
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Abstract  
 
The uncertainty in fuel cost, the ageing of most existing grid, the 
lack of utilities’ supply capacity to respond to the increasing load 
demand, and the lack of automatically power restoration, 
accelerate the need to modernize the distribution network by 
introducing new technologies, putting the smart grid (SG) on spot. 
The aim of this paper is to carry out a detailed survey of the major 
requirements of (SG) and discuss the operational challenges 
arising from the integration of distributed generation (DG) in 
distribution networks (DN). These requirements dictate the 
necessity to review the energy and communication infrastructure, 
the automatic control, metering and monitoring systems, and 
highlight the features of smart protection system for a robust and 
efficient distribution grid. In addition, the paper aims to classify 
the energy storage systems (ESS) and explain their role for 
utilities, consumers and for environment. This includes the 
pumped hydro systems (PHS) and compressed air systems (CAS), 
battery energy storage systems (BESSs), double layer and 
superconductive capacitors, and electric vehicles (EVs). Since 
BESSs emerged as one of the most promising technology for 
several power applications, the paper presents an overview of 
their main features, management and control systems and 
operational modes. A survey about the utilization of BESSs in 
power system is presented. 

Key words 
 
Smart Grid (SG), Energy Storage systems (ESS), Battery 
Energy Storage Systems (BESS), Battery Management 
Systems (BMS), Battery Storage Applications. 
 
1. Introduction 
 
Existing power grids are generally unidirectional, used to 
carry power from central generating stations to area with a 
large number of customers. Most generating stations 

operate at low efficiency not exceeding 40% and without 
recovering wasted heat. This hierarchical topology of 
power network coupled with lagging investments in 
infrastructures could decrease the system stability in case 
of any rise in electric demand. The fluctuation in fuels cost, 
together with the inability of the of utility companies to 
expand their generation capacity in line with the rising 
demand for electricity, accelerate the need to modernize the 
distribution network by introducing new technologies that 
can help with the demand side management and revenue 
protection making the network smarter to operate. Smart 
grid is a network that uses information, cyber secure, 
communication technologies, and computational 
intelligence to create an automated and distributed 
advanced energy delivery network to achieve a safe, 
reliable, efficient, and sustainable system. It coordinates 
the need and capabilities of all generators, grid operators, 
end users, and  electricity market stakeholders to operate 
all part of the system as efficiently as possible,  minimizing 
costs and environmental impacts while maximizing system 
reliability, and stability [1].The “Two way flow of electric 
power’’, which is one of the major characteristic of this 
kind networks, means that the electricity could be 
generated in the distribution grid benefiting  from power 
generation by using solar panels ,wind turbines or other 
sources of renewable energy. By this way, the electricity 
can also fed back into the grid by users. The SG could 
respond to events that occur anywhere in the grid, such as 
power generation, transmission, distribution, and 
consumption, and adopt the corresponding strategies [2, 3]. 
Table I gives a comparison  between existing grid and SG 
. 
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Table I. Comparison between existing and smart grid 

 
 Traditional Grid Smart Grid 

Communication One Way Two Way 
Generation Centralized Distributed 

Sensors Few Throughout 
Monitoring Manual Self 
Restoration Manual Self  
Reliability less reliable 
Efficiency less high 

Oil consumption high less 
CO2 emission high less 

Consumers Choices Few Many 
Cost less high 

Protection Failures and 
Blackouts 

Adaptive and 
islanding 

 
The paper is organized as follows:  compression between 
current and the suggested smart grid. A highlight of the 
main requirements of a smart grid. It also gives an 
explanation of the role of energy storage systems in power 
system application for utilities, environment as well as for 
consumers. It classifies the different categories of energy 
storage systems and an overview of battery energy storage 
system. A section explains the features of a battery 
management system and finally a review of the different 
applications of battery storage schemes in power system. 
 
2. Smart Grid Requirements 

 
A SG consists of five subsystems:  Energy Infrastructure, 
Smart Metering System, Communication System, 
Monitoring, Management and Automation system and 
Smart Protection system [3]. Each subsystem will be 
briefly discussed in the following sections. 
 
A. Energy Infrastructure 
 
The bidirectional flow of power in Smart grid does not only 
lie on the conventional generation stations, but also it 
introduces the concept of generation in distribution system. 
In spite of this increases the flexibility and reliability of the 
system, it complicates the power flow. Distributed 
generations (DGs), virtual power plants (VPP) and micro 
grid (MG) are considered to be the main elements of SG 
energy infrastructure. A brief description of each element 
is given below. 
 
1) Distributed Generation (DGs) 
 
The DG takes advantages of distributed energy resources 
(DER), such as wind and solar panels, with aim to improve 
the power quality. Each DER is connected to the power grid 
via power electronic devices and a switching power 
interface to control the current drawn to the SG [4]. DG has 
their own associated devices for communication, power 
flow monitoring, smart metering systems, protection 
equipment, energy storage systems, automatic voltage 
control, and dynamic line rating. Nonetheless, the 
integration of DGs in the power network is not problem 
free. Their high integration could cause wide fluctuations 
resulting from the renewable resources on one hand, and 

insulation damage to equipment when the voltage increases 
on the other hand. 

 
2) Virtual Power Plants (VPP) 

 
Due to the associated operational problems of DGs 
integration, it is necessary to develop active control 
strategies to facilitate their integration. Otherwise; the 
distribution network could face a lot of operational 
problems. For such reason, the Virtual Power Plant (VPP) 
is presented to facilitate and control the DGs in the 
distribution network.VPP, represented in figure 1 is an 
information and communication system with centralized 
control over an aggregation of distributed generation, 
controlled loads, and storage devices. Its main role is the 
management of the electric flow of energy within the main 
grid [5] 
 

 
Figure 1 Virtual Power Plant 

 
 
3) Micro grid (MG) 
 
Another requirement for DGs integration, is the micro grid 
(MG), as shown in figure 2, which consists of different 
distributed power sources at low voltage side of the 
distribution network, which could be operated into two 
modes [3,6]. The first is in grid mode, where the customers 
share power generated from their DGs with the main grid. 
The second mode is islanded mode. In case of emergency 
or power shortage, the MG shift to islanded mode 
automatically, where the customers are disconnected from 
the main grid, but still could be supplied from their DGs. 
This ability of islanding mode could provide a high level of 
reliability in case of any disturbances. However, the control 
of large number of DGs is facing many operational and 
technical problems such as the bidirectional power flow in 
grid connected mode, the frequent change of voltage and 
frequency during the connection and disconnection of DGs, 
and few others. For this reason, many control schemes [6] 
and protection approaches [7] should be investigated to 
maintain a high level of power quality, stability, power 
flow balancing and reliability. 
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Figure 2 Micro-grid 
 

 
B. Smart Metering System 
 
In SG, power consumption information needs to be 
gathered, integrated and analyzed for optimum decision 
making on both consumer and utility side. Therefore, 
metering, monitoring and communication systems should 
be upgraded and modified for a secured, précised 
information system. Automatic Meter Reading (AMR) is 
introduced for one-way communication grid, for 
automatically collecting the consumption and the data from 
the energy meters and sending them to a central data base 
for billing, troubleshooting and analyzing [2, 3]. Due to its 
one-way communication, the utilities could not take any 
online corrective action based on the measurements 
received from the meters. Thus, this type of meter does not 
support the transition to smart grid. Automatic Meter 
Infrastructure (AMI) is then introduced for two-way 
communication systems. By this way, utilities can meet 
their basic target of load management and instantaneous 
information about load demand for a better power system 
operation. Smart Meters (SM) are similar to AMI, and 
sometimes they could be considered the most essential 
component of the AMI. They record information hourly or 
sub- hourly and send the gathered data to utilities for power 
generation and distribution decision making with 
information feedback to encourage customer to reduce 
consumption.  
 
C. Communication System 
 
Communication systems in SG should support the 
bidirectional flow of power and information between the 
different sections in SG, as it enables system sensing and 
monitoring, utility and customers’ linkage to detect the real 
time demand, and self-correction capability in case of any 
failure. The main requirements and the challenges of 
communication systems in SG, such as the quality of 
service, reliability, security, and scalability are discussed in 
[4]. SG communication systems could be wired or wireless. 
Installing large wired communication system for 
monitoring the power grid costs time and money. 
Moreover, whenever any fault occurs in the system, 
communication becomes difficult, sometimes even 
impossible. Only wireless sensor network can resolve this 
kind of problems. Low cost wireless sensor has paved the 
way for grid automation, real time monitoring and remote 
control of system elements such as primary and secondary 
sub stations, power lines, capacitor banks, feeder switches, 
fault indications and other physical facilities. Wireless 
Sensor Networks (WSNs) with their affordable low cost 

and numerous desirable features enable utilities to monitor 
their remote facilities any time with applications such as 
Supervisor Control and Data acquisition System 
(SCADA). 
 
D. Smart Monitoring, distributed automation and 
management System 
 
Distributed automation (DA) is the use of SCADA for the 
remote monitoring and control of the distribution network 
[8]. It also integrates the real time operation information, 
grid structure, equipment status, customer automation 
control, data communication and information management, 
that realize the efficiency and reliability improvement on 
one hand and the management of distribution grid on the 
other hand due to the flexible control. Network 
reconfiguration, fault Identification, service restoration, 
load management, load shedding and others are the 
application of distributed automation in SG  
[8]. Management in SG is an essential application of DA in 
SG. It mainly focus is onto three goals: the first goal is 
energy efficient and demand profile improvement through 
shifting, scheduling or reducing the demand in order to 
reshape the demand profile in peak hours [3], the second 
goal is minimizing the energy losses which is very 
challenging due to the integration of renewable resources 
and distributed generation, the third goal is the reduction of 
CO2 emission for a secured green environment, through an 
optimized cost for utilities. However, minimizing 
generation cost is not directly equivalent to minimum 
emission as the cost of renewable energy source is not 
always the lowest. In order to realize the previous 
management objectives, optimization and intelligent 
systems, and other tools are reviewed in [3]. 
 
E. Smart Protection System 
 
A smart protection system should have many 
characteristics to improve the reliability, the stability and 
the security of power system [3]. A smart protection system 
should have: 
 

1. Predictive ability to prevent failures from 
happening by expecting the weak points in the 
network such as the failures due to load 
fluctuation, the thermal capacities of generators 
and others.   

2. Self-correction capability after a fault by locating 
the fault and isolating it to avoid cascade failures. 

3. Automatic network reconfiguration by finding all 
the plans to supply the customers to avoid outage 
considering the radial configuration, minimum 
losses and the minimum time of restoration 
through changing the state of the switches by 
employing optimization and intelligent 
techniques.  

4. Maintain the power system reliability by reducing 
the impact of DGs on the grid without scarifying 
the system reliability.   

5. MG protection, as they could work in two modes 
in grid and in islanded mode. New protection 
schemes are developed in this area [7] 
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6. The ensure security and privacy to prevent 
attackers from penetrating the software and 
getting access of control to destabilize the grid in 
unpredictable way. 
 

3. Energy Storage System Role  
 
This section discusses the features of integrating the 
advanced electric energy storage technologies for both 
utilities and consumers side, taking into account the impact 
on the consumer the environment, as represented in figure 
3. The following points highlight the benefits aimed to be 
achieved through energy storage systems [9]: 
 

 
Figure 3 EES role in power system 

 
 

1. Reducing generation cost is one of the major 
benefits of the integration of ESS into the utilities, 
by storing the electric power generated of the less 
cost plants during night and discharges them 
during peak hours maintaining a secured 
continuous supply for all customers.  

2. Another target of ESS, is keeping the reliability 
and the continuity of power supply. Many electric 
utilities proposed the renewable energy resources 
as alternative resources. The uncertainty of these 
resources is considered one of their main 
challenges, as they depend on weather conditions. 
Then ESS could store the energy when it is 
available and used when it is needed. By this way 
they could minimize the environmental impacts 
caused by the combustion of fossil fuels during 
the traditional generation process, reducing the 
fuel used on one hand, an reducing the 
environmental and the global warming problems 
on the other. 

3.  ESSs could also be used by the utilities to ensure 
the electric power system stability under the 
unexpected load demand and generation 
conditions. They could replace the online 
spinning reserve that is synchronized to the grid 
and supplied by part loaded generators operating 
at reduced efficiency, thus, reducing the thermal 
losses and the inefficient operation of the part 
loaded generators. 

4. In addition, ESSs are not used only to mitigate the 
short-term power loss as they are commercially 
available and cost effective such as 
uninterruptable power supply (UPS), but also, 

they could be installed as a substitute for 
emergency generators during an outage. 

5. Furthermore, considering the consumers side, 
they could also benefit by using the electric 
storage systems in the off peak as low-price tariff, 
and discharging the energy when the demand is 
high. This is known by electrical energy time 
shifting. This could lead to an efficient utilization 
of energy as they could reduce the cost of their 
electric consumption bill on one hand, and it is 
known by End User Energy Management. On the 
other hand, ESS system owners could benefit by 
selling the stored energy to other customers or to 
the electric utilities in the peak hours, which they 
could benefit financially from their storage 
batteries. 

 
4. Energy Storage Systems Selection & 

Classification 
 

Currently, there are two factors that characterize the 
selection of an ESS [10]. The first is the energy that could 
be stored in the device. The second is the rate at which the 
energy could be transferred in or out the device. The 
appropriate selection is based mainly on the application 
requirements response time, energy storage, efficiency 
required, and life time as illustrated in table II. 
According to [9], the ESS is classified into 5 categories: 
mechanical, electrochemical, chemicals, electrical and 
thermal as shown in figure 4. The following section 
discusses the most common three storage systems used for 
power applications.   
 

Table II  ESS selection consideration [11] 

 
 
A. Mechanical Energy Storage system 

 
1) Pumped Hydro System (PHS) 
 
PHS, shown in figure 5(a), uses two water reservoir storage 
areas, one above the other, to store energy. This is done by 
pumping water from the lower one to the upper one during 
off-peak periods and then, during peak-load hours, 
allowing the water to flow from the upper reservoir to the 
lower one, turning a generator and converting the hydro-
potential energy into electricity. Their long-life time and 
their high efficiency are the main advantages. However, the 
dependence on topographical conditions and large land use 
are considered the main drawbacks [9, 10, and 12]. 
 

EES Role in Power System
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Power Quality
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2) Compressed Air Energy System (CAES) 
 
CAES, shown in figure 5(b), uses excess power generated 
by power stations to compress air during off peak periods. 
During peak periods this air is then decompressed in a 
compression chamber before being fed to turbines, 
increasing energy production during peak periods [9, 12]. 
Their advantages could be summarized in their large 
capacity to store the electric energy, their low trip 
efficiency and their geographic locations are their main 
disadvantages [9]. 
 

 
Figure 4 ESS Classification 

 
 3) Flywheels 
 
Flywheels, shown in figure 5(c), uses off peak energy to 
rotate a rotor attached to a wheel within a vacuum. Energy 
is conserved in kinetic energy until it is needed during high 
demand period; this energy is used to generate power [12]. 
They take up relatively little space, have lower 
maintenance requirements compared to batteries, and have 
a long-life span [13]. However, flywheels have a high level 
of self-discharge due to air resistance and bearing losses 
and they suffer from low current efficiency [9]. 
 

 
Figure 5 ESS Categories 

 
 
B. Electrochemical Storage Systems 
 
Electrochemical storage systems, shown in figure 5 (d), are 
divided in two types: secondary battery, and flow batteries. 
Secondary batteries store energy in chemical during 
charging and discharge electrical energy when connected 
to a load. Flow batteries are rechargeable ones. The 
electrolyte is stored separately in tanks and pumped 
through an electrochemical cell that converts chemical 
energy to electric and vice versa. The amount of energy 

stored in the battery depends on the volume and the size of 
the electrolyte in the tanks, while the power depends 
mainly on the speed of ion transfer across the membrane 
[14]. Lead Acid (LA), Nickel Cadmium (NiCd), Lithium 
ion (Li ion), Sodium Sulphur (NaS), and Sodium Nickel 
Chloride (NaNiCl) are the different kinds of secondary 
batteries. Vanadium Redox, Hybrid and Zinc Bromine are 
the main common types of Flow batteries. Based on 
[9,15,12,13,16]], a comparison between the different types 
of batteries is given in table III. 
 
C. Electrical Storage Systems 
 
Double layer Capacitor (DLC) and Superconductive 
Magnetic Energy Storage system (SMES) represent the 
electrical category for ESS. Super capacitors are 
electrochemical double layer capacitors that store energy 
into the electric field. They do not require any heating or 
cooling, they do not need any maintenance as they do not 
have any moving parts and their life time is measured in 
decades, so that they are considered very efficient [13]. 
They have high power density, but relatively low storage 
ability when compared to batteries. Superconducting 
magnetic energy storage (SMES), shown in figure 6 (e), is 
a type of EES that store energy in the magnetic field created 
by the flow of dc current in a superconducting coil 
[11,12,13]. The coil can discharge very quickly when it is 
necessary. They are very efficient and have very fast 
response. On the other hand; they are very expensive due 
to the superconductive material and need cooling, thus they 
are used for short duration energy storage applications such 
as power quality [9, 11, and 13]. 
 
D. Electric Vehicles 
 
Electric vehicles (EV), shown in figure 5(f), are developing 
in recent years. They are connected to grid and can retrieve 
and inject a controlled amount of electric energy. On one 
hand they could be considered as active load that increases 
the demand during charging mode. On the other hand, they 
could be operated as storage units to supply the customers 
while they are parking during discharging mode. 
Coordinated charging schedules could minimize the annual 
peak load, decreases the system losses and increase the 
power factor of the distribution grid [17].  
 
5. Battery Energy Storage Overview 

 
A typical BESS consists of a battery bank where multiple 
batteries are connected in series parallel configuration to 
provide the desired storage capacity. A bidirectional power 
electronic converter could be attached to the battery bank. 
Thus, both real and reactive power can be delivered or 
absorbed independently according to the power system 
demand requirements. The inverted voltage from the dc 
battery source is always different than the grid voltage. 
Therefore, a transformer is used to convert the BESS output 
to match the transmission and distribution voltage level 
[18-20]. Therefore, the operation of each of them is 
coordinated by a battery management system (BMS), while 
the overall operation of all the system is coordinated by a 
supervisor control. 
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Table III BESS Comparison 

 

 
6. Battery Energy Storage Overview 

 
A typical BESS consists of a battery bank where multiple 
batteries are connected in series parallel configuration to 
provide the desired storage capacity. A bidirectional power 
electronic converter could be attached to the battery bank. 
Thus, both real and reactive power can be delivered or 
absorbed independently according to the power system 
demand requirements. The inverted voltage from the dc 
battery source is always different than the grid voltage. 
Therefore, a transformer is used to convert the BESS output 
to match the transmission and distribution voltage level 
[18-20]. Therefore, the operation of each of them is 
coordinated by a battery management system (BMS), while 
the overall operation of all the system is coordinated by a 
supervisor control. 

 
7. Battery Management System 

 
To help the BESS to operate in optimum conditions, BMS 
is required for the following reasons [15]: 

1. operation, such as the current, the voltage, the 
temperature through the supervisor control. Based 
on this information, it could in turn estimate many 
variables, such as battery state of charge (SOC) 
and battery state of health (SOH) based on 
physics-based models. SOC represents how much 
charges is left in a battery over a single cycle, 
while SOH represents how much the battery 
capacity remains for the present cycle compared 
to the original battery capacity.  

2. Estimating the time remaining based on the 
applied load profile. 

3. Providing optimal charging pattern. 
4. Allowing a safe operation of BESS based on the 

thermal management and by maintaining the safe 
operation between the current and the voltage 
limits. 

 
8. BESS application in power system 
 
Many industry experts believe that the use of energy 
storage technologies including the batteries, are crucial for 
many applications as summarized in figure 6.  
 

 
Figure 6 BESS Applications 

 
A. Frequency Control 

 
Due to the inversely proportional relation between the 
frequency and the load, any significant increase in load 
cause the frequency to slow down, as the frequency is 
measured through the rotating speed of the generator shaft. 
Similarly, the frequency may increase in case of load loss 
due to any threshold. Thus, keeping the frequency within a 
tight tolerance requires the amount of power produced at 
any time match the demand. A certain amount of active 
power, usually called frequency control reserve, is kept 
available to perform this control. Three levels of control are 
generally used to maintain this balance between load and 
generation: primary, secondary and tertiary control [21]. 
Primary frequency control is a local automatic control that 
adjusts the active power generation of the generating units 
and the consumption of controllable loads to restore 
quickly the balance between load and generation and 
counteract frequency variations. All the generators that are 
located in a synchronous zone are fitted with a speed 
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governor to perform this control automatically. In 
particular, it is designed to stabilize the frequency 
following large generation or load outages. While primary 
control limits and stops frequency excursions, secondary 
frequency control is suggested to bring the frequency back 
to its target value through a centralized automatic control 
scheme. Only the generating units located in the area where 
the imbalance originated should participate in this control. 
It is mainly used in all large interconnected systems 
because manual control does not remove overloads on the 
tie lines quickly enough. Tertiary frequency control refers 
to manual changes in the dispatching and commitment of 
generating units. This control is used to restore the primary 
and secondary frequency control reserves, to manage 
congestions in the transmission network, and to bring the 
frequency and the interchanges back to their target value 
when the secondary control is unable to perform this last 
task. BESS are not only used due to their fast response in 
providing the active power compensation during under 
frequency events, but also, they are used to save real power 
in over frequency situations. Comparing with conventional 
generating units, the capacities and the location of BESS 
are flexible and also their precise control can be much 
superior to conventional ones [22] 
 
B. Renewable Energy Integration and Outage Avoidance 
 
The integration of renewable energy resources into the 
power grid is driven, by environmental and economical 
regulations aiming for reducing the carbon emission 
resulting from fuel combustion during conventional 
electric generation on one hand and reducing the rising 
price of fuels on other hand Integration of large amounts of 
renewable resources presents important challenges in terms 
of load dispatch, reserves and ramping requirements. The 
uncertainty of renewable energy produced is another 
problem that affects their large-scale integration in the 
power grid. Solar and wind energy are considered the two 
largest sources of renewable energy used. Both are 
unpredictable, and weather depended; hence their output 
can vary significantly. Therefore, a sudden loss of 
renewable generation could potentially lead to a collapse of 
voltage and frequency which could have its effect on the 
power grid stability. Also, this variability will cause 
undesired ramps in the output which create further 
integration challenges for the grid operators. To tackle 
these drawbacks, energy storage systems are one of the 
suggested solutions to integrate renewable energy 
generation to the existing power networks. By smoothing 
out the fluctuations and the sudden load changes, the 
battery energy storage systems could serve as back up 
sources during transmission line or large generation loss to 
avoid blackouts which are one of the main concerns of 
utilities. A research carried out in [23] to study the role of 
BESS in outage avoidance. A survey on the different 
control’s techniques for BESS for renewable smoothing 
applications is presented in [24]. 
 
C. Energy Management and Peak Shaving 
 
The major role of BESS is to enable the time shifting of 
energy by storing the energy during off peaks and using it 
when the demand increases during on peak. By this way, 

electric energy production will be maintained in constant 
level. This technique is very efficient for both customers 
and utilities, as it ensures power quality through the 
continuous power delivery to the customers on one hand 
and realizes the energy management during on peak on the 
other hand. Many references studied the BESS application 
in energy management such as [25], where a BESS is 
proposed for integration of 3kW wind energy to facilitate 
the match between the energy demand and supply of the 
household for a better energy management. 
 
9. Conclusion 
 
In this paper, smart grid requirements have been reviewed 
and the most common energy storage systems have been 
stated. A comparison between the different battery storage 
systems has been presented, as they are one of the most 
promising technologies for several power applications. The 
features, and the management system for BESS have been 
explained. Frequency regulation, RES integration, outage 
avoidance, and energy management are reviewed. 
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Abstract—One of a major characteristic of a smart protection 
system in Smart grid is to automatically reconfigure the network 
for operational condition improvements or during emergency 
situations to avoid outage on one hand and to ensure power system 
reliability the other hand. This paper proposes a modified form of 
particle swarm optimization to identify the optimal configuration 
of distribution network effectively. The difference between the 
Modified Particle Swarm Optimization algorithms (MPSO) and 
the typical one is the filtered random selective search space for 
initial position, which is proposed to accelerate the algorithm for 
reaching the optimum solution. The main objective function is to 
minimize the power losses as it represents waste of operational 
cost. The suggested method is tested on a 33 IEEE network using 
IPSA software. Results are compared to studies using other forms 
of swarm optimization algorithms such as the typical PSO and 
Binary PSO. 29.68% of losses reduction has been achieved during 
a less computational time. 

Keywords—Smart Grid; Distribution System; Distributed 
Network Reconfiguration; co2 emmissions; Modified Particle  
Swarm Optimization 

I. INTRODUCTION 

The uncertainty in fuel cost, the ageing of most existing grid, 
the lack of utilities’ supply capacity to respond to the increasing 
load demand, and the lack of automatically power restoration, is 
accelerating the need to modernize the distribution network by 
introducing new technologies, putting the smart grid (SG) on 
spot. SG is a network that uses information, cyber secure, 
communication technologies, and computational intelligence to 
create an automated and distributed advanced energy delivery 
network to achieve a safe, reliable, efficient, and sustainable 
system. It coordinates the need and capabilities of all generators, 
grid operators, end users, and electricity market stakeholders to 
operate all part of the system as efficiently as possible, 
minimizing costs and environmental impacts while maximizing 
system reliability, and stability [1]. 

The integration of Renewable Energy Resources (RES) and 
Energy storage (EES) in distribution system, which justify the 
bidirectional flow of power in SG, is not only the major 
requirements of SG, but also smart metering, monitoring and 
communication systems are required to gather the power system 
consumption information, send it via wireless communication 
network to electric utilities to manage and analyze the data for 

optimum decision making for both utilities and costumers. These 
requirements add more complexity on power system and dictate 
the necessity of having a smart protection system that should be 
predictive enough to expect the failures, automatically isolate 
the faults after detection, and select the optimum configuration 
to avoid outage and supply the consumers based on intelligent 
algorithms to ensure power system reliability [2]. 

A Distribution system consists of many interconnected mesh 
circuits, operated as radial, linked by breakers. There are two 
types of switches: sectionalizing switches which are normally 
closed and tie line switches which are normally open. 
Distributed network reconfiguration (DNR) is the process of 
changing the structure of the distribution network by changing 
the status of the sectionalizing and tie switches to maintain the 
radial topology [3]. There are three stages for DNR [4]: 

1. Network Data Collection: This stage includes lines 
impedances, load demand, and available 
generation. 

2. Network Organization: this stage includes the 
study of the different probabilities due to the 
change of switches states based on mathematical 
optimization algorithms. 

3. Load Transfer:  This is the implementation of the 
second stage via remote control switches. 

In this paper, DNR definition and stages are explained in 
section I. The reasons for considering DNR a complex 
optimization problem is stated, and the mathematical 
formulation for DNR objectives and constraints are surveyed in 
section II. The 33 IEEE network is selected to be a case study. 
Network data and the DNR problem formulation are stated in 
section III. The proposed Modified Particle Swarm (MPSO) 
included in section IV, is explained and the difference between 
the suggested method and the original PSO are highlighted. The 
Results are included in section V proving the effectiveness of the 
technique.  

II. DNR MATHEMATICAL DESCRIPTION 

A.DNR Objectives and Constraints 

DNR is considered highly complex, nonlinear, discrete, 
combinatorial, stochastic optimization problem [4, 5]. The non-
linearity of this problem is due to the electrical equipment and 
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the power electronic devices used in the network [4]. Its 
complex combinatorial nature is due to the large probability 
obtained by changing the switches in order to find the optimum 
configuration to realize the objective function within the 
constraints [6]. Its stochastic nature is due to the continuous 
change of demand. Its discrete nature is due to the change of the 
state of switches between on and off. Therefore, this problem 
could be described mathematically as a hard-Non-Polynomial 
(NP) optimization problem [4, 6].  
The main features of DNR are highlighted during emergency (a 
fault), as a part of the system should be isolated to minimize the 
number of affected consumers by feeding them from another 
feeder. DNR merits do not serve the system only in contingency 
condition but also, could improve the system reliability and 
efficiency by reducing the line losses and protecting them from 
over loading through load balancing. Also, it could facilitate the 
integration of renewable energy especially in peaks, thus 
reducing the generation cost.  Previous researches can be 
classified mathematically and regrouped in figure 1 surveying 
all the objective functions and the constraints for DNR problem. 
It should be noted that the losses reduction gained a great deal 
of attention as it brings unnecessary operational cost. Moreover, 
the power losses occurred in distribution system, are too high 
compared to that of generation and transmission due the low 
voltage level and the high current passing through the 
distribution lines. For this reason, losses reduction is selected to 
be the main objective for DNR in this research.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

(a) 
 
 
 
 
 
 
 
 

 

 

B. DNR Optimization algorithm Classification 

In this paper, DNR Optimization techniques are classified into 
three categories: Heuristic, Meta heuristic and Mathematical 
algorithms. Due to the inaccuracy of heuristic algorithms and 
the complexity of the mathematical ones, most of recent 
researches focuses on Meta heuristic techniques or hybridize 
them for better performance.  
Heuristic techniques are knowledge-based techniques; in other 
words, they select the optimum configuration based on 
operational experiences [7]. Although they are fast to solve the 
DNR problem, they achieve an approximate solution rather than 
a global optimum one. Meta heuristic techniques are 
probabilistic algorithms used usually in power system operation 
and planning to deal with uncertainties by modeling the 
stochastic factors in power systems such as random outages of 
components and uncertain variation in loads and weather 
conditions [8]. They achieve global optimum solution, but the 
computational time is too high due to their probabilistic nature 
and their random selection which makes their convergence 
speed slower [9]. These algorithms are based on artificial 
intelligence (AI). They follow a set of nature inspired 
methodologies that simulate biological phenomena and 
represent them into computational tools to address complex 
problems hard to be solved by traditional approaches. They are 
based on population search which means that many entities are 
simultaneously sent in parallel to solve the same problem [10]. 
The success of this method is mainly due to the possibility of 
obtaining results much better than heuristic algorithms. The 
most common AI techniques addressing the losses reduction 
used for DNR problems are surveyed in this section and 
regrouped in figure 2. 
Simulating Annealing (SA) was proposed by Kirkpatrick, 
Gelatt and Vecchi in 1983[11], based on the cooling process of 
a melting metal slowly cooled to solidify in its minimum energy 
state. Song Nie et al. used this algorithm to study the impact of 
distributed generations on network reconfiguration during 
normal and post fault operation [12]. An IEEE 33 bus network 
was used to evaluate the proposed technique Although SA 
algorithm could achieve optimal solutions, it can be very time 
consuming and its performance depend on initial parameter 
[13]. Furthermore, the complexity of the cooling parameters 
could be considered a significant disadvantage, as there is no 
general base to select the best parameters for a given problem 
[14]. For these reasons, this algorithm is not suggested for real 
implementation until to be modified. ANN is another based 
artificial intelligent technique used for DNR applications. Few 
researches such as [15, 16] used this technique due to the large 
offline training time which could be a major problem facing the 
large-sized real networks. Therefore, this algorithm is not 
suggested for online operation, although it can achieve 
optimum configurations. Another new, simple, meta-heuristic 
technique, Music Based Harmony Search (MBHS), is presented 
by Geem et al. in 2001 [17]. It was inspired by the reproduction 
of musicians’ behaviour during playing their musical 
instruments which represent the population to obtain certain 
pleasing harmony (the global solution required). 
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In [18], the author applied this technique onto two distributions 
network: 33 and 69 IEEE buses through different loading 
conditions for losses reduction, proving the effect of DG 
installation on voltage and losses reduction improvement.  In 
[19], the authors used an improved version of the technique 
using variable values of harmony search parameters. The 
suggested technique has been validated on a 33 busses IEEE 
network and compared to other Meta heuristic techniques such 
as traditional HAS, GA, RGA and ITS. It was found that, 
IMBHS takes less number of iterations to reach the optimal 
solution compared to all mentioned techniques, so that this 
technique is recommended in emergency service restoration 
problem. A self-adaptive harmony search Algorithm (SAHSA) 
was proposed by H.Savari et al. in 2010, by adding another step 
in the traditional HSA to improve the accuracy and the 
convergence rate on one hand, and to reduce the defect of initial 
parameters across the problem [20]. Unlike the previous 
researches [18, 19] where HSA was used to reduce the active 
power losses through network reconfiguration, D. Rani has 
suggested the SAHSA for both active and reactive power losses 
[21]. The proposed method is tested on 33 and 69 IEEE busses, 
and compared to MHSA. It was found that both techniques got 
the same value of active and reactive power losses, but the 
SAHSA reached these optimal results in less number of 
iterations. Also, the worst and the average fitness values found 
by SAHSA are better than MHSA. It was noticed that HAS 
passed through different stages from the traditional version to 
the self-adaptive form to modify the accuracy and reducing the 
number of iterations to achieve the optimum fitness value. 
Therefore, it is suggested in real time applications such as load 
balancing and network restoration. However, the addition of 
another step to improve the search space has an impact on the 
time taken compared to other algorithms. 
Swarm Intelligence optimization techniques are another Meta 
heuristic algorithm family, based on social behaviour of 
swarming animals such as birds, ants and fishes. This category 
includes Ant Colony Optimization technique (ACO) proposed 

by proposed by M. Dorigio in 1992 in his PhD thesis [22], 
Particle Swarm Optimization (PSO) suggested by J.Kennedy 
and R.Eberhart in 1995 [23], Honey Bee Mating Optimization 
(HBMO), and finally Cuckoo Search Optimization Algorithm 
(CSA) developed by developed by Yang and Deb in 2009[24].  
Many researches were carried out using PSO technique for 
optimum network reconfiguration considering the presence of 
DGs addressing the real losses reduction [25, 26, and 27].  
AW.Dahalan et al. studied the power losses reduction and 
voltage improvement  using PSO[26], validating his technique 
on a 33 IEEE network to prove its effectiveness, while in [27], 
the author tested the approach on a CIGRE distribution network 
including different DGs forms( such as wind turbines, 
photovoltaic, storage batteries and fuel cells) in order to 
improve the service reliability. Although PSO is a powerful 
simple algorithm, it was initially designed only for continuous 
functions not for discrete ones. This in turn pushes J.Kennedy 
and R.Eberhart to modify their algorithm and introduce a binary 
version of particle swarm technique (BPSO) in 
1997[28].Significant researches are now shifting from single to 
multi objective function. For this reason, multi objective 
particle swarm was developed in 2004 by CoelloCoello [29]. A 
research has been carried out by A.Arya et al., for optimum 
distribution configuration, where a multi- objective particle 
swarm (MOPSO) has been used for maximum power 
restoration, load balancing and minimizing the switching 
operation and bus voltage deviation [30]. The author validated 
his algorithm on a 10 IEEE bus to prove the effectiveness of the 
approach. Both authors in [26, 30] agreed that PSO is better than 
GA in computational time and the number of iterations to 
achieve the optimum solution. Another research was presented 
by S.Tuldhar et al. for multi objectives functions dynamic 
reconfiguration problems proposing a Non Dominant Storing 
particle Swarm algorithm (NSPSO) [31] .The key difference in 
this study, that the author considered the uncertainty of both the 
generation of renewable energy resources and the variation of 
load demand. And here 33 IEEE systems is used, to test 3 cases 
studies and to compare between static and dynamic 
reconfiguration. In order to improve the computational time and 
the convergence characteristic, a simple modification to BPSO 
has been proposed in [32] by improving the search space and 
changing the sigmoid transformation rules used in binary form 
to limit the velocity between 0 and1, introducing a selective 
particle Swarm Algorithm (SPSO). A.Tandon and D.Saxena 
studied the optimum configuration considering the losses 
reduction to compare between the BPSO and SPSO [33] by 
testing their approach on a 33 and 69 IEEE bus network. 
Distribution losses, voltage profiles, number of switching, 
computational time and the convergence rate were the main 
comparative points. Results concluded that the SPSO 
outperformed over BPSO in losses reduction and voltage 
improvement. Overall, PSO is simple robust technique 
suggested by many references for DNR optimizations including 
distributed generations as it could support multi objective 
functions. Furthermore, the computational time and the 
convergence rate could be considered significant features of this 
approach. In this paper, a modified particle swarm optimization 
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(MPSO) is suggested based on a filtered random selection 
technique for initial positions. This modification has been 
proposed to reduce the computational time required to get the 
global optimum solution. 
 

III.CASE STUDY 
In this section, the 33 IEEE networks, 12.6 kV, shown in 

figure 3, is selected for optimum configuration for losses 
reduction. This network is specially used for comparing the 
results as it was studied in many previous researches. Interactive 
Power System Analysis (IPSA) tool is used for distribution 
network simulation and load flow calculations using python 
programming language.  

A.Network Description 

The 33 IEEE network consists of 37 branches, 32 normally 
closed switches (sectionalizing switches) and 5 normally open 
switches (Tie line switches). The system load is assumed to be 
constant. The initial tie lines switches of the network are from 
bus 33 to bus 37 before any reconfiguration. The total number 
of loops that should be formed by closing the tie switches is 5 
loops, and then the dimension of the search space. The system 
load is 3,715 kW and 2300 kVAr. The network line data are 
illustrated in the appendix [34]. 

 
Figure 3    33 IEEE Network (IPSA window) 

B. Problem Formulation 

In this research, line losses minimization during operation is the 
objective function used for DNR optimization problem and 
could be described as: 
 

Min Power𝑙𝑜𝑠𝑠𝑒𝑠 = ∑ (𝐼𝑗
2)

𝑛

𝑗=1
𝑅𝑗          (1) 

Where : 
j        is the branch number 
N  is the total number of branches  

Ij is the current at branch j 
Rj  is the resistance at branch j 
 

B. Constraints 
Three constraints are considered for optimum losses reduction: 

1. Node voltage limit 
The bus voltage magnitude should be within 

the permissible limits to maintain power quality. The 
minimum and the maximum values of the voltage are 
chosen to be 0.9 and 1.0 respectively. 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑏𝑢𝑠 ≤ 𝑉𝑚𝑎𝑥           (2) 
 

2. Feeder capacity limit  
The magnitude of the feeder’s branch current 

(Ij) should not exceed the maximum value of the 
allowed current passing in the branch (Imax) 
eliminating the insulation failures assuming that 
thermal limits are achieved. 

 
Ij ≤ Imax                                (3) 

 
3. Maintain the radial topology  

 In order to maintain a simple, inexpensive operation and 
protection of distribution power grid, radial configuration 
is preferred. It is stated that each loop should contain a tie 
line and a corresponding sectionalizing switch. Thus, to 
retain a radial network structure, when a tie is closed in a 
loop, only one switch should be open in the same loop [30]. 
To retain this topology, the following criteria should be 
considered: 

1. The total number of main loops obtained by closing all 
the ties: 

𝑁𝑚𝑎𝑖𝑛 𝑙𝑜𝑜𝑝𝑠  =    (𝑁𝑏𝑟 − 𝑁𝑏𝑢𝑠) + 1        (4)  
Where: 
𝑁𝑏𝑟   is the total number of branches 
𝑁𝑏𝑢𝑠is the total number of buses  

 
2. The total number of sectionalizing switches  

𝑁𝑏𝑟 = 𝑁𝑏𝑢𝑠 − 1                                        (5) 
3.  The total number of tie switches should be the same 

as the number of main loops. 
4. The elements' selection of each loop  

 
The 33 IEEE network is divided into 5 loops, including 5 tie 
switches and 32 sectionalizing switches; the members for each 
loop are illustrated in figure 3, based on [33]. It should be noted 
that the switch S1 is not included in any loop which means that 
it could not be disconnected, as it connects between the main 
supply and the network loops. The switches common between 
more than one loops, are stated only one time, and this to 
eliminate the repeated switches inside a configuration. For 
example, S2 is common between loop (1) and loop (5), but it is 
an element only in loop (1). In this research, the total search 
space for initial radial configurations is 16128 configurations 
calculated based on the tree diagram probability method which 
generates all the possible configurations that include only one 
tie switch from each of the main loops. Fig4 shows an example 
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of how tree diagram could be used to generate a configuration 
such as (S8, S2, S12, S15, and S22). The first element of each 
of the 4 loops should pass through all the elements existing in 
the 5th loop. Another configuration could be (S8, S2, S12, S15, 
and S23) and so on until (S8, S2, S12, S15, and S37). 

 
Figure 4  Example of a radial configuration in the search space by 

tree diagram 

IV. DNR USING MPSO ALGORITHM 

A. Typical PSO Method 

The typical PSO is inspired by the ability of a group of some 
species of animals to work as a whole in a given area searching 
for corn. This seeking behavior is validated through equations 
in a real valued search space. Particles move through the search 
space adjusting their positions and their velocities according to 
their own experience and to their neighboring particles 
experience in order to find the optimal solution based on 
equations (6) and (7). The searching space is composed of all 
the possibilities that could represent a solution for the fitness 
function. This in turn explains the high processing time used to 
perform the calculations. The analogy between the biological 
system and the engineering case study is explained in the next 
section. 
 
𝑉𝑖

𝐾+1  = 𝑤 ∗ 𝑉𝑖
𝑘 + 𝑐1  ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑏𝑒𝑠𝑡 𝑘 

− 𝑋𝑖𝑘
) +

                   𝑐2 *𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑏𝑒𝑠𝑡𝑘
− 𝑋𝑖𝑘

)                             (6) 
 
𝑋𝑖

𝑘+1 =  𝑋𝑖𝑘
+ 𝑉𝑖

𝑘+1                                                           (7) 
𝑊ℎ𝑒𝑟𝑒: 
𝑤   the inertia weight, it is a decreasing function 

calculated according to equation (9). 

𝑉𝑖
𝑘  is the velocity for the particle (𝑖) for the iteration (𝑘) 

𝑐1 , 𝑐2  Acceleration variable usually set to 2.0 
𝑟𝑎𝑛𝑑1 , 𝑟𝑎𝑛𝑑2 a random number from 0 to 1 
𝑃𝑏𝑒𝑠𝑡 Best position for particle (𝑖) based on its own 

experience. 
𝐺𝑏𝑒𝑠𝑡  Best position achieved by the entire particles in the 

swarm 

𝑤𝑘 =
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

∗ iter                 (9) 

𝑊ℎ𝑒𝑟𝑒 
𝑤𝑚𝑎𝑥  is 0.9, 𝑤𝑚𝑖𝑛 is 0.4, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the total number of 
iterations and iter  is the current iteration. 

1. Particle's position and velocity Representation for 
PSO in a DNR problem  

 
The individual particle (𝑖) in this case is composed of a set of 
the tie switches (𝑆1,….. 𝑆𝑛) that are to be opened in a radial 
system, where (𝑛) is the size of the particle, in a swarm of (S) 
particles. It should be noted that the particle's size is the same 
size of tie switches in a system. The position of the particle (𝑋𝑖) 
is the index of the tie switch per loop. For example; 𝑋𝑖 = [S33, 
S34, S35, S36, S37], means that (S33) is the first switch 
selected to be opened for loop (1), while the second switch to 
be opened is (S34) and etc. It should be stated that the particles 
positions should be positive numbers and integer as they 
represent switches indices. In this research, the non-integer 
numbers are rounded up or down to the nearest digit, for 
example S3.2 is S3. The initial velocities are assumed to be 
zeros.   
 

2. 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡representation in a DNR problem  
 

In PSO, during each iteration, 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡are updated and 
recorded based on the objective function. In other words, 𝑃𝑏𝑒𝑠𝑡   
is the configuration realizing best fitness function (losses 
reduction) for the same particle; while 𝐺𝑏𝑒𝑠𝑡  is the configuration 
achieving best losses reduction for all the particles for one 
iteration. 

B. Implementation of MPSO in Network 
Reconfiguration 

 
In this research, MPSO is used for optimum losses reduction. 
The main difference between the original PSO and the MPSO 
is the filtered random selective search space in the initial 
position, which improves the searching capability of the 
particles in less computational time by neglecting the infeasible 
particles based on the current and the voltage constraint after 
load flow calculations, and this in turn accelerate the algorithm. 
MPSO flow chart is represented in fig.5 and fig.6. 
 

1. Filtered Random Initial Position Selection: 
 

Although PSO   is based on a random initial selection for 
positions and velocities, in this paper, a filtered random 
selection procedure illustrated in fig.7, is suggested to control 
the initial positions of the particles. It should be noted that 
implementing such modification accelerated the particles 
search and in turns reduced the excitation time of the overall 
program for reaching the global optimum solution.  
 

2. Position Control 
 

 After updating the particles using equation (7), some positions 
could exceed the total number of switches in the existing 
network, (S37 in this network), or could be negative number, 
which is illogical. In previous version of swarm, these 
infeasible positions are discarded, thus losing some 
probabilities. Thus, to maintain a feasible search space, a 
position control algorithm has been suggested in [35] and is 
applied in this paper.  Position Control's procedures are 
illustrated in figure 5.   
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Figure 7  Filtered randominitial position sequence 
Figure 5 MPSO Flow Chart 
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Generate all possible radial configurations using 

Tree diagram as shown in figure 4. 

Apply the proposed filtered random position 
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Although, this algorithm retains all the particles in the search 
space, it could duplicate some switches in the same particle 
position, and violate the tie switch number conditions, which 
are calculated to be 5, and only in this case the particle should 
be discarded. 
 

3. Conversion Condition 
 

One of the main keys to obtain an accurate algorithm is to 
initialize the software after each losses’ calculation for each 
position. It was found that, when the algorithm changes the 
positions without a reference configuration, it gives inaccurate 
results leading to a long computational time. For this reason, a 
known configuration should be selected to be an initial attempt 
before each trial. In this study, the initial attempt is meshing the 
network after each trial. For example, the initial tie 
configuration for the 33 IEEE systems is [S33, S34, S35, S36, 
and S37].  It could be considered as a particle position. Thus 
initially, the network is totally closed and then after opening the 
tie configuration, the network is closed again until selecting 
other tie configurations in the swarm size. 
 

4. IPSA Software for 33 IEEE network Validation 
 

Interactive Power System Analysis (IPSA) is a software tool 
developed specifically for power system design and operation 
applications providing a fast and accurate analysis of electrical 
power systems through an intuitive user interface [36]. Analysis 
options include load flow, fault level and the software can be 
driven by Python programing language. Figure 8 shows the 
mechanism for IPSA software, where the designed python 
script including the proposed optimization algorithm (shown in 
figure 5, figure 6) is called by IPSA to control the inputs of the 
network (as illustrated in Appendix) simulated in figure 3. 
 

 
Figure 8 IPSA software diagram 

 
Table 1 MPSO Parameters 

 

 

V.RESULTS AND DISCUSSION 
A.  Losses Reduction 

 
The 33 IEEE network is simulated using IPSA software for  
losses, load flow and optimization technique implementation.  
Developed software has been designed to implement the 
(MPSO) using PYTHON 2.7.8, on a 2.4GHz, core (TM) i7-
5500CPU with 8.0- GB RAM. In this paper, the initial losses 
are 193.6 kW. The maximum and minimum bounds for voltage 
magnitude are set to 0.9 to 1.pu. Load flow results are compared 
to previous research for validation [37]. The initial ties switches 
were from line 33 to 37. After applying the suggested algorithm, 
the losses are reduced to 136.36kW reducing 29.68% of the 
initial value. MPSO parameters used during simulation for 
reconfiguration are summarized in table 1.  Due to the 
stochastic nature of swarm algorithms, 50 runs are performed 
in order to find the best number of particles and iterations for 
optimum fitness function. In each trial, the best, the worst and 
the average value of the fitness function (the losses) are 
recorded as well as the computational time, as illustrated in 
table 2. In additions, the mode, which represents how frequent 
the best losses occurred during one trial, is recorded. It was 
found that a population size of 50 particles during 25 iterations 
is sufficient for finding the optimal losses value. Figure 9 shows 
the convergence characteristic for the proposed algorithm. 
 

 
 

Figure 9  Fitness Function convergence using MPSO 

 
 

Figure 10 Voltage Profile Improvements 

PSO  

 

Parameters 

Swarm 

Size 

Weighting 

factor 

 

Acceleration 

constant 

C1, C2 

Initial 

velocity 

 50 [0.9-0.4] 2.0 0.0 
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Table 2 Statistical Simulation Using MPSO 

 
B. Voltage Improvement 

A significant improvement in voltage profile is observed after 
applying the suggested algorithm. The minimum bus voltage 
after reconfiguration rise to 0.94 at bus 32, from 0.918 at bus 18 
initially before reconfiguration, as shown in figure 10. 

Table 3  33IEEE network using dif ferent Swarm Algorithms 

 
A Comparison between the MPSO results and previous 
researches using different form of swarm algorithms, is 
presented in table 3. The proposed modifications added to the 
typical swarm technique achieved 136.36 KW. The losses 
calculation of the suggested tie configurations in [25-26] are 
recalculated using python/IPSA, and the results are illustrated 
in table 3. The suggested MPSO, which is based on a filtered 
random position selection surpass the typical swarm used in 
both [25], [26] not only in losses reduction, but also in the 
excitation time. MPSO saved 56.7 KW of losses for 17.5 
seconds compared to 43.2 KW of losses reduction by the typical 
swarm in [25] for 25 seconds. Also, the proposed algorithm 
MPSO, achieved more losses reduction than Binary Particle 
Swarm used in [35], and suggest the same tie switches given by 
Selective Particle Swarm (SPSO) in [33], achieving the same 
losses reduction. This in turn confirms that the added 
modifications improved both the power losses reduction and the 
computational time. 

 
VI.CONCLUSION 

 
In this paper, the MPSO is proposed for network 
reconfiguration for losses reduction and in turns voltage 
improvement. The modification added to the typical PSO 
technique has accelerated the computational time to get an 
optimum solution.33 IEEE network was used for validation 
using IPSA software. MPSO reduced the power losses by 
29.68% for 17.5 seconds. The results are compared to other 
versions of swarm at static load, and it has been shown that 

the algorithm gives better losses reduction than typical PSO 
and in less computational time and give the same percentage 
of losses reduction given by SPSO. In this paper, the 
algorithm is tested for 50 trials to select the swarm size and 
the maximum iterations number required for optimum 
solution. The proposed technique will be tested on variable 
load for real network implementation. 
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APPENDIX - 33 IEEE line data 
 

 From To R 

(Ω) 

X 

(Ω) 

P 

(kW) 

Q 

(kVAR) 

 

S1 

 

1 

 

2 

 

0.0922 

 

0.047 

 

100 

 

60 

S2 2 3 0.493 0.2512 90 40 

S3 3 4 0.3661 0.1864 120 80 

S4 4 5 0.3811 0.1941 60 30 

S5 5 6 0.8190 0.7070 60 20 

S6 6 7 0.1872 0.6188 200 100 

S7 7 8 0.7115 0.2351 200 100 

S8 8 9 1.0299 0.7400 60 20 

S9 9 10 1.044 0.7400 60 20 

S10 10 11 0.1967 0.0651 45 30 

S11 11 12 0.3744 0.1298 60 35 

S12 12 13 1.4680 1.1549 60 35 

S13 13 14 0.5416 0.7129 120 80 

S14 14 15 0.5909 0.5260 60 10 

S15 15 16 0.7462 0.5449 60 20 

S16 16 17 1.2889 1.7210 60 20 

S17 17 18 0.7320 0.5739 90 40 

S18 2 19 0.1640 0.1565 90 40 

S19 19 20 1.5042 1.3555 90 40 

S20 20 21 0.4095 0.4784 90 40 

S21 21 22 0.7089 0.9373 90 40 

S22 3 23 0.4512 0.3084 90 50 

S23 23 24 0.8980 0.7091 420 200 

S24 24 25 0.8980 0.7071 420 200 

S25 6 26 0.2031 0.1034 60 25 

S26 26 27 0.2842 0.1474 60 25 

S27 27 28 1.0589 0.9338 60 20 

S28 28 29 0.8043 0.7006 120 70 
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S29 29 30 0.5074 0.2585 200 600 

S30 30 31 0.9745 0.9629 150 70 

S31 31 32 0.3105 0.3619 210 100 

S32 32 33 0.341 0.5302 60 40 

S33 8 21 2.00 2.00 - - 

S34 9 15 2.00 2.00 - - 

S35 12 22 2.00 2.00 - - 

S36 18 33 0.500 0.500 - - 

S37 25 29 0.500 0.500 - - 
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ABSTRACT  

Recently, losses reduction gained a great deal of attention 
in distribution system due to low voltage level and the high 
current passing through the lines, pushing the distribution 
utilities to improve their profit margins on one hand by 
reducing the unnecessary operational cost, and improving 
their delivered power quality on the other hand by 
maintaining the system reliability, and the continuity of 
supply for varying load demand. Load balancing, voltage 
regulation, network reconfiguration and others are 
different techniques used to reduce the losses. This paper 
addresses the distribution network reconfiguration (DNR) 
to minimize the network losses. A new modified form of 
particle swarm optimization is used to identify the optimal 
configuration of distribution network effectively. The 
difference between the Modified Particle Swarm 
Optimization algorithms (MPSO) and the typical one is the 
filtered random selective search space for initial position, 
which is proposed to accelerate the algorithm for reaching 
the optimum solution. The suggested MPSO is tested via 
33 and 69 IEEE networks. A benchmark comparison has 
been conducted to prove the effectiveness of MPSO 
compared to previous optimization techniques 

1.INTRODUCTION 

Distribution system consists of many interconnected mesh 
circuits, operated as radial, and linked by switches. There 
are two types of switches: sectionalizing switches which 
are normally closed and tie line switches which are 
normally open. Distributed network reconfiguration 
(DNR) is the process of changing the structure of the 
distribution network by changing the status of the 
sectionalizing and tie switches to maintain the radial 
topology [1]. DNR is considered highly complex, 
nonlinear, discrete, combinatorial, stochastic optimization 
problem [2, 3]. Heuristic, Meta heuristic, mathematical 
and hybrid techniques are introduced for solving the 
complexity of DNR optimization problem. Heuristic 
techniques are knowledge-based approaches, not suitable 
for large networks as they give local minimum solution in 
a very large processing time. Meta heuristic methods are 

probabilistic algorithms, based on artificial intelligent 
methods. They achieve global optimum solution in a high 
computational time due to their probabilistic nature and 
their random selection which makes their convergence 
speed slower. Metaheuristic techniques include Simulating 
Annealing algorithm (SA), Artificial Neural Network 
(ANN), Music based Harmony Search (MHS), Genetic 
Algorithm (GA) and swarm intelligent algorithms. Many 
researchers worked on improving them by integrating 
them with each other's or with other optimization 
algorithms to solve their computational time problem In 
this research paper, the distributed network 
reconfiguration (DNR) problem is briefly defined. The 
optimizations’ algorithms suggested for solving DNR are 
stated. Particle Swarm Optimization Algorithm (PSO) is 
selected for active losses reduction. PSO is also reviewed 
and the Modified PSO suggested in this paper is deeply 
explained and verified through the 33 and 69 IEEE test 
networks. A benchmark comparison is conducted. Finally, 
the results are discussed in the last section. 
 

2. PARTICLE SWARM ALGORITHM 
REVIEW 

Particle Swarm Algorithm is one of the swarm intelligence 
optimization techniques based on social behaviour of 
swarming animals, introduced by J.Kennedy and 
R.Eberhart  in 1995, when they mathematically imitate the 
social behaviour of bird flock and fish schools searching 
for corn, introducing this meta heuristic optimization 
method [4]. Particles "birds" move through the search 
space adjusting their positions and their velocities with 
respect to their own experience and to their neighbouring 
particles experience to find the optimal solution. Typical 
swarm has been modified many times through many 
researchers improving the technique. Binary PSO (BPSO) 
was introduced in 1997, applying a sigmoid function for 
velocity and position equation to limit their values [0,1]to 
deal with discrete functions [5]. Multi objective particle 
swarm was developed in 2004 by CoelloCoello [6]. More 
versions of swarm were introduced by hybridizing two or 
more intelligent techniques together to improve the 
computational time and the convergence of the algorithm 
such as Rank Evolutionary PSO (REPSO), the integration 
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between the genetic algorithm and PSO (GAPSO), and 
others. In this research paper, a modification was added to 
the technique by controlling the initial position generation 
via tree diagram algorithm, which in turns improves the 
searching capability of the particles in less computational 
time by neglecting the infeasible particles based on the 
given constraints, accelerating the algorithm 

3. NETWORKS DISCRIPTION 
 
3.1 33 BUS DISTRIBUTION SYSTEM 

The 33 IEEE network, 12.6 kV, shown in figure 1,consists 
of 37 branches, 32 normally closed switches 
(sectionalizing switches) and 5 normally open switches 
(Tie line switches). Interactive Power System Analysis 
(IPSA) tool is used for distribution network simulation and 
load flow calculations using python programming 
language. The initial tie lines switches of the network are 
from bus 33 to bus 37 before any reconfiguration. The total 
number of loops that should be formed by closing the tie 
switches is 5 loops. The system load is 3,715 kW and 2300 
kVAr. The network line data are given in [7]. 

 

3.2. 69 BUS DISTRIBUTION SYSTEM 
the  single line diagram of 69 IEEE network, 12.6 kV, 10 
MVA,shown in figure 2, consists of 73 branches, 68 
normally closed switches .The network line data are given 
in[8].The total active losses calculated before 
reconfiguration is 226 KW. The minimum  voltage value 
occurs at bus 65 , 0.909 pu. The initial ties are from 69 to 
73 respectively. Five loops are formed by closing the 
initial 5 ties . 
 

3.3 GENERAL PROBLEM 
FORMULATION 

In this research, line losses minimization during operation 
is the objective function used for DNR optimization 
problem and could be described as: 
 

Min Power𝑙𝑜𝑠𝑠𝑒𝑠 = ∑ (𝐼𝑗
2)

𝑛

𝑗=1
𝑅𝑗          (1) 

Where : 
j        is the branch number 
N  is the total number of branches  
Ij is the current at branch j 
Rj  is the resistance at branch j 
 

3.4 GENERAL CONSTRAINTS 
 

Three constraints are considered for losses reduction: 
 

(i) Node voltage limit 
The bus voltage magnitude should be within the 
permissible limits to maintain power quality.  
 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑏𝑢𝑠 ≤ 𝑉𝑚𝑎𝑥          (2) 

Figure 1 33 IEEE network (IPSA simulation window) 
 

 

Figure 2  69 IEEE distribution network (IPSA simulation window) 
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(ii) Feeder capacity limit  

The magnitude of the feeder’s branch current (Ij) should 
not exceed the maximum value of the allowed current 
passing in the branch (Imax) eliminating the insulation 
failures assuming thermal limits are achieved. 

Ij ≤ Imax                                (3) 
 

(iii) Maintain the radial topology  
For a simple, inexpensive operation and protection of 
distribution power grid, radial configuration is preferred. 
It is stated that each loop should contain a tie line and a 
corresponding sectionalizing switch. Thus, to retain a 
radial network structure, when a tie is closed in a loop, only 
one switch should be open in the same loop. To maintain 
this topology, the following criteria should be considered: 
 

1. The total number of main loops obtained by 
closing all the ties: 

𝑁𝑚𝑎𝑖𝑛 𝑙𝑜𝑜𝑝𝑠  =    (𝑁𝑏𝑟 − 𝑁𝑏𝑢𝑠) + 1        (4)  
Where: 

𝑁𝑏𝑟   is the total number of branches 
𝑁𝑏𝑢𝑠is the total number of buses  
 

2. The total number of sectionalizing switches  
𝑁𝑐𝑠 = 𝑁𝑏𝑢𝑠 − 1                   (5) 

3.  The total number of tie switches should be the 
same as the number of main loops. 

 
4. MODIFIED PARTICLE SWARM 

OPTIMIZATION 
 

In this research, the individual particle (𝑖) is composed of 
a set of the tie switches (S1…..., Sn) that are to be opened 
in a radial system, where (n) is the size of the particle, in a 
swarm of (S) particles. It should be noted that the particle's 
size is the same size of tie switches in a system. The 
position of the particle (𝑋𝑖) is the index of the tie switch 
per loop. 𝑃𝑏𝑒𝑠𝑡 𝑖is the configuration realizing best fitness 
function (losses reduction) for the same particle; while 
𝐺𝑏𝑒𝑠𝑡𝑖is, the configuration achieving best losses 
reduction for all the particles for one iteration. The 
modifications accelerate the convergence rate and the 
computational time. These modifications are: 

• the random selective search space  
•  the position control algorithm. 

 
4.1. RANDOM SELECTIVE SEARCH SPACE 

The main difference between the typical PSO and the 
suggested modified particle swarm (MPSO), is the filtered 
random selective search space in the initial position based 
on tree diagram theory method which generates all the 
possible configurations including only one tie switch from 
each of the 5 loops composing the test network. The 
elements for each loop of the 69 network is illustrated in 
table 1. In this research, the total search space for initial 
radial configurations for both 33 and 69 networks are 
16128 and 139776 configurations respectively calculated 

based on the tree diagram probability.  The search space 
for the 33 IEEE network is studied in [9,10]. It should be 
noted that some switches should not be within the search 
space such as: 

1.  S1, S2 link between the main supply and the 
overall system  

2.  [S27-S34], [65-66] and [67-68] Could not 
formulate any loops 

   
Table 1 Search Space for 69 IEEE network 

loops Elements 

1 S11, S12, S13, S14, S43, S44, S45, S71 
2 S4, S5, S6, S7, S8, S46, S47, S48, S49, S52, S53, 

S54, S55, S56, S57, S58 
3 S3,S9,S10,S35,S36,S37,S38,S39,S40,S41,S42,S69 
4 S21, S22, S23, S24, S25, S26, S59, S60, S61, S62, 

S63, S64, S73 
5 S15, S16, S17, S18, S19, S20, S70 

 
4.2. POSITION CONTROL 

 
After updating the particles using equation (7), some 
positions could exceed the total number of switches in the 
existing network, (S37 and S69, in the 33 and the 69-bus 
system respectively) or could be negative number, which 
is illogical. In previous version of swarm, these infeasible 
positions are discarded, thus losing some probabilities. To 
maintain a feasible search space, a position control 
algorithm has been suggested in [11] and is applied in this 
paper. Although, this algorithm retains all the particles in 
the search space, it could duplicate some switches in the 
same particle position, and violate the tie switch number 
conditions, which are calculated to be 5, and only in this 
case the particle should be discarded. 
 

4.3. MPSO Solution Steps: 
 
A Designed software has been implemented following 
MPSO steps discussed below using python language 2.7.8. 
to communicate with IPSA 2.4. on a 2.4GHz, core (TM) 
i7-5500CPU with 8.0- GB RAM for losses reduction. 
MPSO flow chart is deeply explained and presented in [9]. 

1. Enter the swarm parameters including the 
acceleration constants, the weighting factor and 
the swarm size (S). 

2. Generate all possible configuration using tree 
diagram method based on table 1. 

3. Select several configurations equal to (S), having 
losses less than the initial losses using (1), and 
satisfying voltage and current constraints using 
(2) and (3), to represent the random initial 
positions for the particles 𝑃𝑏𝑒𝑠𝑡. 

4. Set the configuration having the minimum losses 
to be 𝐺𝑏𝑒𝑠𝑡 

5. Calculate the velocity and the position for each 
particle in the swarm size S using (6) and (7). 
 

𝑉𝑖
𝐾+1  = 𝑤 ∗ 𝑉𝑖

𝑘 + 𝑐1  ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑘 
−
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𝑋𝑖𝑘) +                    𝑐2 *𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑏𝑒𝑠𝑡𝑘
−

𝑋𝑖𝑘)                             (6) 
 

𝑋𝑖
𝑘+1

=  𝑋𝑖𝑘
+ 𝑉𝑖

𝑘+1                                                   (7) 
𝑊ℎ𝑒𝑟𝑒: 
𝑤  the inertia weight, it is a decreasing 

function, calculated using (9). 

𝑉𝑖
𝑘         the velocity for the particle (𝑖) for the 

iteration (𝑘) 
𝑐1  &𝑐2  Acceleration variable usually set to 2.0 
𝑟𝑎𝑛𝑑1& 𝑟𝑎𝑛𝑑2      random number from 0 to 1 
𝑃𝑏𝑒𝑠𝑡 Best position for particle (𝑖) based on its own 

experience. 
𝐺𝑏𝑒𝑠𝑡 Best position achieved by the entire particles 

in the swarm 

𝑤𝑘 =
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
∗ iter                 (9) 

𝑊ℎ𝑒𝑟𝑒 

𝑤𝑚𝑎𝑥 is 0.9, 𝑤𝑚𝑖𝑛 is 0.4, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the total number 
of iterations and iter  is the current iteration. 
6. Increase the iteration by one 
7. Calculate the fitness function using (1) for all the 

particles. 
8. Apply the constraints using (2) and (3)  
9. Update the 𝑃𝑏𝑒𝑠𝑡   and the 𝐺𝑏𝑒𝑠𝑡 
10. Apply the position control to maintain the 

particles within the feasible search space. 
11.  Repeat the steps from 6 to 10 until a termination 

criterion are satisfied. 
 

5. SIMULATIONS, RESULTS & 
DISCUSSION 

 
The proposed MPSO algorithm is tested through the 33 
and the 69 IEEE test systems for optimum losses. 
 

5.1. LOSSES REDUCTION 
 
 MPSO reduced the initial losses in the 33-bus system from 
193 to 136.36 KW saving 56.7 KW. Similar trend is 
observed in the 69 IEEE network as, the losses have been 
decreased from 226 KW to 100.3 KW saving 126 KW. 
Table 2 illustrates the performance of MPSO for losses 
reduction and voltage improvement for both the 33 and 69 
IEEE networks respectively. Figure 3 shows the 
conversion characteristic for MPSO for both networks. 
 

5.2. VOLTAGE IMPROVEMENT 
MPSO has a significant effect on the bus bar voltage as 
shown in figure 4. The minimum bus bar voltage rises after 
the reconfiguration from 0.918 at bus bar 18 to 0.94 in the 
33-bus IEEE network, and from 0.905 to 0.942 at bus 61 
for the 69 IEEE network. 
 

 
Figure 3 Fitness function for the best particle using 

MPSO 

 
Figure 4 Voltage Profile Improvement  

 
Due to the stochastic nature of swarm algorithm, 50 runs 
are performed to select the swarm size and the maximum 
iterations required for reaching the optimum 
configuration. It was found that 50 particles are suitable 
for both test network. However, many previous research 
papers stated that 40-70 iterations are suitable for large 
network [11], it was found that 25 iterations are suitable 
for both networks.  
 

5.3. BENCHMARK COMPARISON 
 
Table 3 and 4 compare between the performance of the 
proposed MPSO and other algorithms including the typical 
PSO [12], Binary PSO (BPSO) [10], Multi Cooperative 
PSO(MCPSO) [13], and Selective PSO for the 33 and the 
69 test networks respectively. The losses are recalculated 
using Python/IPSA software. It should be noted that 
MPSO suggests nearly the same configuration proposed 
by SPSO for both networks. Both algorithms MC PSO and 
the proposed MPSO achieve the minimum losses for the 
IEEE 33 network but the proposed MPSO surpasses the 
losses reduction calculated by MCPSO for the 69 network 
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Table 2  MPSO performance for 33 and 69 bus 
networks 

 
Table 3 MPSO Results Comparison for the IEEE 33 

Network 

 
Table 4 MPSO Results Comparison for the IEEE 69 bus 

Network 

 
6. CONCLUSION: 

 
In this research paper, the MPSO is proposed for network 
reconfiguration for losses reduction and in turns voltage 
improvement. The 33 and 69 IEEE test networks are used 
for validating the effectiveness of the suggested MPSO 
technique to deal with small and large networks. The 
modification added to the typical PSO accelerates the 
algorithm. IPSA software has been used for load flow 
calculations. A software program has been developed in 
python language for MPSO implementation. MPSO did 
not only reduce the losses reduction for both networks 
saving 56.7 KW for the 33-test network while saving 126 
KW for the 69-distribution system, but also improved the 
minimum voltage for both networks. 
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 Reconfig
uration 

Ties Losses Min 
voltage 

33 
IEEE 

network 

Before 33-34-
35-36-37 

193.3 0.918 

After 9-7-14-
37-32 

136.3 0.940 

69  
IEEE 

network 

Before 69-70-
71-72-73 

226 0.909 

After 14-55-
69-61-70 

100.3 0.942 

    Algorithms Optimum 
Ties 

Losses Min. 
Voltage 

PSO [12] 33,28,34,8,17 149.8 0.931 
BPSO [10] 7,9,14,28,32 139.8 0.941 

MCPSO [13]  
7,9,14,32,37 

 
136.3 

 
0.942 

 
SPSO [10] 

MPSO 

Algorithms Optimum 
Ties 

Losses Minimum 
Voltage 

BPSO [10] 13,20,55,61,69 107.05 0.942 
MCPSO [13] 12, 18,58,61,69 103.62 0.942 
SPSO [10] 14,56,61,69,70 100.6 0.942 

MPSO 14,55,61,69,70 100.6 0.942 


