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Background 
Fundus autofluorescence (FAF) has been described as a topographical map of fluorophores 
that accumulate within the retinal pigment epithelium as a result of disease.  
Study aims 
To evaluate whether FAF offers information relevant to age-related macular degeneration 
over that gathered via colour fundus photography (CFP) and optical coherence tomography 
(OCT). 
Methods  
Ninety-three patients were imaged via CFP, OCT and FAF and the results analysed using 
Orange Data Mining artificial intelligence and SPSS software.  
Results 
Pupillary dilation makes a significant improvement to FAF image quality. 
Nuclear sclerotic cataract of > 1.5 on the World Health Organisation scale indicates that 

there is ≃85% probability that the FAF image will not be of high quality. At > 1.9 there is 

≃50% probability of the image not being clinically useful as defined by a novel grading scale. 
Age was negatively associated with FAF comfort. 
There is ≥ 90% probability of an abnormal FAF result for an eye with any of the following:  
> 50 small, > 40 intermediate, > 20 large drusen. Age > 92 years. > 30 packet years of 

smoking. Any pigmentary abnormalities. ≃80% for any reticular pseudodrusen (RPD). 
FAF results can be predicted via CFP and OCT data using machine learning with 
informedness of up to 70.2% and area under the curve (AUC) of 0.903.  
For transfer learning to be useful within primary care, image pre-processing is likely to be 
required.  
Geographic atrophy and pigment epithelial detachments appear to be linked to a patchy FAF 
pattern. RPD are linked to a reticular FAF pattern.  
Principle component analysis indicates that drusen were responsible for the greatest 
percentage of variability in this study’s data (38.6%).  
Conclusions 
Clinical impact: FAF results can be predicted from CFP/OCT via machine learning with 
70.2% informedness and AUC of 0.903. Drusen number/size were the most informative 
variables. 
 
Key words: Fundus autofluorescence, age-related macular degeneration, colour fundus 
photography, optical coherence tomography.   
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Chapter 1  

 

1.1 General introduction  

 

1.1.1 ARMD prevalence 
 
Age-related macular degeneration (ARMD) is a leading cause of sight loss in the 

industrialised world.(1) The condition can be challenging to assess, particularly with regard 

to identifying the limit of the retina affected.(2) Short wavelength fundus autofluorescence 

imaging technology (SW-FAF), from now on referred to simply as FAF, was first described 

the early 1970s(3) and offers enhanced image contrast between healthy and atrophic retina 

allowing greater accuracy for the measurement of retinal areas affected by ARMD.(4) FAF 

imaging has been described as a topographical mapping of lipofuscin (LF) in the retinal 

pigment epithelium (RPE) as well as other fluorophores that can accumulate with disease in 

the outer retinal layers.(5)  

 

1.1.2 ARMD Pathogenesis 
 
It has been suggested that geographic atrophy may occur as a result of localised RPE 

inflammation and death, whilst choriocapillaris loss leads to RPE ischaemia, causing release 

of vascular endothelial growth factor (VEGF) and choroidal neovascularisation. 

Histopathological research of ARMD has identified complement inhibitors (C3 and C5) within 

drusen. It has been suggested that aging leads to a reduction of adhesion of complement 

inhibitors to Bruch’s membrane resulting in complement activation, which in turn leads to 

drusen formation, release of anaphylatoxins including C3a and C5a and subsequent tissue 

destruction.(6) Drusen also contain inflammatory proteins which promote a toxic 

environment, including apolipoprotein E, coagulant proteins, acute phase proteins and 

immunoglobulin G.(7) With regards to exudative ARMD, complement inhibitor inhibition in 

mouse models has also been shown to play a role in the reduction of choroidal 

neovascularisation.(8)  

 

1.1.3 ARMD clinical features 

 

Patients with intermediate (>63<125µm) to large drusen ≥125µm with or without retinal 

pigment epithelium (RPE) pigmentary abnormalities within the macula are considered to 

have early ARMD, whilst patients with geographic atrophy and neovascular (wet) ARMD are 

considered to have the late form of the disease. The characteristics of ARMD include 
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degenerative changes to the choroid, Bruch’s membrane and the RPE. Age is considered an 

important risk factor for the development and progression of the condition, and degeneration 

is generally bilateral. Once an eye has developed the wet form of ARMD, the fellow eye is 

also at an increased risk of choroidal neovascularisation (CNV)(9).  

 

1.1.4 ARMD risk factors 

 

ARMD is a multifactorial disease whose onset is governed by both genetic and 

environmental factors. Risk factors for dry ARMD include genetic predisposition, with 

common alleles responsible for between 50-70% of heritability. Ocular risk factors for dry 

ARMD include reduced choriocapillaris density, drusen, reticular pseudodrusen, Bruch’s 

membrane thickening, thinning of the photoreceptor layers, atrophy and other RPE changes, 

however, instead of being viewed as distinct entities, it may be more appropriate to consider 

these features as interrelated, with one defect within the retina leading to, or forming as a 

result of another, as each layer relies on the overall healthy functioning of the retina to 

remain patent.(10) Other risk factors for ARMD include increased age, presence of ARMD in 

the fellow eye, a family history of ARMD, smoking, systemic hypertension, a BMI ≥30kg/m², 

a diet low in omega 3 and 6, carotenoids, vitamins and minerals, a diet high in fat and lack of 

exercise.  

 

1.1.5 ARMD grading scales 

 

There are a number of grading scales for describing the stages of ARMD, including, but not 

exhaustively, the NICE system, the AREDS 9 and 4 step systems, the AREDS simplified 

severity scale, the Three continent system, the Clinical Age-Related Maculopathy Staging 

system (CARMS), the Sandberg system and the International ARM Epidemiological Study 

Group system. These systems are based on the identification of drusen size and type and 

on the presence of pigmentary abnormalities of the RPE, and in the case of the NICE and 

the International ARM systems, on the presence of atrophy of the RPE, serous PEDs, 

choroidal neovascular membranes, fibrous scars and other retinal abnormalities.(11) For this 

study the AREDS simplified severity scare was utilised as a collected variable for statistical 

analysis due its simplicity and numerically based scale. 

 

1.1.6 Background and history of FAF imaging 
 
FAF has the benefit of being a non-invasive technique, and can be delivered via a range of 

commercially available systems, including fundus camera-based, confocal scanning laser 
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ophthalmoscope (cSLO) based and ultra-widefield imaging based systems, with each 

modality offering its own merits and disadvantages.(12) Whilst this review will focus on the 

use of FAF imaging for the investigation of ARMD, FAF has a wide range of other clinical 

applications in ophthalmology for the evaluation of conditions including optic disc drusen, 

white dot syndromes, retinal dystrophies and retinal drug toxicities.  

 

The human retina contains a variety of fluorophores, each with their own absorption and 

emission spectra. FAF works by detecting these fluorophores within the retina, which absorb 

incident light of various wavelengths, and then release the energy by emitting light of longer 

wavelengths.(13) Note that the blue excitation wavelength used in FAF may cause patient 

discomfort and even prove toxic to the retina, although this latter limitation has not been 

corroborated by formal studies.(12)  

 

The first person to describe fluorescence was Sir John Frederick William Herschel (1792-

1871), demonstrating the phenomenon with a glass of tonic water (containing the 

fluorophore quinine), sunlight and observation by the naked eye in 1845. Fluorescence was 

first illustrated diagrammatically with the Jablonski diagram, proposed first by Polish 

Physicist Aleksander Jablonski in 1933, to show how light energy is absorbed and emitted 

during fluorescence.(14) The absorption of energy raises an electron to a higher state, with 

the electron then losing some of its energy by colliding with other particles and falling to a 

marginally lower energy level (non-radiative transition), before returning to, or near to, its 

original, lower state, whilst in the process releasing energy as light of a longer wavelength. 

This shift towards longer wavelength light is known as the “Stokes Shift”, and was first 

described by the Irish Physicist Sir George Gabriel Stokes in 1852.(15) 

 

Fluorescence is a type of photoluminescence event (photo meaning light, luminescence 

meaning the emission of light), which is different from another form of photoluminescence 

called phosphorescence which persists for a longer period following stimulation by light. 

Excited states in fluorescence are momentary, lasting approximately 10-8 seconds, and the 

molecular structure and the chemical environment dictate the intensity of the fluorescence. 

Sophisticated optical equipment is therefore required to detect and measure 

fluorescence(15), with the equation governing energy levels being as follows: 

 

S0 + hv = S1 

 

Where: 
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S0 is the ground state of the fluorophore  

S1 is the first excited state 

h is Planck’s constant 

v is the frequency of the exciting light 

 

 

Figure 1.1 The Jablonski diagram 
 
The Jablonski diagram (named after the Polish physicist Aleksander Jablonski, the “father” 

of fluorescence spectroscopy) showing how electrons are raised to higher energy states by 

specific wavelengths of light, before returning to, or close to, their original state whilst 

releasing light of a longer wavelengths than that used for excitation.(16) 
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The fluorescence “quantum yield” (QA or ) is the efficiency of the fluorescence process, 

and is given as the ratio of the emitted photons to the absorbed photos. If every photon 

absorbed results in an emitted photon, then the QA = 1. Substances with a QA as low as 

0.10 have been considered to possess significant fluorescent properties, however, the major 

constituent of LF, Bis-retinoid N-retinyl-N-retinylidene ethanolamine (otherwise known as 

A2E) has been shown to possess a QA of only 0.0030.001.(17) This is important, as it 

means that the human retinal FAF signal obtained from LF is of a very low order magnitude. 

Below is an illustration of retinal layers and the direction of the exciting light and subsequent 

autofluorescence produced. 
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Figure 1.2 Image demonstrating fundus autofluorescence within the human retina 
Image reproduced by kind permission of NIDEK from the RS-330 manual 
 

It is important to note that structures anterior to the retina also naturally auto-fluoresce which 

can cause interference with FAF imaging. The cornea excites at 365-480nm, emitting at 

620nm,(18) whilst the crystalline lens absorbs at 420-430nm, emitting at 520nm.(19) 

Cataracts compound this problem by increasing lens light absorption and scatter further 

still,(20) whilst glycation products in diabetic individuals can increase corneal 

autofluorescence.(21) These autofluorescence artefacts are a major limitation of FAF, as 

well as its low signal strength, which is up to 100 times less than the peak signal derived 

from fluorescein angiography (FA).(12)  
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Below is a table showing a variety of retinal diseases and the associated FAF imaging 

findings.(22) 

 

Retinal disease type FAF findings 

Central serous chorioretinopathy Hypo-fluorescence at site of leakage, with 
hyper-fluorescence related to precipitates 

Stargardt’s disease  Hypo-fluorescence of the entire macula 
surrounded by hyper-fluorescent flecks with 
peripapillary sparing 
 

Angioid streaks Hypo-fluorescence maps to the ruptures in 
Bruch’s membrane  

Plaquenil (Hydroxy-chloroquine) toxicity “Bullseye” maculopathy, with a parafoveal 
ring of hyper-fluorescence  

RPE tears  Well demarcated areas of hypo-
fluorescence with adjacent hyper-
fluorescence due to rolled up redundant 
RPE 

Best’s Macular Dystrophy Vitelliform stage: well circumscribed 
homogenous hyper-fluorescence of the 
macula 

Retinitis Pigmentosa 59% show hyper-fluorescent parafoveal 
(Robson-Holder) ring. 18% have an 
abnormal central hyper-fluorescence which 
extends to the fovea. 23% have neither 
pattern 

Choroideremia Bilateral symmetrical midperipheral zones 
of hypo-fluorescence due to RPE atrophy 

White Dot Syndromes Multifocal hyper-fluorescence 

Punctate Inner Choroidopathy (PIC) Hypo-fluorescent spots often with hyper-
fluorescent margins 

Fundus Albipunctatus Severely attenuated background 
fluorescence 

Deferoxamine-induced retinal toxicity Minimal, focal, patchy or speckled 
fluorescent patterns.  

Table 1.1 AF findings in a variety of retinal diseases 

 

1.1.7 Background to machine learning 
 

1.1.7.1 Introduction 

 

It was scholar John McCarthy, in 1956, who proposed the concept of AI in the “Dartmouth 

Workshop”, stating that computers could behave in an apparently intelligent manner. Shortly 

after this, in 1959, machine learning (ML) was first referred to by Arthur Samuel(23) as a 

subset of AI, whereby computers detect patterns within data, “learning” from this information 

(i.e. creating algorithms that extract generalised principles from the data), before applying 

this knowledge to new data. These profound suggestions have only recently become 
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practically relevant with the advent of “Big Data”. Deep learning (DL) is an advanced form of 

ML that harnesses layers of neural networks (NN) that mimic the structure of the human 

brain. Examples of NNs include Microsoft’s Cortana, Amazon’s Alexa and Apple’s Siri. In 

healthcare, NNs have already been put to good use for disease recognition in fields as 

diverse as skin and lung oncology, cardiology and ophthalmology.(24)  

 

1.1.7.2 Big Data 

 

Several definitions have been proposed for Big Data, with IBM’s succinctly characterising it 

as any one or more of the “V” words: Volume, Variety and Velocity.  

Volume refers to the large amounts of data that are constantly flowing in from a range of 

sources including the internet, as well as social media channels such as Twitter, Facebook 

and Instagram.  

Variety concerns the different types of data, for example, structured data such as mobile 

phone location data and web browsing records. However, Variety also includes unstructured 

data, for example the data from blogs, audio and video.  

Velocity involves the ever-increasing speed of data capture, meaning that decisions 

regarding the incoming data also need to keep pace with the information flow. These 

decisions may influence the next data selected to be captured, and therefore this element 

may add an additional dimension to the concept of data Velocity.(25)  

Volume and Variety in ophthalmology could represent the large quantity and types of data 

being collected daily e.g. via digital retinal photography, OCT scans, corneal topographers, 

visual field plots and electronic patient records (EPR).  

Examples of Velocity in ophthalmology could be the ever-increasing scan speed of OCTs, 

the burgeoning field of healthcare apps and the evolving complexity of EPR software 

systems.  

Elsewhere, a fourth “V” has been proposed, namely Veracity. Veracity is a measure of the 

quality and accuracy of data and ideally should be complete, consistent, clean, current and 

compliant (26). Disappointingly, EPRs are unlikely to meet all of these demands in the 

majority of contemporary medical databases.  

It is interesting to note that MeSH 2023 does not explicitly refer to Veracity, and describes 

Big Data as “extremely large amounts of data which require rapid and often complex 

computational analyses to reveal patterns, trends and associations, relating to various facets 

of human and non-human entities”.  

AI allows users to perform complex Big Data analysis that would not be practical, or even 

possible for humans to calculate mathematically, and therefore Big Data and AI are 
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inextricably entwined (along with the integration of developments in data analysis and 

information technology). 

Whilst Big Data has the potential to assist in clinical decision making, we must ensure that 

the algorithms produced are representative of real populations. Biases in patient selection 

could result in misdiagnoses and poor outcomes for those groups not represented. One 

solution to this problem is the process of data synthesis for boosting underrepresented data.  
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Other definitions of Big Data from recent literature: 

 

Author Definition 

Boyd and Crawford 

(2012)(27) 

A cultural, technological and 

scholarly phenomenon that 

rests on the interplay of 

technology, analysis and 

mythology 

Chen et al (2012)(28) The data sets and analytical 

techniques in applications 

that are so large and 

complex that they require 

advanced and unique data 

storage, management, 

analysis and visualisation 

techniques 

Dumbill (2013)(29) Data that exceeds the 

processing capacity of 

conventional database 

systems  

Jacobs (2009)(30) Data whose size forces us 

to look beyond the tried-

and-true methods that are 

prevalent at that time  

 Table 1.2 Other definitions of Big Data from literature 
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1.1.7.3 Conventional Machine Learning 

 

Random forests and SVMs are the most common CMLs found so far in ophthalmological 

research.(24) Below Is a description of the most common CMLs:  

 

1. Decision Trees  

 

Decision trees are algorithmic models that look at the incoming information and split this 

data into a tree like structure. The tree “root” is at the top, with the initial root node 

representing the entire data set. Attributes are assessed and decisions are made to split the 

data at each bifurcation into smaller and smaller decision nodes until a leaf node is reached, 

which cannot be split down any further. The learning process is continually updated and 

based on feedback. The assessment of attributes is managed by attribute selection 

measures which can be based on a variety of techniques including Information Gain, 

Entropy, Gini Index and Gain Ratio.  

 

2. Random Forests 

 

Random forests (which are built from numerous decision trees) organise root and decision 

nodes randomly, utilising “bagging” to create the required predictions. Bagging involves 

using a separate training dataset and allowing the decision trees to generate predictions, 

which are then ranked with the best trees being chosen for the final predictions.  

 

3. Support Vectors Machines 

 

SVMs build a “hyperplane” which is a boundary separating the two classes as widely as 

possible, so that classification errors are kept to a minimum.  

 

4. Bayesians Classifiers 

 

Bayesians classifiers are a family of algorithms based on the principle that the value of a 

particular feature is independent of the value of any other feature. For example, if an orange 

is 10cms in diameter, orange in colour and has a pitted surface, each of these features 

contributes independently to the probability that the fruit is an orange, regardless of 

correlations that may exist between the various features. A classifier is then built which 
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constructs a probabilistic model of the features and uses that model to predict the 

classification of new data.   

 

5. k-nearest neighbours 

 

This technique is utilised for supervised machine learning. k-nearest neighbours works by 

calculating the distances between the new (as yet unclassified) data point and all the 

previously recorded data points, and then selects the specified number (k) of points which 

are closest to the new point. For classification, the most frequently occurring previous point 

determines the label given to the new point (for classification, i.e. in the case of a categorical 

target variable) or averages the labels (for regression, i.e. in the case of a numeric target 

variable).  

 

6. k-means 

 

k-means is an AI technique that may be utilised for unsupervised machine learning. It 

classifies new data into a number (k) of clusters based on similarities between the data 

points.  

 

7. Linear Discriminant analysis 

 

Linear determinant analysis is a generalisation of Fisher’s linear discriminant (a statistical 

technique), which finds linear-combinations (predictive functions) of features that classify 

data.  

 

8. Neural Networks 

 

An NN is an AI method by which computers process information in a way inspired by the 

structure of the human brain. NNs feature a layered structure of nodes. Logistic regression is 

an example of a very simple NN with no hidden layers.(24)  

  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

32 

 

1.1.7.4 Deep Learning  

 

The first AI efforts employed human “knowledge engineers” who extracted domain specific 

features, using the AI for classification only. However, this was superseded by ML which 

was tasked with both feature classification and extraction tasks. This approach is especially 

useful in retinal imaging, as each patient now effectively presents a “Big Data” challenge, 

with the advent of ever improving OCT resolution and the subsequent finding of novel 

features and subclinical diagnoses.(23) The same is true for other healthcare fields where 

ML has so far proved successful, including pathology, radiology and dermatology.  

Whilst ML is concerned with computers being able to think and act with relatively little human 

intervention, DL is concerned with computers processing data in a way that can be 

described as actually modelled on the neural structure of the human brain. DL algorithms 

can be described as “black boxes”, as they make connections that are too highly 

dimensional and convoluted to be understood or interpreted by human operators. In other 

words, DL algorithms employ greater complexity at the expense of interpretability. Examples 

of DL algorithms include convoluted neural networks (CNNs), deep kernel machines and 

deep recurrent NNs, with the most suitable for imaging data being CNNs. CNNs are 

composed of layers which carry out “convolution”, a mathematical process allowing an 

individual neuron to process data from its receptive subfield,(23) and outperform CMLs. A 

key advantage of DL over CMLs is that the performance continuously improves with the size 

of the training dataset, and this benefit has been realised within realistic time frames with the 

advent of ever more powerful computers.(23) However, whilst DL is preferable to CMLs for 

large annotated datasets when accuracy is the primary aim, CMLs still have a place when 

the annotated datasets are smaller or when transparency is paramount over maximising 

performance.(23) 

Training DL models usually requires a large number of well-annotated library images specific 

to the field of study, which limits its usefulness to certain circumstances. For example, in 

2016, DeepMind Health and Moorfields Eye Hospital NHS Foundation Trust partnered to 

create a training set using 14,884 OCT volume scans from 7621 patients.(31) This research 

produced encouraging results, matching or outperforming the eight experts involved in the 

study, when relying solely on the scans provided. Another study published in 2017 and 

based in South Korea, used a comparatively smaller training set from 399 participants based 

on retinal nerve fibre layer (RNFL) scans and visual field tests to detect glaucoma. Similarly, 

the results were impressive, offering a sensitivity of 0.983 and a specificity of 0.975.(32) In 

2018, Ahn et al also published research involving DL and glaucoma, but only using CFPs 
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from just over 1000 images. Whilst the results did not quite match the performance of the 

South Korean study, they were still encouraging with the added convenience of using only 

one imaging technique.(33)  
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1.1.7.5 Transfer Learning 

 

ML does not always need to be trained on a large repository of closely related images 

associated with a particular field. With a specific type of ML called “Transfer Learning” (TL), 

is possible to retrain an algorithm on a specific data set after initial training on a diverse 

population of images. This has led to image CNN classification architecture models being 

available in a ready to use format, for example, Google’s Inception V3⁶ which is trained on 

1.2 million images from the ImageNet library, with other examples of these models including 

Alexnet and ResNet. ImageNet contains, as of 2016, over 14 million images(23) of real life 

objects including vehicles, animals, tools etc. In this way, TL takes ML from the study of one 

discipline and applies it to another quite different area of research.(34) This approach has 

been used to train classifiers after initial pre-training, to recognise features from, for 

example, OCT-B images, and need only a fraction of the specialised data for training that 

would otherwise have been required.(35, 36)  

 

1.1.7.6 Deep Learning for enhancing OCT imaging 

 

Speckle noise affects the quality of OCT images and previous attempts have been made to 

improve images via frame averaging techniques. These, however, lead to longer scan 

durations with a subsequent decline in patient comfort. A study published in 2018 reported 

that images captured with the Heidelberg Spectralis OCT had been processed with a DL 

algorithm trained with 2328 “clean” OCT B-scans coupled with the corresponding “noisy” B-

scans. The network was able to clean 1552 B-scans of optic nerves with a processing time 

of 20ms.(37) In December 2021 Nidek® also launched a similar DL OCT denoising software 

in its NAVIS-EX image filing software. The Nidek Retinascan Duo RS-330 used in this study, 

however, used the previous version on NAVIS-EX without this additional feature as data 

collection concluded in February 2021.  

 

1.1.7.7 Orange Data Mining 

 

Scientists often lack the skills required to analyse images via computer technology, and 

therefore a user-friendly system for image analysis that could easily be employed by new 

users, after only a short period of training, would be of great benefit. Orange Data Mining 

(ODM), a free open source software package, offers both a user-friendly AI system and a TL 

image analytics “add-on”. The user can create a workflow of widgets to process, model and 

visualise the data, with the facility to check the progress made after each step in the process 
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(by connecting a Data Table widget to any widget in the workflow). SqueezeNet is one of a 

number of programs that can be selected within the ODM embedding widget, which is also 

trained on the ImageNet library. SqueezeNet is a small deep CNN, which still delivers 

AlexNet-level accuracy with 50 times fewer parameters. AlexNet is a CNN that won the 

ImageNet Large Scale Recognition Challenge in 2012,(38) a competition that has run 

annually since 2010 involving the classification of 1.2 million natural images into 1000 

categories.(39) CNNs models have recently reported to have reached a human level of 

ability for this specific image identification task.(40) Small deep CNNs have the advantage of 

being more amenable to use on hardware with limited memory, e.g. a personal computer 

(PC). SqueezeNet has the added advantage that the analysed images do not need to be 

uploaded onto a remote server (unlike Google’s Inception V3⁶), but rather can be processed 

locally on the user’s own PC.(41)  

 

1.1.7.8 Building and evaluating Artificial Intelligence Models 

 

The steps for building an AI model include the pre-processing of images, splitting the data 

into separate test and training sets, and finally evaluating the results. Pre-processing will 

normally involve noise reduction, normalising data, ensuring data from different sources is 

integrated and adjusted to a common scale, and extracting the features that are most 

relevant to the conditions being studied. A disadvantage is that during the initial pre-

processing information will be lost. For example, haze in an ocular photograph or scan may 

indicate other pathology that the physician could find useful, e.g. a poor macular scan may 

indicate media opacities or haze due to other conditions such as uveitis. Also, the pre-

processing will be enhancing the algorithm’s performance for detecting a single disease, and 

so numerous pre-processing branches may be required for ML to match the ability of the 

human physician to detect a wide variety of pathology. To evaluate the results, recall (or 

sensitivity), specificity and area under the receiver operating characteristic curve (AUC) may 

be used. The receiver operating characteristic curve (ROC) is created by plotting the true 

positive rate on the vertical axis (tpr or sensitivity) against the false positive rate on the 

horizontal axis (fpr or (1 - specificity)). A perfect classifier will have a graph that hugs the top 

left-hand corner, with the worst following the straight line that runs from the bottom left to the 

top right of the graph. There are various methods to score the model’s performance on the 

ROC graph, however the most commonly used is the AUC. AUCs of effective models give 

values between 0.5 and 1.0, with a higher value indicating a better model performance.(24) 

0.5 represents a random guess, whereas 1.0 indicates 100% sensitivity and specificity. The 
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AUC may therefore be used to represent important diagnostic and prognostic outcomes for 

AI analysis endpoints.(23) 
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1.1.7.9 Supervised and unsupervised machine learning 

 

Supervised and unsupervised learning are two forms of ML. Supervised learning is to train a 

model with data that has already been labelled by a human researcher, and tunes the 

influence of the inputs to optimise the predictions that the model is making. Human labelling 

can be challenging, and therefore supervised ML can also be “weakly supervised”, to deal 

with partly or unclearly labelled data. Unsupervised learning is training the model without 

human labelling, with the model independently searching for patterns within the data and 

thus creating mathematical models to describe the structure of the data.(23) Accuracy has 

so far proven to be superior from the application of supervised machine learning by most 

healthcare research projects.(24)  

 

1.1.7.10 Artificial Intelligence in ophthalmology  

 

How diseases are diagnosed depends to a large degree on the physician’s experience and 

knowledge, much of which is based on pattern recognition. Therefore, AI potentially has an 

important role to play in assisting less experienced clinicians to make clinical decisions by 

detecting patterns within treatment choices made by senior clinicians. Furthermore, EPRs, 

which essentially represent large data sets, could be examined by AI to detect patterns 

contained within them e.g. the patient history, signs, symptoms and clinical findings which 

would otherwise not be humanly possible to detect. AI has been used within ophthalmology 

for anterior and posterior eye disease recognition including keratoconus, cataract, diabetic 

retinopathy, glaucoma, ARMD, retinopathy of prematurity, retinal detachment, retinal vein 

occlusions, strabismus, ocular oncology and peri-orbital trauma, and its usefulness is likely 

to continue expanding.(42). In particular, AI has been shown to be capable of impressive 

levels of accuracy for detecting, classifying and quantifying GA from features observed via 

OCT imaging. However, when considering CFP, OCT and FAF data captured in day to day 

ophthalmology / optometry clinics, images may be of lower quality compared with the “clean” 

images that have been carefully chosen and manipulated specifically for use in research 

involving AI. As a consequence of this problem, many recent papers have focused on using 

AI to assess the quality of images in order to address this issue (43).  

 

1.1.7.11 Discussion 

 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

38 

The fast-moving field of Artificial Intelligence (AI) has shown promise in the field of 

healthcare, with AI being harnessed to assist less experienced clinicians to make decisions 

based on treatment choices made by senior colleagues, as well as analysing large EPR data 

sets including clinical findings, symptoms, and history. Machine Learning (ML) is a branch of 

AI through which computers can learn from these large repositories of information and apply 

the algorithms created to novel data. Deep Learning (DL) is an advanced form of ML, which 

is modelled on the human brain’s complex network of neural layers which can create “black 

box” diagnostic tools. DL has already produced encouraging results in ophthalmology 

including studies in the fields of medical retina and glaucoma, however, ophthalmology 

graders must appreciate the inherent risks, errors, biases and reliability of these “black box” 

tools to utilise them correctly for the routine management of ocular disease.(23) Transfer 

Learning (TL) is a technique that has great potential by eliminating the need for large training 

data sets based specifically on the subject area, with the machine learners instead pre-

trained on large libraries of images unrelated to the field of study before final, and relatively 

lean training on the subject area, with subsequent economy of resources. TL is therefore an 

exciting opportunity for optometrists, enabling the use of off-the-peg software packages 

retrained on ocular images to efficiently identify specific pathologies across a wide variety of 

ophthalmological disciplines.  
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1.2 Literature Review: The role of fundus autofluorescence in the detection and monitoring 
of age-related macular degeneration.  

 

1.2.1 Purpose, aims, recent findings and summary of literature review 
 

Purpose/Aims: Fundus autofluorescence (FAF) was first described in the 1970s,(3) however, 

its value in the detection and monitoring of age-related macular degeneration (ARMD) is still 

unclear.(44) A review of the available literature was conducted to identify the clinical value of 

fundus autofluorescence in ARMD. 

 

Recent findings: FAF can offer improved detection and repeatability when measuring 

geographic atrophy (GA) area compared to colour fundus photography (CFP), and is also 

superior to CFP for detecting small areas of GA(2) and halo effects surrounding areas of 

GA.(10) Halo effects have been found to be indicative of further likely expansion of GA (45) 

Enface spectral domain optical coherence tomography (SD-OCT) may offer an alternative to 

FAF imaging for the detection of halo effects. FAF has also been reported to be superior for 

reticular pseudodrusen (RPD) detection compared to SD-OCT and CFP,(46) and therefore 

FAF may have a role in ARMD prognosis given the associations between RPD and the 

progression to advanced ARMD(47) . 

 

Summary: FAF is superior to CFP for the detection of small areas of GA, quantifying areas 

of GA,(48) detection of halo effects surrounding areas of GA(10) and is superior to both SD-

OCT and CFP for the detection of RPD.(49) FAF may therefore have a role in the prognosis 

of ARMD, given the association of these findings with progression to advanced disease.(50) 

Enface SD-OCT could provide an alternative to FAF for the detection of halo effects 

surrounding areas of GA. 

 

1.2.2 Key Words 
 

1. Fundus autofluorescence  

2. Age-related macular degeneration 

3. Colour fundus photography 

4. Optical coherence tomography 
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1.2.3 Methods of Literature Search 
 

Relevant articles were identified that reported on FAF in relation to ARMD published in peer 

reviewed journals through a multi-staged approach. In the first stage, a computerised search 

of the Web of Science database, the SCOPUS database, the PubMed database (National 

Library of Medicine), the Embase database, the Cochrane database and the Directorate of 

Open Access Journals (DOAJ) was performed to identify all relevant articles published 

between 1970-74 (depending on the database) and December 2022. Terms and words used 

for the search included “fundus autofluorescence”, “age-related macular degeneration”, 

“colour fundus photography” “optical coherence tomography” and MeSH descriptors for 

these terms, as well as common abbreviations and variations. Searches were limited to 

papers based on “adult humans” and articles published in all languages were included, 

provided an English translation could be obtained.  

In the second stage, abstracts of the articles found via the search strategy were examined to 

identify papers that included studies involving the use of FAF imaging for the detection, 

evaluation and monitoring of ARMD, and/or those that compared FAF to other retinal 

imaging modalities including colour fundus photography (CFP) and optical coherence 

tomography (OCT). In the third stage, full articles were reviewed (including their 

bibliographies using the same guidelines) and relevant information was incorporated into the 

manuscript.  
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1.2.4 Inclusion criteria (PICO items listed below) 
 

Population: Adult humans over the age of 50 years. Having ARMD was not an essential 

inclusion criterion i.e. the study also included healthy participants. 

Interventions: Retinal fundus autofluorescence imaging, colour fundus photography, optical 

coherence tomography. 

Comparisons: Retinal fundus autofluorescence in relation to colour fundus photography 

and/or optical coherence tomography, for the imaging of eyes with and without age-related 

macular degeneration.  

Outcomes: To include information on the detection, evaluation and monitoring of age-related 

macular degeneration. 

To include: Peer-reviewed articles. Access to full articles was not strictly required, and the 

search also included conference abstracts. 

Articles published in any language provided an English translation is available.  

 

1.2.5 Exclusion criteria  

 

Non-peer reviewed articles. 

Articles not judged to be clinically relevant.  

Studies not involving adult human subjects. 

No English translation available. 
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1.2.6 Databases used 
 

Web of Science, SCOPUS, PubMed, Embase, Cochrane database, and the Directory of 

Open Access Journals 

 

Web of Science - general science-based database 

SCOPUS – general science-based database 

PubMed - alternative database which also uses Medical Subject Headings (MeSH) for 

searches 

Embase – database covering a wide range of scientific, medical and healthcare disciplines 

(all journal articles available by reference to the Medline database are also available through 

Embase).  

Cochrane - an internationally renowned and trusted source for searches 

DOAJ – general database of open access journals 

 

1.2.7 Key Words 

 

1. Fundus autofluorescence  

2. Age-related macular degeneration 

3. Colour fundus photography 

4. Optical coherence tomography 

 

1.2.8 Abbreviations of Key Words used 
 

1. FAF, AF 

2. ARMD, ARM 

3. CFP 

4. OCT 
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Medical Subject Heading (MeSH) descriptors are available for Key Words 1, 2 and 4 with the 

results detailed below. Boolean operators were selected to encompass all MeSH descriptors 

for these terms, with exception of Macular Dystrophy as detailed below. 

 

1.2.9 Medical Subject Heading Descriptors for Key Words (Exact Term Match), searched on 
15.12.2022. 
 
For 1.  

Autofluorescence Imaging 

Fluorescence Imaging 

Fundus Autofluorescence Imaging 

 

For 2. 

Age-Related Macular Degeneration  

Age-Related Maculopathies  

Age-Related Maculopathy  

Macular Degeneration, Age-Related  

Macular Dystrophy – not relevant for this project on ARMD 

Maculopathies, Age-Related  

Maculopathy  

Maculopathy, Age-Related  

 

 

For 3.  

Not featured in MeSH December 2022 

 

For 4.  

OCT Tomography 

Optical Coherence Tomography 
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Search strategy table with Boolean descriptors for Key Words 

Search date 15.12.2022 OR  OR 

Concept 1 

Fundus NEAR/5 

*fluorescence 

Notes: to capture the words 

in either order in close 

proximity 

FAF AF 

AND    

Concept 2 
 
Age-related NEAR/5 macul* 
degeneration  
 
Notes: to capture words in 
either order, in close 
proximity, and to include 
macular and maculopathy 
 

ARMD AMD 

AND   

Concept 3 

Colo$r fundus photography  
 
Notes: to capture both US 

and UK spellings of “colour” 

 

CFP  

AND   

Concept 4 

Optical coherence 

tomography 

OCT  

AND   

Table 1.3 Database search strategy table. 
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Results 1.3 

 
Number of results for each database searched on 15.12.2022: 

Number 
of 
results 
combine
d 
searche
s 

WOS (Topic - title, 
abstract and 
keywords) 
 

SCOPUS 
(Article, 
abstract 
and 
keywords
) 

PubMed 
(Article, 
title and 
keyword
s) 

Embase 
(all fields) 

Cochrane 
(title, 
abstract 
and 
keywords) 

DOAJ 
(all 
fields) 

Concept 
1 

74589 90 100962 179602 74 484 

Concept 
1 and 2 

946 27 289 552 27 82 

Concept 
1,2 and 
3 

104 0 17 53 0 0 

Concept 
1,2,3 
and 4 

85 0 13 45 0 0 

Total 
number 
of 
papers 

(85+27+13+45+27+
82) 

(27) only 
using 
concepts 
1 and 2 

13 45 (27) only 
using 
concepts 1 
and 2 

(82) only 
using 
concept 
1 and 2 

Total 
papers 
with 
duplicate
s (108) 
removed 

279 minus 108 
duplicates = 171 

   
 

  

Table 1.4 Results of database searches.  
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Figure 1.3 Flowchart showing how retrieved articles were screened 
  

Number of records 
identified through 
WOS, SCOPUS, PubMed 
and Embase = 170

Plus number of 
additional articles 
identified through 
Cochrane (27) = 197

Plus number of 
additional articles 

identified through DOAJ 
(82) = 279

Number of articles 
screened by title after 

duplicates (108) 
removed = 171

Number of articles 
excluded as FAF not 

part of the study = 20

Number of articles 
assessed by abstract for 

eligibility = 151

Number of articles 
excluded as FAF not 
used for detection, 

evaluating and 
monitoring of ARMD = 

80

Full text of articles 
assessed for eligibility = 

71

Number of articles 
excluded as no English 

translation available = 1

Number of full text 
articles included in the 
literature review = 70
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1.3.1 The role of lipofuscin in fundus autofluorescence imaging 
 

Over a typical human lifespan, three billion photoreceptor outer segments are phagocytosed 

within the retina by the structure known as the RPE.(51) The RPE is a single layer of 

uniform-sized, polygonal cells that separate the choroid from the neurosensory retina.(51) Its 

job is to phagocytose, digest and breakdown (by means of lysosomes) the pigmented outer 

segments (tips) of photoreceptors on a daily basis, allowing for renewal leading to the 

maintenance of photoreceptor excitability.(51) A small fraction of these products of the visual 

cycle (LF and melanolipofuscin) is not chemically suitable for the digestion and therefore 

accumulates in the lysosomes of the RPE.(52) The majority of FAF is produced by dominant 

fluorophores within these LF granules located in the cells of the RPE,(52) and excessive 

quantities of LF is thought to portend the degeneration of photoreceptors, as well as the 

onset of new areas of retinal GA and expansion of existing atrophy.(53) Drusen are thought 

to be caused by vast accumulations of LF, and as ARMD progresses, drusen may wane and 

eventually disappear whilst atrophy of the RPE develops.(51) When utilising classic blue 

light excitation, FAF may be considered to represent a topographical map of LF within the 

RPE.(54) LF has a peak excitation wavelength of 470nm and emits yellow-green light 

peaking at 600-610nm.(55)  

 

FAF associated with LF is minimal at the fovea, and rises to a maximum level at 7-8 degrees 

from the fovea before falling again gradually towards the periphery. This autofluorescence is 

not distributed evenly, and is highest approximately 12 degrees temporally and superiorly 

and is lower in the inferior nasal region, where it is highest at 7 to 8 degrees from the foveal 

centre.(56) This distribution roughly maps to the distribution of rod cells. The low foveal FAF 

signal may be due to cone cells not producing such a high level of autofluorescence due to a 

slower rate of LF production, and also that melanin and macular pigment at the foveal centre 

may also absorb the excitation light.  

 

LF is produced in the membranes of photoreceptor segments from vitamin A aldehyde 

reactions, and then deposits in the lysosomal compartments of RPE cells with its major 

components related to A2E.(10) A2E has phototoxic effects, detergent qualities, inhibits the 

lysozyme proton pump (leading to a rise in lysosomal pH), inhibits lysosomal enzymes, and 

reduces the efficacy of the phagocytosis of waste material.(57),(58),(59),(60) Reactions of 

cell components with A2E result in glycation products that can lead to inflammation.(10) A2E 
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has an excitation wavelength of 430-450nm, emitting light at 560-575nm(61) and its toxic 

effects are thought to be caused by its ability to generate reactive oxygen species when 

irradiated by blue light (62, 63). However, it has been suggested that A2E is less damaging 

than its precursor, all-trans-retinal, and therefore the conversion to A2E may actually have a 

protective effect on the retina.(64)  

As well as occurring in complex retinal diseases and genetic disorders of the eye, for 

example, Stargardt’s and Best’s disease,(65) excessive LF accumulation can occur with 

normal aging and may occupy up to 33% of the free space within RPE cells in individuals 

over 70 years of age.(66) 

  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

49 

 

LF is therefore a naturally occurring substance in the RPE,(67) and accumulates in this layer 

of the retina increasingly as a result of a number of processes specifically related to 

aging.(67) These aging changes have been identified as:  

 

1. A reduction in the efficiency of intracellular lysosomes whose roles include the breakdown 

of LF.(67)  

2. Reduction in the rates of autophagy. This is where components within the cells are 

transferred to lysosomes for chemical breakdown, and a slowing of this process results in an 

accumulation of LF.(67)  

3. A failure of the breakdown of aging mitochondria, causing an increase in the 

concentration of reactive oxygen species and an acidic pH shift within cells, culminating in 

cellular stress.(67)  

 

These three processes lead to an incomplete degradation of phagocytosed outer segments 

of photoreceptors in the post-miotic RPE, with the subsequent accumulation of LF.(5),(51)  

 

 

Figure 1.4 Illustration of the retinal processes leading to drusen formation  
 
Note that drusen and pigmentary abnormalities do not map precisely to FAF abnormalities, 

which appears to indicate that FAF offers the clinician information over and above that 

offered by other ophthalmic imaging methods including CFP, SD-OCT and fluorescein 

angiography (FA).(68, 69) Furthermore, drusen do not produce a uniform abnormal FAF 

Accumulation of 
lipofuscin, 

melanolupofuscin and 
other fluorophores 

within the RPE leading 
to drusen formation

Incomplete 
degradation of 
photoreceptor 

tips  

photoreceptor 
tip phagocytosis 

via lysosomes 
within the RPE
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signal, but rather this can vary from a normal, increased or decreased FAF intensity, 

presumably due to the variable composition of drusen which may include fluorophores other 

than LF, as well as variable changes to the overlying RPE.  

 

Using alternative excitation wavelengths can detect other fluorophores present in the retina 

e.g. using near-infrared FAF (NIR-FAF) (excitation 790nm and peak detection >800nm) can 

detect melanin (peak emission 787nm).(70) Melanin protects the eye by absorbing/blocking 

visible light and ultraviolet wavelengths as well as having an antioxidant role within the 

retina.(71, 72) Note, however, that NIR-FAF, as delivered via the Heidelberg Retinal 

Angiograph cSLO (operating in Indocyanine Green mode), generates a signal which is 

approximately 60-100 times weaker than short wavelength FAF.  

 

Additionally, rhodopsin is a human visual pigment contained within rod outer segments and 

can lead to a reduction of the FAF signal by absorbing the incident excitation 

wavelengths.(73) It is important to note that the “bleaching effect” of rhodopsin, after 

exposure to light, can increase FAF by up to 30% compared to a dark-adapted eye.(74)  

 

Whilst there appears to be a consensus that hyper-autofluorescence, especially of the focal 

increased variety,(67) may be a precursor for the onset and progression of dry ARMD, there 

appears to be controversy over whether an accumulation of LF can also predict the onset of 

wet ARMD.(75) Some authors have reported that an increase in FAF was an uncommon 

finding in the fellow eyes of patients exhibiting choroidal neovascularisation (CNV),(76) 

however, other have stated that there may indeed be a link between retinal autofluorescence 

and the risk of progression to wet ARMD.(77, 78) Furthermore, a specific type of hypo-

autofluorescence, of the reticular variety, has been implicated in widespread RPE 

inflammation, and may be a sensitive marker for the likelihood of future choroidal 

neovascularisation.(79) 
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1.3.2 Specific retinal anomalies and fundus autofluorescence 
 

1.3.2.1 Growth in geographic atrophy  

 

No therapy is currently available to reverse the effects of geographic atrophy (GA), and 

therefore all interventions are aimed at stopping or at least reducing the rate of 

progression.(80) Standard CFP is not an ideal modality for the differentiation of GA from its 

precursors, i.e. drusen and depigmentation, which have a similar appearance to GA, with the 

borders of atrophy being particularly difficult to discern in lightly pigmented eyes.(2)  

 

FAF can offer improved detection and repeatability when measuring overall GA area 

compared to CFP, and is also superior for detecting small areas of GA.(2) The most likely 

reason for CFP being of limited value in measuring GA area is poor image contrast, and at 

present FAF is considered the gold standard for monitoring GA growth due to the striking 

reduction in FAF signal detected in a zone of GA.(1, 80) FAF, along with SD-OCT, are 

therefore considered to be the most powerful modalities for the diagnosis and monitoring of 

ARMD,(80, 81) as well as measuring the effectiveness of any treatment.(82, 83) 

Furthermore, several authors have described how FAF can be used to predict future growth 

of retinal GA area.(84, 85) This can be done in two ways: 

 

1. By accurately measuring the area of retina affected, as the initial lesion size has 

been shown to be significantly related to the prognosis and annual rate of VA decline 

(p<0.01).(83) The key initial area of GA appears to be 2.6 mm² (approximately equal 

to one optic disc area), with lesions equal to or greater than this size having 

significantly higher annual reductions of LogMAR best corrected visual acuity 

(BCVA), as well as a faster annual rate of growth in the area of retina affected.(83) 

2. FAF can be considered a topographical map of LF in the RPE, and an increase in the 

FAF signal surrounding GA in a halo configuration has been implicated as a risk 

factor for the progression,(10, 86-89) and the increased rate of progression of 

GA.(10, 80, 90)  

 

The specific pattern of FAF observed in proximity to the GA is also important,(2, 83) as 

significantly lower rates of progression have been demonstrated between those with focal or 

no FAF pattern, compared to the higher rates seen with a banded or diffuse pattern.(10) An 

alternative to FAF for the purpose of examining GA is enface OCT imaging, which shows 

areas of photoreceptor outer segment disruption that extends beyond the limits of the 
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manifest GA, similar to the halo effect detected with FAF, however, the field of view with 

enface OCT is limited compared to FAF. It has also been suggested that enface OCT has 

the advantage of not exposing the eye to potentially damaging blue light, and as SD-OCT is 

currently the modality of choice for studies into clinical trials involving GA anatomy, enface 

OCT would appear to be a natural choice for the imaging of areas of potential GA 

expansion.(91) Enface OCT imaging used in conjunction with OCT B-scanning has also 

been shown to be reliable in identifying and localising areas of hyperpigmentation identified 

via CFP.(92) 

 

Examining the results of research quantitatively, GA growth has been measured with CFP to 

be on average 1.45mm2±0.06mm2 per year. Compare this to FAF at 1.43mm2±0.06mm2 per 

year, with FAF tending to detect GA earlier. However, over longer periods the methods give 

comparable results.(93) Similarly, the age-related eye disease study 2 (AREDS2) study 

(imaging 2202 patients) noted that agreement between CFP and FAF started out at 42.9% 

but increased to 80.9% over 5 years,(93) however, at every visit the area of GA measured 

by FAF was larger than that detected by CFP.(93) These findings can potentially be 

explained by the observation that hypo-autofluorescence occurs not just in areas of manifest 

GA, but changes preceding GA, i.e. nascent GA (identified via SD-OCT), and hence FAF 

appears to be detecting GA and the next sliver of retina primed to become atrophic,(93) 

whereas CFP measures only the frank areas of retinal GA. Mean differences between 

graders were found to be comparable between CFP and FAF at 0.02mm2 (CI 1.76 to 1.8) , 

however, intergrader variability was greater for CFP. This finding is most likely explainable 

by virtue of FAF imaging providing better contrast than CFP at the borders of GA as 

mentioned earlier.(93) 

 

Studies into OCT changes seen in ARMD and their relation to FAF alterations indicate that 

an area of decreased FAF next to an atrophic lesion represents an area where changes in 

retinal architecture have occurred, and this makes a case for these areas to be included in 

the overall measurement of GA present in longitudinal studies, where GA is taken as a 

surrogate end point for loss of visual function.(82) This finding could have important 

ramifications for future studies into GA growth.  
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1.3.2.2 Reticular pseudodrusen  

 
A significant section of this review focuses on reticular pseudodrusen (RPD). This was 

considered necessary due to the large number of references identified in the literature 

review search that highlighted RPD as a specific retinal anomaly with close links to ARMD, 

as well as their being more readily visible with FAF compared to other imaging 

technologies.(85) The detection of RPD could be important for understanding the process of 

ARMD onset, progression and prognosis,(94) however, the precise mechanism of RPD 

formation, and also their significance, is not fully understood. Associations have been 

suggested between smoking and diet and the presence of RPD, and as a consequence FAF 

could have an important future role in counselling patients on lifestyle advice to avoid future 

sight loss from ARMD. 

 

1.3.2.2.1 Reticular pseudodrusen history and description 

 

Pseudodrusen were described for the first time by Minoun et al in 1990, as a variant of 

drusenoid changes whose visibility is enhanced when viewed under blue light.(95) In 1991, 

Klein et al first coined the term “reticular drusen”, and described these as soft, indistinct, and 

occurring in networks of interlacing ribbons.(95) Reticular pseudodrusen (RPD) is the two 

terms combined, with Arnold et al (in 1995) the first to use this term, also making a link 

between these features and a higher risk of choroidal neovascular membrane 

development.(95) RPD develop along the superior-temporal arcades and/or perifoveally, 

superior and nasal to the macula and around the optic nerve head.(46, 94) The CFP 

appearance is of yellow networks of interlacing lesions, round to oval in shape and 125-

250μm in diameter. However, CFP is a poor way to visualise RPD,(46, 96) with FAF being a 

superior modality. FAF shows ill-defined hypoautofluorescent lesions against a background 

of mild hyperautofluorescence,(97, 98) discrete round to oval in shape,(99) in a target 

configuration.(46, 50, 94, 95) On SD-OCT B-scan, RPD have been described as distinct 

round or triangular, granular hyperreflective deposits situated above the RPE, between the 

RPE and the inner and outer segments of the photoreceptors, sometimes breaching this 

boundary in more advanced cases.(46) In some cases the tops are rounded resembling a 

“haystack”. A 2016 study defined RPD as the presence of five or more of these lesions 

arranged in a network.(50)  

 

The Antioxydants, Lipides Essentiels, Nutrition et maladies OculaiRes (ALIENOR) study 

carried out between 2011 and 2012 reported an RPD prevalence of 13.5% (15.6% in women 

and 10.2% in men), increasing to almost 50% over 85 years of age. RPD were found in 
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4.6% of eyes with no ARMD, 34.6% with atrophic ARMD and 8.1% in neovascular 

ARMD.(46) RPD were considered to be present if detected by two of the following: CFP, 

FAF, near infrared reflectance (NIR) and SD-OCT. The prevalence measured in older 

studies that utilised CFP for the detection of RPD was considerably lower, e.g. the Beaver 

Dam study (1991) and the Blue Mountains study (1995) recorded the incidence of RPD over 

75 years of age at 6.6%, and 4.9% respectively.(100) Therefore there is evidence of an 

historic underestimation of the prevalence of RPD. Note that although RPD have not been 

found to contain markers for photoreceptors, RPE and Muller cells, photoreceptors are 

negatively affected around these deposits, having a reduced visual function.(94) 

 

1.3.2.2.2 Theory of reticular pseudodrusen formation 

 

A vascular theory of RPD formation was first proposed by Arnold et al in 1995, who 

demonstrated that a significant loss of the middle choroidal layer of small blood vessels 

coupled with an increased separation between choroidal veins was associated with RPD, 

concluding that choroidal stromal fibrosis and loss of choroidal vasculature resulted in RPD 

formation.(98, 101) Subsequently, Querques et al proposed that disruption in the RPE 

structure due to atrophy and fibrosis of the choroid beneath may cause photoreceptor outer 

segments to accumulate above the RPE and lead to RPD formation.(98, 102) Further 

evidence of a link between RPD and choroidal changes comes from a study finding that 

RPD were not detected by means of SD-OCT and FAF in central areolar choroidal dystrophy 

(CACD), however, they were found to be present in 52.6% of early ARMD, and 100% of the 

eyes examined with advanced ARMD.(103) The authors postulated that this is due to CACD 

being a genetic disorder causing direct photoreceptor damage with subsequent loss of the 

RPE, rather than the complex multifactorial disease processes occurring in ARMD, with sub-

RPE alterations leading to photoreceptor loss, RPE disruption and secondary angiogenic 

processes affecting the choroidal and retinal vasculature.(103)  

 

1.3.2.2.3 Reticular pseudodrusen and their association with rods cells 

 
Rods cells are most abundant in a horizontal ellipsoid configuration, with maximum density 

at the limits of the macula, in a similar distribution to the areas where RPD are normally 

detected. Furthermore, RPD have also been described as being functionally and 

topographically associated with rods, and may be responsible for a profound reduction in 

dark adaptation and retinal sensitivity.(96) It therefore appears that the rod system may be 

especially vulnerable to RPD formation, and this could be explained by virtue of the relatively 
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low rod/RPE cell ratio in rod dominated retinal regions. (104) This may help to explain why in 

GA, patches of atrophy initially appear in the parafoveal region, proceed to enlarge, then 

coalesce, with the fovea (featuring a low density of rod cells) usually remaining spared until 

late in the disease process.(94) Note that delayed rod dark adaption has also been identified 

as the best surrogate endpoint for early ARMD,(81) with the rod recovery slope being the 

best predictor of the CFP ARMD grade and FAF classification.(105)  

 

1.3.2.2.4 Reticular pseudodrusen and their link to advanced ARMD 

 

RPD have been linked to macular atrophy (MA), especially in the inferior macular region with 

a 6.1 times increased likelihood for the advanced form of MA in the presence of RPD.(49) 

Other research found the prevalence of RPD to be 52% and 23% in patients with and 

without ARMD respectively, concluding that patients are 3.4 times more likely to have ARMD 

if RPD are present.(94) Furthermore, both the Beaver Dam and Blue Mountains studies 

reported that over 5 years, patients with RPD were 4-6 times more likely to progress to late 

ARMD than those without RPD but having other early signs of ARMD.(79, 106-108) RPD 

have been linked to ARMD progression resulting from geographic atrophy,(96) however, 

their link to wet ARMD is controversial, where many studies have shown a positive 

association and others have not.(101, 107, 109). 

 

1.3.2.2.5 Reticular pseudodrusen and their association with wet ARMD 

 

Regarding conversion to wet ARMD, there was no link found between RPD and CNV 

formation from the ALIENOR study, with only 8.1% of eyes with RPD converting from dry to 

wet ARMD.(46) Conversely, other studies have shown a link between RPD and CNV 

formation. One study following the fellow eye in patients with CNV over 5 years found that 

RPD were positively associated with wet ARMD.(97) This was supported by the finding that 

RPD are an independent risk factor for the 5 year progression rate in eyes whose fellow has 

CNV,(94) and RPD have also been found to be associated with worse visual function from 

the early stages of ARMD, with a higher likelihood for the formation of both dry and wet 

subtypes.(80)  

 

1.3.2.2.6 Detection of reticular pseudodrusen 

 

RPD increase with age reaching a prevalence of approximately 50% in the over 85s.(10) 

FAF, NIR and SD-OCT are reported as being superior for RPD detection compared to CFP, 
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FA and indocyanine green angiography (ICGA), with NIR being the most sensitive of all 

modalities. (46) One author has found that a patchy FAF pattern is a common finding in 

RPD,(110) with others describing the appearance of RPD as a “target” (46, 50, 94, 95, 98, 

100)  and with a distinct pattern of isoautofluorescence surrounded by an area of reduced 

FAF signal,(46, 100) which may be of “any size”.(94) Sensitivities for RPD for the various 

modalities have been found to be: NIR (93%), FAF (92%), OCT (74%), red-free (RF) (33%), 

and CFP (29%),(97) with another research group revealing similar findings, albeit with a 

better sensitivity for CFP at 42%, and a fractionally lower sensitivity for FAF of 89%.(50) The 

latter study also reported that those participants whose RPD were detected with both CFP 

and FAF were significantly younger than those whose RPD were detected with only one 

imaging technique. With the heavy reliance on CFP in previous studies, the authors 

conclude that RPD in the general population is significantly underestimated.(50)  

RPD are therefore poorly visualised via CFP, but seen readily with FAF and other imaging 

modalities, (95) and therefore it has been recommended that at least two modalities are 

used for the diagnosis of RPD. Their presence wanes in very advanced wet ARMD, as RPD 

appear to fade in the vicinity of neovascular membranes.(95) In conclusion, there are no 

clear recommendations on the most effective way to view or image RPD, but a multimodal 

approach appears to be the overall consensus.(94, 100)  

 

1.3.2.2.7 Reticular pseudodrusen and genetics 

 

Genetic susceptibility to RPD has been linked to individuals carrying minor allelic variations 

in the ARMD, complement factor H gene (CFH), and hepatic lipase (LIPC) genes. 

Interestingly, lipophilic statin medication has been reported as associated with a lower 

incidence of RPD.(50) Also, a greater frequency of the age-related maculopathy 

susceptibility 2 (ARMS2) allele was found in subjects with bilateral large drusen, and RPD in 

either eye, and this association with large drusen may implicate RPD as a risk factor for the 

progression to advanced ARMD.(50) The authors recommend that OCT, NIR and FAF 

imaging are important for the phenotyping of patients with intermediate ARMD to enable 

better counselling, particularly through the detection of RPD.(50) Other possible risk factors 

suggested for the formation of RPD are female gender, increased age, high body mass 

index (BMI), reduced choroidal thickness, low education, cardiovascular factors and 

smoking.(100)  

 

1.3.2.2.8 Reticular pseudodrusen and geographic atrophy growth 
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RPD have been found to be highly correlated with GA, and may be considered an early 

manifestation of GA itself.(98) Also, RPD may portend the expansion of GA into unaffected 

areas of the retina, and may be associated with a higher GA growth rate.(47) Specifically, 

unilobular GA expands at a significantly lower rate compared to the multilobular GA, and 

RPD have been shown to be more prevalent in the latter type of GA than the former.(98) 

Furthermore, quantitative analysis showed the mean GA progression rate for all eyes to be 

0.8mm²±0.6mm² per year), with unilobular GA expanding at 0.3mm² per year and 

multilobular at 0.9mm² per year (statistically significant difference to the 5% level, p = 0.02), 

with RPD associated with 28.6% of unilobular lesions compared to 97.0% of multi-

lobular.(98) Overall, 74.2% of patients with and 41.7% without RPD showed subsequent GA 

expansion.(98) RPD were also reported to be specifically and independently associated with 

late ARMD, especially when these advanced changes resulted from GA and/or retinal 

angiomatous proliferation (RAP) lesions.(96, 98)  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

58 

 

Below are some examples, taken during this study, of reticular pseudodrusen viewed under 

different imaging modalities 

 

 

Figure 1.5 Reticular pseudodrusen viewed via colour fundus photography, appearing as 
series of yellow dots surrounding the fovea, indicated by the yellow arrows 
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Figure 1.6 Reticular pseudodrusen from the same eye as in Figure 1.5, viewed via OCT, 
appearing as “haystack” shaped lesions situated above the retinal pigment epithelium, 
indicated by the yellow arrows 
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Figure 1.7 Reticular pseudodrusen from the same eye as in Figures 1.5 and 1.6,viewed via 
FAF, appearing as hyporeflective lesions surrounded by an area of relative hyperreflectivity, 
indicated by the yellow arrows 

 

1.3.2.3 Polypoidal choroidal vasculopathy  

 

Correctly identifying polypoidal choroidal vasculopathy (PCV) is of crucial importance to 

ophthalmologists, as 25% of patients with wet ARMD can be non-responsive to treatment 

with anti-vascular endothelial growth factor (anti-VEGF) intraocular injections (demonstrating 

either recalcitrance and/or tachyphylaxis).(111) Between 50% and 90% of these non-

responsive cases have PCV, most often misdiagnosed as typical wet ARMD. Compared to 

other forms of neovascular ARMD, PCV has a more favourable long-term prognosis, with a 

lower incidence of eventual progression to GA.(49) 
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PCV is a neovascular ARMD subtype characterised by a type 1 aneurysmal choroidal 

neovascular lesion (when macular neovascularisation vessels from the choriocapillaris grow 

into the sub-RPE space and are characterised by the presence of polyp-like dilations)(112),  

producing an orange subretinal nodule on CFP, and specific features on SD-OCT. These 

OCT findings include tall but narrow (thumb-like) pigment epithelial detachments (PEDs), 

notched PEDs (or the “sleeping snowman”), the “bubble sign”, (a subretinal circular anomaly 

featuring a hyper-reflective border and a hypo-reflective core) and a depression of Bruch’s 

membrane under a serosanguinous PED; if 2 out of 5 of these CFP and SD-OCT findings 

are observed, a sensitivity of 0.88 and specificity of 0.92 can be achieved along with a 

predictive accuracy from the area under the receiver operating characteristic curve (AUC) of 

0.90.(112) However, ICGA remains the gold standard test for PCV, but this test has the 

disadvantage of being an invasive technique(112) (and contraindicated in patients with 

allergies to iodine-based dyes(113)). In PCV, FAF imaging has been described (specifically 

in the polypoid region) as detecting a hyperautofluorescent ring with a central granular 

hypoautofluorescence (with the abnormal vascular network hypofluorescing) but delivers a 

lower level of sensitivity of 0.67 and specificity of 0.50 compared to combined CFP and SD-

OCT.(112) Therefore FAF does not provide an improvement in the accuracy of diagnosis of 

PCV, but can still provide some additional imaging features that may be clinically 

useful.(112) A mottled FAF pattern has also been described, i.e. a diffuse area of irregular 

autofluorescence, found to be present in 31.8% of eyes with PCV.(1) This may be due, 

however, to mottled FAF patterns being linked to RPE depigmentation that are found in 

76.5% of eyes with neovascular ARMD.(114) RPE abnormalities with drusen have also been 

noted as being present prior to the development of PCV.(1) 

Another associated retinal finding with PCV is cuticular drusen. These were first described 

by Gass et al in 1977. They are dynamic, with periods of absorption and coalescence, and 

may be associated with neovascular ARMD.(115) They are sub-RPE deposits visible as 

small yellow spots distributed in various patterns throughout the fundus on CFP and appear 

with FAF imaging as small hypoautofluorescent dots.(115) They are considered to be the 

result of central RPE erosion with these triangular protrusions stemming from the RPE base 

layer, and may be responsible for the choroidal hyper-transmission signal seen via 

OCT.(116) Cuticular drusen are also readily detectable with FA,(115) resulting in the classic 

“starry sky” pattern.(116) In summary, FAF is an inferior technique when compared to a 

combination of CFP, OCT and FA for the detection of PCV, however, FAF may help to add 

extra information and therefore assist in diagnosis via the detection of specific FAF patterns 

and cuticular drusen. 
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1.3.2.4 Retinal angiomatous proliferation 

 

Retinal angiomatous proliferation is type 3 neovascular form of wet ARMD whereby an 

angiomatous proliferation originates, somewhat controversially, from within the retina, 

invades the outer retina reaching the subretinal space, and in some cases results in an 

eventual communication with the choroidal circulation. This is the opposite of the classic 

(type 2) course of wet ARMD whereby choroidal neovascularisation (CNV) breaks through 

the RPE to invade the neurosensory retina, eventually communicating with the retinal blood 

vessels to form an anastomosis between the retinal and choroidal circulation. RAP and 

classic CNV can therefore be easily confused.(117) FAF patterns may have a role in 

identifying RAP lesions,(1) as demonstrated by a study examining wet ARMD, with RAP 

lesions the most likely to demonstrate abnormal FAF patterns at 85.7%, next was 

intermediate typical wet ARMD at 54.1%, and lastly PCV at 36.4%.(1) A granular FAF 

pattern was identified in 42.9% of eyes with RAP lesions, with this pattern more prevalent in 

RAP lesions than in the other forms of wet ARMD.(1) As discussed earlier, a link has also 

been found between the presence of RPD and RAP lesions, (96, 110) with RPD being 

independently and specifically associated with advanced ARMD featuring RAP lesions(94) 

and GA.(110) A further FAF pattern identified as having a strong correlation with RAP 

lesions is the RPD ribbon dominant type, found to be significantly more common in RAP 

lesions (69%), and with GA (78.6%), when compared to typical ARMD.(99) More evidence 

for this link with ribbon patterns of RPD and RAP come from another study which reviewed 

321 eyes with a new diagnosis of neovascular ARMD. In the group with both wet ARMD and 

RPD, the RPD ribbon FAF pattern was more prevalent in RAP at 69.2%, with this pattern 

less common in wet ARMD without RPD and PCV at 40% and 16.7% respectively.(106) In 

terms of visual function, an ability to detect, diagnose and treat RAP early could be 

particularly advantageous, delivering better visual outcomes, as shown in the Comparison of 

Age-Related Macular Degeneration Treatment Trials (CATT) study, which also highlighted 

that RAP is a baseline risk factor for future progression to GA.(118) 
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1.3.3 Associations between SD-OCT findings and FAF results 
 

Whilst there is no clear link between retinal changes observed on SD-OCT imaging and the 

results from FAF, close relationships have been suggested, with changes in FAF intensity 

tending to be associated with advanced changes in the outer layers of the neurosensory 

retina in ARMD.(82) These outer retinal layer changes include outer nuclear layer (ONL) 

thinning, disruption of the external limiting membrane (ELM), ellipsoid zone (EZ) disruption, 

Bruch’s membrane/Retinal pigment epithelium (BM/RPE) complex disruption, hyperreflective 

loci (HL) and an increased choroidal hyper-transmission signal.(82) Of these changes, ONL 

thinning, ELM disruption, EZ changes and an increased choroidal hyper-transmission signal 

tend to be associated with a decreased FAF signal.(119) The most common SD-OCT 

findings associated with an increased FAF signal are HL, (82) whilst visual acuity (VA) has 

been found to be most closely related to the integrity of the ELM and the EZ (120), and 

therefore a reduction in VA is most likely to be associated with a hypoautofluorescence on 

FAF imaging. The table below summarises how SD-OCT findings relate to increased and 

decreased FAF signals and VA.  

 

SD-OCT changes 
detected 

Changes associated 
with an increased 
FAF signal 

Changes associated 
with a decreased 
FAF signal 

Changes 
closely 
associated with 
a reduction in 
VA  

ONL thinning  Y  

ELM disruption  Y Y 

EZ changes  Y Y 

BM/RPE complex 
disruption 

 Y  

HL  Y   

Increased choroidal 
hyper-transmission 
signal  

 Y  

Table 1.5 Summarising how SD-OCT findings are associated with increased and decreased 
FAF signals and VA. 
 

A limitation of FAF is that it tends to have as relatively high intergrader discrepancy 

compared to the observation of other retinal features, one study finding this to be 12.3% (for 

comparison the same study reported the intergrader discrepancy for the interface of the 

photoreceptor layer was 11.0%, external limiting membrane 9.6%, RPE 9.6%, focal 

hyperreflectivity 6.8% outer nuclear layer 11.0% and choroidal hyperreflectivity 1.4%). SD-

OCT grading can also have its challenges, with changes to the ELM, EZ and RPE 

particularly difficult to grade, with ONL changes, choroidal hyper-transmission and HL easier 
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to assess.(82) It has been reported that drusen associated with a normal retinal architecture 

do not have a decreased FAF signal, and overall, a good general rule is that when a normal 

FAF signal is detected, only relatively minor retinal alterations are likely to be found on SD-

OCT.(82) 

 

1.3.4 Three instruments available for fundus autofluorescence imaging  
 

There are three main types of commercially available instrumentation capable of FAF 

imaging. One based on a modified fundus camera, one based on a confocal scanning laser 

ophthalmoscope (cSLO), and one based on ultra-widefield imaging technology (also a type 

cSLO based system).  

Both the fundus camera and cSLO based systems utilise a confocal aperture for the filtering 

of backscatter from outside the plane of focus.(119) In cSLO FAF, superior contrast and 

spatial resolution are obtained compared to the fundus camera, by means of a raster 

scanning laser,(121) which suppresses light from planes anterior and posterior to the plane 

of interest.(4)  

However, cSLO FAF utilises blue light excitation (λ = 488nm), (with the exception of Ultra-

widefield cSLO FAF – more details below) and with macular pigment containing xanthophylls 

tending to block this wavelength, the result can be a decreased FAF signal at the macula. 

(10, 93, 119, 122) This artefact with cSLO FAF can mimic involvement of the macula in 

patients with GA, and can therefore lead to an overestimation of the total area of GA 

present.(4) Fundus camera-based FAF on the other hand, by employing a red-shifting filter, 

uses an excitation illumination of green-orange light (λ = 510-610nm) which is less affected 

by the blocking effect of xanthophylls, giving a brighter macular signal.(119)  

cSLO FAF is commonly provided in clinical trials by the Heidelberg retina angiogram in 

fundus autofluorescence mode, taking eight images which are then averaged to reduce 

noise.(122) This averaging makes cSLO FAF superior to fundus camera-based FAF for the 

detecting of smaller signals which may be present, for example, surrounding areas of GA in 

a halo configuration.(122) A longer period of steady fixation by the subject is, however, 

required when compared to fundus camera-based FAF (which captures the FAF image in a 

single flash of light) causing a higher failure rate for the capture of acceptable images.(122) 

This problem with cSLO FAF was borne out by a study investigating cSLO and fundus 

camera FAF reliability which found that 80 out of the total of 292 eyes did not produce an 

acceptable image. 76 of these failures were with the cSLO FAF averaging system, whilst the 

remaining four failed with both systems.  

The cSLO FAF’s averaging system does, however, have the advantage of being able to 

function at a significantly lower illumination power, with only a small central part of the 
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patient’s pupil used for input light, with the rest of the pupil used for collection. Fundus 

camera-based FAF is inferior in this respect as it uses annular illumination with only the 

centre of the pupil involved in collection. This may make cSLO FAF more comfortable for 

patients with fewer immediate after-effects from the less intense flash, however the longer 

fixation period required with cSLO could also have a negative effect on patient comfort.(121) 

A further reason for a higher failure rate with cSLO FAF may be that the relatively short 

wavelength is more prone to the light scattering effects of cataract, and in particular nuclear 

sclerotic lens opacities, compared to fundus camera-based FAF whose longer wavelength 

mitigates this particular artefact.(122) 

Another difference in the functionality between the fundus camera and cSLO modalities is 

that latter FAF modality detects only direct light, whereas fundus camera-based FAF records 

indirect, scattered light, which can emanate from all tissue levels.(10) This variation in light 

scatter may explain why several pathologies have been shown to differ in characteristics 

between the two FAF modalities, including fibrovascular membranes and RPD, with cSLO 

FAF demonstrating a brighter signal than fundus camera FAF.(119) Both instruments, 

however, perform similarly for GA, most likely due to the absence of back scatter from this 

type of lesion.(122) Scattered light may also have the disadvantage of masking subtle 

hyperautofluorescence, as well as producing the phenomena called “pseudo-

autofluorescence” where a false FAF signal is detected from structures outside of the retinal 

plane.(123) However, one study has reported that the difference in scattered light between 

cSLO and fundus camera FAF is statistically insignificant.(122) A potential advantage of this 

scattered light detected via fundus camera-based FAF is that deeper retinal structures, 

including choroidal blood vessels, fluoresce only with modified fundus camera-based FAF, 

due to the deeper penetration of the RPE with the longer wavelength used.(122) This could 

offer extra information on the choroidal circulation that may not possible to obtain via cSLO 

FAF. Finally, with cSLO FAF, integration into conventional fundus cameras is not possible as 

with fundus camera-based FAF,(119) making cSLO FAF relatively more expensive to 

integrate into clinical practice.(122) 

 

1.3.5 Colour fundus autofluorescence and macular pigment density 
 

In most cases, images from both cSLO and fundus camera-based FAF are monochromatic. 

Some cSLO systems e.g. the Heidelberg Spectralis have the option of multicolour 

reflectance-based imaging, via blue, green and infrared wavelengths. Recently a so-called 

quantitative colour FAF imaging device (from EIDON, CenterVue, Padua, Italy), based on 

light-emitting diode technology has become available which has an excitation wavelength of 

450nm, with two different emission spectra of 510-560nm (green) and 560-700nm (red), 
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which have the potential to identify minor fluorophores that might otherwise be masked by 

the dominant LF (124). Quantitative colour FAF has even shown potential to differentiate 

between active and inactive macular neovascularisation, but this technology is, at the 

present time, only in its infancy and will require more research to corroborate these 

results.(125) 

There has also been much interest in recent years in macular pigment density (MPOD), with 

changes in MPOD playing a potential role in retinal disease processes (126, 127). cSLO 

FAF systems have been used to quantitively measure MPOD (composed of lutein, 

zeaxanthin and meso-zeaxanthin) which act as antioxidants and filter blue light to protect the 

retina.(128, 129) For example, the Heidelberg Spectralis HRA2 cSLO uses two excitation 

wavelengths with barrier filters to create autofluorescence, calculating the MPOD from the 

difference between the recorded signals.  

 

cSLO FAF Fundus camera-based FAF 

Superior resolution and contrast due to the 
averaging system employed 

Quicker and therefore more comfortable for 
the patient as taken via a single flash, 
however the flash is more intense than that 
delivered via cSLO. 

Macular xanthophylls reduce the FAF signal Not as prone to xanthophyll artefacts as 
cSLO FAF 

Can be taken through a small pupil, and 
can be ultra-wide 

Uses annular illumination so larger pupil 
size required 

Greater motion artefacts due to averaging 
system 

Fewer motion artefacts 

Relatively expensive equipment costs Relatively cheap equipment costs 

Uses relatively short wavelengths for 
excitation (488nm). (Optos uses 532nm and 
635nm). 

Uses relatively long wavelengths for 
excitation (510-610nm).  

Table 1.6 The main differences between cSLO and Fundus camera-based FAF systems.  
 

Peripheral ultra-widefield fundus autofluorescence can enable examination of the metabolic 

activity of the retina/RPE in areas which lie beyond the reach of conventional SD-OCT and 

fundus cameras.(67) The Optomap Ultra-Widefield ® system by Optos ® uses a 

combination of cSLO technology with an ellipsoid mirror to capture images up to a field of 

view covering 200⁰ (delivering approximately an 82% view of the retinal area).(130) The 

Optos ® system uses lasers with excitation wavelengths of 532nm (green light for visualising 

the RPE and for performing FAF) and 635nm (red light for visualising the choroid) with an 

emission filter of > 540nm,(74). By using this longer wavelength of light Optos ® benefits 

from a reduced absorption by macular pigment in a similar way to fundus camera based 

FAF. Optos® automontage is an additional feature that allows the user to take images from 

five different perspectives, on central, up, down, left and right gaze, offering a 220⁰ field of 

view equating to approximately 97% of the retinal area. The drawbacks/limitations of Optos® 
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include: the colour images not being “true” colour (but rather created from lasers and 

therefore being “pseudocolour”) and peripheral magnification/distortion and lid 

artefacts.(130)  

 

Examples of cSLO devices capable of 
FAF 

Examples of Fundus Camera-Based 
systems capable of FAF 

Heidelberg Spectralis Nidek Retinascan Duo RS-330 

Nidek Mirante Topcon Maestro 

Optovue OCT Kowa series 

Optos: 
Daytona/California/Monaco/Silverstone 

Canon CR series 

Table 1.7 Devices capable of delivering FAF by means of cSLO and fundus camera-based 
systems.  
 

Peripheral FAF has recently been investigated specifically with regards to macular 

degeneration. It has been suggested that hypoxia and ischaemia in the peripheral retina 

have an important role to play in the development of wet ARMD.(131, 132) Furthermore, 

peripheral autofluorescence changes have been found in 39.6% of eyes with ARMD, and 

28.9% of healthy eyes, with hypoautofluorescence being the most common abnormality 

observed.(133) One study suggests that older age, female gender, and neovascular ARMD 

have been found to be associated with peripheral FAF abnormalities,(114) whilst another 

found that patients with ARMD, older patients, and those with poor VAs were more likely to 

demonstrate peripheral anomalies with FAF.(134) Research in Japan has also noted that 

more abnormal peripheral FAF patterns were associated with typical AMD, PCV and RAP 

subgroups compared to controls, and the authors concluded that future treatment strategies 

for ARMD may be based on peripheral FAF findings.(1) Therefore, ARMD can be 

considered as not purely a condition affecting the macula, but rather one that may affect the 

entire retina, including the far periphery.(133) 

 

1.3.6 Quantitative FAF 
 

Quantitative FAF (qAF) has been described as the process of measuring the intensity of 

FAF after excitation with short wavelength light. The method discussed here involves the 

Heidelberg Spectralis HRA2, utilising a cSLO with 488nm excitation and 500nm to 680nm 

emission spectra. qAF is calculated using published algorithms(135) that use data such as 

the laser power, the instrument’s “zero” signal, the detector sensitivity, subject refractive 

error and ocular media status.(135) Greyscale values are then assigned to pixels by 

reference to a standard AF signal loaded within the instrument.(136) Detector sensitivity is 

adjusted to ensure that FAF capture is within the dynamic range of the detector (to avoid, for 
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example, overexposure) and to guarantee a linear relationship between the FAF signal 

emitted and the recorded signal.(137) No normalisation is carried out on the data to increase 

image contrast as is usually the case for FAF. This is because normalisation would mean 

that comparisons of grey levels between images of the same or different eyes could no 

longer be made.(137) Magnification of the fundus image due to axial length and/or corneal 

curvature variations must also be accounted for by application of a scaling factor,(135) 

however, this scaling allowance will not hold well for eyes that have undergone refractive 

laser surgery. 

Work has been done to calculate the correction factor for subjects without cataract to 

account for the natural changes in ocular media transparency that occur with age,(138) 

however, research is yet to be done to allow for similar, but more extreme attenuations of 

the FAF signal caused by cataract. For pseudophakic eyes, the specific transmission factors 

for particular lens implant materials/designs is accounted for within the instrument. As with 

traditional FAF, macular pigment is also an issue in qAF, as variations exist between 

individual subjects, however, at eccentricities of more than 7°, absorption by these 

carotenoid macular pigments (lutein and zeaxanthin) is negligible.(139) Therefore, for qAF 

measured beyond 7-9° there is little effect on the signal collected.(137) Other steps should 

be taken as with any ophthalmic imaging to achieve the maximum image quality, e.g. 

optimum patient positioning, good pharmacologically induced pupillary dilation and exclusion 

of artefacts e.g. those induced by lashes or a poor tear film quality.(137) Software for the 

HRA2 has been designed (HEYEX) to capture qAF in three concentric rings, each split into 

eight segments of the fundus image, with the figure qFAF8 referring to the mean qAF 

obtained, with the possibility to also select an area of interest.(135) qAF has been shown to 

be greater in older individuals, those of white ethnicity, smokers and females, and is 

maximal supero-temporally.(140) A study investigating early and intermediate ARMD and 

qAF found that the measurements of FAF were not statistically different (to the 5% level) in 

eyes with cuticular and/or soft drusen compared to healthy age-adjusted eyes, however, the 

levels were significantly lower in eyes with reticular pseudodrusen.(141) 

So far qAF has not, however, been adopted widely by clinicians in practice, most probably 

due to the need for internal reference features within instruments and additional 

software.(137) 

 

1.3.7 Practical uses of fundus autofluorescence  
 

1.3.7.1 Ability to detect disease 
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In 2012, a community-based study in the USA, (reported as the first prospective study of its 

kind), successfully imaged all subjects with a fundus camera-based FAF system, and found 

that there was a 29% increase in disease detection with FAF.(48) It is important to note that 

all of the retinal images in the study were graded by an onsite medical director. In 89% of the 

patients, FAF improved identification and characterisation of pathology compared to CFP 

alone. It was suggested that this improvement may be due to FAF’s superiority to CFP for 

detecting subtle disturbances of the RPE. The study concluded that a significant 

improvement in diagnostic accuracy may therefore be possible by using imaging modalities 

other than CFP, and future referral algorithms may benefit from the addition of FAF data.(48) 

This study, however, only included one patient with ARMD, and therefore its relevance to the 

current study may be minimal regarding the impact of FAF imaging for this specific condition.  

The results from the American study are also in conflict a study conducted in Australia in 

2018, which reported that the total detection level for any macular pathology by a cohort of 

community optometrists using CFP alone was 94%. The study found that CFP provided 61% 

accuracy for ARMD in all cases examined, which included other pathologies. For each 

additional imaging modality i.e. NIR, FAF and SD-OCT, presented in that order, a small 

additional increase in diagnostic accuracy of 1% was observed, with a concurrent increase 

in false positives.(142) However, it should be noted that this difference in diagnostic 

accuracy between these two studies could be explained by the differing experience of the 

graders. 

 

1.3.7.2 The Drawbacks of FAF 

 

The 2012 USA study suggests several practical drawbacks of FAF imaging. Additional clinic 

time was noted as particularly relevant as although none of the subjects had pupillary 

dilation carried out, 2-3 minutes were left between the image capture for the two eyes which 

could prove time hungry in a busy clinical practice. Other disadvantages are the cost of the 

extra equipment, training in image analysis, lack of specific protocols, and the influence of 

media opacities on image quality.(48) The need for extra training was also a drawback 

highlighted by the 2018 Australian study, which reported a lack of improvement in diagnostic 

accuracy as well as an increase in false positives when additional information from 

modalities uncommonly used by community optometrists were made available.(142) 

Technical drawbacks of the various imaging modalities were considered in a French study 

from 2015 on the evaluation of GA, which succinctly states the key differences between 

CFP, NIR, FAF and SD-OCT as being down to two artefacts; macular pigment and low 

contrast. CFP and NIR suffer from low contrast; conversely FAF has excellent contrast, and 
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it is this property that is most likely responsible for the superior intergrader measurement of 

GA as reported in previous studies.(143-146) However, FAF can present problems with 

macular pigment leading to this imaging modality not correctly identifying foveal sparing. SD-

OCT was identified as providing better tracking of atrophic retinal lesions compared to FAF 

and CFP, and also had the best inter and intra-grader agreement for foveal sparing.(4) This 

illustrates why choosing the best modality for analysing a particular retinal condition may be 

complex, and a multimodal approach is justified in clinical practice. It is important to note, 

however, that in the French study all images were assessed by a professor in medical retina, 

and two ophthalmology medical retina specialists. 

 

1.3.7.3 Training required 

 

In the 2018 Australian study, SD-OCT was found to be the most preferred imaging method 

as identified by 75% of the grading optometrists. However, FAF was the most preferred 

modality when retinal pathology other than ARMD was suspected. If an eye was incorrectly 

diagnosed by means of CFP alone, multi-modal imaging was of most benefit in correcting 

these errors and facilitating the correct diagnosis. The study therefore shows that additional 

imaging modalities can help clinicians to make more informed decisions regarding retinal 

disease, however, the effect is small for the cohort of practitioners, who were typically non-

therapeutically trained optometrists with a BSc qualification working in community 

practice.(142) The evidence from the French and American papers indicate that improved 

clinician training could enhance outcomes for patients when utilising advanced imaging 

modalities in practice, as FAF imaging had a greater impact on ARMD diagnosis when 

utilised by medically trained clinicians in these studies.(4, 48) Community optometrists have 

been found to be strongest in diagnosing early and intermediate ARMD, but poor when 

tested with cases of advanced ARMD, often mistaking this condition for other retinal 

diseases.(142) This could reflect their experience in practice which would involve many 

more cases of early forms of ARMD. Again, this adds weight to the argument that clinicians’ 

performance could be improved by extra training in the use of a variety of retinal imaging 

techniques, especially for more advanced disease.  

 

1.3.8 Supplementation 
 

ARMD is a common and important cause of loss of visual function in elderly populations 

throughout the World, and no therapy can regenerate the photoreceptors and RPE.(80) This 

is the reason why all current medical interventions are aimed at slowing the progression of 
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atrophy,(80) which makes early diagnosis and a preventative strategy paramount in the 

treatment of ARMD. 

A recent study investigating retinal sensitivity in relation to the use of nutritional 

supplementation found that a reduced or abnormal FAF signal portends a reduction in retinal 

sensitivity, within 1 degree of the lesion, that occurs after the 3rd year.(147) A speckled FAF 

pattern, by year 5, had the lowest retinal sensitivity, with linear, patchy and focal plaque-like 

patterns all reducing sensitivity to a lesser degree. It was observed that an initial lace-like 

pattern on FAF resulted in an improvement in retinal sensitivity over time. This lace-like 

pattern of FAF may be related to RPE hyperplasia, or another transient condition involving 

retinal stress.(147) Retinal sensitivity also generally increases as a function of the distance 

from the abnormal FAF signal, with this association found to be statistically significant.(147) 

A previous study indicated that supplements may be an important factor in retinal sensitivity 

recovery,(110) and therefore an abnormal FAF pattern could be interpreted as an indication 

for the commencement of nutritional supplementation in certain patients. FAF imaging could 

also be used as a means of monitoring whether dietary supplements are improving the 

health and biological functioning of the retina. The level of supplement intake required to 

make a statistically significant improvement in retinal sensitivity, even in healthy eyes, has 

been reported as a daily 6mg dose of lutein.(148), however further studies, with improved 

designs (including randomisation) may be required to investigate the healing and/or 

prophylactic properties of dietary supplementation.(148) FAF and SD-OCT are considered 

the most useful modalities for the diagnosis and subsequent follow-up of patients with dry 

ARMD, including monitoring the rate of GA progression.(80) This could be important with 

respect to the nutritional advice given to patients, as the first Age-Related Eye Disease 

(AREDS) study concluded that patients at high risk of progression were the most likely to 

benefit from supplementation.(80) The AREDS study created four categories of ARMD: 1 to 

4, with 4 being the most advanced form.  
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Category 1  None or few small drusen (<63μm). 

Category 2 (early ARMD) Any of the following: multiple small drusen, 
few intermediate drusen (63-124μm), RPE 
pigmentary abnormalities. 

Category 3 (intermediate ARMD) Any of the following: extensive intermediate 
drusen, at least 1 large drusen (≥125μm), 
GA not involving the foveal centre. 

Category 4 (advanced or “late” ARMD) GA involving the foveal centre and/or any 
features of neovascular ARMD. 

Table 1.8 AREDS ARMD classification categories 1 to 4.  
 

The first AREDS study found that the largest benefit from dietary supplements was found in 

categories 3 and 4, who received a combination of 500mg of Vitamin C, 400 international 

units of Vitamin E, 15mg of beta-carotene (for non-smokers only), 80mg of zinc oxide and 2 

mg of cupric oxide (copper; to avoid anaemia with the high zinc intake) leading to a 25% 

reduction in progression.(149) The later AREDS 2 study tested the addition of either omega 

3 fatty acids or 10mg lutein plus 2mg of zeaxanthin for their ability to further reduce ARMD 

progression rates, however, after 5 years of follow-up, no additional benefit was found.(90) 

However, the AREDS 2 study recommended a supplement combination to include lutein and 

zeaxanthin as this represented a safe and effective alternative to beta-carotene (reported 

increased risk of lung cancer from beta-carotene in this cohort).(150) It is important to note 

that while supplements significantly reduced the risks of the progression of ARMD, this was 

mainly due to the prevention of conversion to neovascular ARMD, with no impact on the 

incidence of GA.(10) 

 

AREDS1 AREDS2 

500mg of Vitamin C 500mg of Vitamin C 

400 International Units of 

Vitamin E (or 268mg) 

400 International Units of 

Vitamin E (or 268mg) 

80g of zinc oxide 80g of zinc oxide 

2mg of cupric oxide 2mg of cupric oxide 

15mg of beta-carotene 10mg lutein 

 2mg of zeaxanthin 

Table 1.9 Supplements recommended by AREDS1 and AREDS2 studies. 
 

1.3.9 Lipids 
 

The outer blood retinal barrier is created by the RPE (formed by the tight junctions between 

the cells of the RPE), with the inner blood retina barrier created by the retinal blood vessels 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

73 

themselves (formed by the tight junctions between the retinal capillary endothelial cells). 

Lipids appear to provide an insight into to how the retina functions with regards to the blood 

retinal barrier. Drusen have been described as extracellular deposits of lipids and 

membranous debris between the inner collagenous layer of Bruch’s membrane and the 

basal lamina of the RPE,(110, 151) i.e. they are not shielded from the choroidal vascular 

circulation by the outer blood-retinal barrier. Conversely, RPD are located extracellularly 

between the photoreceptors and the RPE, i.e. behind the outer blood-retinal barrier and are 

therefore shielded from the choroidal vascular circulation.(94) Mass spectrometry, x-ray 

microanalysis and histochemistry show that lipids are a major component of drusen, which 

includes both esterified and un-esterified cholesterol.(151) Other research has demonstrated 

that the composition of RPD and drusen differ, with the former containing lower quantities of 

lipid compared to the latter, and this difference could be a result of RPD being relatively 

shielded from systemic factors and instead being influenced to a greater degree by local 

metabolic dysfunction, including impaired lipid cycling. This lipid cycling deficit may result in 

protein spill into the subretinal space, leading to photoreceptor damage and ultimately 

GA.(94, 98) In addition to this, large bilateral drusen have been found to be linked to 

atherosclerosis and hypercholesterolemia, whereas RPD have not,(50) so it appears that 

drusen may form as a result of systemic lipid-related factors, whereas RPD are more a result 

of local lipid cycling deficits as already mentioned, however the picture is far from clear. 

Furthermore, the variants of the hepatic lipase (LIPC) gene, which is responsible for 

encoding for hepatic triglyceride lipase expression in the liver, retinal cells and subretinal 

space, have been identified as risk factors for RPD,(100) although this link has also been 

disputed.(152) To add to the confusion, other studies even suggest that LIPC gene variants 

are linked to a decreased risk of ARMD.(153, 154)  

It has been reported that there may be a protective role in ARMD from lipophilic statins, with 

a lower incidence of RPD in patients receiving this type of medication.(100) Conversely, 

other studies have found no such reduction in the risk of ARMD with lipophilic 

medication.(155-157) It would appear, therefore, that further research with larger samples is 

required to provide more evidence surrounding ARMD and the use of lipophilic statins.(100) 

 

1.3.9.1 Detecting lipids in the retina via fundus autofluorescence 

 

The “onion sign”, a lesion which is associated with chronic exudation associated with type 1 

neovascularisation in ARMD contains lipid, collagen and fibrin, and tends to occur within a 

vascularised PED.(158) Utilising CFP, the onion sign is visualised as glistening patches 

within yellow-grey deposits, and with FAF mild hypoautofluorescence in observed.(158) 
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When confluent, these lesions form into plaques in the outer plexiform layer (OPL), 

corresponding to hard exudates on SD-OCT imaging, which represent lipid rich deposits. 

The “onion” layers visible on SD-OCT B-scan are created as a result of intermittent periods 

of exudation, in the same manner as the formation of sedimentary rocks.(158) It would 

therefore appear that lipids are best observed via SD-OCT with FAF providing a supporting, 

confirmatory role.  

 

1.3.10 The role of computers/algorithms in fundus autofluorescence 
 

One study has proposed that it may be possible to use computerised algorithms to improve 

how FAF signals are interpreted, and reduce intergrader discrepancies.(159) These 

programmes enhance dark images (reducing the need for pupillary dilation), remove the 

effect of interfering blood vessels, eliminate outliers and minimise the dispersion of results. 

However, even after computer analysis, variability in subjective interpretations of FAF 

images still exists, although significantly reduced. The study aimed to simplify the grading of 

images, and reducing the number of steps required to create a full analysis, but the authors 

found that a combination of methods was still the most effective method, and more efficient 

than using a single tool.(159) Another study also reported that computerised analysis of FAF 

can aid the detection and interpretation of FAF images specifically with regard to GA area, 

and that the intergrader agreement was significantly improved over manual interpretation 

methods.(160) In summary, the role of computers in analysing FAF images is rapidly 

progressing, particularly with the advent of the greater use of AI, however, more research is 

required before computers can be relied upon to match or exceed the performance of 

human graders.  

 

1.3.11 Discussion 
 

FAF may be thought of as providing a topographical map of fluorophores within the retina, 

and plays an important role in analysing the macula, however, a multimodal approach is 

recommended for the analysis of retinal changes associated with ARMD. There are three 

commercially available instuments capable of FAF imaging with cSLO having advantages 

over fundus camera based FAF of superior contrast, better resolution, and enhanced low 

signal detection, however it suffers from greater foveal artefacts due to light absorption by 

macular pigments. There is debate over whether cSLO or fundus camera based FAF is 

affected most by artefacts related to cataract formation. There has been much interest 

recently in Ultrawide FAF which may play a future role in the management of ARMD as the 

importance of peripheral retinal health in macular degeneration becomes more apparent. 
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FAF is an excellent imaging modality for the detection of small areas of GA, measurement of 

GA size and the detection of halo effects surrounding areas of GA which may indicate 

progessive lesions. En face OCT also may have a future role in determining similar features 

to FAF with research in this area ongoing. Along with NIR, FAF is one of the best imaging 

modalities for the detection of RPD, with these lesions having strong links to progressive 

ARMD. FAF may also have a role in determining retinal sensitivity, and also in determining 

the need for, and the monitoring of the effectiveness of nutritional supplementation for 

ARMD.  

 

Conclusion. 

 

FAF imaging is likely to become a more widespread imaging modality in the fields of 

primary, secondary and research optometry/ophthalmology, with the understanding of its 

uses and relevance continuing to expand.  

 

1.3.12 Further Research Opportunities 
 

Questions that the following Chapters two to nine will attempt to answer:  

 

1. Is pharmacological pupillary dilation required to obtain clinically useful FAF images?  

2. How do cataracts affect FAF image quality? 

3. Is FAF imaging clinically acceptable to patients in terms of visual/ocular comfort? 

4. Can artificial intelligence, machine learning and deep learning use patient history and 

the results from CFP and OCT to predict FAF imaging results?  

5. Can transfer learning be used to identify patterns within FAF images?  

6. What clinical features are related to specific FAF patterns? 

7. Do relationships exist between the clinical variables collected in this study? 

 

Limitations of Chapter one: Only six databases were utilised for the search strategy, and an 

English translation was could not be obtained for one article identified as relevant.  

 

In conclusion, Chapter one has highlighted that FAF offers extra information, which although 

challenging to interpret, may add relevant data for patient profiling, diagnosis, prognosis and 

treatment which could have a practical role in enhancing the care offered to patients by 

clinicians.  
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Chapter 2 Study Methods 
 
2.1 Geographical setting 

 

All the images used in this study were taken personally by the Primary Researcher, 

community and hospital optometrist Roger Smyth (RS), in a community high street 

optometry practice based in the market town of Beverley in the County of the East Riding of 

Yorkshire, in the United Kingdom. The East Riding of Yorkshire is one of the most 

monoethnic areas in the United Kingdom, with 97.4% of the inhabitants being recorded as 

“white” in the most recent 2021 national census.(161) Genetically speaking, Hull and East 

Yorkshire have a strong Scandanavian/Viking influence, anecdotally illustrated by the high 

prevalence of pseudoexfoliative syndrome in the population (from verbal discussions with 

local ophthalmologists specialising in glaucoma). East Yorkshire was a prime site for 

invaders in the ninth century due to the fertile land and nearby river Humber, which gave 

access to the river Ouze leading to the Viking capital of York (Jorvik).  

 

2.2 Inclusion criteria 

 

Patients were selected on the basis of being over 50 years of age. This age criterion was 

selected based on the design of a study conducted into the prevalence of ARMD over three 

continents including Europe, America and Australia published in 2013. The three age ranges 

selected for this Three Continent ARMD Consortium study were: In the European cohort > 

55 years of age, in the American cohort 43-84 years of age, and in the Australian cohort > 

49 years of age.(162) The average lowest age of inclusion for these three studies is 49 

years. Also, according to earlier research by The International ARM (age-related 

maculopathy) Epidemiological Study Group, ARM is defined as a degenerative disorder in 

people > 50 years of age.(11) Therefore, > 50 years of age was selected as an appropriate 

criterion for inclusion in this study.  
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2.3 Exclusion criteria 

 

Since this study was aimed at eliciting whether FAF is useful for identifying retinal 

characteristics associated with ARMD, patients with macular disease other than ARMD were 

excluded from the study. Patients with previous known central/branch retinal vein or artery 

occlusions and/or those with diabetic retinopathy were excluded from the study, however, 

simply being diabetic alone was not a reason for exclusion. Other non-macular exclusion 

criteria were any ocular surgery occurring within three months of the study starting, any 

previous vitreoretinal surgery, choroidal neovascular membranes occurring for reasons other 

than ARMD, previous retinal photocoagulation in either eye and hereditary retinal disorders.  

Patients with epiretinal membranes (ERMs), vitreomacular traction (VMT), lamellar holes 

(LHs), full thickness macular holes (FTMHs) and macular cysts (MCs) were not excluded 

from the study, as these have been found to be relatively common in patients over the age 

of 50 years and are therefore often found in conjunction with ARMD. A recent 

epidemiological study of vitreoretinal interface abnormalities found, using SD-OCT in a 

cohort of patients from 63-102 years of age, that ERMs had a prevalence of 34.1%, VMT 

1.6%, LHs 3.6%, FTHMs 0.4% and MCs 5.6%. The study concluded that the prevalence of 

MCs, ERMs and VMT all increased with age, whilst LHs were not age associated.(162)  

Patients in the current study were initially screened for narrow iridocorneal angles by 

assessment of the anterior chamber depth and by use of the Van Herrick slit lamp 

examination technique, both temporally and nasally, and those patients considered to be at 

risk of an acute angle closure event were excluded and referred to secondary care, if 

appropriate, according to the latest “primary angle closure suspect plus (PACS+)” criteria, 

(163). Gonioscopy was not carried out on participants prior to dilation, but rather a Van 

Herrick grade of 0, 1 or 2 was considered to pose a significant risk of acute angle closure on 

dilation, based on findings from a previous study that states that Van Herrick grade 2, or a 

relation between the corneal thickness and the peripheral anterior chamber depth of <1/2 – 

¼, signifies that angle closure is “possible”.(164) Patients were initially asked if they suffered 

from photosensitive epilepsy, or photosensitive migraines. If they belonged to either group, 

they were also excluded from the study.  
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Inclusion 

criteria 

Exclusion criteria Non-excluded conditions 

Over 50 years 

of age 

Known macular disease other than 

ARMD 

Diabetes 

 Previous CRVO/BRVO/CRAO/BRAO Epiretinal membrane 

 Diabetic retinopathy Vitreomacular traction 

 Narrow iridocorneal angles Lamellar holes 

 Photosensitive epilepsy Full thickness macular holes 

 Photosensitive migraine Macular cysts 

 Any ocular surgery occurring within 

three months of the study starting 

Non-photosensitive epilepsy 

 Any previous vitreoretinal surgery Non-photosensitive migraine 

 CNVs occurring for reasons other 

than ARMD 

 

 Previous retinal photocoagulation in 

either eye 

 

 Hereditary retinal disorders  

Table 2.1 Inclusion and exclusion criteria from the study 
 

2.4 Patient Information 

 

Patients were recruited when they presented for an eye examination at the community 

optometry practice. All consecutive patients who satisfied the inclusion and exclusion criteria 

were invited to participate in the study. Subjects were provided with information in the form 

of a detailed patient information sheet and were also given an appropriate amount of time to 

decide if they wished to participate in the study. For some patients this took the form of 

having their eyes examined and then first selecting spectacle frames before finally having 

the extra images taken, pre and post dilation. For others this meant returning to the practice 

on another day specifically for the extra tests, or to return for other services on a dual-

purpose visit as necessary. Subjects were also given the opportunity to withdraw from the 

study at any time, and were informed that they could ask for their collected data to be 

deleted. Data was anonymised, and to assist with this process patients were issued with a 

unique patient number for the purposes of the project. 
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2.5 Ethical approval 

 

Ethical approval was sought and granted from Aston University’s Research Ethics 

Committee before the project began. REC REF #1604 was granted on 5 th February 2020. 

 

2.6 Instrumentation 

 

 

Figure 2.1 The Nidek Retinascan Duo RS-330 (FAF model) 
(reproduced by kind permission from NIDEK) 

 
The Nidek Retinascan Duo RS-330 (FAF model), hereafter referred to as the RS-330, was 

used to capture all the ocular images for this project. 

The RS-330 is a combined OCT and 12-megapixel 45-degree colour fundus camera which 

is also capable of modified fundus camera-based FAF. FAF is a non-invasive imaging 
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method that detects the presence of LF (within the RPE cells), without the need for contrast 

dye, allowing its distribution to be mapped. For the OCT imaging in this study, a wide area 

retina map scan of 12mm by 9mm was analysed via a 9mm by 9mm macular normative 

database preloaded within the instrument, as shown in Figure 2.2 below. For the FAF 

imaging, the area of image capture was the same as the field for the colour fundus 

photography, i.e. 45 degrees.  

 

 

Figure 2.2 Coverage of the retina map and the normative database  
(Reproduced by kind permission of NIDEK from the RS-330 manual) 

 

NIDEK® 3-D auto-tracking allows rapid and user-friendly image capturing. OCT sensitivity 

can be selected, with a choice of either higher definition or higher speed. The “Ultrafine” 

setting, with a relatively high definition image capture, requires a longer acquisition time and 

performs 13,250A scans per second. The “Regular” setting benefits from a shorter image 

capture time at the expense of a lower definition at 53,000A scans per second, whilst the 

“Fine” setting is a compromise between speed and definition at 26,500A scans per second. 

For the purposes of this project the “Fine” setting was utilised for all image acquisition as a 

trade-off between speed of image acquisition and image definition.   
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The image enhancement function allows for adjustment of image brightness for advanced 

image quality, and this function was utilised throughout the project when considered 

necessary for better image capture. 

 

The RS-330 features a joystick which allows for both lateral and vertical adjustment of the 

unit. A canthus marker on the head rest support enables initial gross alignment of the 

patient’s head position utilising a motorised chin rest prior to fine eye position tuning via 

rotation of the joystick. Automatic small pupil adjustment optimises the fundus camera 

settings if a small pupil diameter (< 2mm) is detected. A slider, situated on the side of the 

unit, allows for compensation of high refractive errors. The unit also features both automatic 

and manual modes for OCT image acquisition, and during this project the automatic mode 

was selected by default. The clinician aligns the central green target on the OCT screen with 

the patient’s pupil, prior to automatic image capture.  

 

There are several OCT scans that may be performed with the RS-330 which include; 

macular cross (a series of horizontal and vertical B-scan cross-sections), macular map (or 

volumetric) scan and macular radial (a series of clock face cross-sectional scans). The 

macular map was selected as the most useful scan for the purposes of this study, as it 

provides a cube of data centred on the posterior pole over a 9mm by 12mm field, allowing 

the clinician to slowly “scroll through” an entire cross-sectional image of the macular area, 

also known as an “edge to edge” scan.  
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2.7 Data Collection Process 

 

As the scans were taken as a part of a general eye health screening test, the combination 

scan feature of the RS-330 was utilised which allows the operator to carry out a series of 

scans on each patient which are automatically selected in a specific order. The series 

selected were as follows (all performed prior to the standard refraction): macular map, disc 

map, macular cross, CFP, and, for Chapter three only, FAF was performed prior to 

pharmacologically induced pupillary dilation.  

 

Finally, FAF was performed with pupil dilation after the standard refraction for both the study 

on pupil dilation in Chapter three, and for the subsequent parts of the study in Chapters four 

to nine. If a scan was captured that was not considered to be of adequate quality, the “retry” 

function was used to capture a fresh image until an acceptable image was achieved. Once 

all images for a patient were collected, the images were saved onto the hard disc of the PC 

used to run the RS-330’s software. The RS-330 utilises NAVIS-Ex software, an image filing 

software that enables instrument networking. A weekly back-up of all study images was 

performed on a removable disc and kept off site outside business hours. Images were 

anonymised and the disc was kept in a locked cupboard.  

 

2.8 System used in this study for the classification of age-related macular degeneration 

 

For patient demographic purposes, the ARMD classification system suggested by the 

International ARM Epidemiologic Study Group was utilised in this study. This system was 

also adopted by Bindewald et al for their study on FAF pattern classification.(165) Early and 

late ARMD are classified as shown in the table below. Note that the for this classification 

system patients must be >50 years of age and the macula is defined as a 6000µm (20°) 

circle centred on the fovea however, for the current study a larger macular area defined by 

the circle whose diameter is defined by the vertical line drawn between the innermost 

temporal vascular arcades was used. Previous research has shown that this line in healthy 

eyes approximates to 9473±1974µm(33±7°)(166, 167) 

 

2.9 The classification system used during this study for FAF images 
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In 2005, a classification system was proposed by Bindewald et al to place FAF results from 

patients with early ARMD into one of eight distinct categories. These were; normal, minimal 

change, focal increased, patchy, linear, lacelike, reticular and speckled.(165) A precise 

description of each phenotypic pattern in given below, with examples taken from the current 

study.  
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Normal: A homogenous background FAF with a gradual decrease in the inner macula 

toward the foveola due to the masking effect of the yellow macular pigment.  

 

Figure 2.3 Example of a normal FAF image taken from this study. 

Minimal change: Very limited irregular increase and decrease of background FAF without a 

clear pattern. 
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Figure 2.4 Example of a minimal change FAF image taken from this study. 

 

Focal increased: Defined as having at least one area (< 200m in diameter) of significantly 

increased FAF which is much brighter than the surrounding background’s FAF signal. The 

borders are well defined, and the difference in FAF between the brighter area and its 

surrounding is not gradual. The brighter area may or may not demonstrate a darker halo 

surround.  
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Figure 2.5 Example of a focal increased FAF image taken from this study. 

 

Patchy: Characterised by presence of one large area (> 200m in diameter) of markedly 

increased FAF. The borders tend to be less well defined than the Focal increased pattern.  
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Figure 2.6 Example of a patchy FAF image taken from this study. 

 

Linear: This pattern features at least one linear area of markedly increased FAF. The 

borders of these areas are usually well defined and the difference in FAF between the 

brighter area and its surrounding is not gradual. These linear patterns usually map to 

hyperpigmented lines on CFP.  

These were no images identified as having a linear FAF pattern in this study.  

 

Lacelike: Multiple branching linear structures of increased FAF in a lace-like pattern which 

may map to hyperpigmentation on CFP. The borders may be difficult to define.  
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Figure 2.7 Example of a lacelike FAF image taken from this study. 

 

Reticular: Multiple small areas (< 200m) of decreased FAF whose borders can be 

indistinct. This pattern tends to occur in the macular region, but also superotemporally in the 

retina. The pattern may or may not map to numerous small soft or hard drusen, or 

pigmentary abnormalities detected on CFP. 
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Figure 2.8 Example of a reticular FAF image taken from this study. 

 

Speckled: A mixture of hypo and hyper-autofluorescent FAF abnormalities covering a large 

area which may extend beyond the macular area to cover the entire posterior fundus. These 

small areas may be punctate or linear. They may map to hypo and hyperpigmentation and/or 

multiple sub-confluent and confluent drusen.  
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Figure 2.9 Example of a speckled FAF image taken from this study. 

 

2.10 Orange Data Mining widgets used throughout this study explained 

 
Microsoft Excel spreadsheets of variables were uploaded into the ODM software program 

and analysed via “widgets”, which form the components of this particular AI software. These 

widgets allowed analysis of the data from a variety of perspectives including: 1. 

Comparisons of associated frequencies between clinical findings (the variables), 2. Ranking 

of clinical findings as predictors of abnormal FAF classifications 3. Confusion matrices, 4. 

Predictive nomograms 5. Principle component analysis and 6. Image analysis.  

 

ODM widgets used in this study: 
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1. File  

2. Distributions 

3. Boxplot widget 

4. Data Sampler  

5. Select Columns  

6. Preprocess  

7. Test and Score (with associated model learners: Naïve Bayes, Logistic Regression, k 

nearest neighbours (kNN), Random Forest, Tree, Neural Network and small vector 

machine (SVM)) 

8. Scatter Plot  

9. Confusion Matrix 

10. Rank 

11. Principal component analysis (PCA) 

12. Nomogram 

13. Receiver operating characteristic (ROC) analysis 

14. Import images and Import embedding widgets 

15. Distances widget 

16. Hierarchical clustering widget 

17. Multidimensional scaling (MDS) widget 

 

1. File Widget  

 

The File widget is used to load data into the ODM canvas, as well as enabling the definition 

of class type and meta attributes. Orange is compatible with Microsoft Excel files or Google 

Sheets documents, or any comma or tab-delimited file. Attribute names are placed at the top 

of columns. 

 

2. Distribution widget 

 

This widget displays value distributions for a single variable, and allows exploration of how 

variables relate to one another. The widget features “fitted distribution” which fits selected 

distribution curves to the plot. The fittings are: Normal, Beta, Gamma, Rayleigh, Pareto, 

Exponential, and Kernel Density. 

  

In the columns section, “split by” displays value distributions for instances of a particular 

class. “Stack columns” displays one column per bin, coloured by proportions of class values. 
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“Show probabilities” shows probabilities of class values at the selected variable, and finally 

“Show cumulative distribution” cumulatively stacks frequencies.  

 

In this study, “split by” was used to explore the relationships between the variables and 

whether the cases demonstrated a normal or abnormal FAF, as this function produces a 

graph that is both easy to interpret and uncluttered, along with the “Normal” fitted distribution 

curve for simplicity. In the Columns section, “show probabilities” was selected. 

 

3. Box plot widget 

 

This widget allows examination of attribute value distributions. It also enables checking for 

outliers and/or duplicated values. In Figure 2.3 below, one FAF image graded as “minimal 

change” was labelled as “abnormal” in error (on the third row from the top), enabling 

correction. This is how the output is displayed when comparing two categorical variables.  

 

 

Figure 2.10 Orange Data Mining Boxplot widget input error screening  

 
The chosen variable to be examined is first selected (in the upper left box), and if “Order by 

relevance of subgroups” is ticked, this presents the variables by order of their Chi² or 

ANOVA value with the most relevant at the top (ODM selects the most appropriate test).  
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Choosing a subgroup (in the lower left box) displays the Boxplot for this specific subgroup, 

and if “Order by relevance to variable” is ticked, this orders the subgroups by their Ch i² or 

ANOVA value (again, as with the upper box, ODM selects the most appropriate test).  

 

Below in Figure 2.11 is another example taken from ODM below, showing how the output is 

displayed for comparison of one numeric and one categorical variable. When “Annotate” in 

the “Display” box is ticked, the median is displayed below the line, and the mean (with 

standard deviation) above the line. Ticking the “compare means” box compares the means 

of the selected subgroups and gives the student’s t test “p” value.  

 

 

 

Figure 2.11 Orange Data Mining Boxplot of lens status and age.  
 

The dark blue vertical line represents the mean, with the dark blue horizonal line indicating 

the standard deviation. The central light blue shaded area illustrates the values between the 

first (25%) and third (75%) quartile. The horizontal dashed blue indicates the range. Finally, 

the yellow vertical line represents the median.  
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When the same categorical attribute is selected as both the variable and subgroup, as 

shown in Figure 2.12 below, the bars represent the number of instances with each particular 

attribute value, i.e. 65 normal and 28 abnormal FAF images. 

 

 

 

Figure 2.12 Orange Data Mining Boxplot of FAF classifications 
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Below in Figure 2.13 is an illustration of stretch bars and box labels. Stretch bars show the 

relative values of data instances; if stretch bars are not selected, absolute values are given. 

Ticking “sort by subgroup frequencies” simply sorts the subgroups by their descending 

frequency.  

 

 

 

Figure 2.13 Illustration of stretch bars and box labels in the Orange Data Mining Boxplot 
 

4. Data Sampler widget 

 

The Data Sampler widget allows selection of a proportion of the total input data. In this study 

on FAF, this widget was utilised to examine the predictive abilities of model learners for 

increasingly larger percentages of the entire data set. This enabled a calculation of sample 

size adequacy, by measuring when graph of the degree of informedness (sensitivity + 

specificity -1) versus the percentage of the sample data utilised plateaued. 
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Figure 2.14 Screen shot taken from the Orange Data Mining sampler widget. 
 

A fixed percentage of the data can be selected, as shown in the screen shot in Figure 2.14 

above. However, it is also possible to select a fixed sample size, with or without replacing 

the selected data. If replaced, the next selection is made from the entire data set. Even if 

100% of the data, or all instances are selected, shuffling still occurs. Cross validation splits 

the data into subsets, one subset is held back as “remaining data”, the others are outputted 

as the data sample. Bootstrapping is a process whereby the sample data is resampled to 

make an inference about the sample. In this way a model for inferring the actual population 

from the sample can be created. “Replicable sampling” ensures sampling that can be used 

by a variety of models, whereas “Stratify sample” mirrors the input dataset’s composition. 

For this study “Replicable sampling” was utilised.  
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5. Select Columns widget 

 

This widget is used to select specific variables from the input data to be used in the analysis. 

Below, in Figure 2.15 can be seen an example of how the widget was utilised for this study 

on FAF. Ignored variables, in the left-hand box, include those related directly to the FAF 

result, which would contaminate the data being explored as a predictor of the FAF outcomes 

as normal or abnormal. Also ignored was the “years of smoking cessation”, with a binary 

variable “Ceased smoking  20 years/never smoked” selected for analysis instead. This is 

because a non-smoker would either have a lifetime (which will vary naturally according to 

age), or zero years of smoking cessation, both of which could be confusing for the statistical 

results. The selected variables for analysis are listed in the right-hand box. The target 

variable, which the selected variables are attempting to predict, is placed in the “Target” box. 

Meta attributes, which may be placed in the bottom right-hand box, can be useful for 

labelling, but are not used in modelling processes. It can be seen that Orange labels each 

variable with a type, for example, “FAF classification (1-8)” is labelled “N” for numeric, and 

“FAF Classification by type (name)” is labelled “C” for categorical.  

 

 

Figure 2.15 Illustration of the Orange Data Mining Select columns widget 
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6. Preprocess widget 

 

Preprocessing of data is a crucial step that must be taken prior of analysis of data. ODM 

provides the Preprocess widget, shown below in Figure 2.16, which enables several 

manipulations to improve the data quality. It can make continuous variables discrete (or the 

opposite function), input missing values, select the most relevant variables for analysis by a 

variety of scoring methods (e.g. in this study the 18 most informative variables were selected 

by the Information Gain method), and finally normalise variables. Note that this 

“normalisation” function is not referring to the “normal” distribution of data, but in this context 

is transforming the values into relative terms e.g. to a scale from 0 to 1.  

 

 

Figure 2.16 Illustration of the use of the Orange Data Mining Preprocess widget 
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7. Test and score widget 

 

This widget tests the model learners (i.e. the algorithms). Firstly, it displays the different 

performance measures, including area under the curve (AUC), Recall (sensitivity), and 

Specificity. It also produces an output that enables other widgets to analyse the performance 

of classifiers, e.g. the Confusion Matrix and ROC (Receiver Operating Characteristic) 

Analysis. An example is shown below in Figure 2.17. 

 

 

Figure 2.17 Illustration of the Orange Data Mining Test and Score widget 
 

“Cross-validation” splits the data into a selected number of folds. The algorithm is then 

trained on all the folds bar one, and then tested on the held-out fold. This is then repeated 

for all the folds. “Leave one out” is similar, but instead of an entire fold being held-out, a 

single instance is kept back from the initial training before that single instance is classified by 

the algorithm and this is then repeated for all the data (this method is very reliable but with 

the disadvantage of being very slow). “Random sampling” is a third option, where the data is 

split into a training and testing set in a given proportion, and this is then repeated a set 

number of times. “Test on train” data is not recommended due to often generating incorrect 

results. “Test on test” data allows the researcher to input another data set with testing 

examples. Note that in this study the “Average over classes” option in the Target Class box 

was selected by default. The researcher may also select the scores for predicting either a 

normal (class 1) or an abnormal (class 2) FAF result.  
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8. Scatter Plot widget 

 

The Scatter Plot widget allows 2-dimensional visualisation of the data as shown below. 

Below in Figure 2.18, the “show colour regions” illustrates the trend for a greater number of 

large drusen, as detected by OCT, with increasing patient age, accompanied by a greater 

likelihood of an abnormal FAF result. 

 

 

 

Figure 2.18 Illustration of the Orange Data Mining Scatterplot widget. Scatter plot taken from 
ODM showing a graph of age versus the number of large drusen as measured by OCT. 
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The “Find informative Projections” option, shown below in Figure 2.19, enables a rapid scan 

to explore the data for useful Scatter plots. This is performed by the function finding the 10 

nearest neighbours for each data instance, in the graph of the two chosen features plotted 

as shown above in Figure 2.18. It then identifies how many of the 10 have the same colour. 

The score allocated to the projection is the average number of neighbours with the same 

colour as the data instance. A league table of scores is then produced as shown below. 

From the Score Plot it is revealed that Random Forest scores the highest for predicting FAF 

normality/abnormality and the “CFP DD GA” (colour fundus photography disc diameters of 

geographic atrophy) is the most informative variable for this particular model learner.  

 

 

Figure 2.19 Illustration of the Orange Data Mining Scatterplot Informative Projections Score 
plot. 
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9. Confusion Matrix widget 

 

The Confusion Matrix widget gives the number or proportion of instances, for the chosen 

learner, that were identified correctly (highlighted in the diagonal in blue) and those identified 

incorrectly (highlighted in the other squares in pink), shown in Figure 2.20 below. 

Along the bottom are selection options where it is possible to select only the correctly or 

incorrectly identified instances in order to feed further widgets, e.g. a data table or scatter 

plot in order to clarify why specific cases were misclassified. It is also possible to select 

individual boxes. In the top right corner, in “Show”, it is possible to select “Number of 

instances” as shown. Alternatively, “Proportions of predicted” or “Proportions of actual” can 

be selected. The former shows cases classified as a percentage of the total predicted 

instances, whereas the latter shows the cases classified as a percentage of the total actual 

instances.  

 

 

Figure 2.20 Illustration of the Orange Data Mining Confusion matrix contents.  
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10. Rank widget 

 

The Rank widget scores variables for their association/correlation with the target variable, 

from a variety of internal scoring methods, i.e. Information Gain, Information Gain Ratio, Gini 

Decrease, ANOVA, Chi², ReliefF and FCBF, and any connected external models. These 

scoring methods are defined in Table 2.3 below: 

 

Internal scoring method Definition of scoring method 

Information Gain the expected amount of information 

Information Gain Ratio ratio of Information Gain to the feature’s intrinsic information 

Gini Decrease the inequality of the values of a frequency distribution 

ANOVA the difference in the average of a feature’s values within a class 

Chi²: association of feature and class as measured by Chi-squared 

ReliefF A variable’s prediction of class for similar amounts of data 

FCBF fast correlation-based feature – detects lack of order (entropy) 

Table 2.2 Internal scoring methods definitions. 
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 The Rank widget can also utilise unsupervised data from external scorers, e.g. principal 
component analysis (PCA). 

An example of the output from the Rank widget is shown below in Figure 2.21. In the top left 

corner, the “Scoring Methods” can be selected. In “Select Attributes” in the bottom left corner 

none, all, manual and “n” best ranked Attributes can be chosen.  

 

 

Figure 2.21 Illustration of the Orange Data mining Rank widget output.Table from ODM 
showing the 18 best ranked variables on the “Information Gain”.  
 

11. Principal component analysis (PCA) widget 

 

This widget is covered in more detail in Chapter nine, dedicated to PCA. In summary, PCA 

summarises large data sets containing many variables, into a smaller number of “factors”, 

whereby the data can be more easily visualised and analysed.  
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12. Nomogram widget 

 

The Nomogram widget allows the Logistic Regression and Naïve Bayes model learner 

outputs to be visually represented. By moving the sliders up and down the horizontal bars of 

each variable, the effect of the variable’s value on the class probabilities can be directly 

observed. When there are too many variables, the “best ranked” can be selected as shown 

in the “Display features” section on the left of the diagram below in Figure 2.22. They can be 

ranked in a variety of ways, including by name and absolute importance (for both Naïve 

Bayes and Logistic Regression), and also by positive influence and negative influence (for 

Naïve Bayes only). The scale along the top right can be either represented as log odds 

ratios or for simplicity as a point scale as illustrated in the example, with the maximum 

absolute log odds ratio represented by 100 points.  

 

 

Figure 2.22 Illustration of the Orange Data Mining Nomogram widget output for the 
probability of an abnormal FAF (Target class 2). 
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13. Receiver Operating Characteristic (ROC) Analysis widget 

 
Originally designed for operatives of military radars in the early 1950s,(168) the ROC curve 

represents the discriminative ability of a binary classifier for a variety of discriminative 

thresholds. Below in Figure 2.23 is an illustration of the ROC Analysis widget. The graph 

plots the false positive (FP) rate (1- specificity) on the x-axis against true positive (TP) rate 

(sensitivity) on the y-axis for a single model learner at a variety of thresholds, i.e. the model 

learner is determining the probability than an observation belongs to a specific class, and 

this threshold probability can be varied to produce the ROC curve. The closer the curve is to 

the left border the better the model learner. The prediction class must be selected, e.g. in 

this study the choice was the prediction of a normal or abnormal FAF result. Note that there 

is no third “Average over classes” result as offered by the Test and Score widget. The curve 

averaging options are Merge predictions from folds (selected by default for this study), Mean 

TP rate, Mean TP and FP at threshold, and show individual curves. Finally, the solid black 

performance line indicates the iso-performance line in the ROC space so that all the points 

on the line have the same false positive and false negative cost. 
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Figure 2.23 Illustration of the Orange Data Mining ROC analysis widget, for predicting a 
normal FAF result by a variety of model learners. The solid black line represents the 
performance line, the dashed black line represents a model with no predictive ability. 
 
Additional Orange widgets were used for unsupervised and supervised machine learning 

workflows for image analysis in Chapter seven on image analysis as follows: 

 

 

14. Import images and Image embedding widgets 

 

Images are uploaded via the Import images widget to the Image embedding widget and 

deep learning models are used to create a vector of numbers for each image. These vectors 

are outputted in the form of a data table with additional columns. For this study, the images 

(CFP, FAF and OCT) were uploaded. Embedding passes the image through an existing 

deep network to calculate its representation as vectors. Orange contains a choice of 

embedders including Google’s InceptionV3⁶ - a convolutional 48-layered neural network 
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trained on 1.2 million images from ImageNet. ImageNet contains a diverse range of images, 

including e.g. everyday real-life objects.(169) Only one embedder, however, SqueezeNet, 

which is also trained on ImageNet and features an 18-layered neural network, can be used 

locally on the user’s own PC, offering a more rapid vector computation compared to others, 

as well as maintaining privacy as the images are never uploaded to a remote server (unlike 

Google’s Inception V3⁶).(169) SqueezeNet offers AlexNet-level precision with 50 times fewer 

parameters, and is the default embedder used by Orange. In recent research, no major 

differences were noticed between the performance accuracy of SqueezeNet and the other 

more complex embedders (including Google’s Inception V3⁶) in four case studies.(169)  

 

15. Distances widget 

 

This widget creates a matrix by computing the distances between rows and columns in a 

dataset. Column-wise normalisation ensures equal treatment of individual features. Groups 

in the data can be identified by feeding the matrix data into the Hierarchical Clustering 

widget, Distance Map or Distance Matrix widget which can all be used to visualise the data, 

and finally the Multidimensional Scaling (MDS) widget can map the distances.  

Once computation of the distances between either rows or columns has been selected, the 

user can choose the specific Distance Metric – for this study the Cosine Metric was selected. 

Cosine is the angle between two vectors of an inner product space – Orange computes the 

cosine distance, defined as 1- the similarity.  

Distances between rows (i.e. instances), looks for groups of instances within the data, whilst 

the distances between columns describe similarities between features.  

 

16. Hierarchical clustering widget 

 

This widget creates a dendrogram (a tree-like structure) from the matrix of distances 

calculated by the Distances widget. The dendrogram can be pruned, and clusters can be 

selected via one of three methods: Manual, Height and Top N. The results can also be fed 

into the Boxplot widget for further visualisation and analysis.  
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Figure 2.24 Illustration of the output from the Orange Data Mining Hierarchical clustering 
widget  
 

17. Multidimensional scaling widget 
 
 

 
Figure 2.25 Illustration of the output from the Orange Data Mining MDS widget. 
 
The MDS widget attempts to project points in a low-dimensional fashion, as effectively as 

possible, from a matrix of distances or a dataset, into a 2-dimensional space. A perfect fit is 

usually impossible as the data is high-dimensional. PCA sets the initial points along the 

principle coordinate axes. Randomise allows the initial points to be positioned at random 

before readjustment. Jitter adjusts the points to eliminate overlapping, whilst Refresh allows 
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selection of how often the visual mapping is refreshed. This can be at every iteration, never, 

or at every 5, 10, 25 and 50 steps. How the points are visualised can also be selected within 

the Attributes section, with the options of colour, shape, size and label.  

 

 
Figure 2.26 Illustration of the output from the Orange Data Mining MDS widget for a normal 
and abnormal FAF result using CFP.  
 

2.11 Normal distribution tests for data collected in the study 

Parametric statistical tests were employed throughout this study wherever possible, 
however, parametric tests assume that data is normally distributed. To ensure that 
this was the case, the normality of the data was tested from several different aspects 
using the following methods via SPSS software:  
 
Standard errors of skew and kurtosis 
Frequency distribution histograms with fitted normal curves 
Normality tests (Kolmogorov-Smirnov test) 
Q-Q plots 
Boxplots 
 
Where data was considered not to be normally distributed, an appropriate non-parametric 
test was performed in addition to the parametric test and the results from both tests 
reported.  
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2.12 Sample size calculations 

 
Sample size for the Chapter three study on pupillary dilation was calculated using previously 

reported data regarding macular degeneration lesion size measured using FAF 

imaging.(170) Using these published mean and standard deviation data, an effect size of 

2mm² was used to determine a sample size of 15 in order to allow a power of 0.80 and a 

0.05 alpha error level when assessing clinical repeatability and reproducibility of the FAF 

imaging process in practice. The first 25 subjects were selected for the Chapter three study 

to ensure that an adequate sample had been chosen to achieve statistical significance. The 

reliability data produced during the Chapter three study informed the sample size for the 

subsequent study Chapters (covered in Chapters four to nine).  
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2.12.1 Sample size calculations for Chapters four to nine based on the results from Chapter 

three. 

 

For the sample size required for Chapters four to nine of the study, the results from grader 

RS in Chapter three on FAF image quality, before and after dilation, were used to calculate 

the Odds ratio and Proportion of Discordant pairs. This data was then used within GPower to 

estimate the sample size, as shown below.  

 

For grader RS  Before dilation Before dilation 

  acceptable not-acceptable 

After dilation acceptable 18 (a) 6 (b) 

After dilation not-acceptable 0 (c) 1 (d) 

Table 2.3 Agreement of FAF image grading before and after pharmacologically induced 
pupil dilation for grader RS. 
 

Odds ratio calculated from Table 2.4 

= a*d/b*c  

= 18*1/6*0 

= infinity, therefore replace c with 1 to enable a meaningful calculation 

= 18*1/6*1 

= 18/6 

= 3.0 

 

Proportion of discordant pairs calculated from Table 2.4 

= (6 + 0)/(18+ 1) 

= 6/19 

= 0.3158 

 

Using GPower version 6, with an “Exact” test family, a McNemar Test, a two tailed test, an 

odds ratio of 3.0, an alpha error value of 0.05, a power of 0.80 and the proportion of 

discordant pairs of 0.3158, gives a sample size of 95. 

  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

113 

 

However, Orange also provides a facility to calculate whether the quantity of data collected 

is sufficient by tracking the informedness via the Test and Score widget. This was performed 

once the study had almost reached the required sample size as indicated by GPower, i.e. as 

the number of instances neared 95, by the following procedure: Firstly, the concordance 

statistic (C), which is a measure of goodness of fit for binary outcomes with the Logistic 

Regression learner, was varied to give an optimum trade-off between a low C with low 

complexity (tendency to underfit), and a high C with high complexity (tendency to overfit), i.e. 

a compromise between bias and variance respectively. The results for “Test on train” and 

“10-fold cross-validation” informedness were matched as closely as possible to reach the 

trade-off. Below are graphs of how the informedness varies with the use of data from CFP 

alone (Figure 2.27) and from combined CFP and OCT (Figure 2.28) for a variety of C values 

using Logistic Regression for both “Test on train” (orange line) and “10-fold cross-validation” 

(grey line). The optimum C value was then selected as the best trade-off between overfitting 

and underfitting as shown below. No optimisation of the C value was possible for the Naïve 

Bayes learner, as this model cannot be hyperparameter fine-tuned.  

 

 

Figure 2.27 C versus informedness for CFP alone using Logistic Regression for both 10-fold 
cross validation (orange line) and Test on train (grey line). The best trade-off was for a C 
value of 0.30. 
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Figure 2.28 C versus informedness for CFP and OCT combined using Logistic Regression 
for both 10-fold cross validation (orange line) and test on train (grey line). The best trade-off 
was for a C value of 0.50. 
 

Figures 2.29 below shows graphically how the level of informedness achieved varies with 

the quantity of data used for hyperparameter fine-tuned Logistic Regression and Naïve 

Bayes learners, for CFP alone, for predicting FAF outcomes. We can see that the level of 

informedness levels off at approximately 40% of the data collected for Naïve Bayes, i.e. at 

approximately 37 patients, and for Logistic Regression at approximately 80% of the data 

collected, i.e. at approximately 74 patients.  

 

 

Figure 2.29 Percentage of data used versus informedness using Logistic Regression (blue 
line) and Naïve Bayes (orange line) for CFP data only. 
 

In Figure 2.30 below for combined CFP and OCT, this levelling off occurs at approximately 

20% of the data for both model learners, i.e. at 19 patients. After 93 cases it was concluded 

that enough data had been collected by virtue of the levelling off of the value of 

informedness achieved for both learners, for CFP alone and for CFP and OCT combined, 

and so data collection was concluded at this point.  
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Figure 2.30 Percentage of data used versus informedness using Logistic Regression (blue 
line) and Naïve Bayes (orange line) for CFP and OCT data combined.  
 

These results indicate that the addition of OCT to CFP allows maximum informedness to be 

achieved with less data. We can also see that the level of informedness achieved with CFP 

alone is superior with Naïve Bayes when to compared to Logistic Regression. Overall, the 

optimum informedness was achieved with hyperparameter fine-tuned Logistic Regression 

when information from both CFP and OCT was utilised.  
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2.12.2 Summary of sample size calculations 

 

Hyperparameter fine-tuned Logistic Regression and Naïve Bayes AI machine learners were 

used to calculate informedness gained for various quantities of the study data. When 

increasing the amount of data no longer improved the degree of informedness, i.e. the graph 

of percentage of data used versus informedness levelled off, for both CFP alone and for 

CFP and OCT combined, then the quantity of data collected was considered to be sufficient 

and data collection was concluded. This levelling off had occurred by the collection of 93 

cases, and hence data collection was stopped at this point.  

 

2.13 Personnel 

 

All patients were examined by the primary researcher Roger Smyth, optometrist at Andrew 

and Rogers Optometrists, Beverley. Roger Smyth is also a Principal Optometrist, employed 

by the NHS at the Hull University Teaching Hospitals NHS Trust. Part of his role involves 

working as a grader in the treat and extend injection service for the management of ARMD, 

retinal vein occlusions and diabetic retinopathy. RS has his work quality controlled on a 

regular basis, in addition to attending regular team meetings including feedback from 

consultant ophthalmologists on grading methods and protocols.  

 

2.14 Scope and boundaries 

 

Only patients who fulfilled the inclusion and exclusion criteria as detailed above, were 

included in this study, and all patients were gathered from one optometry practice, Andrew 

and Rogers Optometrists, Beverley, in The East Riding of Yorkshire.  
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2.15 Research data management 

 

The information from clinical tests was entered into a computer spreadsheet at the earliest 

opportunity. The computer storing the information was backed up weekly to a remote hard 

drive and the backup disc was also stored off the practice premises in a locked cupboard.  

 

2.16 Project timetable 

 

The project began as soon as ethical approval was granted. The data collection for the study 

ran from February 2020 until February 2021.  
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2.17 Risk assessment 

 

1. Data is lost due to computer failure – action: back up weekly and keep hard drive off 

the practice premises in a locked cupboard. 

 

2. Project not completed in time – action: extra time built in to allow for this and the 

project supervisor regularly updated on the study progress (monthly). 

 

3. OCT fails – Action: this is an integral part of the business’s strategy and would be 

replaced by a new device/repaired as soon as possible if this occurred. 

 

2.18 Resources and costs 

 

Extra appointments were required for some of the subjects, but this small extra cost was 

absorbed by the business.  

 

2.19 Place where the research work was undertaken 

 

Andrew and Rogers Optometrists 

15 North Bar Within 

Beverley 

East Riding of Yorkshire 

HU17 8AP 

 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

119 

 

Chapter 3 The impact of pharmacologically induced pupillary dilation on the 
quality and clinical usefulness of FAF imaging  

 
3.1 Introduction 

 

Useful FAF imaging relies on the quality of the image obtained, enabling the clinician to 

identify subtle abnormalities that may be present. The manufacturers of the “Nidek 

Retinascan Duo RS-330” recommend pupillary dilation (by verbal discussion between the 

distributors of the instrument, Birmingham Optical Limited, and the primary researcher of this 

project (RS)) for FAF image acquisition, however, this advice is not based on the result of 

formal research. A study from 2018 examined the need for pupillary dilation in fluorescence 

lifetime imaging ophthalmoscopy (FLIO), a technique that measures in vivo 

autofluorescence intensity decay of endogenous fluorophores in the retina over time. The 

paper concluded that FLIO has a longer image acquisition time without dilation, and 

therefore recommended pupillary dilation for all images taken with this technique.(171) 

Whilst FLIO is not identical to the technique of fundus camera-based FAF imaging 

conducted in this study, it may be appropriate to infer that pupillary dilation would also have 

a positive effect on the quality of the FAF images obtained. 

 

The work in Chapter three was therefore conducted to identify whether pharmacologically 

induced pupillary dilation would lead to a significant improvement in FAF image quality. This 

was considered to be important, as pupillary dilation may affect patients’ willingness to 

participate in the study due to the extra medical procedures required, as well as causing 

practical problems for patients e.g. longer time taken to complete the examination, sensitivity 

to light and the inability to drive for a period following the procedure. Avoiding pupillary 

dilation would also offer the benefit of avoiding the risk of precipitating an acute angle 

closure event, or transient intraocular pressure spikes in susceptible individuals. If pupillary 

dilation prior to FAF could be avoided, this may therefore offer significant advantages to both 

the clinician and the patient.  
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3.2 Methods 

 
Chapter three was initially carried out to ascertain whether there was a statistically 

significant difference in the quality of FAF images collected before and after pharmacological 

pupillary dilation. 25 eyes from the first 25 study subjects were imaged before and after pupil 

dilation, giving a total of 50 images. The eye which was judged to have the most advanced 

changes related to ARMD was selected as the study eye.  

 

The FAF images were taken before, and after pupillary dilation with one drop of guttae 

Tropicamide 1% instilled into the lower fornix of the study eye. Participants were screened 

prior to dilation to ensure that they were not at risk of acute angle closure as described 

previously.  

 

The 50 images collected for Chapter three pre and post-dilation were then graded by two 

optometrists, the first, the project supervisor HB, a Reader in Optometry at Aston University, 

and the second, the student conducting the research RS, a retinal grader in the ARMD treat 

and extend service at The University of Hull Teaching Hospitals NHS Trust and the primary 

researcher for this study. The 50 images were allocated a randomly generated three-digit 

number and then ordered numerically, hence producing a random order of presentation to 

the graders. The images were graded according to a three-point scale as “good”, 

“acceptable” and “not acceptable”. This was considered to be appropriate after previous 

studies on the grading of retinal images were considered as discussed in section 3.2.1 

below. 

 

3.2.1 Creating a grading scale for FAF image quality 
 

In a study conducted in 2003, dilated and un-dilated retinal images taken with digital 

photographic equipment were compared for the purposes of improving community diabetic 

screening initiatives. Three levels were used for the grading of image quality; “fully”, 

“partially” and “not accessible”. These three levels were based on a) whether small blood 

vessels were visible in the retinal temporal arcades with “reasonable clarity”, b) whether 

large blood vessels were visible in the retinal temporal arcades with “reasonable clarity”, and 

c) whether large blood vessels in the retinal temporal arcades were blurred or >1/3 of the 

total picture was blurred.(172)  
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A later study in 2009 looked at developing an automated method of evaluating the quality of 

digital retinal photographs. This study utilised a four-point scale, namely: “very good”, 

“good”, “acceptable” and “not acceptable”, viewed by six independent observers (three 

ophthalmologists and three experienced ophthalmic nurses). No significant difference was 

found between the rating of the “very good “ and “good” images among these observers, and 

therefore the grading was simplified into three categories of “good”, “borderline” and 

“unacceptable”.(173) Unfortunately, the study did not specify how the observers were 

instructed to draw boundaries between these grades.  

 

Another more recent study published in 2020 considered the imaging quality delivered by a 

non-mydriatic camera for the purposes of a telemedical approach to retinal screening of 

disease graded by two experienced and masked retinal graders. Image quality was again 

evaluated on a three-point scale: “excellent”, “good” and “poor”. This study based the 

grading on areas of blur. Grading was “excellent” if blurred areas comprised less that 25% of 

the image, “good” if blurred areas were present in 25-50% of the image, and “poor” if the 

image was blurred in more than 50% of the of image.(174)  
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In summary, three studies, which considered digital retinal photography for the detection of 

diabetic retinopathy and general retinal disease concluded that a three-point scale, graded 

by at least two experienced observers, was adequate for the purposes of recording fundus 

image quality. The gradings were based on the visibility of small and large retinal blood 

vessels in the retinal temporal arcades and the percentage of the retinal image that is not in 

shadow/blurred. For the purposes of the current study, an amalgam of these grading 

boundaries was formulated with the two optometrists HB and RS advised to grade the 

quality of the FAF images on a three-point scale, “good”, “acceptable” and “not acceptable”. 

See Table 3.1 below. 

 

 Over 75% of 
image not in 
shadow/blurred 

50-75% of 
image not in 
shadow/blurred 

Less that 50% 
of image not in 
shadow/blurred 

Small blood 
vessels visible 

good acceptable not acceptable  

Large blood 
vessels visible 

acceptable acceptable not acceptable  

No blood 
vessels visible 

not acceptable  not acceptable  not acceptable  

Table 3.1 Preliminary study guidance for graders of FAF images 
 

50 FAF images (25 taken prior to, and 25 after pupillary dilation), were taken from the first 25 

patients enrolled in the study, and graded by the two optometrists, HB and RS 

independently, without reference to each other’s work or any collaboration apart from a 

virtual meeting to initially discuss the grading system prior to the images being shared. An 

Intraclass Kappa test was performed to calculate, firstly, if there was a significant difference 

between the grading performed by the two optometrists. Secondly, a McNemar test was 

performed to calculate whether pupillary dilation made a significant difference between the 

quality of FAF images taken prior to and post pupillary dilation. The results Chapter three 

guided the methods of all subsequent FAF image collection for the purposes of the rest of 

the study (for Chapters four to nine).  

 
FAF images before and after pharmacological pupillary dilation from the first 25 participants 

were analysed by graders HB and RS as described previously in Chapter two.  

 

Intraclass Kappa value and McNemar statistical tests were performed manually and via 

IBM’s SPSS statistics software (Version 28). 
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3.3 Results 

 

Sex Male 40% 

 Female 60% 

Age   71.60 ± 9.0 years 

Gullstrand refractive error  -1.79 ± 2.90 dioptres 

ARMD status (based on 
ARMD definition by Bird et 
al(11)) 

None 48% 

 Early  44% 

 Late 8% 

Smoking status Ex-smoker 12% 

 Non-smoker 88% 

Family history of ARMD No  80% 

 Yes 20% 

Cataract type present NUC 68% 

 COR 12% 

 PSC 8% 

Lens status Phakic 68% 

 Pseudophakic 32% 

Table 3.2 Demographic features of the first 25 participants within the study, used for the 
statistics on the effect of pupillary dilation on FAF image quality. 

 
 

For grader HB Before dilation After dilation 

good 9 18 

acceptable 6 3 

not acceptable 10 4 

Total 25 25 

Table 3.3 Summary of the first 25 participants FAF images quality for grader HB before and 
after pupil dilation 

For grader RS Before dilation After dilation 

good 11 21 

acceptable 7 3 

Not acceptable 7 1 

Total  25 25 

Table 3.4 Summary of first 25 participants FAF images quality for grader RS before and after 
pupil dilation  
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For grader HB Before dilation After dilation 

acceptable  15 21 

not acceptable 10 4 

Total  25 25 

Table 3.5 Summary of the first 25 participants FAF images quality for grader HB before and 
after dilation expressed dichotomously 
 

For grader RS Before dilation After dilation 

acceptable 18 24 

not acceptable 7 1 

Total 25 25 

Table 3.6 Summary of the first 25 participants FAF images quality for grader RS before and 
after dilation expressed dichotomously 
 

Summary of results for the comparison of FAF image quality grading by HB and RS: 

 

For details of the statistical calculations see Appendix 1 

 

The Intraclass Kappa value (95% Confidence Range 0.3752-0.7880) indicated minimal to 

moderate agreement between the two graders, however Kappa may be influenced by the 

proportion of positive and negative cases in the sample. To overcome this problem, positive 

and negative agreement (PA and NA respectively) were also calculated. Using the lowest 

values, (within the 95% confidence limits) from two methods for the calculation of PA and NA 

found that PA had at least a strong agreement (0.9642), and NA at least a moderate 

agreement (0.8411) for the comparison of image quality grading between HB and RS.  

 

Summary of results for the comparison of FAF image quality before and after 

pupillary dilation calculated individually for both HB and RS: 

 

For details of the statistical calculations see Appendix 2.  

 

The McNemar test indicated, to the p < 5% level (p = 0.03125 exact p-value binomial test), 

that there is a significant difference in the quality of image when comparing FAF performed 

before and after pupillary dilation, with the images captured after dilation being of a 

significantly higher quality. The proportion of images that were acceptable (expressed 

dichotomously) prior to dilation and after dilation for grader HB were 60% and 84% 

respectively, whereas for grader RS these were 72% and 96% respectively. In total the 

proportions for both graders were 66% acceptable prior to dilation and 90% acceptable after 

dilation.  
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Below are some examples of FAF images taken during this study, before and after dilation. 

 

 

Figure 3.1 Example of a not acceptable FAF image taken prior to pupillary dilation. 
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Figure 3.2 Example of a “good” FAF image taken from the same patient as in Figure 3.1, 
after pupillary dilation 
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Figure 3.3 Example of an acceptable FAF image from a second participant, taken prior to 
pupillary dilation 
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Figure 3.4 Example of a “good” FAF image, taken from the same patient as Figure 3.3, after 
pupillary dilation  
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3.4 Discussion 

 

From the results of Chapter three, based on positive and negative agreement, there was at 

least moderate agreement between the grading of FAF images from the first 25 participants 

in the study as “good”, “acceptable” and “not acceptable” between the graders HB and RS. 

RS was responsible for grading all further images recorded in this study.  

 

There was also a significant difference in the quality of image when comparing FAF 

performed before and after pupillary dilation, with the images captured after dilation being of 

a significantly higher quality according to the results of the McNemar test performed. From 

Tables 3.3 and 3.4 there were almost twice as many “good” images collected after pupillary 

dilation compared to before dilation, and only five “not acceptable” images after dilation 

compared to 17 before dilation. From Tables 3.5 and 3.6, when the quality of images is 

expressed dichotomously (i.e. “good” and “acceptable” = “acceptable”, and only “not 

acceptable” = “not acceptable”) the number of “acceptable” images increases by over 36% 

post pupillary dilation, whilst the number of “not acceptable” images falls by over 70%. For 

both graders combined the percentage of “acceptable” FAF images prior to dilation was 

66%, rising to 90% post dilation. This result indicated that all FAF images taken following 

Chapter 3 of the study should be captured after pharmacologically induced pupillary dilation, 

as dilation is likely to significantly enhance FAF image quality.  
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3.5 Conclusion 

 

According to the McNemar statistical test comparing the quality of FAF images before and 

after pupil dilation for the first 25 participants of this study for both graders HB and RS, it can 

be concluded that pupil dilation makes a significant improvement to the quality of FAF 

images obtained.  
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Chapter 4 The impact of cataract on the quality of fundus autofluorescence 
imaging 

 

4.1 Introduction 

Cataract is a leading cause of visual impairment worldwide(175) and in 2017 accounted for 

65.2 million cases of visual impairment globally.(176) Artificial intelligence (AI) has been 

utilised widely within the field of ophthalmology, however, development in the field of AI for 

cataract classification is still relatively unexplored.(177) Whilst AI classification of cataract is 

beyond the scope of this study, ODM software was utilised in Chapter four to explore the 

relationship between FAF image quality and the type of and severity of cataract present.  

 

It has been previously reported that structures anterior to the retina naturally emit 

autofluorescence which can cause interference to FAF imaging, and thus adversely affect 

image quality. The crystalline lens has a natural excitation peak of 420-430nm, with an 

emission peak of 520nm,(19) with cataracts increasing light absorption and scatter by the 

lens, leading to poor contrast FAF images.(20) Below is a reminder of the grading 

boundaries for FAF image quality developed for this study.  

 

4.2 Methods  

 

4.2.1 Grading of the quality of FAF images 
 

 Over 75% of 
image not in 
shadow/blurred 

50-75% of 
image not in 
shadow/blurred 

Less that 50% 
of image not in 
shadow/blurred 

Small blood 
vessels visible 

good acceptable not acceptable  
 

Large blood 
vessels visible 

acceptable acceptable not acceptable 
  

No blood 
vessels visible 

not acceptable  not acceptable  not acceptable 
  

Table 4.1 A reminder of the method by which FAF image quality was graded for this project. 
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4.2.2 World Health Organisation Simplified Cataract Grading System 
 

The Simplified Cataract Grading system used in this project was based on that published in 

2002 by Thylefors et al.(178) A panel of experts developed the system with the aim of 

producing a scale for grading the most common forms of cataract that could easily be used 

by relatively inexperienced observers with minimal training, by means of slit-lamp 

examination. The scale was evaluated in hospitals at four different sites, with very good to 

fair interobserver agreement. It is recommended that a new observer should be trained via 

20 initial cases containing various stages of cataract severity, in collaboration with a more 

senior and experienced mentor, acting as a “gold standard”. For this project the period of 

training was carried out prior to data collection in the primary researcher’s (RS’s) place of 

work, the Hull University Teaching Hospitals NHS Trust. 

It is recommended that the slit-lamp is kept in good condition, with a bulb that is fully 

functional. The slit-lamp in primary researcher’s practice in Beverley is well maintained to 

this end, and is serviced annually.  

 

The most common forms of cataract included in the grading system are: 

 

Nuclear sclerotic cataract (NUC): a gradual opacification of the nucleus of the lens. 

Cortical cataract (COR): opacities involving the cortex of the lens with typical wedge-shaped 

spokes. 

Posterior subcapsular cataract (PSC): distinct opacities centrally or para-centrally on the 

posterior capsule.  

 

It is recommended that the slit-lamp examination is made with 10X magnification, a beam 

width of 0.1mm, a height tall enough to cover the grading zone, and an incident illumination 

angle of 45°.  

 

Mydriasis is recommended to be carried out at least 20 minutes prior to examination, and 

that a drop of anaesthetic is instilled initially to increase the absorption of subsequent drugs, 

followed by a drop of 0.5% Tropicamide and a drop of 2.5% Phenylephrine. A pupil size of at 

least 6.5mm should be aimed for to enable a complete examination. For this project one 

drop of 1.0% Tropicamide alone was used prior to waiting for 20 minutes for dilation to 

occur. This decision was made in order to limit the period of dilation, allowing participants to 

drive later in the day if required. Also, RS has observed, through over 25 years of optometry 

locum work in the local area, that the majority of optical practices only carry one type of 

dilating drop in stock, that being 1% Tropicamide. This would therefore make the findings of 
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this project practically meaningful, and the investigations more repeatable in a local high 

street optometric setting. The median pupil size obtained during the current project was 

6.0mm.  

 

4.2.3 Nuclear Sclerotic Cataract grading 
 

In NUC cataract there are two principal processes. Clouding and colouration (or browning) of 

the lens. For this grading system, only the clouding aspect should be considered.  

 

The “grading” zone is defined as having its anterior and posterior borders limited by the 

anterior and posterior nuclear shells. Between these shells lie the anterior embryonic 

nucleus (AEN) and the posterior embryonic nucleus (PEN). Between these four structures 

are three clear zones, the largest being the central clear zone.  

 

The grading of NUC cataract should follow these recommendations: 

 

0. NUC cataract considered less than grade 1. (Note, however, for this study, grading 

was started from 0.1, on a decimal scale from 0.1-3.0 and any increase in the 

visibility of the AEN or PEN/opaqueness of the central zone was recorded). 

1. Clinically significant NUC cataract (the AEN and PEN are more visible than normal, 

however, the central zone is still easily/entirely visible).  

2. Moderately advanced NUC cataract (the nuclear zone is uniformly opaque with the 

central clear zone not clearly visible and the red reflex reduced). 

3. Sufficiently advanced to consider surgery (the nuclear zone is densely opaque and 

the red reflex is dull).  

 

The observer compares the level of cataract by reference to standard photographs and 

grades the cataract appropriately. If there is severe corneal opacification, advanced cortical 

changes obscuring the nucleus, or if there is a Morgagnian cataract then the NUC cataract is 

considered to be “ungradable” and the cataract grading level of 9 should be recorded.  
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4.2.4 Cortical Cataract grading 
 

For COR cataract a relatively short and broadly focussed beam should be used, positioned 

between three and nine o’clock of the pupil border. Sharply defined cortical opacities seen 

via retro-illumination are graded. The beam should be swept around so that all of the lens 

can be examined within the red reflex. The circumferential extent of the opacities is added to 

give a total figure for grading purposes.  

 

The grading of COR cataract should follow these recommendations: 

 

0. COR cataract covering <1/8th of the lens circumference. (Note, however, for 

this study, grading was started from 0.1, on a decimal scale from 0.1-3.0 with 

any element of COR cataract recorded, i.e. one tenth of an 1/8 th was recorded 

as 0.1).  

1. COR cataract covering 1/8th and <1/4 of the lens circumference.  

2. COR cataract covering 1/4 and <1/2 of the lens circumference.  

3. COR cataract covering 1/2 of the lens circumference. 

 

Cortical opacities do not need to extend to the periphery of the lens to be included in the 

circumferential grading, but are extrapolated and included. Again, ungradable cases should 

be recorded as grade 9 as with NUC cataract.  

 

4.2.5 Posterior Subcapsular Cataract grading 
 

PSC cataract is seen in retro-illumination, with only the portion of cataract in focus at the 

level of the posterior capsule included in the grading. PSC cataract is graded according to its 

vertical diameter, read off the slit-lamp beam height graticule. PSC is typically centred near 

the posterior pole and may extend towards the lens equator. PSC cataracts generally have a 

“feathered” appearance compared to the sharp definition observed with a COR cataract. 

 

The grading of PSC cataract should follow these recommendations: 

 

0. Vertical dimension of <1mm. (Note, however, for this study, grading was started from 

0.1, on a decimal scale from 0.1-3.0 and any element of PSC cataract recorded, i.e. 

a height of 0.1mm was graded as 0.1, 0.2mm as 0.2 etc). 

1. Vertical dimension 1mm<2mm.  
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2. Vertical dimension 2mm<3mm. 

3. Vertical dimension 3mm. (May require surgery).  

 

If the red retro-illumination reflex cannot be visualised due to advanced NUC, COR or 

corneal opacities, then the cataract should be graded as 9 as with NUC and COR cataract.  

 

All three types of cataract can be graded decimally, on a scale of 0.0-3.0 in 0.1 steps. This 

decimal system of grading was utilised throughout the current study.  
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4.3 Results  
 

4.3.1 Patient demographics  
 

Sex Male 40% 

 Female 60% 

Age   71.59 ± 10.2 years 

Gullstrand refractive error  -1.21 ± 2.95 dioptres 

ARMD status (based on 
ARMD definition by Bird et 
al(11)) 

None 40% 

 Early  52% 

 Late 8% 

Smoking status Ex-smoker 40% 

 Non-smoker 60% 

Range of pack years  0-50 years 

Mean pack years  4.94 ± 8.89 years 

Family history of ARMD No  73% 

 Yes 27% 

Symptoms of ARMD No  5% 

 Yes 95% 

Cataract type present NUC 71% 

 COR 15% 

 PSC 8% 

NUC cataract ≤ grade 1.0 41 participants (43%) 

 1.1 to 2.0 25 (26%) 

 2.1 to 3.0 1 (1%) 

COR cataract ≤ grade 1.0 3 (3%)  

 1.1 to 2.0 9 (10%) 

 2.1 to 3.0 2 (2%) 

PSC cataract ≤ grade 1.0 1 (1%) 

 1.1 to 2.0 3 (3%) 

 2.1 to 3.0 3 (3%) 

Lens status Phakic  72% 

 Pseudophakic 28% 

Acceptable images  First definition 59% 

 Second definition 41% 

Non acceptable images First definition 90% 

 Second definition 10% 

FAF images Normal  71% 

 Abnormal 29% 

Table 4.2 Demographic features including all 93 participants within the study 
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4.3.2 Examples of each stage of cataract  
 

 

Figure 4.1 Example of FAF image taken with cataract graded as NUC 0.5, COR 0.0 and 
PSC 0.0 
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Figure 4.2 Example of FAF image taken with a cataract graded as NUC 1.0, COR 0.0 and 
PSC 0.0 
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Figure 4.3 Example of a FAF image taken with a cataract grade of NUC 2.0, 0.0 COR and 
0.0 PSC 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

140 

 
Figure 4.4 Example of a FAF image taken with a cataract grade of NUC 0.2, COR 0.0 and 
PSC 1.2 
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Figure 4.5 Example of a FAF image taken with a cataract grade of NUC 0.3, COR 2.0 and 
PSC 0.0 
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A Chi squared test was initially used to test whether being pseudophakic gave rise to a 

significantly higher proportion of acceptable FAF images. The data used for this analysis is 

shown in table 4.3 below: 

 

Image quality Phakic Pseudophakic Totals 

Good 36 19 55 

Acceptable  22 7 29 

Poor 9 0 9 

Totals 67 26 93 

Table 4.3 Proportions of good, acceptable and poor images for phakic and pseudophakic 
participants within the study 

 
Chi squared = 4.89, degrees of freedom = 2, p = 0.087, indicating that p was not significant 

to the p < 0.05 level. However, as one value was < 5, the results may not be reliable. This 

indicates that there may not be a significant difference between the proportions of good, 

acceptable and poor images in phakic and pseudophakic participants within the study.  

 

The following two sections explore, in more detail, the effect that cataract has on the quality 

of FAF images. For these sections dichotomous grading systems were created to facilitate 

statistical exploration of the results via ODM and SPSS.  

 

4.3.3 First analysis 
 

The first analysis is concerned with high FAF image quality, and considers what level of 

cataract grading will still allow good FAF images to be captured, i.e. when small blood 

vessels are visible and over 75% of the image is not in shadow/blurred. For this analysis the 

dichotomous grading system was as follows: only good images are graded as good, with 

acceptable and not acceptable images graded together as not acceptable.  

 

4.3.4 Second analysis 
 

The second analysis is concerned with low FAF image quality, and considers what level of 

cataract grading will cause such a poor image quality as to render FAF imaging clinically not 

acceptable. The assumption was made that if a FAF image was graded as not acceptable, 

i.e. < 50% of the image was not in shadow/blurred, and/or no blood vessels were visible, 

then the image was not clinically useful. For this analysis the dichotomous grading system 
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was as follows: good and acceptable images are graded together as good, and only not 

acceptable images are graded as not acceptable.  

 

 First analysis concerned 
with high image quality 

Second analysis 
concerned with low image 
quality 

good image quality good images good and acceptable 
images 

not acceptable image 
quality  

acceptable and not 
acceptable images 

not acceptable images 

Table 4.4 The dichotomous grading system facilitating analysis via Orange Data Mining and 
SPSS. 
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4.3.5 Results of the first analysis 
 

The results are illustrated in Figure 4.6 below. Out of the 93 images taken for this study, 55 

were classified as good by the definition stipulated for the first analysis. An eye with a good 

FAF image quality had a mean nuclear sclerotic (NUC) cataract score of 0.487±0.50, whilst 

eyes with a not acceptable image quality had a mean score of 0.924±0.62. The median 

(indicated by the vertical yellow line in the Boxplot) for a good quality FAF image was 0.30 

and for a not acceptable quality image the median was 1.0. The Student’s t test found that 

there was a significant difference at the 1% (p=0.001) level between the mean NUC WHO 

scale scores of participants with a good and not acceptable FAF image quality. Overall, 

there were 66 participants in the study graded as having NUC cataract out of the total 

sample of 93 participants (71.0%).  
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Figure 4.6 First analysis Boxplot of FAF Image quality and NUC cataract. 
 
Boxplot above from ODM showing how FAF image quality is related to NUC cataract 

expressed on the WHO scale of cataract grading scale (0.0–3.0) along the bottom. Only 

good images were graded as good, with acceptable and not acceptable images graded as 

not acceptable to create a dichotomous scale. 
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Below in Figure 4.7 is from the Distributions widget output for NUC cataract grading for 

image quality graded as good and not acceptable for the first analysis. At approximately a 

WHO scale point of 1.0 for NUC cataract, there is a 50% chance of the FAF image quality 

being not acceptable. There were no instances of a good FAF image quality once the NUC 

WHO score was > 1.5. Note that 35 of the 66 participants (53.0%) of the participants graded 

as having NUC cataract were graded as having a good FAF image quality. If the WHO score 

is > 1.5 there appears to be an approximately 85% probability of the FAF image not being of 

high quality.  

 

 

Figure 4.7 First analysis Distribution of FAF image quality and NUC cataract. 
 
Distribution widget output for NUC cataract on the WHO scale versus the probability of a 

good or not acceptable FAF image (blue bars represent good image quality and red bars 

represent not acceptable image quality). Only good images were graded as good, with 

acceptable and not acceptable images graded as not acceptable to create a dichotomous 

scale. 
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Below in Figure 4.8 is a similar exploration for cortical crystalline lens opacities (COR). This 

time the Student’s t test was significant at the 5% (p=0.022) level when comparing the mean 

WHO scores. (This finding was supported by non-parametric testing (Mann Whitney U test 

giving a significance value of 0.003 as the normality of the COR data was not perfect). 

Images with a good FAF image quality had a mean grading on the WHO scale of 0.1±0.43, 

and for not acceptable images the mean was 0.403±0.71. This time the median for both 

good and not acceptable images was 0.0. This is most likely due to there being a large 

proportion of the sample having no COR cataract - only 14 participants out of the total 

sample of 93 participants (15.1%).  

 

 

 

Figure 4.8 First analysis Boxplot of FAF image quality and COR cataract. 
 
Boxplot from ODM showing how FAF image quality is related to COR cataract expressed on 

the WHO scale of cataract grading scale (0.0-3.0) along the bottom. Only good images were 
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graded as good, with acceptable and not acceptable images graded as not acceptable to 

create a dichotomous scale. 
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Below in Figure 4.9 is from the Distributions widget output for the same comparison of COR 

cataract grading for image quality graded as good and not acceptable for the first analysis. 

At a WHO scale point of approximately 0.70 for COR cataract, there was approximately a 

50% chance of the FAF image being not acceptable. There was one case of a good FAF 

image being recorded with a COR cataract graded as 2.3 on the WHO scale. Note that 3 of 

the 14 participants (21.4%) with COR cataract were graded as having a good FAF image 

quality. 

 

 

 

Figure 4.9 First analysis Distribution of FAF image quality and COR cataract.  
 
Distribution widget output for COR cataract on the WHO scale versus the probability of a 

good or not acceptable FAF image (blue bars represent good image quality and red bars 

represent not acceptable image quality). Only good images were graded as good, with 

acceptable and not acceptable images graded as not acceptable to create a dichotomous 

scale. 
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Finally, in Figure 4.10 below is the Boxplot output for posterior subcapsular cataract (PSC). 

The Student’s t test is significant to the 5% (p=0.026) level, with good images having a mean 

grading of 0.02±0.16, and not acceptable images having a grading of 0.255±0.64 (This 

finding was again supported by the Mann Whitney U test giving a significance value of 0.011 

as the normality of the PSC data was not perfect). As with COR cataract, the median for 

both good and not acceptable FAF images is 0.0. Again, as with COR cataract, this is most 

likely due to there being relatively few cases of participants with PSC cataract (7 out of the 

total sample of 93 participants (7.5%)).  

 

 

 

Figure 4.10 First analysis Boxplot of FAF image quality and PSC cataract. 
 
Boxplot above from ODM showing how FAF image quality is related to PSC cataract 

expressed on the WHO scale of cataract grading scale (0.0-3.0) along the bottom. Only 

good images were graded as good, with acceptable and not acceptable images graded as 

not acceptable to create a dichotomous scale.  
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Below in Figure 4.11 is from the Distribution widget output for the same comparison of PSC 

cataract grading for FAF image quality graded as good and not acceptable for the first 

analysis. At approximately a WHO scale point of 0.30 for PSC cataract, there is 

approximately a 50% chance of the image being graded as not acceptable. There were no 

instances of a good quality FAF image once the PSC WHO score was over 1.2. Note that 

only one of the 7 participants (14.3%) who had PSC cataract were graded as having a good 

FAF image quality. 

 

 

 

Figure 4.11 First analysis Distribution of FAF image quality and PSC cataract 
 
Distribution widget output for PSC cataract on the WHO scale versus the probability of a 

good or not acceptable FAF image (blue bars represent good image quality and red bars 

represent not acceptable image quality). Only good images were graded as good with 

acceptable and not acceptable images graded as not acceptable to create a dichotomous 

scale. 

  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

152 

 

Distribution widget outputs 

Table 4.5 below shows how the mean cataract scores for NUC, COR and PSC cataract 

graded on the WHO scale vary with FAF images graded as good and not acceptable, by the 

definitions set out in the first analysis. 

 

 

Cataract 
type 

Mean 
cataract 
score 
for 
good 
FAF 
image 

Mean 
cataract 
score for 
not 
acceptable 
FAF 
image 

Upper 
limit 
within 
1 SD 
of the 
mean 
for 
good 
image 

Lower 
limit of 
1 SD 
of the 
mean 
for 
good 
image 

Upper limit 
within 1 
SD of the 
mean for 
not 
acceptable 
image 

Lower limit 
of 1 SD of 
the mean 
for not 
acceptable 
image 

NUC 0.487 0.924 0.987 0.000 1.544 0.304 

COR 0.100 0.403 0.530 0.000 1.113 0.000 

PSC 0.022 0.255 0.182 0.000 0.895 0.000 

Table 4.5 First analysis summary of results from the ODM Distribution and Boxplot widgets. 
  
From the results of the Boxplot and Distribution widgets in the first analysis it is possible to 

conclude that cataract of all three types examined (NUC, COR and PSC) do have a negative 

effect on FAF image quality which is statistically significant. 
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For the first analysis, further statistical tests were carried out to analyse the differences 

between the means for the different types of cataract, i.e. NUC, COR and PSC by way of an 

ANOVA, the results are shown below: 

 

IBM’s SPSS Statistics (Version 28) was used to perform a within-subjects (as all participants 

were graded for all three types of cataract) repeated measures one-way ANOVA (parametric 

statistical test for three or more dependent groups) to compare the level of grading of the 

three different types of cataract among images defined to have a not acceptable FAF image, 

in participants with some form of cataract (31 eyes in total (note that the majority of the eyes 

had more than one type of cataract)).  

 

The hypotheses: 

Participants with not acceptable FAF images have significantly different levels of the three 

types of cataract studied, i.e. nuclear sclerotic (NUC), cortical (COR) and posterior 

subcapsular (PSC).  

 

Descriptive statistics suggest that NUC cataract has a higher mean grading, i.e. NUC 

cataracts were worse than COR and PSC in the participants of this study who were graded 

as having a not acceptable FAF image.  

 

Assuming sphericity 

The Within subjects repeated measures one-way ANOVA assumes sphericity, i.e. 

a) the variances of all the levels of the within subject factors are equal 

b) the correlation between all within subject factors are equal 

Mauchly's Test of Sphericity determines whether this assumption has been violated. The p-

value (Sig.) is 0.304 and therefore indicates the assumption has not been violated.  

 

Results: Tests of within-subjects effects with sphericity assumed: F(12.517), the degrees of 

freedom for cataracts and error(cataract) (2,60), the p-value of (Sig., <0.001) and partial eta 

squared (0.294).  

 

Pairwise comparisons are relevant because the type of cataract had a statistically significant 

effect on the level of cataract grading.  

 

After applying Bonferroni corrections for multiple comparisons, the following statistically 

significant differences arose:  
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Nuclear sclerotic cataract (1) had a higher mean value for not acceptable FAF images than 

Cortical cataract (2) (p=0.001).  

Nuclear sclerotic cataract (1) had a higher mean value for not acceptable FAF images than 

Posterior subcapsular cataract (p=0.000) (3).  

 

Determining the effect size: the effect in the form of partial eta squared is taken from the 

“Tests of Within-Subjects Effects” table, since sphericity has not been violated (incidentally, 

if sphericity had been violated, then the “Multivariate Tests” table would have been used).  

 

Eta squared Effect size 

0.01 Small 

0.06 Medium 

0.14 Large 

Table 4.6 Eta squared values with corresponding effect size, according to Cohen(179). 
In this case partial eta squared is = 0.294, so the effect was large.  

 

These findings support the hypothesis that participants with cataract and not acceptable FAF 

images (31 in total, 7 had not acceptable image quality with no cataract) had significantly 

different levels of the three types of cataract studied, i.e. NUC, COR and PSC cataract, with 

NUC cataract having a higher grading level than both COR and PSC cataract. There was no 

significant difference found between the grading means of COR and PSC cataract.  

 

However, with the number of NUC cataracts in the sample being significantly greater than 

that of COR and PSC cataracts, a larger sample would be required to ascertain whether the 

three different types of cataract affect the FAF image quality to a greater or lesser degree. 

The ANOVA was not carried out in the second analysis due to there being only nine not 

acceptable FAF images by the definition in the second analysis.  
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How could the effect size be used to inform future studies? 

GPower was used as shown in Figure 4.8 below to calculate the sample size required for 

future studies as shown below. The sample size indicated is 22, which is lower than the 

sample size used for this analysis (where 31 not acceptable FAF images were used for this 

analysis).  

 

 

Figure 4.12 GPower sample size calculation  
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4.3.6 Results of the second analysis 
 

In the second analysis, if the FAF image was graded as good or acceptable quality it was 

recorded as good, whilst only not acceptable images were recorded as not acceptable, the 

assumption being that if a FAF image was graded as not acceptable i.e. < 50% of the image 

was not in shadow, and/or no blood vessels were visible, then the image was not clinically 

useful. Out of the 93 images taken for this study, only nine were classified as not acceptable 

by the definition stipulated for the second analysis. The results are shown below. For not 

acceptable images defined as not clinically useful, the mean NUC score was 1.344±0.57 

and a median of 1.2. For clinically useful images the mean NUC cataract score was 

0.593±0.55, and a median of 0.5. The Student’s t test found that there was a significant 

difference at the 1% (p=0.004) level between the mean NUC WHO scale scores of 

participants with a good and not acceptable FAF image quality. As a reminder, there were 

66 participants in the study graded as having NUC cataract out of the total sample of 93 

participants.  
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Figure 4.13 Second analysis Boxplot of FAF image quality and NUC cataract.  
 
Boxplot from ODM showing how participant FAF image quality grading is related to NUC 

cataract score graded on the WHO scale of cataract grading (0.0-3.0) along the bottom. 

Good and acceptable images were graded as acceptable, and only not acceptable images 

graded as not acceptable to create a dichotomous scale. 
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Below is shown the Distribution widget output for the same comparison of NUC cataract 

grading for image quality graded as good and not acceptable for the second analysis. As the 

NUC score approaches the level of 1.9 on the WHO scale, there is approximately a 50% 

chance that the FAF image will be of such a poor, or not acceptable quality as to be not 

clinically useful. There were, however, two instances where the NUC score was 2.0 and the 

images were still graded as good. Note that all nine participants (100%) who were graded as 

having a not acceptable FAF image quality had some degree of NUC cataract.  

 

 

 

Figure 4.14 Second analysis Distribution of FAF image quality and NUC cataract. 
 
Distribution widget output for NUC cataract on the WHO scale versus the probability of a 

good or not acceptable FAF images (blue bars represent good image quality and red bars 

represent not acceptable image quality). Good and acceptable images were graded as good 

with only not acceptable images graded as not acceptable to create a dichotomous scale.  
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The same analysis was carried out for COR cataract, the results are shown below. For not 

acceptable images considered not clinically useful, the mean COR score is 1.030±0.79 and 

a median of 1.2. For clinically useful images the mean COR cataract score was 0.137±0.48, 

and a median of 0.0. The Student’s t test found that there was a significant difference at the 

1% (p=0.009) level between the mean COR WHO scale scores of participants with a good 

and not acceptable FAF image quality. (This finding was supported by the Mann Whitney U 

test giving a significance value of <0.001 as the normality of the COR data was not perfect). 

 

 

 

Figure 4.15 Second analysis Boxplot of FAF image quality and COR cataract. 
 
Boxplot from ODM showing how participant FAF image quality grading varies with COR 

cataract score graded on the WHO scale. Good and acceptable images were graded as 

good with only not acceptable images graded as not acceptable to create a dichotomous 

scale. 
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Below is shown the Distribution widget output for the same comparison of COR cataract 

grading for image quality graded as good and not acceptable (1 = good, 2 = not acceptable) 

for the second analysis. As the COR score approaches the level of 1.2 on the WHO scale, 

there is approximately a 50% chance that the images will be not acceptable. Also, as the 

cataract score approaches 2.0 on the WHO scale, it becomes highly likely that the FAF 

image will be of such a not acceptable quality as to be not clinically useful. However, there 

were three instances of the COR cataract being graded as  2.0 with the FAF image still 

graded as good. Note that six of the nine participants (66.7%) who were graded as having a 

not acceptable FAF image quality had some degree of COR cataract.  

 

 

 

Figure 4.16 Second analysis Distribution of FAF image quality and COR cataract. 
 
Distribution widget output for COR cataract on the WHO scale versus the probability of a 

good or not acceptable FAF images (blue bars represent good image quality and red bars 

represent not acceptable image quality). Good and acceptable images were graded as good 

with only not acceptable images graded as not acceptable to create a dichotomous scale. 

  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

161 

 

The same analysis was carried out for PSC cataract, the results are shown below. For not 

acceptable images considered not clinically useful, the mean PSC score is 0.344±0.69 and a 

median of 0.0. For clinically useful images the mean PSC cataract score was 0.098±0.40, 

and a median of 0.0. The Student’s t test found that there was no significant difference 

between the mean PSC WHO scale scores of participants with a good and not acceptable 

FAF image quality. (This finding was again supported by the Mann Whitney U test giving a 

significance value of 0.086 as the normality of the PSC data was not perfect). 

 

 

 

Figure 4.17 Second analysis Boxplot of FAF image quality and PSC cataract. 
 
Boxplot from ODM showing how participant FAF image quality grading varies with PSC 

cataract score graded on the WHO scale. Good and acceptable images were graded as 

good with only not acceptable images graded as not acceptable to create a dichotomous 

scale. 
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Below is shown the Distribution widget output for the same comparison of PSC cataract 

grading for image quality graded as good and not acceptable (1 = good, 2 = not acceptable) 

for the second analysis. As the PSC score approaches the level of 1.1 on the WHO scale, 

the chance that the FAF image will be of such a poor, or not acceptable quality as to be not 

clinically useful is approximately 50%. There were, however, two instances of a good FAF 

image quality with a PSC WHO grading of = 2.1. Note that only two of the nine participants 

(22.2%) who were graded as having a not acceptable FAF image quality had some degree 

of PSC cataract.  

 

 

 

Figure 4.18 Second analysis Distribution of FAF image quality and PSC cataract. 
 
Distribution widget output for PSC cataract on the WHO scale versus the probability of a 

good or not acceptable FAF images (blue bars represent good image quality and red bars 

represent not acceptable image quality). Good and acceptable images were graded as good 

with only not acceptable images graded as not acceptable to create a dichotomous scale. 
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Distribution widget outputs 

 

Cataract 
type 

Mean 
cataract 
score 
for 
good 
FAF 
image 

Mean 
cataract 
score for 
not 
acceptable 
FAF 
image 

Upper 
limit 
within 
1 SD 
of the 
mean 
for 
good 
image 

Lower 
limit of 
1 SD 
of the 
mean 
for 
good 
image 

Upper limit 
within 1 
SD of the 
mean for 
not 
acceptable 
image 

Lower limit 
of 1 SD of 
the mean 
for not 
acceptable 
image 

NUC 0.593 1.344 1.143 0.043 1.914 0.774 

COR 0.137 1.033 0.617 0.000 1.823 0.243 

PSC 0.098 0.344 0.498 0.000 1.034 0.000 

Table 4.7 Second analysis summary of results from ODM Distribution and Boxplot widgets. 
 
The table above showing how the mean cataract scores for NUC, COR and PSC cataract 

graded on the WHO scale vary with FAF images graded as good and not acceptable, by the 

definitions set out in the second analysis. 

  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

164 

4.3.7 Summary of results of the first and second analysis 
 

The table below was created to illustrate how the quality of images varied with the level of 

cataract from these two analyses. The first analysis was concerned with high image quality, 

where only good images were graded as good, and both acceptable and not acceptable 

were graded as not acceptable. The second analysis was concerned with low quality 

images that were not clinically useful, with both good and acceptable images graded 

together as good, and only not acceptable images graded as not acceptable.  

 

Cataract type Level at which 
50% of images 
are of high 
quality 

Level at which 
50% of images 
are of low 
quality (not 
clinically useful) 

Level above 
which no 
image was 
graded as 
high quality 

Level above 
which all images 
were low quality 
(not clinically 
useful) 

NUC 1.0 1.9 1.5 No upper limit 
found 

COR 0.7 1.2 No upper 
limit found 

No upper limit 
found 

PSC 0.3 1.1 1.2 No upper limit 
found 

Table 4.8 The levels of cataract and the effect on FAF image quality. 
 

Type of 
cataract 

Number and 
% of 
participants 
with type of 
cataract in the 
study 

Number and 
% of 
participants 
with this type 
of cataract 
having a 
high image 
quality 

Number of 
participants 
and % with 
high image 
quality with 
type of cataract 

Number 
and % of 
participants 
with this 
type of 
cataract 
and not 
acceptable 
image 
quality  

Number of 
participants 
and % with 
not 
acceptable 
image 
quality with 
type of 
cataract 

NUC 66/93 (71.0%) 35/66 
(53.0%) 

35/55 (63.6%) 9/66 
(13.6%) 

9/9 (100%) 

COR 14/93 (15.1%) 3/14 (21.4%) 3/55 (5.5%) 6/14 
(42.9%) 

6/9 (66.7%) 

PSC 7/93 (7.5%) 1/7 (14.3) 1/55 (1.8%) 2/7 (28.6%) 2/9 (22.2%) 

Table 4.9 Image quality and cataract percentages. 
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4.4 Discussion 
 

4.4.1 First analysis discussion 
 

The first analysis was concerned with exploring the level of cataract that will still allow a high 

image quality. Out of the 93 images taken for this study, 55 were classified as good by the 

definition stipulated for the first analysis (59.1%). It is reasonable to conclude from the 

results that cataract has a significantly negative effect on FAF image quality, as the Boxplot 

widgets showed that for all three types of cataract studied, that there was a significantly 

higher level of cataract on the WHO grading score for FAF images graded as not acceptable 

quality compared to those images graded as good quality to at least the 5% level. NUC 

cataract was the most prevalent type of cataract in the sample (71.0% of the total sample of 

93 were graded as having NUC cataract, 15.1% as having COR cataract, and only 7.5% as 

having PSC cataract). No FAF image was graded as good once the NUC score was over 

1.5, for PSC this figure was over 1.2. For COR cataract there was no clear upper cut off 

point for good images, with one instance of a good FAF image in an eye with a COR 

cataract WHO score of 2.3. These findings indicate that practitioners should not expect high 

FAF image quality from patients who have a NUC WHO cataract score of over 1.5, and over 

1.2 for PSC cataract. For COR cataract it may be possible to record high FAF image quality 

even with a cataract graded as high as 2.3. NUC cataract, being the most common type of 

cataract detected in the participants, appears to be responsible for the majority of FAF 

image degradation due to cataract in this study. An ANOVA was also carried out on the data 

from the first analysis, on the 31 images from participants who had cataract and whose FAF 

images were graded as not acceptable quality. The analysis showed that there was 

significantly higher NUC grading in these participants than either COR and/or PSC cataract, 

however, with only 14 and 7 participants in the study having COR and PSC cataracts 

respectively, a larger sample would most likely be required to draw firm conclusions as to 

the relative effect of the different types of cataract on FAF image quality by the first analysis 

definition.  

 

4.4.2 Secondary analysis discussion 
 

The second analysis was concerned with exploring the level of cataract that will cause the 

FAF image quality to be so poor as to be not clinically useful. This information could be 

beneficial as it would inform the practitioner of the level of cataract that would be likely to 

render FAF imaging of such poor quality as to be clinically uninformative, freeing up time for 
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more informative clinical tests. Out of 93 images taken in the study, only nine were graded 

as not clinically useful by the second analysis definition (9.7%).   

The analysis shows that for NUC cataract, there is a significantly higher cataract WHO score 

for images that were graded as not acceptable compared to those that were graded as 

good, to the 1% level. At a level of NUC cataract of approximately 1.9, the probability of the 

FAF image being not acceptable was 50%, however, there was no clear cut off for when the 

FAF image is highly likely to be of not acceptable quality and therefore not clinically useful, 

with there being two instances when the NUC score was = 2.0 and the FAF image was still 

graded as good. Note that all nine images graded as not acceptable by the definition 

stipulated in the second analysis had some degree of NUC cataract.  

For COR cataract, there was once again a significantly higher cataract WHO score for 

images that were graded as not acceptable compared to those that were graded as good, to 

the 1% level. At a level of COR cataract of approximately 1.2, the probability of the FAF 

image being not acceptable was 50%, however, as with NUC cataract, there was no clear 

cut off for when the FAF image is highly likely to be of not acceptable quality and therefore 

not clinically useful, there being three instances when the COR score was  2.0 and the FAF 

image quality was still graded as good. Note that six of the nine images graded as not 

acceptable had some degree of COR cataract.  

For PSC cataract, there was not a significant difference in cataract WHO score between 

FAF images graded as not acceptable compared to those graded as good. At a level of PSC 

cataract of approximately 1.1, the probability of the FAF image being not acceptable was 

50%. As with the NUC and COR cataract, there was no clear cut off point for when the FAF 

image is highly likely to be of not acceptable quality and therefore not clinically useful, there 

being two instances of when the PCS cataract was = 2.1 and the FAF image quality was still 

graded as good. Note that only two of the nine images graded as not acceptable had some 

degree of PCS cataract. It should be noted, however, as in the first analysis, that the number 

of COR and PSC cataracts in the sample were relatively small, so more data would most 

likely be required to provide stronger evidence regarding the relative effect of different 

cataract types on FAF image quality by the second analysis definition.  
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4.5 Conclusion 

 

1. Cataract of all three types studied (NUC, COR and PSC) have a significantly 

negative effect on FAF image quality to at least the 5% level. 

2. Nuclear sclerotic cataract was the most prevalent form of cataract in the sample. 

(71.0% of the sample were graded as having NUC cataract, 15.1% as having COR 

cataract, and 7.5% as having PSC cataract). 

3. FAF image quality has a 50% probability of being of high quality at a WHO scale 

grading of 1.0 for NUC cataract, 0.7 for COR cataract and 0.3 for PSC cataract.  

4. High FAF image quality should not be expected once the following levels of cataract 

scores on the WHO score are reached: for NUC cataract > 1.5 and for PCS cataract 

> 1.2. For COR cataract there was no clear cut off point.  

5. FAF image quality has a 50% probability of being of such poor quality that it is 

rendered clinically not useful at a WHO grading score of 1.9 for NUC cataract, 1.2 for 

COR cataract and 1.1 for PCS cataract.  

6. For all three types of cataract studied, there was no clear cut off point over which all 

FAF images are expected to be not clinically useful.  

 

4.5.1 Relevance of the findings of Chapter four to primary care optometrists 
 

1. If there is nuclear sclerotic cataract of > 1.5 on the WHO grading scale, then there is 

a high probability (approximately 85%) that FAF images will not be of high quality, 

but they may still be clinically useful.  

2. If there is a nuclear sclerotic cataract of > 1.9 on the WHO grading scale, then there 

is approximately a 50% chance that the FAF images will not be clinically useful.  

3. There is no level of nuclear sclerotic cataract, measured on the WHO scale, above 

which there is a high probability that all FAF images will not be clinically useful.  
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Chapter 5 The impact of FAF on patient comfort 
 

5.1 Introduction  

FAF imaging relies on exposing the patient’s eye to a relatively bright flash of visible light. 

This is necessary due to the very low fluorescence signal obtained when attempting to 

capture in vivo FAF images in human subjects (the Quantum Yield of A2E, a major 

constituent of LF, is minimal at 0.003 ± 0.001).(17) For patient comfort and ocular safety 

reasons, using a very high-power excitation light source is not practically possible,(180) 

however, the light flash from FAF imaging is still considerably more intense than that 

generated during colour fundus photography (typically 300 Watt seconds for FAF compared 

to 60 Watt seconds for CFP).(181) Chapter five of the study was therefore designed to 

explore the experience, regarding visual/ocular comfort, of patients exposed to the FAF 

excitation stimulus produced by the RS-330 instrument. This part of the study could assist 

primary care optometrists by providing information on the likely patient acceptance of greater 

routine use of FAF imaging in primary care optometry.  

5.2 Methods 

A Likert six-point scale of 0-5 was utilised for patient comfort, with 0 being very 

uncomfortable, and 5 being very comfortable. This question was asked immediately after the 

imaging process in the following way, “on a scale of 0 to 5, with 0 being very uncomfortable 

and 5 very comfortable, how would you score the flash that you’ve just experienced?”. 

5.3 Results  

 

Results were analysed via ODM software in order to explore any data patterns regarding 

patient comfort during FAF imaging, the results of which may help to inform primary care 

optometrists of the most appropriate way to incorporate FAF imaging into their routine 

clinical practice. Significance levels were checked for all the categorical variables via the 

Boxplot widget with two variables appearing to cause a significant effect on comfort during 

FAF imaging. These were the crystalline lens status (i.e. phakic or pseudophakic), and the 

normality or abnormality of the FAF image. The results are shown below.  

Below is the Boxplot widget comparing the FAF image acquisition acceptance score from 0-

5 (0 = very uncomfortable to 5 = very comfortable) for pseudophakic and phakic participants. 

There is a significant difference in comfort score to the 1% (p = 0.004) level with 
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pseudophakics having a lower mean of comfort score of 3.92±0.8 (median 4.0), and phakic 

individuals having a higher mean comfort score of 4.48±0.8 (median 5.0). 

 

 

Figure 5.1 Boxplot of lens status and FAF comfort score. 

 
Boxplot from ODM showing how participant lens status varies with FAF image acquisition 

comfort score along the bottom.  
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Below is the Boxplot widget comparing the FAF image acquisition comfort score for 

participants demonstrating a normal and abnormal FAF image. There is a significant 

difference in the comfort score to the 1% (p = 0.01) level, with participants demonstrating an 

abnormal FAF image having a lower mean comfort score of 3.96±0.8 (median 4.0), and 

those demonstrating a normal FAF having a higher mean comfort score of 4.47±0.8 (median 

of 5.0).  

 

 

 

Figure 5.2 Boxplot FAF image normality/abnormality and FAF comfort score. 
 
Boxplot from ODM showing how participant FAF dichotomous image grading varies with 

FAF image acquisition comfort score along the bottom.  

 

Later, in Chapter six, it was found that as age increases, so too does the probability of 

pseudophakia and an abnormal FAF image. Therefore, the worsening comfort seen with 

pseudophakia and an abnormal FAF image could simply be down to a worsening comfort 
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score with increasing age. To test this hypothesis, it was necessary to create a categorical 

age column in the Microsoft Excel spreadsheet, as neither the Boxplot nor Distribution ODM 

widget enables comparison of two variables with numerical values - one must be categorical. 

An age cut off of 77 years was selected. This was based on the finding from the Boxplot 

widget that the mean age of a participant with an abnormal FAF image was 76.56 years, and 

the mean age of a pseudophakic participant was 77.54 years. Below is the Boxplot widget 

showing the results. The mean comfort score for > 77 years was 3.96±0.9 (median 4.0), and 

for < 77 years the mean comfort score was 4.46±0.8 (median 5.0) p = 0.013, i.e. the 

difference between the comfort score of FAF in under and over 77-year-olds was significant 

to the 5% level, but does not quite reach the 1% significance level. Therefore, it is possible 

to conclude that age could be a confounding factor in the previous findings regarding the 

lower comfort of FAF grading in patients who were pseudophakic or who demonstrated an 

abnormal FAF image, with older participants experiencing more discomfort during FAF 

image acquisition. 
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Figure 5.3 Boxplot of participant age and FAF comfort score. 
 
Boxplot from ODM showing how participant age varies with FAF image acquisition comfort 

score along the bottom.  
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Below is the Distribution widget from ODM showing how there is a general trend for an 

increase in the probability of being under 77 years of age (red bars), and a decrease in the 

probability of being over 77 years of age (blue bars), as the FAF comfort score increases.   

 

 

 

Figure 5.4 Distribution of under and over 77 years of age and FAF comfort score. 
 
Distribution widget from ODM showing how the probability of being over 77 years of age 

varies with the comfort score (along the bottom) during FAF imaging. Blue bars represent 

the probability of participants being over 77 years of age, red bars represent the probability 

of participants being under 77 years of age.  

 

An alternative strategy for testing whether age is a confounding factor for the finding that 

FAF comfort is lower in pseudophakics and in participants with an abnormal FAF result, was 

to create a sub-group composed of two age matched groups (N=48), one for phakics and 

another for pseudophakics. This technique does however, suffer from the disadvantage that 

the number of participants included in the analysis is lower, to achieve age-matching of the 

groups. The results are illustrated below in the Figure below. The Boxplot shows that whilst 
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pseudophakics still have a lower mean comfort score, the difference is now not statistically 

significant.  

 

 

Figure 5.5 Boxplot of lens status and FAF comfort score for age-matched groups. 
 
Boxplot from ODM showing how participant lens status (upper group 1 = pseudophakic, 

lower group 2 = phakic) varies with FAF image acquisition comfort score (along the bottom) 

for a sub-group composed of two age matched groups of participants (N=48).  
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The same lack of statistical difference is seen in the following Boxplot output in Figure 5.6 for 

an abnormal FAF result in the age matched groups; again, the participants with an abnormal 

FAF result still have a lower FAF comfort score, but this is no longer statistically significant. 

 

 

Figure 5.6 Boxplot FAF image normality/abnormality and FAF comfort score for age-
matched groups 
 
Boxplot from ODM showing how participant FAF image normality/abnormality varies with 

FAF image acquisition comfort score (along the bottom) for a subgroup composed of two 

age matched groups of participants (N=48). 
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Another numerical variable examined was pupil size. It would be reasonable to assume that 

pupil size post dilation may also be an important factor in patient comfort during the FAF 

imaging process, and that a larger pupil size would increase the light exposure of the retina 

and therefore have a negative effect on the comfort score. 

 

To explore the variable of pupil size post dilation thoroughly, it was necessary to create a 

categorical pupil size post dilation grading system, so that the data could be handled by the 

ODM software. The mean pupil size post dilation for under 77 years was 5.597mm±0.61mm, 

and for over 77 years was 5.538mm±0.69mm. 

Therefore, an arbitrary cut off point of 5.50mm was chosen so that two categories of < 

5.50mm and  5.50mm were created. The Boxplot shown in Figure 5.7 below indicates that 

there is no significant difference in the mean FAF acquisition comfort scores for those with a 

pupil size post dilation of < 5.50mm and  5.50mm, with the group that had a larger pupil 

size post dilation actually having a higher mean and median comfort score. Also, from a 

contextual perspective, pupil size has previously been shown to decrease linearly as 

function of age for all levels of illuminance,(182) (so again age could be a confounding 

factor) and if a larger pupil size post dilation was an important factor in lowering FAF comfort 

scores, one would expect the comfort score to increase with age rather than to decrease.  
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Figure 5.7 Boxplot of pupil size post dilation and FAF comfort score. 
 
Boxplot from ODM showing how participant post dilation pupil size varies with FAF image 

acquisition comfort score (along the bottom).  
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Migraines have been known to have been triggered by bright flashes of light,(183) however, 

from the Boxplot output below shown in Figure 5.8 there was no significant difference in 

mean comfort score for participants who reported to be migraine sufferers and those who did 

not. (Note, however, that photosensitive migraine sufferers were excluded from the study).  

 

 

 

Figure 5.8 Boxplot of migraine status and FAF comfort score 
 
Boxplot from ODM showing how participant migraine status) varies with FAF image 

acquisition comfort score (along the bottom).  

 

There was only one case of non-photosensitive epilepsy in the cohort for the study 

(photosensitive epilepsy was an exclusion criterion), and therefore ODM was unable to 

compute significance for this variable. Therefore, more research would be needed to draw 

useful conclusions regarding comfort in non-photosensitive epileptics during the FAF image 

acquisition process.   
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Lastly, to enable a complete exploration of all remaining numerical variables via ODM, a 

categorical grading system for comfort was applied, with grading of comfort  3 and >3. This 

again highlighted the association between age and comfort as shown in Figure 5.9 below. 

There is a statistically significant difference in the mean age in the two groups to the 5% 

level (p=0.018), with those participants in group 1 who had a mean comfort score of  3 

being significantly older than those in group 2 who had a mean comfort score of > 3. No 

other non-FAF related numerical variables, e.g. refractive status, vision or cataract status 

yielded a statistically significant difference in mean FAF comfort score.  

 

 

 

Figure 5.9 Boxplot of comfort score and age 
 
Boxplot from ODM showing how participant FAF image acquisition comfort score (on a scale 

of 0 = very uncomfortable, and 5 = very comfortable) varies with age (along the bottom).  
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The Distribution widget output in Figure 5.10 below shows the increasing proportion of 

comfort scores  3 with increasing age. For age < 60 years the proportion of scores  3 is 

7.7%, for  60  80 years of age this rises to 12.7% and for > 80 years this rises again to 

17.2%.  

 

 

Figure 5.10 Distribution of age and probability of comfort score  3 and > 3.  
 
Distribution widget from ODM showing how the probability of having a FAF comfort score of 

 3, or > 3 varies with participant age (along the bottom). Blue bars represent a comfort 

score of  3, red bars represent a comfort score of > 3.  
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5.4 Discussion 

 

The results indicate that having an abnormal FAF image, being pseudophakic, and being > 

77 years of age are all linked to a significantly lower mean comfort score. However, a 

subgroup composed of two age-matched groups was created (N=48), and the subsequent 

analysis demonstrated that an abnormal FAF image and/or pseudophakia made no 

significant difference to the mean comfort score. Therefore, it can be concluded that older 

age was a confounding factor for these two variables. This finding was highlighted again by 

another statistical strategy which had the advantage of using all 93 participants’ data, by 

creating two categorical groupings for FAF comfort score, with the two options of  3 and > 

3. This analysis highlighted that as age increases the proportion of FAF comfort scores  3 

(lower comfort) in the group increases, whilst the proportion of comfort scores > 3 (better 

comfort) decreases. The mean age of a participant with a comfort score of  3 was 77.56 

years±10.3 years (median 76.50 years), and for > 3 the mean was 70.35 years±9.7 years 

(median 71 years). 

 

One might expect a larger pupil size post dilation to also have a negative effect on comfort 

during FAF imaging, however, there was no significant difference between the two groups, 

one which had a pupil size post dilation of < 5.50mm, and the other a pupil size post dilation 

of  5.50mm, with the mean comfort score actually being slightly higher in the group with the 

larger pupils. It is possible to conclude from these findings that a larger pupil size post 

dilation seen in clinical practice will not indicate that discomfort during FAF image acquisition 

will be any greater than those patients with a smaller pupil size post dilation.  

 

Therefore, older age alone appears to increase the probability that the patient will 

experience relatively greater ocular/visual discomfort during the FAF image acquisition. 

Practically this could mean explaining the process to the patient, its importance, providing a 

quiet area to recover from the flash after the imaging and offering the patient assistance to 

this area of the premises. Patients who are migraine sufferers should be carefully 

questioned regarding potential triggers for their migraines, however, the findings of this study 

do not indicate a statistically significant link between the FAF image acquisition process and 

discomfort in non-visually evoked migraine sufferers. More research would be needed to 

explore any associations between non-photosensitive epilepsy and discomfort during FAF 
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imaging, as there were not enough participants who suffered from the condition in this study 

to draw useful conclusions. 

For future studies involving comfort during image acquisition in optometry, it may be worth 

considering and recording qualitative data surrounding other possible sources of discomfort 

experienced by older patients. For example, headaches experienced following eye imaging 

or the awkward physical positioning of the legs, back, torso and neck required to obtain 

optimal images, rather than simply the discomfort glare from the flash as considered in this 

study. 

In summary, the median FAF visual/ocular comfort score for participants under 77 years age 

was 5 (mean was 4.46±0.80), and for those over the age of 77 years of age the median was 

4 (mean was 3.96±0.90), (0 = very uncomfortable, 5 = very comfortable). Only three of the 

total cohort of 93 participants graded the comfort score as 2, which was the lowest score 

recorded during the study. In conclusion, FAF image acquisition, with specific precautions 

and patient advice, is suitable in terms of visual/ocular comfort to patients examined in 

clinical practice.  
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5.5 Conclusions 

 

1. Being > 77 years of age has a significantly negative effect on patient visual/ocular 

comfort during the FAF image acquisition process, with increasing age leading to 

a higher probability of a FAF comfort score of  3.  

2. Having a larger pupil size post dilation does not negatively affect patient visual 

/ocular comfort during the FAF image acquisition process. 

3. Being a non-visually evoked migraine sufferer does not negatively affect patient 

visual/ocular comfort during the FAF image acquisition process. 

4. More research is required to draw conclusions regarding the comfort of non-

photosensitive epilepsy sufferers during the FAF image acquisition process. 

5. Refractive status, visual acuity and cataract status do not have a statistically 

significant effect on the FAF image acquisition comfort score. 
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Chapter 6 The impact of performing FAF in addition to CFP and OCT in clinical 
practice 

 
6.1 Introduction 

 

The aim of Chapter six was to build a database of patients on which a series of clinical tests 

have been carried out and a number of variables collected. ODM Artificial Intelligence open 

source software was used to investigate whether FAF imaging offers information over and 

above that already obtained with CFP and OCT, and therefore adds clinical value to eye 

examinations (regarding findings relevant to ARMD). 

 

Questions that Chapter six will attempt to answer: 

 

1. Does age have an impact on the likelihood of an abnormal FAF result? (Hypothesis – 

age has no impact on the likelihood of an abnormal FAF result).(114, 184) 

2. Does refractive status have an impact on the likelihood of an abnormal FAF result? 

(Hypothesis – refractive status has no impact on the likelihood of an abnormal FAF 

result).(185)  

3. Does smoking history have an impact on the likelihood of an abnormal FAF result? 

(Hypothesis - Smoking history has no impact on the likelihood of an abnormal FAF 

result).(184) 

4. Does having a first degree relative with ARMD have an impact on the likelihood of an 

abnormal FAF result? (Hypothesis – having a first degree relative with ARMD has no 

impact on the likelihood of an abnormal FAF result).(186)  

5. Does the number of drusen, as detected by CFP and/or OCT have an impact on the 

likelihood of an abnormal FAF result? (Hypothesis – the number of drusen has no 

impact on the likelihood of an abnormal FAF result).(114) 

6. How does the simplified severity score impact on the likelihood of an abnormal FAF 

result? (The simplified severity score has no impact on the likelihood of an abnormal 

FAF result).(114)  

7. How does the presence of pigmentary abnormalities impact on the likelihood of an 

abnormal FAF result? (The presence of pigmentary abnormalities have no impact on 

the likelihood of an abnormal FAF result).(114)  

8. How does the presence of reticular pseudodrusen impact on the likelihood of an 

abnormal FAF result? (The presence of reticular pseudodrusen has no impact on the 

likelihood of an abnormal FAF result).(165) 
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6.2 Statistics employed 

 

ODM software was used to explore the collected data, with the help of the property 

“Informedness” for the reasons discussed below.  

 

There are many different statistical expressions to help to evaluate results from a 

dichotomous classification as required in this study.(187)  

 

Below is an example of a four-cell contingency table summarising the predictions of a 

classifier in the context of a binary dichotomous problem. The table assumes that we are 

predicting a single condition, with either a positive or negative result, and that there is one 

model predicting the outcome (predictions), and a gold standard reference test (real). The 

green squares indicate correct counts and the yellow incorrect. The counts within the table 

are simply to act as an example and do not refer to the findings of this study.  

 

 

 Real positives Real negatives  

Predicted positive true positives = 8 (tp) false positives = 4 (fp) Total predicted 

positives = 12 (pp) 

Predicted negative False negatives = 2 

(fn) 

true negatives = 86 

(tn) 

Total predicted 

negatives = 88 

(pn) 

 Total true positives = 

10 (rp) 

Total true negatives = 

90 (rn) 

Total number of 

cases 100 (N)N.  

 Table 6.1 Example of a four-cell contingency table  
 

Abbreviations used: 

 

tp = true positives  

fp = false positives  

fn = false negatives  

tn = true negatives  

rp = real positives = tp+fn  

rn = real negatives = fp+tn  

pp = predicted positives = tp+fp  

pn = predicted negatives = fn+tn  
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6.2.1 Statistical expressions defined 
 

a. Sensitivity (or Recall), is the proportion of real positive cases that are correctly 

predicted as positive. It is a measure of how good a test is at detecting the positives. 

Note that performance of handling negative cases is completely ignored. 

Mathematically it is expressed as tp/rp. Sensitivity is also one of the legs on which 

the receiver operating characteristic (ROC) analysis stands. It is also known as the 

true positive rate (tpr).  

b. Precision is the proportion of predicted positive cases that were actually real 

positives. It is a measure of how many of the positively classified cases were 

positive. Mathematically it is expressed as tp/pp. It is also known as the true positive 

accuracy (tpa).  

c. Specificity (or inverse recall) is defined as the proportion of real negative cases that 

are correctly predicted as negative. Mathematically expressed as tn/rn. It is also 

known as the true negative rate (tnr).  

d. Inverse precision is the proportion of predicted negative cases that were actually real 

negatives. Mathematically it is expressed as tn/pn. It is also known as the true 

negative accuracy (tna).  

e. Rand Index is a measure of the percentage of correct decisions made. 

Mathematically it is expressed as (tp + tn)/N.  

f. The Jaccard similarity coefficient compares two sets by giving a percentage of how 

many members are present in both sets, and ranges from 0 to 100%.   

g. Fallout is also known as the false alarm ratio or false positive rate (fpr). 

Mathematically it is expressed as fp/rn. False positive rate is the second of the legs 

on which ROC analysis is based. 

h. Miss rate is also known as the false negative rate (fnr) Mathematically it is expressed 

as fn/rn.  

i. Informedness represents the probability that a prediction is informed in relation to the 

condition versus chance. (The condition is the experimental outcome we are trying to 

predict by indirect means). Mathematically it is expressed as Sensitivity + Specificity -

1.  

j. Markedness represents the probability that a condition is marked by the predictor 

versus chance. (The marker/predictor is the indicator we are using to determine the 

outcome). Mathematically it is expressed as Precision + Inverse Precision – 1.  

k. ROC analysis plots the true positive rate (tpr) or sensitivity (on the vertical axis), 

against the false positive rate (fpr) or fallout (on the horizontal axis).  
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6.3 The uses of Informedness and Markedness  

 

Informedness is appropriate for testing effectiveness relative to set of conditions, whilst 

markedness is appropriate for testing effectiveness relative to a set of predictions. In general 

terms, we can use informedness if we wish to know which solution best solves a problem, 

and also which problem is usually best solved by a particular solution, whilst markedness 

may be more appropriate for predicting, for example, which test will be effective across a 

wide range of complaints.  

 

If we have a large number of documents containing the required information, it can be 

assumed that we do not need to find all the relevant documents, and a small set of 

documents can be expected to provide that information with confidence. In this scenario 

markedness is more relevant, however, if we have a small, specific set of documents for 

which we need to be confident that virtually all of them have been accessed, then 

informedness is a more appropriate measure. In this study, informedness was therefore 

selected as the most appropriate measure to test model performance.(187)  

 

A strategy was devised to ascertain whether carrying out FAF imaging offers optometrists 

extra information over and above standard eye examination tests, i.e. CFP and OCT, for the 

detection of retinal changes associated with ARMD. This was achieved by measuring the 

degree of informedness (sensitivity + specificity -1) for predicting FAF imaging results, 

achieved by using the standard tests of CFP alone, and subsequently with both CFP and 

OCT combined. If FAF imaging results could be accurately predicted, i.e. with a high level of 

informedness, it may seem reasonable to assume that FAF adds little clinical information 

over and above standard tests.  
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6.4 Variables collected 

 

CFP, OCT and FAF images were analysed and a number of variables were collected. (Note 

that all retinal variables were measured within the major temporal vascular arcades of the 

study eye unless otherwise stated). The variables collected are tabulated below: 

 

Non-imaging 
variables collected 

CFP OCT FAF 

Age Number of small, 
intermediate and 
large drusen 
counted within the 
temporal vascular 
arcades 

Number of small, 
intermediate and 
large drusen 
counted within the 
temporal vascular 
arcades 

Classification of the 
FAF pattern  

Average spherical 
refraction 
(Gullstrand) 

Presence of large 
drusen in the fellow 
eye 

Presence of large 
drusen in the fellow 
eye 

Presence of reticular 
pseudodrusen 

Gender Presence of 
geographic atrophy 
(GA) 

Presence of GA Presence of GA 

Symptoms of 
distortion in the 
central vision i.e. a 
distortion of the 
central vision, a 
“kink” in the central 
vision or central 
scotoma 

Disc diameters of 
GA 

Disc diameters of 
GA 

Disc diameters of 
GA 

A history of or 
ongoing anti-VEGF 
injections 

Presence of 
pigmentary 
anomalies (PA) 

Minimum and 
average central 
foveal thickness 

Presence of halo 
defects surrounding 
areas of GA 

Smoking status Disc diameters of 
PA 

Presence of RPD Acceptance of test 
in terms of patient 
comfort 

Packet years of 
smoking  

Simplified severity 
score (see section 
6.5 below) 

Presence of central 
or peripheral 
epiretinal membrane 

 

Years since smoking 
cessation 

Presence of reticular 
pseudodrusen 
(RPD) 

Presence of 
vitreomacular 
traction 

 

Epilepsy status  Presence of lamellar 
hole 

 

Migraine status  Presence of full 
thickness macular 
hole 

 

Diabetic status  Presence of macular 
cysts 
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Family history of 
ARMD 

 Presence of 
subretinal fluid 

 

Visual acuity in the 
study and non-study 
eye 

 Presence of 
subretinal 
hyperreflective 
material (SHRM) 

 

Pupil size post 
dilation 

 Presence of pigment 
epithelial 
detachment 

 

Cataract type and 
grading 

   

Whether phakic or 
pseudophakic 

   

Degree of posterior 
capsular 
opacification if 
pseudophakic 

   

Table 6.2 Variables collected for the analysis in Chapter six.  
 

6.5 Simplified Severity Score 

 

The simplified severity score for ARMD from the Age-Related Eye disease Study (AREDS) 

report number 18 was utilised as a variable within this study, which is based on findings from 

CFP imaging. “The scoring system developed for patients assigns to each eye 1 risk factor 

for the presence of 1 or more large ( 125 m, the approximate width of a normal large vein 

as it crosses the optic disc margin) drusen and 1 risk factor for the presence of any pigment 

abnormality. Risk factors are summed across both eyes, yielding a 5-step scale (0-4) on 

which the approximate 5-year risk of developing advanced ARMD in at least one eye 

increases in this easily remembered sequence: 0 factors, 0.5%; 1 factor, 3%; 2 factors, 12%; 

3 factors, 25%; and 4 factors, 50%”(188) (In addition, for participants with no large drusen in 

either eye, the presence of bilateral intermediate drusen is counted as 1 risk factor. 2 risk 

factors are assigned for the presence of advanced ARMD in the fellow eye). Advice from the 

“Clinical Decision-Making Aid for Nutrition in Age Related Macular Degeneration” designed 

at Aston University was utilised by reference to the flow chart to offer nutritional advice to 

patients.(189) 

Note that the AREDS Report number 17 recommends a 9-point severity scale for ARMD, 

and reports that drusen area is a stronger and more consistent risk factor than drusen size. 

However, with there being a strong association between the two variables of drusen area 

and size, and with the assumption that eye care professionals could more effectively assess 

maximum drusen size than drusen area, the simplified severity score from AREDS report 

number 18 utilises drusen size rather than area.(188) The AREDS report number 17 also 
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considered whether the type of drusen should be taken into account for the severity scale 

grading (i.e. hard drusen or soft indistinct drusen), however, in view of the complexity of 

adding a second drusen characteristic, and the low additional predicative power that this 

would provide, it was decided not to introduce this variable into the scale.  

 

6.6 Methods 

 

Whilst computer programs are available for the counting and measuring of drusen,(190, 191) 

for the purposes of this study it was decided that manual counting of drusen should be 

employed within anatomically defined regions of the retina, and for drusen size calculation 

reference was made to anatomical structures visible within retinal images. The reason for 

these decisions was two-fold. Firstly, since this study is based within a primary care 

optometry environment, it was considered appropriate to utilise methods that were easily 

accessible to the average community-based optometrist. This could facilitate auditing their 

own patient cohorts for comparisons of their results with this study’s results. Secondly, any 

“rules of thumb” that are highlighted by the findings of this study could easily be translated 

into the everyday work of community optometrists without the need for specific software 

packages or equipment to which most community clinicians would not have easy access.  

Therefore, the number of drusen of specific sizes were manually counted by means of 

viewing the CFP/OCT images.  

 

For CFP: Large drusen were taken to be those with a diameter  125m (width of the 

average normal retinal vein at the disc margin), intermediate drusen were those  63m in 

diameter (i.e. half that of a large drusen), and small drusen < 63m in diameter. The number 

of drusen of each size was recorded as none (grade 0), 1-9 (grade 1), 10-19 (grade 2), 20-

29 (grade 3), 30-39 (grade 4), 40-49 (grade 5) and 50+ (grade 6), i.e. on a seven-point 

scale. 

  

For OCT: Features were measured within the major temporal vascular arcades of the study 

eye. The “measure” function of the OCT was also utilised to estimate drusen size (in m, by 

stretching an arrow between two points by means of the PC mouse) at its widest horizontal 

diameter, with the same size grading used as for CFP. The grader scrolled through the 

“edge to edge” macular map scan and manually counted the number of drusen of each size 

within the area bounded approximately by the major temporal vascular arcades. Again, the 

number of drusen of each size was recorded as none (grade 0), 1-9 (grade 1), 10-19 (grade 
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2), 20-29 (grade 3), 30-39 (grade 4), 40-49 (grade 5) and 50+ (grade 6), i.e. on a seven-

point scale, in a similar manner to the method used to count drusen with CFP images as 

detailed above.  

 

For FAF: Classifications of FAF patterns were made according to a classification system 

proposed in 2005 by Bindewald et al for early ARMD, which classifies FAF patterns into one 

of eight categories,(165) i.e. normal pattern, minimal change pattern, focal increased 

pattern, patchy pattern, linear pattern, lacelike pattern, reticular pattern and speckled pattern 

(Hereafter referred to as “Bindewald’s classification system”. Note that Bindewald’s 

classification system was designed for “early ARMD”, and that having more “advanced” 

ARMD was not an exclusion criterion for this study. However, only eight of the 93 

participants were recorded as having “advanced” ARMD in the form of treated wet ARMD or 

GA, and therefore it was still considered appropriate for Bindewald’s classification system to 

be employed throughout the study as over 90% of the participants were defined as having 

“early” or no ARMD.  Later, to facilitate 10-fold cross validation via ODM statistical analysis, 

these patterns were also simplified and expressed dichotomously as “normal” if the pattern 

was normal or minimal change, and “abnormal” if the pattern was any of the other six 

remaining patterns according to Bindewald’s classification system.  
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6.7 Orange Data Mining (ODM) Free Open Source Software  

  

This section will explain the functioning of the commonly used ODM widgets as well as 
taking the reader through ways in which this software can be utilised and how to avoid 
common pitfalls which may have a detrimental effect on analyses.   

  

ODM was first released in 1996, and is a free, open source AI data analysis and 

visualisation tool, developed at the Bioinformatics Laboratory of The University of Ljubljana 

in Slovenia, and is based on Python scripting. The program presents the researcher with a 

“canvas”, which is then used to create personalised workflows by connecting a series of 

“widgets”. The widgets are arranged in groups under the headings: Data, Visualise, Model, 

Evaluate, Unsupervised and Image Analytics, and through selecting these the user can read 

the data, present data tables, select features, train predictors, compare algorithms, and 

visualise the results in a number of formats.   

 

ODM can remember previous choices and suggest to the user the most frequent 

combinations. The software can also visualise data via scatterplots, trees, bar charts, 

dendrograms, heatmaps etc. 
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Figure 6.1 below shows the ODM workflow designed for this study.  

 

Figure 6.1 Orange data mining workflow used in Chapter 6 
 

6.7.1 Avoiding pitfalls in Orange Data Mining 

 

6.7.1.1 Introduction 

 

The ODM toolbox can join compatible widgets via input and output threads on the left and 

right of the widgets respectively. These threads can thus create a flow of data through the 

pipeline created by the user. Orange performs calculations as the pipeline is constructed, 

indicated by a grey ring that gradually forms (indicating progress) around the widget 

performing the analysis. Double-clicking on the widget reveals its content. Any change 

further upstream in the pipeline is automatically filtered downstream.(192) 
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6.7.1.2 Pre-processing of data 

 

Discussed below are four main areas where the researcher may choose to conduct pre-

processing of data to avoid common pitfalls encountered in data analysis using ODM 

software. 

 

Pre-processing 1. Normalising, shuffling, filling missing values, removing outliers and 

continuising data 

 

Before analysing data, the researcher may decide to pre-process the data, e.g. normalise 

(scaling data), inputting any missing data, continuising discrete data, shuffling, removing 

outliers etc. prior to the actual machine learning process. This initial pre-processing step is 

crucial if the machine learner is to perform its tasks effectively. ODM assists in many of 

these initial tasks e.g. the Preprocess widget will handle the first three of these tasks, i.e. 

normalising, inputting missing values (by either replacing the gaps with the average or most 

frequent missing values) and continuising discrete variables. Shuffling is carried out by the 

Test and Score widget. In this study outliers were screened manually from the data.  

 

Figure 6.2 Normalising, continuising and inputting missing data via the Orange Data Mining 
Preprocess widget 
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Pre-processing 2. The ratio of data instances to variables 

 

The researcher may be misled by the machine learning process when the number of 

variables greatly exceeds the number of data instances.(192) Some authors have suggested 

that there should be at least ten times as many data instances as there are variables,(193) 

but this may depend on the quality of the relationships within the data. Essentially, the 

number of variables may need to be stripped back to a workable number of the most 

informative variables in order to avoid the overfitting problem (finding patterns within the 

sample data that don’t generalise well to novel data). However, the most informative 

variables must be chosen on a separate training slice of the data, otherwise we again may 

find variables that are randomly correlated with the class (or target) variable simply because 

there are so many variables to choose from. ODM facilitates this procedure via the 

“Preprocess” widget. This widget must be joined directly to the “Test and Score” widget so 

that the data is not pre-processed before it is split into test and training slices. The same rule 

applies to other pre-processing of data e.g. hyperparameter fine-tuning and model learner 

selection.  

 

 

Figure 6.3 Illustration of the correct order for pre-processing within an Orange Data Mining 
workflow 
Example of how to create a workflow that does not pre-process the data prior to splitting into 

test and training data. Note how the ODM Preprocess widget is joined directly to the Test 

and Score widget.  
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A similar problem arises when visualising data analysed by machine learners. Again, the 

researcher must split the data using one part to select the most informative variables and 

then visualise the remaining data using the selected variables. If we select variables based 

on the whole dataset, we may inadvertently select those that are highly correlated with the 

class (or target) variable simply by chance.(192) 
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Pre-processing 3. The importance of not testing on training data 

 

A machine learning algorithm is a computational method based on statistics, implemented in 

software,(193) and has the ability to rapidly analyse large data sets in a way that a human 

researcher never could, formulating hypotheses capable of making reliable predictions 

based on the hidden patterns detected.(192-194) However, this strength is also a weakness, 

as computers can also effectively memorise datasets, giving rise to algorithms that do not 

generalise well to novel data.(194)  

 

To avoid machine learners memorizing data the researcher must ensure that the data 

selected for training purposes is not the same data used for testing the hypotheses created 

(in a similar way to the selection of the most informative variables as described above). This 

ensures that the hypothesis is applicable to novel data. The “Test and Score” widget 

facilitates this process, as seen in Figure 6.3 below. This widget effectively carries out “k-

Cross Validation”, whereby a randomly selected proportion or slice of the data is used to 

build a hypothesis (training), with the rest of the data tested on this model (testing). 

Subsequently the next slice of data is used for training, and the remainder again used for 

testing purposes. This process continues until all the data has been used for training the 

model. By this method, memorisation of the data by the machine learner is minimised.  
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Figure 6.4 Illustration of 10-Cross fold validation within the Orange Data Mining Test and 
Score widget 
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Pre-processing 4. The imbalanced data problem 

 

It can be problematic to train a model learner to be able to predict both positive and negative 

data instances if there is a large difference in the proportions of positive and negative 

instances within the data. In this study, the proportion split was approximately 29% abnormal 

FAF and 71% normal FAF, and therefore this data imbalance was considered to be mild. If 

there was a large difference in proportions, it is possible to fix the problem by manipulating 

the training set in order to over-represent the lower proportion. It is also possible to avoid 

misleading results due to the imbalanced data problem by using the Matthews correlation 

coefficient when measuring model learner prediction performances, which takes account of 

the ratios within the confusion matrix.(193) 
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6.8 Results  

For patient demographics see Table 4.2 in Chapter 4. 
 

6.8.1 Results from the Orange Data Mining Distribution and Boxplot widgets 
 

The data was explored firstly via the ODM Distribution and Boxplot widgets, looking for 

general trends within the data.  

 

The example below in shows that as age increases, the probability of a normal FAF 

decreases, whilst the probability of an abnormal FAF increases.  

 

 

 

Figure 6.5 Distribution of Age versus probability of FAF normality/abnormality 
 
Image taken from ODM showing age against the probability of a normal/abnormal FAF. The 

blue bars represent an abnormal FAF, and red bars a normal FAF.  
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The finding above is supported by the results of the Boxplot analysis shown below, which 

confirms that there is a statistically significant difference between the mean age of 

participants with normal and abnormal FAF result to the 1% level (p = 0.005).  

 

 

 

Figure 6.6 Orange Data Mining Boxplot of age versus FAF normality/abnormality. 
 
ODM Boxplot widget showing the results of a Student’s t test for a normal/abnormal FAF 

result against patient age (along the bottom).   
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The refractive state of the eye, as measured by the Gullstrand refraction function of the 

OCT, shows that this variable has very little influence over whether the FAF is normal or 

abnormal.  

 

 

 

Figure 6.7 Distribution of refractive status and normality/abnormality of FAF 
 
Image from ODM showing Gullstrand refraction (along the bottom) against the probability of 

a normal or abnormal FAF. The blue bars represent an abnormal FAF, and the red bars 

represent a normal FAF.  
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The finding above is supported by the results of the Boxplot analysis shown below, which 

confirms that there is no statistically significant difference between the mean refractive state 

as measured by the OCT Gullstrand refraction function of participants with a 

normal/abnormal FAF result.  

 

 

 

Figure 6.8 Boxplot of refractive status and FAF normality/abnormality 
 
ODM Boxplot widget showing the results of a Student’s t test for a normal for abnormal FAF 

result against the OCT Gullstrand refraction (along the bottom).  
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From the Figure below, it can be seen that as the number of packet years (number of 

packets per day times the number of years of smoking) increases, the probability of an 

abnormal FAF increases. 

 

 

 

Figure 6.9 Distribution of smoking packet years and probability of normal/abnormal FAF 
 
Image from ODM showing smoking packet years against the probability of a 

normal/abnormal FAF result. The blue bars represent an abnormal FAF result and the red 

bars a normal FAF.  
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The Figure below confirms that there is a statistically significant difference between the 

mean number of smoking packet years for participants with a normal/abnormal FAF result to 

the 5% level (p = 0.038), with a higher mean number of packet years seen with an abnormal 

FAF result.  

 

 

 

Figure 6.10 Boxplot of smoking packet years and normality/abnormality of FAF 
 
ODM Boxplot widget showing the results of a Student’s t test for normal and an abnormal 

FAF result against smoking packet years (along the bottom). 
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However, age could be a confounding factor, as older patients may have smoked more in 

their lives simply as a function of their age, and are more likely to have smoked in their youth 

due to the relative popularity of smoking in days gone by. Therefore, a sub-group of 24 

participants, composed of two age matched groups of ex-smokers were created, with the 

group for those with a normal FAF result having a mean age of 76.33 years, and those with 

an abnormal FAF result a mean age of 76.53 years. This time, no significant difference was 

found (p=0.759) between the number of packet years smoked for the two groups, as shown 

in the Figure below.  

 

 

 

Figure 6.11 Boxplot of smoking packet years and normality and abnormality of FAF 
 
ODM Boxplot widget showing the results of a Student’s t test for normal and an abnormal 

FAF results against smoking packet years (along the bottom) for a sub-group of ex-smokers 

composed of two age matched groups (N = 24).  
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The chart in the Figure below indicates, by subjective comparison, that there is no significant 

difference in the probability of an abnormal FAF when there is/is not a first-degree family 

history of ARMD, using the entire sample.  

  

 

 

Figure 6.12 Distribution of family history of ARMD and probability of normal/abnormal FAF  
 
Image from ODM showing the presence of a first-degree family history of ARMD against 

FAF probability. The blue bars represent an abnormal FAF and red bars a normal FAF. 

Group 1 on the left represents a positive family history of ARMD, and group 2 on the right 

represents a negative family history of ARMD.  
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The Figure shows that the proportions of normal and abnormal FAF results are not 

significantly different for participants who did and did not have a first degree relative with 

ARMD.  

 

 

 

Figure 6.13 Boxplot of family history of ARMD and normality/abnormality of FAF  
 
ODM Boxplot widget showing the results of a Chi squared test for those participants with a 

first degree relative with ARMD (blue bars) and those without (red bars), for a normal and 

abnormal FAF result.  
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The chart below suggests that as the number of large drusen seen by CFP increase, so 

does the probability of an abnormal FAF. There appears to be a cut-off point around large 

drusen grade “3”, i.e. 20-29 large drusen. This indicates that if there are 20 or more large 

drusen then the FAF will likely be abnormal, with a probability of over 90%. Conversely, if 

there are no large drusen, then the probability of an abnormal FAF is approximately 7%.  

 

 

 

Figure 6.14 Distribution of CFP large drusen and probability of normal/abnormal FAF 
 
Image from ODM showing the number of large drusen detected by CFP versus the 

probability of an abnormal (blue bars) and a normal (red bars) FAF result.  
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The Figure below shows that there is a statistically significant difference between the mean 

grading level (0-6) of large drusen as detected by CFP for participants with a normal (upper 

group 1) and abnormal (lower group 2) FAF result to the 1% level (p = 0.000).  

 

 

 

Figure 6.15 Boxplot of CFP large drusen (grade 0-6) FAF normality/abnormality 
 
ODM Boxplot widget showing the results of a Student’s t test for participants with a normal 

and abnormal FAF result against the grading level (0-6) of large drusen as detected with 

CFP (along the bottom).  
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Below is a Scatterplot output helping to illustrate the associations between age, CFP large 

drusen grading score (0-6) and FAF result. The blue dots indicating an abnormal FAF result 

are clustered in the top right corner of the graph.  

 

 

 

Figure 6.16 Scatterplot of age, CFP large drusen and normal/abnormal FAF 
 
ODM Scatterplot widget output helping to illustrate the relationship between age (x axis) and 

CFP large drusen score (0-6) (y axis). Blue dots indicate an abnormal FAF and red dots a 

normal FAF.  
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For intermediate sized drusen detected by CFP the results are less clear cut, with two 

instances where the number of intermediate sized drusen are 50 or over in the presence of a 

normal FAF, however, for grading of drusen numbers from 0-3, there is again the same 

upward trend in the probability of an abnormal FAF with a greater number of drusen as 

shown in the Figure below.  

 

 

 

Figure 6.17 Distribution of intermediate drusen and probability of normal/abnormal FAF 
 
Image from ODM showing the grading level of intermediate drusen detected by CFP against 

the FAF probability of an abnormal (blue bars) and normal FAF result (red bars).  
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Figure 6.17 shows that there is a statistically significant difference between the mean 

grading level (0-6) of intermediate drusen as detected by CFP for participants with a normal 

and abnormal FAF result to the 5% level (p = 0.027).  

 

 

 

Figure 6.18 Boxplot of CFP intermediate drusen (0-6) and FAF normality/abnormality 
 
ODM Boxplot widget showing the results of a Student’s t test for participants with a normal 

and an abnormal lower FAF result against the grading level (0-6) of intermediate drusen as 

detected with CFP (at the bottom).  
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For small drusen detected with CFP there were two instances of the number of drusen as 50 

or over graded with a normal FAF. For grading of drusen numbers from 0-3, there is the 

same upward trend in the probability of an abnormal FAF with a greater number of drusen 

as shown in the Figure below.  

 

 

 

Figure 6.19 Distribution of CFP small drusen (0-6) and probability of normal/abnormal FAF 
 
Image from ODM showing the grading level of small drusen (0-6) detected by CFP against 

the probability of a normal and abnormal FAF result. The blue bars represent an abnormal 

and the red bars a normal FAF result.   
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The Figure below shows that there is a statistically significant difference between the mean 

grading (0-6) level of small drusen as detected by CFP for participants with a normal and 

abnormal FAF result to the 5% level (p = 0.038).  

 

 

 

Figure 6.20 Boxplot of CFP small drusen (0-6) and normal/abnormal FAF 
 
ODM Boxplot widget showing the results of a Student’s t test for participants with a normal 

and abnormal FAF result against the grading level (0-6) of small drusen as detected with 

CFP (along the bottom).  

  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

217 

 

Similar findings were found for large drusen as detected by OCT, i.e. if there were more than 

20 large drusen, the probability of an abnormal FAF was high at over 90%, as illustrated in 

the graph below.  

 

 

 

Figure 6.21 Distribution of OCT large drusen (0-6) and probability of normal/abnormal FAF 
 
Image from ODM showing the grading level of large drusen (0-6) detected by CFP against 

the probability of a normal and abnormal FAF result. The blue bars represent an abnormal 

and the red bars a normal FAF result. 
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The Figure below shows that there is a statistically significant difference between the mean 

grading (0-6) level of large drusen as detected by OCT for participants with a normal and 

abnormal FAF result to the 1% level (p = 0.000).  

 

 

 

Figure 6.22 Boxplot of OCT large drusen (0-6) and normal/abnormal FAF 
 
ODM Boxplot widget showing the results of a Student’s t test for participants with a normal 

and abnormal FAF result against for the grading level (0-6) of large drusen as detected by 

OCT (along the bottom).  
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Below is a Scatterplot output helping to illustrate the associations between age, OCT large 

drusen score (0-6) and FAF result. The blue dots indicating an abnormal FAF result are 

clustered in the top right corner of the graph.  

 

 

 

Figure 6.23 Scatterplot of age, OCT large drusen (0-6) and normal/abnormal FAF 
 
ODM Scatterplot widget output helping to illustrate the relationship between age (x axis) and 

OCT drusen score (0-6) (y axis). Blue dots indicate an abnormal FAF and red dots a normal 

FAF result.  
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Similar results for OCT were found as with CFP for intermediate drusen. As with CFP, the 

general trend is for a higher probability of an abnormal FAF with more intermediate drusen, 

however, there were two instances of a normal FAF with 50 or more intermediate drusen as 

shown in the Figure below.  

 

 

 

Figure 6.24 Distribution of OCT intermediate drusen (0-6) and probability of 
normal/abnormal FAF 
 
Image from ODM showing the grading level of intermediate drusen detected by OCT against 

the probability of a normal and abnormal FAF result. The blue bars represent an abnormal 

and the red bars a normal FAF result.  
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The Figure below shows that there is a statistically significant difference between the mean 

grading level of intermediate drusen as detected by OCT for participants with a normal and 

abnormal FAF result to the 1% level (p = 0.002).  

 

 

 

Figure 6.25 Boxplot of OCT intermediate drusen (0-6) and normal/abnormal FAF 
 
ODM Boxplot widget showing the results of a Student’s t test for participants with a normal 

and abnormal FAF result against the grading (0-6) level of intermediate drusen as detected 

with OCT (along the bottom).  
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Similar results for OCT were found as with CFP for small drusen. As with CFP, the general 

trend is for a higher probability of an abnormal FAF with a greater number of small drusen, 

however, there were two instances of a normal FAF with 50 or more small drusen, and one 

instance of a normal FAF with between 40 and 49 small drusen as shown below.  

 

 

 

Figure 6.26 Distribution of OCT small drusen (0-6) and normality/abnormality of FAF 
 
Image from ODM showing the grading level (0-6) of small drusen detected by OCT against 

the probability of an abnormal (blue bars) and a normal (red bars) FAF result.  
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The Figure below shows that there is a statistically significant difference between the mean 

grading (0-6) level of small drusen as detected by OCT for participants with a normal and 

abnormal FAF result to the 5% level (p = 0.011).  

 

 

 

Figure 6.27 Boxplot of OCT small drusen and normal/abnormal FAF 
 
ODM Boxplot widget showing the results of a Student’s t test for participants with a normal 

and abnormal FAF result against for the grading level (0-6) of small drusen as detected by 

OCT (along the bottom).  
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The chart below helps to illustrate the correlation between the simplified severity score 

(SSS) and the probability of an abnormal FAF. The graph shows that there is a cross-over 

point at the SSS value of “2”, i.e. the data from this project supports the rule that if the SSS 

value is > 2, then the likelihood of an abnormal FAF result is high, with a probability of over 

90%. At a level of SSS = 2, the probability of an abnormal FAF is approximately 50%. 

 

 

 

Figure 6.28 Distribution of CFP SSS and probability of normal/abnormal FAF 
 
Image from ODM showing probability of an abnormal (blue bars) and a normal (red bars) 

FAF result against the simplified severity score as measured by CFP (along the bottom). 
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The Figure below shows that there is a statistically significant difference between the mean 

SSS for participants with a normal and abnormal FAF result to the 1% level (p = 0.000). For 

participants with a normal FAF the mean SSS is 0.61±0.9, and for an abnormal FAF the 

value is 2.22±1.2.  

 

 

 

Figure 6.29 Boxplot of SSS and normal/abnormal FAF 
 
ODM Boxplot widget showing the results of the Student’s t test participants with a normal 

and abnormal FAF result against for the simplified severity score (along the bottom).  
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Below is a Scatterplot output helping to illustrate the associations between age, simplified 

severity score and FAF result. The blue dots indicating an abnormal FAF result are clustered 

in the top right corner of the graph.  

 

 

 

Figure 6.30 Scatterplot of age, CFP SSS and normal/abnormal FAF 
 
ODM Scatterplot widget output helping to illustrate the relationship between age (x axis) and 

simplified severity score (y axis). Blue dots indicate an abnormal, and red dots a normal FAF 

result. 
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The chart below shows that pigmentary abnormalities detected by CFP are closely 

associated with an abnormal FAF. If pigmentary abnormalities are present, then the 

probability of an abnormal FAF is over 90%. Conversely if pigmentary abnormalities are 

absent, then the probability of an abnormal FAF falls to approximately 18%. 

 

 

 

Figure 6.31 Distribution of CFP pigmentary abnormalities and probability of normal/abnormal 
FAF 
Image from ODM showing the presence (group 1 on the left) or absence (group 2 on the 

right) of pigmentary abnormalities as detected by CFP against the probability of an abnormal 

(blue bars) and a normal (red bars) FAF result.  
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The Figure below shows that there is a statistically significant difference between the 

presence or absence of pigmentary abnormalities for participants with a normal and 

abnormal FAF result to the 1% level (p = 0.000).  

 

 

 

Figure 6.32 Boxplot of pigmentary abnormalities and FAF normality/abnormality 
 
ODM Boxplot widget showing the results of a Chi squared test for the presence (blue bars) 

or absence (red bars) of pigmentary abnormalities for participants with a normal and 

abnormal FAF result.  
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The graph below indicates that if reticular pseudodrusen (RPD) are detected by CFP, then 

the probability of an abnormal FAF is approximately 75%, however, there were only four 

instances of RPD being detected by CFP, so this finding should be viewed with caution as 

the evidence is weak due to the low number of instances.  

 

 

 

Figure 6.33 Distribution of CFP RPD and probability of FAF normality/abnormality 
 
Image from ODM showing the presence (group 1 on the left) or absence (group 2 on the 

right) of RPD as detected by CFP against the probability of an abnormal (blue bars) and a 

normal (red bars) FAF result.  
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The Figure below shows that there is not a statistically significant difference between the 

presence or otherwise of RPD as detected by CFP for participants with a normal and 

abnormal FAF result (p = 0.132).  

 

 

 

Figure 6.34 Boxplot of CFP RPD and FAF normality/abnormality 
 
ODM Boxplot widget showing the results of a Student’s t test for the presence (blue bars) or 

absence (red bars) of RPD as detected by CFP for participants with a normal and abnormal 

FAF result. 
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More instances of RPD detection occurred with OCT (10 in total), and the graph below 

indicates that if RPD are detected then the probability of an abnormal FAF is high at 

approximately 80%. If RPD are not detected the probability falls to approximately 23%. 

 

 

 

Figure 6.35 Distribution of OCT RPD and probability of normality/abnormality of FAF 
 
Image from ODM showing the presence (group 1 on the left) or absence (group 2 on the 

right) of RPD as detected by OCT against the probability of an abnormal (blue bars) and a 

normal (red bars) FAF result. 
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The Figure below shows that there is a statistically significant difference between the 

presence or absence of RPD as detected by OCT for participants with a normal and 

abnormal FAF result to the 1% level (p = 0.001), indicating that there is a significantly higher 

number of cases with an abnormal FAF result in the group with RPD detected via OCT.  

 

 

 

Figure 6.36 Boxplot of OCT RPD and FAF normality/abnormality 
 
ODM Boxplot widget showing the results of a Student’s t test for the presence (blue bars) or 

absence (red bars) of RPD as detected by OCT for participants with a normal and abnormal 

FAF result.  
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6.9 Summary of the results of the Distribution and Boxplot widgets 

 

In summary, the ODM Distribution and Boxplot widgets have helped to identify some 

potential trends in the data (with reference to the normal fitted probability curves and the 

show probabilities function), helping to answer the questions posed in section 6.1 at the 

beginning of Chapter six as shown below: 

 

1. Participants with a normal FAF result were significantly younger than those with an 

abnormal FAF result. The mean age for a participant with a normal FAF result was 

69.56 years±9.2 years, and for those with an abnormal FAF the mean age was 76.56 

years±10.6 years. The median age for a normal FAF result was 70 years and for an 

abnormal FAF the median was 77 years.  

2. Refractive status of the eye made no significant difference to the likelihood of the 

FAF result being normal or abnormal. 

3. Participants with a normal FAF result had a significantly lower number of packet 

years of smoking compared to those participants with an abnormal FAF result. (Mean 

number of packet years in participants with a normal FAF result was 3.3±5.5; mean 

number of packet years with an abnormal FAF was 9.0±13.3. Median packet years 

for a normal FAF was 0, and median for an abnormal FAF was 5 years). However, 

when the analysis was repeated with a subgroup composed of two age matched 

groups of ex-smokers (N = 24) the difference in packet years between participants 

with abnormal and normal FAF images is no longer significant.   

4. Participants with a first degree relative with ARMD did not have a significantly higher 

probability of having an abnormal FAF. 

5. Participants with a normal FAF result had a significantly lower drusen scale score as 

measured by either CFP and OCT compared to participants with an abnormal FAF 

result. This difference held for small, intermediate and large drusen.  

6. Participants with a normal FAF result had a significantly lower simplified severity 

score compared to participants with an abnormal FAF result. If the SSS was > 2 then 

the probability of an abnormal FAF result was over 90%. 

7. Participants in whom pigmentary abnormalities were detected had a significantly 

higher probability of having an abnormal FAF result. If pigmentary abnormalities were 

detected, the probability of an abnormal FAF result was approximately 90%, if 

pigmentary abnormalities were not detected the probability of an abnormal FAF 

result fell to approximately 18%. 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

234 

8. Participants in whom reticular pseudodrusen (RPD) were detected by OCT had a 

significantly higher probability of having an abnormal FAF result. If RPD were 

detected by OCT, the probability of an abnormal FAF result was approximately 80%. 

If RPD were not detected by OCT, the probability of an abnormal FAF result fell to 

approximately 23%. Evidence for RPD as detected by CFP and the association with 

a normal/abnormal FAF result was weak due to a lack of data/poor RPD detection 

rate via CFP in this study. 
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6.10 Results from Machine learning using Orange Data Mining 

 

The next step in analysing the data, after the initial testing with the Distribution and Boxplot 

widgets, is to perform an Artificial Intelligence/Machine Learning workflow as shown below:  

 

 

Figure 6.37 The Orange Data Mining workflow utilised in this study.  
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The first step was to upload a Microsoft Excel spreadsheet containing the data collected into 

the File widget. Secondly, the variables were selected to be used in the analysis via the 

Select Columns widget. This was done twice, once for CFP alone, and once for CFP and 

OCT combined, in order to observe how predictions changed when information from OCT 

was added to that from CFP alone. For CFP alone, all variables were ignored that related to 

FAF and OCT results. For CFP and OCT combined only variables relating to FAF were 

ignored. Also ignored in both cases was the “years of smoking cessation”, with a binary 

attribute “ceased smoking  20 years/never smoked” selected for analysis instead. This is 

because a non-smoker would either have a lifetime (which will vary naturally according to 

age), or zero years of smoking cessation, both of which would be confusing for the statistical 

analysis. Also ignored for both cases was patient number (patient (px) number) (this was a 

randomly allocated number for patient identification). 

 

 

Figure 6.38 Section of the select columns widget of screened out variables 
 
Part of the Select Columns widget from ODM showing which variables were screened out 

prior to Machine Learning being applied.  
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Within the Select Columns widget, a “Target Variable” was also selected, i.e. the FAF 

binomial normal/abnormal variable, as shown below in the Figure below.  

 

 

Figure 6.39 Selected and target variables selected in the Orange Select Columns widget. 
 
Part of the Select Columns widget from ODM showing some of the variables selected prior 

to Machine Learning being applied. The “Target Variable” is shown in the box at the bottom 

of the screenshot.  
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The third step was to pre-process the data with the Preprocess and Rank widgets. The 

Preprocess widget performs the important task of reducing the number of variables down to 

an acceptable level, ensuring that the instances to variables ratio is no less than 5 to 1 as 

discussed in more depth in Chapter nine on PCA. The Rank widget allows the researcher to 

identify which variables have been retained by the Preprocess widget. The Preprocess 

widget has also normalised the variables, imputed any missing values with the average/most 

frequent values and continuised the data. The data was manually screened for outliers.  

 

 

Figure 6.40 Orange Data Mining Preprocess widget selections 
 
Preprocess widget output showing that the 18 most informative variables based on 

Information Gain were selected. Normalise features, impute missing values and continuise 

data was also performed.  
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The fourth step was to perform the hyperparameter fine-tuned Logistic Regression and 

Naïve Bayes model learning process. For CFP alone the hyperparameter fine-tuned logistic 

regression gives a best trade off C value of 0.30, and for CFP and OCT combined the best 

trade off C value is 0.10.  

Using these values (all cases an “average over classes” of normal and abnormal FAF 

results) gives the following results shown below in the Table below: 

 

For CFP alone 

 Sensitivity Specificity Informedness AUC 

Naïve Bayes 0.796 0.807 0.603 (60.3%) 0.877 

Logistic 
Regression 
(tuned to C = 
0.30) 

0.871 0.750 0.621 (62.1%) 0.875 

Table 6.3 Results from CFP data alone  
 
Table above showing the Sensitivity, Specificity, Informedness and AUC for the Naïve Bayes 
and Logistic Regression model learner for CFP alone.  
 

For CFP and OCT combined 

 Sensitivity  Specificity Informedness AUC 

Naïve Bayes 0.774 0.820 0.594 (59.4%) 0.887 

Logistic 
Regression 
(tuned to C = 
0.10) 

0.860 0.746 0.606 (60.6%) 0.903 

Table 6.4 Results from CFP and OCT data combined 
 
Table above showing the Sensitivity, Specificity, Informedness and AUC for the Naïve Bayes 

and Logistic Regression model learner for CFP and OCT combined.  
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The fifth and final step was to examine the Nomogram widget for CFP, and for CFP and 

OCT combined: 

The 18 most informative variables for the two model learners for CFP alone are shown in the 

Table below, identified via the Rank widget. 

Naive Bayes Logistic Regression Most informative 
variables:  
Rank position 1 = most 
informative  
Rank position 18 = least 
informative 

CFP – Simplified Severity 
Score 

CFP – Simplified Severity 
Score  

1 

CFP large drusen (0-6) History – refraction  2 

CFP pigmentary anomalies 
yes or no (1 = yes, 2 = no) 

Smoking packet years 3 

CFP disc diameters of 
pigmentary anomalies 

Pupil size post dilation  4 

Symptoms of ARMD (1 = 
yes, 2 = no) 

CFP pigmentary anomalies 
yes or no (1 = yes, 2 =no)  

5 

CFP disc diameters of 
geographic atrophy 

CFP disc diameters of 
geographic atrophy  

6 

CFP large drusen yes or no 
(1 = yes, 2 = no) 

CFP large drusen (0-6)  7 

CFP geographic atrophy yes 
or no (1 = yes, 2 = no) 

Nuclear sclerotic cataract 
(WHO scale)  

8 

Age Age  9 

CFP small drusen (0-6) >77 years of age (1 = yes, 2 
= no) 

10 

CFP intermediate drusen (0-
6) 

Eye (Right or Left) 11 

CFP drusen large other eye 
(1 = yes, 2 = no) 

Gender numerical (1= male, 
2 = female) 

12 

CFP reticular pseudodrusen 
yes or no (1 = yes, 2 = no) 

History - smoking numerical 
(1 = non-smoker, 2 = ex-
smoker) 

13 

History of anti-VEGF (1 = 
yes, 2 = no) 

Ceased smoking >= 20 
years ago/never smoked (1 
= yes, 2 = no)  

14 

Ongoing anti-VEGF (1 = 
yes, 2 = no) 

Symptoms of ARMD (1 = 
yes, 2 = no)  

15 

Posterior capsular 
opacification (1= yes, 2 = 
no) 

Family history of ARMD 
numerical (1 = yes, no = 2) 

16 

Pupil size post dilation (mm) History - epilepsy 17 

Nuclear sclerotic cataract 
(WHO scale) 

History – diabetic  18 

Table 6.5 Most informative variables for CFP alone for NB and LR learners 
 
Table above showing the 18 most informative variables for the two model learners for CFP 

alone, identified via the Rank widget.  
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The two learners agree on the following eight variables (for CFP alone): 

Variable  Naïve Bayes  
Rank position 

Logistic 
Regression Rank 
position 

Rank position total 
score (Naive + 
Logistic 
Regression Rank 
position) 

CFP – Simplified 
Severity Score 

1 1 2 

CFP pigmentary 
anomalies yes or no 
(1 = yes, 2 =no) 

3 5 8 

CFP large drusen 
(0-6) 

2 7 9 

CFP disc diameters 
of geographic 
atrophy 

6 6 12 

Age 9 9 18 

Symptoms of ARMD 
(1 = yes, 2 = no) 

5 15 20 

Pupil size post 
dilation 

17 4 21 

Nuclear sclerotic 
cataract (WHO 
scale) 

18 8 26 

Table 6.6 The common most informative variables for CFP alone for NB and LR learners 
 
The 8 most informative variables, agreed upon by the two model learners for CFP alone, 

identified via the Rank widget. 
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A clinical support tool could therefore be developed using these eight variables, e.g. for a 

patient A with a simplified severity score of 2, no pigmentary abnormalities, CFP large 

drusen score of > 10 < 20 (grade 2), no disc diameters of geographic atrophy, 80 years of 

age, no symptoms of ARMD, a pupil size post dilation of 6mm and a nuclear sclerotic 

cataract score on the WHO scale of 1.0. The results are shown below: 

 

What is the probability of an abnormal FAF result for patient A? 

 

For Naive Bayes using only data from CFP 

 

 

Table 6.7 Nomogram output for Naïve Bayes for CFP data alone for patient A.  
 

Naïve Bayes suggests the probability of an abnormal FAF result for patient A of 36% 

(informedness of model 60.3%, AUC 0.877) 
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For Logistic Regression using only data from CFP 

 

 

Table 6.8 Nomogram widget output for Logistic Regression for CFP alone for patient A  
 

Logistic Regression suggests the probability of an abnormal FAF result for patient A of 39% 

(informedness of model 62.1%, AUC 0.875) 
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Therefore, the two model learners are in close agreement for CFP alone, with Naive Bayes 

indicating the probability of an abnormal FAF result for our patient A of 36% (informedness 

of 60.3%, AUC 0.877), whilst Logistic Regression suggests 39% (informedness of 39%, 

AUC 0.875).  
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Next, the 18 most informative variables for the two model learners for CFP and OCT 

combined are shown in the table below, identified via the Rank widget. 

 

Naïve Bayes Logistic Regression Most informative 
variables:  
Rank position 1 = most 
informative  
Rank position 18 = least 
informative 

OCT large drusen (0-6)  OCT large drusen (0-6)  1 

CFP simplified severity 
score 

Hx -Rx (Refractive state of 
the eye as measured with 
the OCT Gullstrand 
function) 

2 

CFP large drusen (0-6) CFP Simplified Severity 
Score  

3 

OCT large drusen yes or no 
(1 = yes, 2 = no) 

CFP pigmentary 
abnormalities yes or no (1 = 
yes, 2 = no)  

4 

CFP pigmentary 
abnormalities yes or no (1 = 
yes, 2 = no) 

CFP disc diameters of 
geographic atrophy  

5 

CFP disc diameters of 
pigmentary abnormalities 

Smoking packet years 6 

Symptoms of ARMD (1 = 
yes, 2 = no) 

CFP inter drusen (0-6)  7 

OCT inter drusen (0-6) OCT – min foveal thickness 8 

CFP disc diameters of 
geographic atrophy 

Pupil size post dilation 9 

CFP large drusen yes or no 
(1 = yes, 2 = no) 

NUC cataract 10 

CFP geographic atrophy 
yes or no (1 = yes, 2 = no) 

OCT average foveal 
thickness 

11 

OCT small drusen >77 years (1 = yes, 2 = no) 12 

OCT RPD yes or no (1 = 
yes, 2 = no) 

Age  13 

OCT disc diameters of 
geographic atrophy 

Eye (Right or Left) 14 

OCT PED yes or no (1 = 
yes, 2 = no) 

gender numerical (1 = 
males, 2 = female) 

15 

OCT geographic atrophy 
yes or no (1 = yes, 2 = no) 

Hx smoking numerical (1 = 
non-smoker, 2 = ex-smoker) 

16 

Age Ceased smoking >=20 

years ago/never smoked (1 

= yes, 2 = no) 

17 

OCT SRF yes or no (1 = 

yes, 2 = no) 

Symptoms of ARMD (1 = 

yes, 2 = no)  

18 

Table 6.9 Most informative variables for CFP and OCT combined for NB and LR learners 
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The 18 most informative variables for the two model learners for CFP and OCT combined, 

identified via the Rank widget.   
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The two learners agree on the following six variables (for CFP and OCT combined): 

 

Variable Naïve Bayes  

Rank 

position 

Logistic 

Regression Rank 

position 

Rank position total 

score (Naive + 

Logistic 

Regression Rank 

position) 

OCT large drusen (0-6) 1 1 2 

CFP Simplified Severity 

Score 

2 3 5 

CFP pigmentary 

abnormalities yes or no (1 = 

yes, 2 = no) 

5 4 9 

CFP disc diameters of 

geographic atrophy 

9 5 14 

Symptoms of ARMD 7 18 25 

Age 17 13 30 

Table 6.10 Most informative variables for CFP and OCT combined 
 
The 6 most important variables, agreed upon by the two model learners for CFP and OCT 

combined, identified via the Rank widget.  
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A clinical support making tool could therefore be developed using these six variables, e.g. 

for a patient B, with > 10 < 20 large drusen on OCT (grade 2), a CFP simplified severity 

score of 2, no pigmentary abnormalities observed on CFP, no disc diameters of geographic 

atrophy detected with CFP, no symptoms of ARMD and of 70 years of age. The results are 

shown below: 

 

What is the probability of an abnormal FAF result for patient B? 

 

For Naïve Bayes using data from both CFP and OCT 

 

 

Figure 6.41 Nomogram for Naïve Bayes using data from both CFP and OCT for patient B.  
 
Naïve Bayes suggests the probability of an abnormal FAF result for patient B of 

approximately 48% (informedness of model 59.4%, AUC 0.887) 
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For Logistic Regression using data from both CFP and OCT 

 

 

Figure 6.42 Nomogram for Logistic Regression for both CFP and OCT combined.  
 

Logistic Regression suggests the probability of an abnormal FAF result for patient B of 

approximately 54% (informedness of model 60.6%, AUC 0.903) 

 

Therefore, as with CFP alone, for CFP in combination with OCT, the two model learners are 

in fairly close agreement, with Naive Bayes indicating the likelihood of an abnormal FAF 

result for our patient B of 48% (informedness of model 59.5%, AUC 0.887), with Logistic 

Regression suggesting 54% (informedness of model 60.6%, AUC 0.903). These findings 

suggest that these two model learners could enable the development of a clinical support 

tool based on variables collected during eye examinations.  

 

Other Artificial Intelligence Model Learners 

 

Finally, the same data for stand-alone CFP and combined CFP and OCT were explored via 

the other AI Machine Learners available through the ODM Software, i.e. kNN, Tree, Random 

Forest, Support Vector Machine (SVM) and Neural Network. The table below summarises 

the results. (Again, in all cases an “average over classes” of normal and abnormal FAF 

results in selected).  
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6.10.1 Summary of results from all the artificial intelligence model learners utilised in this 
study 
 

For CFP alone, the best model for Informedness is Logistic Regression hyperparameter fine-

tuned to C = 0.3 (62.1%), however, the best AUC (0.877) is achieved via Naïve Bayes (see 

Table 6.11 below). For combined CFP and OCT combined the best informedness was from 

SVM (an impressive 70.2%), with Logistic Regression fine-tuned to C = 0.1 giving the best 

AUC (0.903) (see Table below). The results with the best performances highlighted in bold.  

 

CFP alone 

 

Model Learner Sensitivity Specificity Informedness AUC 

kNN 0.839 0.671 0.510 (51.0%) 0.850 

Tree 0.763 0.684 0.447 (44.7%) 0.742 

Random Forest 0.860 0.702 0.562 (56.2%) 0.852 

SVM 0.849 0.763 0.612 (61.2%) 0.847 

Neural Network 0.828 0.755 0.583 (58.3%) 0.818 

Naïve Bayes 0.796 0.807 0.603 (60.3%) 0.877 

Logistic 
Regression 
(fine-tuned to C 
= 0.3) 

0.871 0.750 0.621 (62.1%) 0.875 

Table 6.11 Sensitivity, Specificity, Informedness and AUC for model learners for CFP alone.  
CFP and OCT combined 

 

Model Learner Sensitivity Specificity Informedness AUC 

kNN 0.882 0.777 0.659 (65.9%) 0.889 

Tree 0.817 0.706 0.523 (52.3%) 0.800 

Random Forest 0.871 0.750 0.621 (62.1%) 0.881 

SVM 0.882 0.820 0.702 (70.2%) 0.874 

Neural Network 0.835 0.796 0.631 (63.1%) 0.741 

Naïve Bayes 0.774 0.820 0.594 (59.4%) 0.887 

Logistic 
Regression 
(fine-tuned to C 
= 0.1) 

0.860 0.746 0.606 (60.6%) 0.903 

Table 6.12 Sensitivity, Specificity, Informedness and AUC for model learners for CFP and 
OCT combined.  
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Below is shown the ROC analysis for a target class of 1, i.e. a normal FAF result, for CFP 

and OCT data combined. Unlike the Test and Score widget, the ROC widget does not offer 

an “Average over classes” option, as a weighted average of the performance for predicting 

both normal and abnormal FAF results. From the graph it can be seen that kNN is the best 

performing model learner by reference to the black solid performance line. 

 
Figure 6.43 ROC analysis for target class 1, i.e. a normal FAF result prediction. The pink line 
represents the best model learner performance (kNN) with reference to the solid black 
performance line.  
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Below is shown the ROC analysis for a target class of 2, i.e. an abnormal FAF result, for 

CFP and OCT data combined. From the graph it can be seen that kNN is again the best 

performing model learner, by reference to the black solid performance line. It is interesting to 

note that according to the “Average over classes” results, that kNN was not the best 

performing model learner for Informedness nor AUC, however, it was second on both scores 

out of the seven models tested.  

 
Figure 6.44 ROC analysis for target class 2, i.e. an abnormal FAF result prediction. The pink 
line represents the best model learner performance (kNN) with reference to the solid black 
performance line. 
 

6.11 Dietary supplementation and the role of FAF imaging 

 
An addition question was also addressed in the following section. Could performing FAF 

imaging have an impact on the clinicians’ advice to patients with regards to prescribing 

dietary supplements? Previously, the recommendation of dietary supplementation has been 
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based on the findings of the AREDS 2 study(149) – i.e. all of the following must hold for 

dietary supplementation to be recommended: an abnormal macular appearance, age of 50-

85 years, large drusen at the macula, large drusen in the other eye or GA/neovascular 

ARMD in either eye.(189) The trigger for recommending dietary supplements in non-

advanced ARMD (i.e. when there are no GA or neovascular changes present), is therefore 

the finding of large drusen in both eyes. 

There are unfortunately no guidelines based on FAF imaging to assist practitioners 

regarding when to, and when not to offer dietary supplements. Therefore, certain 

assumptions have to be made in order to test whether performing FAF in addition to CFP 

and/or OCT might alter the recommendations given to patients (without advanced ARMD). 

The assumption that seems reasonable is to suggest that if the FAF imaging in the study 

eye was “abnormal” (i.e. not normal or minimal change from the classification system 

suggested by Bindewald in 2005, but one of six more advanced FAF patterns), then dietary 

supplements should be recommended. It was assumed that if the FAF image was 

“abnormal”, then it can be assumed that the retina is under stress, or in other words, 

chemically malfunctioning, and supplements would be of assistance. This will be referred to 

this as the “FAF assumption”. ODM was then used to test how often advice would change 

on this basis compared to the traditional method of recommending supplementation based 

on the finding of large drusen in both eyes via CFP or OCT. However, in this study FAF was 

only carried out on one eye, so a comparison of large drusen and FAF in both eyes is not 

possible. Therefore, the comparison performed was to test whether FAF may potentially 

change the supplementation advice, i.e. does FAF detect an abnormal signal in the absence 

of large drusen, simply based on one eye. Patients from this study who had active 

neovascular ARMD or GA were removed from the analysis, as the aim is to detect the subtle 

changes that are likely to occur in early/moderate ARMD rather than the more advanced 

retinal changes seen in the late disease (this decision resulted in eight patients being 

removed from the analysis in total). It appears from Figure 6.44 below, that when 

supplements are not recommended based on the absence of large drusen detected by OCT, 

the “FAF assumption” agreed in all cases, however, there appears to be a significant 

percentage (56%) of cases when recommendations based on large drusen findings will 

indicate that supplementation is required, but the “FAF assumption” will not. This would 

therefore indicate that FAF would not change the supplementation advice, so long as the 

presence of large drusen were allowed to “trump” the FAF findings. 
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Figure 6.45 Distribution showing how large drusen detected by OCT on the x axis (1 = yes, 2 
= no) are related to the probability of recommending dietary supplements based on “The 
FAF assumption” on the y axis (blue bars = probability of not giving supplements based on 
the “FAF assumption”, red bars = probability of giving supplements based on the “FAF 
assumption”).  
 
However, when the same analysis was run for large drusen as detected by CFP alone, 

shown in the Figure below, there were three cases when CFP did not detect large drusen, 

but the “FAF assumption” did recommend supplementation. This was due to OCT detecting 

large drusen more often than CFP. This phenomenon has been reported previously in 2021, 

with the size of drusen being smaller as measured by CFP compared to OCT. The paper 

reported that large drusen of > 125µm on CFP had a diameter of  145µm on OCT, medium 

drusen between 63 and 124µm on CFP measured as 100 to 144µm on OCT, and small 

drusen of < 63µm on CFP had a diameter of < 100µm on OCT. The paper also created an 

algorithm: drusen diameter on SD-OCT = 0.77 * (drusen diameter on CFP) + 50µm.(195) 

This underestimation of drusen size on CFP could be due to the tendency of drusen to be 

wider at their outer retinal base than at their inner retinal apex, with CFP not allowing the 

clinician to appreciate the full size of drusen due to the superficial nature of CFP imaging. 

OCT benefits from a cross-sectional profiling, and therefore appears to be superior for 
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appreciating the true lateral extent of drusen dimensions. Practitioners should therefore be 

cautious when utilising CFP alone to estimate the size of drusen for the purposes of patient 

risk profiling and supplementation advice, with OCT being a superior modality for this 

purpose.  

 

 
Figure 6.46 Distribution showing how large drusen detected only by CFP on the x axis (1 = 
yes, 2 = no) are related to the probability of recommending dietary supplements based on 
“The FAF assumption” on the y axis (blue bars = probability of not giving supplements based 
on the “FAF assumption”, red bars = probability of giving supplements based on the “FAF 
assumption”).  
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6.12 Discussion 

 

Chapter six has examined the data from this study with the ODM Boxplot and Distribution 

widgets, before finally carrying out an AI/Machine Learning model analyses with Test and 

Score and Nomogram widgets. From the Boxplot and Distribution widgets the following 

trends in the data were identified (a facsimile from the previous section on Boxplot and 

Distribution widgets above in section 6.9): 

 

6.12.1 Summary of results from data analysed via Orange Data Mining software 
 

In summary, the Distributions and Boxplot widgets have helped to identify some potential 

trends in the data that can be further investigated within the ODM software. These are:  

 

1. Participants with a normal FAF result were significantly younger than those with an 

abnormal FAF result. The mean age for a participant with a normal FAF result was 

69.56 years±9.2 years, and for those with an abnormal FAF the mean age was 76.56 

years±10.6 years. The median age for a normal FAF result was 70 years and for an 

abnormal FAF the median was 77 years.  

2. Refractive status of the eye made no significant difference to the likelihood of the 

FAF result being normal or abnormal. 

3. Participants with a normal FAF result had a significantly lower number of packet 

years of smoking compared to those participants with an abnormal FAF result. (Mean 

number of packet years in participants with a normal FAF result was 3.3±5.5; mean 

number of packet years with an abnormal FAF was 9.0±13.3. Median packet years 

for a normal FAF was 0, and median for an abnormal FAF was 5 years). However, 

when the analysis was repeated with a subgroup composed of two age matched 

groups of ex-smokers (N = 24) the difference in packet years between participants 

with abnormal and normal FAF images is no longer significant.   

4. Participants with a first degree relative with ARMD did not have a significantly higher 

probability of having an abnormal FAF. 

5. Participants with a normal FAF result had a significantly lower drusen scale score as 

measured by either CFP and OCT compared to participants with an abnormal FAF 

result. This difference held for small, intermediate and large drusen.  

6. Participants with a normal FAF result had a significantly lower simplified severity 

score compared to participants with an abnormal FAF result. If the SSS was > 2 then 

the probability of an abnormal FAF result was over 90%. 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

257 

7. Participants in whom pigmentary abnormalities were detected had a significantly 

higher probability of having an abnormal FAF result. If pigmentary abnormalities were 

detected, the probability of an abnormal FAF result was approximately 90%, if 

pigmentary abnormalities were not detected the probability of an abnormal FAF 

result fell to approximately 18%. 

8. Participants in whom reticular pseudodrusen (RPD) were detected by OCT had a 

significantly higher probability of having an abnormal FAF result. If RPD were 

detected by OCT, the probability of an abnormal FAF result was approximately 80%. 

If RPD were not detected by OCT, the probability of an abnormal FAF result fell to 

approximately 23%. Evidence for RPD as detected by CFP and the association with 

a normal/abnormal FAF result was weak due to a lack of data/poor RPD detection 

rate via CFP in this study. 
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In the AI/Machine Learning model Nomogram widget section, the findings from CFP alone, 

and subsequently from CFP in combination with OCT are examined. For CFP alone, and for 

CFP plus OCT, the informedness levels achieved for both the Naïve Bayes and Logistic 

Regression model learners via the Test and Score widget all ranged from 59.4 to 62.1%, 

(with an AUC from 0.875 to 0.903), with the best informedness delivered by the 

hyperparameter fine-tuned Logistic Regression learner using data from CFP alone achieving 

a result of 62.1%. This result may be surprising, given that so much more information is 

gathered to assist in predicting an abnormal FAF result with OCT. However, these findings 

may be explained when the data is examined in more detail as discussed in the following 

section 6.12.2 based on CFP data alone.  
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6.12.2 Discussion of machine learning results based on CFP alone  

 

Both the Naïve Bayes and Logistic Regression learners for CFP alone place the Simplified 

Severity Score in first place for delivering informedness for predicting a normal/abnormal 

FAF result. Also, the presence or absence of pigmentary abnormalities was the second-best 

performing variable based on CFP alone for predicting an abnormal FAF result when the 

results from both the model learners are taken into consideration together as a weighted 

average. Both of these variables are heavily influenced by pigmentary abnormalities, which 

is a variable determined by CFP and not specifically identified within OCT images. The other 

variables on which the two model learners agree are key to predicting an abnormal FAF 

result with CFP alone are:  

 

Large drusen (grade 0-6) – this is expected, as from the Boxplot and Distribution widgets 

section we had established that there is a tendency for a higher probability of an abnormal 

FAF result with a greater number of large drusen.  

 

Disc diameters of geographic atrophy – this is expected, as geographic atrophy is known to 

cause hypo-autofluorescence of the fundus.  

 

Age – this is expected – from the Boxplot and Distribution section there was an increase in 

the probability of an abnormal FAF result with increasing age.  

 

Symptoms of ARMD – from examining the data, five of the 27 participants who had an 

abnormal FAF result, and none of the remaining 66 who had a normal FAF result, had 

symptoms of ARMD (i.e. a distortion of the central vision, a “kink” in the central vision or 

central scotoma). Having symptoms related to dry ARMD would indicate that there are 

patch(es) of central geographic atrophy, and therefore an abnormal FAF result would be 

expected in these cases. Likewise, for the sudden onset of symptoms attributable to wet or 

neovascular ARMD, one would expect disruption of the central macula with a subsequent 

alteration of the FAF signal due to haemorrhage or intra/subretinal fluid.  

 

Pupil size post dilation – that the two model learners place this variable in the top eighteen 

for delivering informedness is surprising, albeit that Naïve Bayes places it in 17 th position. A 

Boxplot widget examination reveals that the mean pupil size post dilation is on average 

smaller for those participants with an abnormal FAF, however, the result does not reach the 
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level of statistical significance. One explanation for this finding is that the smaller pupil size 

post dilation may simply be indicating an older participant.  

 

Nuclear sclerotic cataract (WHO scale) – that nuclear sclerotic cataract could be associated 

with an abnormal FAF result is another result that may be expected, given the association of 

worsening cataract with increasing age, however, in this study the reverse is found, i.e. that 

participants with a normal FAF result had a higher mean nuclear cataract score, although 

the difference was not statistically significant when explored via a students t test. One 

explanation is that the cataract is masking subtle FAF abnormalities and that FAF 

abnormalities are therefore more easily detected in eyes with clearer ocular media. 

 

 

6.12.3 Discussion of machine learning results based on CFP and OCT combined 

 

For CFP and OCT combined it was found that the best performing variables for predicting an 

abnormal FAF result are as follows: in first place is OCT large drusen (0-6), followed by CFP 

Simplified Severity Score and pigmentary abnormalities detected by CFP (yes or no), so 

again those variables associated with pigmentary abnormalities are ranked highly as with 

the variables from CFP alone. CFP disc diameters of geographic atrophy, Symptoms of 

ARMD and Age make up the remainder of the table – again, these variables would be 

expected to be related to an abnormal FAF result as already discussed.  

 

The results indicate, therefore, that pigmentary abnormalities, large drusen (detected by 

both CFP and/or OCT) and the Simplified Severity Score (essentially an amalgam of 

pigmentary abnormalities and large drusen as detected by CFP), are highly ranked and are 

an important predictor (according to the Naïve Bayes and Logistic Regression model 

learners) of an abnormal FAF result, when both CFP and OCT data is utilised. This explains 

why CFP at least matches the informedness of CFP and OCT combined in this study, for the 

artificial intelligence prediction of an abnormal FAF result via the two model learners 

selected, as findings based on CFP are such important predictors of an abnormal FAF 

result. 

 

Recent research into pigmentary abnormalities, from a study based in South Korea in 

patients without significant drusen, appear to concur with these findings.(196) The authors 

suggest that pigmentary abnormalities have as much clinical significance as drusen, and 

therefore deserve more attention. They also report that hypopigmented pigmentary 
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abnormalities are related to a specific OCT sign called shallow irregular RPE elevation 

(SIRE) and that previous studies have shown that hypopigmentation is a high risk for 

neovascular ARMD(197, 198). (SIRE, also known as the double-layer sign, is defined as 

RPE elevations with a greatest transverse linear dimension of  1000m, an irregular RPE 

layer with a height of predominantly less than 100m, and a non-homogenous internal 

reflectivity). The paper goes on to explain that hyperpigmented pigmentary abnormalities are 

related to intra-retinal hyperreflective foci (IHRF) on OCT. The paper concludes that by 

detecting these pigmentary variations, CFP has a favourable diagnostic performance for 

detecting OCT abnormalities. These findings appear to support the conclusion that 

pigmentary abnormalities are an important predictor of retinal health regarding ARMD, which 

agrees with the finding from the machine learning process in the current study that 

pigmentary abnormalities are an important predictor of FAF results. 

 

When five more model learners available via the ODM software are considered however, 

(kNN, Tree, Random Forest, SVM and neural network), SVM and neural network, utilising 

both CFP and OCT, do provide an informedness which outperforms hyperparameter fine-

tuned Logistic Regression using CFP alone, with SVM delivering the highest informedness 

of 70.2%, whilst hyperparameter fine-tuned Logistic Regression utilising data from both CFP 

and OCT continues to deliver the best AUC of 0.903. However, on analysing the best 

preforming model learner with reference to the performance line on the ROC analysis graph, 

kNN attains the best results for CFP and OCT data combined, for both detection of a normal 

(at a probability threshold of 0.800) or an abnormal FAF result (at a probability threshold of 

0.400). kNN was the second best model for informedness (65.9%) and also second best for 

AUC (0.889). Therefore, it is possible to conclude that SVM, hyperparameter fine-tuned 

Logistic Regression and kNN are the best performing model learners for predicting the 

outcome of the FAF results in this study.  
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6.13 Conclusions 

 

Summary of findings from Chapter six which could be used as a series of rules of thumb for 

primary care practitioners: 

 

1. At 85 years of age, patients have approximately a 50% probability of an abnormal 

FAF result, and at 92 years this approaches 80%.  

2. The number of packet years of smoking can be used for risk analysis, as between 10 

to 15 packet years indicates approximately a 50% probability of an abnormal FAF, 

and at 30 years this is over 90%, although age could be a confounding factor in this 

finding.  

3. For small drusen, as detected either by CFP and OCT, approximately a 50% 

probability of an abnormal FAF is reached at a level of > 20 < 30, with a high 

probability of over 90% reached at > 50 drusen.  

4. For intermediate drusen, as detected either by CFP and OCT, approximately a 50% 

probability of an abnormal FAF is reached at >10 < 20 drusen, with a high probability 

of over 90% reached at > 40 drusen.  

5. For large drusen, as detected either by CFP or OCT, approximately a 50% 

probability or an abnormal FAF is reached at > 10 drusen, with a high probability of 

over 90% reached at > 20 drusen.  

6. For the simplified severity score, a score of 2 indicates approximately a 50% 

probability of an abnormal FAF result, and this reaches a high probability of over 

90% at a score of > 2.  

7. If pigmentary abnormalities are detected with CFP then there is over a 90% 

probability of an abnormal FAF result. 

8. If reticular pseudodrusen are detected by OCT, then there is approximately an 80% 

probability of an abnormal FAF result. 

9. Practitioners should be cautious when utilising CFP alone for estimating the lateral 

dimensions of drusen, with OCT B-scan proving a more accurate modality for these 

measurements.  

 

Furthermore, the results from the Naïve Bayes and Logistic Regression ODM Nomogram 

widgets indicate that AI algorithms could be developed for predicting the probability of a 

patient demonstrating an abnormal FAF result due to ARMD, with an informedness of 60.6% 
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- 62.1% and an AUC of 0.875 - 0.903, without having to perform the FAF imaging (based on 

patient history and variables gathered from CFP and OCT). Note that the SVM model 

learner achieved a higher informedness than Naïve Bayes and Logistic Regression (70.2%), 

although not in the form of a Nomogram.  
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Chapter 7 Orange Data mining image analytics 
 

7.1 Introduction 

Artificial intelligence has the potential to revolutionise medicine including the rapidly 

advancing specialism of ophthalmology. IT giants such as Google, Apple and Microsoft have 

begun to invest billions of dollars into this fledgling industry, hoping to harness the power of 

computers to analyse data rapidly and effectively. Digital images are becoming utilised in 

many ophthalmological fields e.g. medical retina and glaucoma, and enormous databases of 

information are being amassed from screenings performed at many face to face and virtual 

patient appointments.   

Machine learning is a subset of artificial intelligence which focuses on the learning aspect of 

intelligence and can be harnessed to explore and exploit these digital resources. In 

supervised machine learning, the computer instructed to refer to human image analysis, with 

each image in the training data given a descriptive label, whilst unsupervised machine 

learning searches for patterns within the data without reference to labelling.  

The human brain consists of neural structures which computers mimic via artificial neural 

networks (ANNs) arranged in layers. Deep learning is a computer-based ANN with many 

layers enabling enhanced performance. As training data passes through the layers it is 

transformed, and patterns within the data are detected and stored.  

Transfer learning involves training machine learners on an image data set applicable to the 

specific subject after initial pre-training with unrelated images. The object of this chapter was 

to utilise Transfer Learning for the prediction of the normality or otherwise of FAF images, 

without the need for the large training datasets that have been used in ophthalmology to 

date, e.g. by the DeepMind Health and Moorfields Eye Hospital NHS Foundation Trust 

collaboration. ODM features an “add on” capability which allows for “Transfer Learning” of 

machine learning models. Transfer learning is where a machine learner is initially trained on 

an image database which is unrelated to the field of study, with a final, lean image training 

step carried out to fine-tune the machine learner performance. This could mean that 

ophthalmologists and optometrists could obtain an “off the peg” pre-trained machine learning 

algorithm whose training could be “finished off” with a relatively small database of 

ophthalmological images, with the benefits of the saving of time and financial resources. For 

this chapter the SqueezeNet image embedding program available within ODM was used, 

which is trained on the ImageNet library of 14 million non-ophthalmological images of 

common objects. 
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7.1.1 Unsupervised machine learning 
 

ODM is capable of importing images, embedding them in a vector space, calculating 

distances between the vectors, and performing machine learning via hierarchical clustering 

and data visualisation techniques. Clustering and data projection in this way are an example 

of “unsupervised” machine learning, and the workflow shown below is an illustration of this. 

Note that in unsupervised machine learning there is no target variable, with the software 

exploring patterns within the data without reference to any tagging of images by the 

researcher. 

 

 

Figure 7.1 Illustration of an Unsupervised Orange Data Mining Image analytics workflow 
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7.1.2 Supervised machine learning  
 

It is also possible to create a “supervised” machine learning workflow, using it to predict the 

image class. The workflow is similar to the “unsupervised” machine learning workflow, but 

with the Hierarchical Clustering widget replaced by the Test and Score widget (connected to 

model learner widgets), followed by a Confusion Matrix widget and an Image Viewer widget. 

Note that a Preprocess widget is also providing an input to the Test and Score widget. This 

allows reduction of the 2048 variables to 18 (i.e. 93/5 = 18.6 ensuring at least a 5 to 1 ratio 

of data instances to variables) to avoid overfitting which is a risk given the large number of 

variables and the relatively small number of data instances.  

 

 

Figure 7.2 Illustration of a Supervised Orange Data Mining Image analytics workflow 
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Figure 7.3 Orange Data Mining Preprocess widget selections 
 
Illustration of the contents of the Preprocess widget, showing that the data has been 

normalised, missing values inputted and only the 18 most informative relevant features have 

been selected based on Information Gain.  
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7.2 Methods 

 

7.2.1 Unsupervised machine learning methods  

 

Images from the three imaging methods, colour fundus photography (CFP), optical 

coherence tomography (OCT) and fundus autofluorescence (FAF) were placed in three 

separate folders within the PC’s hard drive. Each folder was subdivided into two subfolders, 

one containing the images taken from participants who demonstrated a normal FAF image, 

and the other containing images from participants with an abnormal FAF image. 

Unsupervised machine learning, without reference to human researcher tagging, was 

performed using the workflow above in Figure 7.1, for each of the three imaging methods.  

 

7.3 Results 

The data can be visualised in the Hierarchical Clustering widget, however, no clear 

clustering pattern for normal and abnormal FAF is evident, as shown below. 

 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

269 

 

Figure 7.4 Orange Data Mining Hierarchical Clustering widget output for CFP images from 
participants with normal and abnormal FAF results. 
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Alternatively, as shown below in the Figure below, the output for CFP is illustrated by the 

Multidimensional Scaling (MDS) widget. Blue dots represent images with an abnormal FAF 

image, and red dots a normal FAF image.  

 

 

Figure 7.5 MDS output for unsupervised machine learning for CFP images, blue dots 
represent an abnormal FAF and red dots a normal FAF 
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To investigate clustering of the points in the Figure below, two blue dots from a similar 

location in the diagram have been selected and appear highlighted by a yellow “halo”. 

 

 

Figure 7.6 MDS output for unsupervised machine learning for CFP images with selections, 
blue dots represent an abnormal FAF and red dots a normal FAF 
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Below are shown the clinical features of the two closely clustered blue dots as selected. 

From this simple analysis it is difficult to ascertain the reason for the very close clustering of 

these two images. Both are pseudophakic, however, they differ greatly in the grading of the 

number of small, intermediate and large sized drusen. One demonstrates pigmentary 

abnormalities and geographic atrophy, the other does not. Neither case was recorded has 

having RPD or neovascular ARMD.  

 

Case number 58 38 

Pseudophakic (Y/N) Y Y 

CFP Small drusen grade 6 1 

CFP Intermediate drusen 
grade 

6 1 

CFP Large drusen grade 6 1 

Pigmentary abnormalities 
(Y/N) 

N Y 

Geographic atrophy (Y/N)  N Y 

RPD (Y/N) N N 

Wet ARMD (Y/N) N N 

Table 7.1 Showing the clinical features for the two images selected shown in Figure 7.6  
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Below, are the results from the same workflow carried out for OCT images, with the output 

from the MDS widget again illustrating no clear pattern in the spread of the data points.  

 

 

Figure 7.7 MDS output for unsupervised machine learner for OCT images, blue dots 
represent an abnormal FAF and red dots a normal FAF 
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Below is from the same workflow again, this time illustrating the spread of data points within 

the MDS widget from FAF images. From this data, there appears to be a heavier 

concentration of red dots in the upper left of the plot, with more blue dots towards the 

bottom.  

 

 

Figure 7.8 MDS output for unsupervised machine learner for FAF images, blue dots 
represent an abnormal FAF and red dots a normal FAF 
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To analyse the results in detail, we can select these images and view them via an Image 

Viewer widget joined to the MDS widget, as shown in Figures below. 

 

Figure 7.9 MDS for unsupervised machine learner for FAF images with selections. Blue dots 
represent abnormal FAF and red dots normal FAF. 
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Figure 7.10 Image Viewer for unsupervised machine leaner for FAF images with normal 
selections. 
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The seven images selected in Figure 7.10 demonstrate a mixture of normal and minimal 

change FAF patterns, as shown in Table 7.2 below. Just over 47% of all 93 images taken in 

the study are classified as normal or minimal change. ODM may be separating images 

based on their FAF classification, however, more analysis, beyond the score of this study, 

would be required to corroborate how the images are being dealt with by the image analytics 

software. In Figures 7.8, and 7.9 the upper right area of the plots still contains many of the 

red and blue dots clustered together, so it is reasonable to assume that any clustering of 

normal and abnormal FAF images is weak at best.  

 

Case number FAF classification 

5 Minimal change 

4 Normal 

93 Minimal change 

81 Normal 

28 Normal  

27 Minimal change 

89 Minimal change 

Table 7.2 Showing FAF classification for each of the images selected shown in Figures 7.9 
and 7.10 
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Figure 7.11 An example a normal FAF image from figure 7.10 
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Below in Figure 7.12 is the MDS output for unsupervised machine learning for FAF images, 

but this time with the cluster of blue dots representing abnormal FAF images highlighted with 

a yellow halo.  

 

 

Figure 7.12 MDS for unsupervised machine learner for FAF images with abnormal 
selections blue dots represent an abnormal FAF and red dots a normal FAF. 
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Figure 7.13 Image Viewer for unsupervised machine learner for FAF images with abnormal 
selections from Figure 7.12. 
 

All six images selected in Figure 7.12 demonstrate a patchy or reticular pattern of FAF, as 

shown in Table 7.3 below. Just over 19% of all 93 images are classified as patchy or 

reticular. Again, ODM may appear to be having limited success in clustering images by 

virtue of their specific FAF classification, however, two thirds of all abnormal FAF images 

were graded in this study as either patchy or reticular, and only a third of all patchy or 

reticular images were included in this cluster. Therefore, we can again reasonably assume 

that any clustering of FAF images as normal or abnormal, or of a specific pattern within the 

abnormal class, is weak at best. 
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Case number FAF classification 

10 Reticular 

58 Patchy 

23 Patchy 

38 Patchy 

59 Patchy 

60 Reticular 

Table 7.3 Showing FAF classification for each of the images selected in Figures 7.12 and 
7.13 
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Table 7.4 A typical FAF image from an abnormal result from Figure 7.13 
  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

283 

7.4 Supervised machine learning methods 

 

Supervised machine learning was also carried out using the workflow shown in Figure 7.2, 

reproduced again below for reference in Figure 7.14.  

 

 

Figure 7.14 Supervised machine learning workflow taken from Orange Data Mining’s Image 
Analytics “add-on”. 
 

Here the images were again uploaded in separate folders for CFP, OCT and FAF, with each 

folder containing two subfolders, one for participants with a normal FAF image, and another 

for those participants with an abnormal FAF image. Note that, by using the Test and Score 

widget, the workflow is now utilising two model learners (Naïve Bayes and Logistic 

Regression) to predict image class based on human researcher image tagging, with 

reference to a target variable (normality/abnormality of the FAF image), unlike with the 

unsupervised machine learning Distance widget which purely facilitates the graphical 

illustration of distances between vectors.  
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7.5 Results 

 

The results are shown below in Table 7.5. 

Imaging 
utilised 
by ML 

Best 
performing 
model 
learner 

AUC  Informedness  Best 
performing 
model 
learner 
with R flip 

AUC 
with 
R flip 

Informedness 
achieved with 
R flip 

CFP 
alone 

SVM 0.484 14.0% kNN 0.627 13.8% 

OCT 
alone 

kNN 0.613 17.5% Tree 0.584 21.7% 

FAF 
alone 

Logistic 
Regression 

0.551 20.4% Tree 0.727 40.4% 

CFP and 
OCT 
combined 

Naïve 
Bayes 

0.550 19.4% Logistic 
Regression 

0.612 23.4% 

CFP, 
OCT and 
FAF 
combined 

kNN 0.551 13.8% kNN 0.579 20.3% 

Table 7.5 Showing Orange Data Mining supervised machine learning results. 
 

For analysis of CFP alone, the Preprocessing widget was set to select only the 18 most 

informative variables based on Information Gain. This was to maintain an instance to 

variable ratio of at least five (93 instances/18 variables = 5.17). Informedness scores were 

poor for all of the model learners used. SVM gave the best result, however, this learner still 

only managed an informedness of 14.0% (0.731+0.409-1)*100 with an AUC of 0.484 

(essentially the random guess AUC of 0.500)(199). The MDS widget below also shows 

disappointing results for CFP with the blue and red dots appearing on manual inspection to 

be randomly distributed as shown in Figure 7.15 below.   
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Figure 7.15 MDS for supervised machine learning for CFP images. Blue dots represent an 
abnormal FAF and red dots a normal FAF. 
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For analysis of OCT alone, the Preprocessing widget was again set to select only the 18 

most informative variables based on Information Gain. The informedness scores are poor for 

all the model learners used. kNN had the best result, just outperforming SVM using CFP 

alone. However, the kNN learner still only managed an informedness of 17.5% 

(0.710+0.465-1)*100 with an AUC of 0.613 (an AUC of 0.6-0.7 is considered poor).(199) The 

MDS widget below also shows poor results for OCT, with the blue and red dots appearing on 

manual inspection to be randomly distributed as shown if Figure 7.16 below. 

 

 

Figure 7.16 MDS for supervised machine learning for OCT images. Blue dots represent an 
abnormal FAF and red dots a normal FAF. 
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For analysis of FAF alone, the Preprocessing widget was again set to select only the 18 

most informative variables based on Information Gain. Supervised machine learning results 

are informative, albeit with slightly better results than for CFP and OCT, with an 

informedness generated by hyperparameter fine-tuned Logistic Regression of 20.4% 

(0.699+0.505-1)*100 with an AUC of 0.551 (AUC of 0.5-0.6 is considered to have 

failed).(199) The MDS output is also poor, with no clear pattern of point separation 

emerging, shown in Figure 7.17 below.  

 

 

Figure 7.17 MDS for supervised machine learning for FAF images. Blue dots represent an 
abnormal FAF and red dots a normal FAF 
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A combined approach for predicting a normal or abnormal FAF result was also tested, with 

CFP and OCT combined, followed by CFP, OCT and FAF combined. Combining CFP and 

OCT analysis provides a better informedness via Naïve Bayes than utilising both imaging 

techniques separately at 19.4%, however, when combining the results of all three modalities 

the best informedness via kNN falls again to 13.8%. It is important to note that in most 

previous studies utilising transfer learning in ophthalmology, images had been extensively 

pre-processed prior to using machine learning on the data,(200),(201),(202),(203), and this 

may explain the poor results in this study, i.e. the image data used in this study was simply 

“too raw” for analysis.  

 

The last three columns on the right in Table 7.5 show the results from the analysis after an 

additional step has been carried out, by performing a “horizontal flip”, therefore making left 

images appear as a right eye for all three modalities, in an attempt to investigate whether 

this simple step would make a material difference to the informedness and AUC results. 

However, there was not a significant improvement in the informedness levels achieved, with 

the exception of the Tree model learner. Tree learners are, however, prone to overfitting, 

with Random Forest learners generally considered to provide superior accuracy due to their 

use of multiple trees which “vote” to give a consensus.(204) For the FAF analysis Random 

Forest achieved an informedness of 7.1% with an AUC of 0.577 (not shown in the table as 

this was not the best performing model), rising to only 9.1% with an AUC of 0.576 with a R 

flip, so it is reasonable to assume that the Tree learner was overfitting in this case.  
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7.5.1 An Alternative Approach Using Features Identified by Principal Component Analysis 

 

Instead of attempting to use data from CFP, OCT and FAF image data to predict FAF 

outcomes, an alternative approach was to consider the clinical features selected as 

contributing strongly to the principal components identified in Chapter nine covered later in 

this paper. These clinical features were drusen (and in particular large drusen), geographic 

atrophy, pigmentary abnormalities, and age. All drusen types were included in principal 

component one, however, large drusen as detected by OCT was the most informative 

variable as determined via the Rank widget. Therefore, large drusen were selected for the 

subsequent closer analysis as follows.  
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7.5.1.1 Large Drusen 

 

For large drusen, OCT was selected as the imaging method for exploration via the Test and 

Score widget. This rationale was based on the finding that there was close agreement 

between when large drusen were detected as being present by CFP or by OCT. In the 39 

participants in whom large drusen were not detected by OCT, CFP agreed in all cases. In 

the remaining 54 participants in whom large drusen were detected by OCT, CPF disagreed 

in only 6 cases. For analysis of large drusen as detected by OCT, the preprocessing widget 

was again set to select only the 18 most informative variables based on Information Gain. 

Hyperparameter fine-tuned Logistic Regression was the best performing model learner 

delivering only 16.4% informedness (0.581+0.583-1) and an AUC of 0.573. The MDS widget 

output also gives a disappointing random spread indicating no clear separation of points.  
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Figure 7.18 MDS for supervised machine learning for large drusen detected vis OCT 
imaging. Blue dots indicate no large drusen, red dots indicate large drusen present. 
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7.5.1.2 Geographic atrophy 

 

For this analysis of geographic atrophy FAF imaging results were used. FAF was chosen 

rather than CFP or OCT due to FAF having an ability to demarcate areas of GA with high 

accuracy, according to the literature review in Chapter one.(48) However, there were only 

four instances of GA indicated by the FAF images in this study, and 89 cases without GA. 

Therefore, we have an imbalanced data problem, with the likelihood that the algorithm will 

learn how to spot the overrepresented negative cases rapidly, but will struggle to learn how 

to spot the rare positive instances. Chicco(193) suggests this can be mitigated by altering 

the training set with a 50% pick-up of the average value between 50% and the real 

proportion percentage. This calculation is shown below: 

 

89 cases with no GA on FAF 

4 cases with GA on FAF 

= 93 cases in total 

 

89/93 = 95.7% negative cases 

4/93 = 4.3% positive cases  

 

(95.7% + 50%)/2  = 72.85% rounded to 73% 

(4.3% + 50%)/2 = 27.15% rounded to 27% 

 

The 4 positive cases need to represent 27% of the total cases used in the analysis. 

Therefore, the total sample needs to be 4/0.27 = 14.8, rounded up to 15. Therefore only (15 

– 4) 11 negative cases should be included in the sample (this is known as “under-sampling” 

of the majority class within the data). Note that for this calculation, “leave one out” was 

selected in the Test and Score widget, where the number of folds equals the number of 

instances, 15 in this case. This method is more appropriate for the smaller dataset that was 

left after allowance for the imbalanced data problem. The Preprocessing widget was also 

adjusted for this new number of instances. As previously, a minimum instance to variable 

ratio of five to one was selected, and therefore only the three (15/5) most informative 

variables were selected based on Information Gain. The results appear encouraging, 

however, with only four instances for GA present with FAF, the results must be viewed with 

caution. The best performing learner was Random Forest, giving an informedness of 90.9% 

(0.933+0.976-1) and an AUC of 0.955 (considered excellent).(199) The MDS widget, by the 
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projection of distances between points onto a 2-dimensional plane, also appears to having 

success in separating the cases where GA is present and not present as detected by FAF 

shown in the Figure below. 

 

 

Figure 7.19 MDS for supervised machine learning for geographic atrophy in FAF images. 
Blue dots indicate no GA present and red dots GA present.  
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7.5.1.3 Pigmentary abnormalities 

 

For analysis of pigmentary abnormalities as detected by CFP, the Preprocessing widget was 

again set to select only the 18 most informative variables based on Information Gain. 

However, again, the level of informedness is disappointing, with hyperparameter fine-tuned 

Logistic Regression having the best result of 9.7%. (0.785+0.312-1)*100, with an AUC of 

0.534. Also, no clear pattern is seen from the spread of data points via the MDS widget 

shown in the Figure below.  

 

 

Figure 7.20 MDS for supervised machine learning for CFP images for pigmentary 
abnormalities. Blue dots indicate no pigmentary abnormalities present and red dots 
pigmentary abnormalities present.  
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7.5.1.4 Participant age 

 

Finally, patient age (under and over the age of 80 years) and FAF results were analysed 

with supervised machine learning. The Preprocessing widget was again set to select only 

the 18 most informative variables based on Information Gain. From the Test and Score 

results, kNN was the best model learner, achieving an impressive level of 58.6% 

informedness. (0.828+0.758-1) with an AUC of 0.827 (considered good).(199) Also, from the 

MDS results in the Figure shown below, the algorithm does appear to having some success, 

with many more blue dots indicating participants under the age of 80 being situated at the 

lower part of the plot.  

 

 

Figure 7.21 MDS for unsupervised machine learner for participant age for FAF images. Blue 

dots indicate < 80 years of age, and red dots indicate  80 years of age.  
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However, was the success of the machine learning for predicting patient age simply down to 

the image analysis detecting worsening cataract formation? To test this hypothesis, only 

pseudophakic patients (a subgroup of 26 in total) were included in the analysis. Again, the 

Preprocessing widget was adjusted to an instance to variable ratio of five to one, i.e. 26/5 = 

5.2, so the five most informative variables based on Information Gain were selected. This 

sample includes 15 participants under, and 11 participants over the age of 80 years. Test 

and Score levels of informedness achieved are disappointing compared to those obtained 

from all the participants with both hyperparameter fine-tuned Logistic Regression giving 

35.2% (0.654+0.698-1) with an AUC of 0.642 (considered poor),(199) indicating that cataract 

formation could be contributing to how the software is predicting age, and not entirely by 

analysis of the retinal changes detected by FAF. The MDS widget output concurs with a 

more random spread for pseudophakic participants compared to the entire cohort with 

regards to the spread of points for participants’ age groupings.  
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Figure 7.22 MDS for supervised machine learner for pseudophakic participants < and  80 
years of age. Blue dots indicate < 80 years of age, red dots indicate > 80 years of age.  
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Clinical feature Best performing 
model learner 

AUC Informedness 

Large drusen Logistic regression 0.581 16.4% 

Geographic atrophy Random Forest 0.955 90.9% 

Pigmentary 
abnormalities 

Logistic regression 0.534 9.7% 

Age  kNN 0.827 58.6% 

Age of pseudophakic 
participants 

Logistic regression 0.642 35.2% 

Table 7.6 Summary for clinical feature results for the best performing machine learners for 
the clinical features identified as contributing strongly to the principle components in Chapter 
nine of this paper. 
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7.6 Discussion 

 

Utilising unsupervised machine learning, patterns within the data were explored without a 

specific target variable being selected. No clear patterns from the exploration of images 

captured via CFP and OCT emerged, with the images appearing to be randomly clustered 

within the vector space without clear separation of images with a normal and abnormal FAF 

result. The properties of two images, for both imaging modalities, closely situated within the 

MDS widget spaces were investigated, however, their clinical features appeared diverse with 

few common properties. For the FAF image exploration there did appear to be some 

evidence of clustering of normal and abnormal FAF images, however, with closer inspection 

the separation of the two groups was weak at best.  

 

Utilising supervised machine learning, 18 most informative variables were selected based on 

Information Gain, to avoid overfitting, from the decision to maintain an instance to variable 

ratio of five to one. For CFP the best performing learner was SVM, but this model learner still 

only achieved an informedness of 14.0% (AUC 0.484). For OCT the kNN model learner 

managed an improved result of 17.5% informedness (AUC 0.613), and with the use of FAF 

images this rose again with hyperparameter fine-tuned Logistic Regression to 20.4% (AUC 

0.551). Combinations of modalities were also tried, firstly CFP and OCT. For this analysis 

Naïve Bayes performed best, resulting in 19.4% informedness (AUC 0.550), however, when 

all three modalities, CFP, OCT and FAF were included, the best informedness level (via 

kNN) fell again to 13.8% (AUC 0.551). Horizontal “flipping” of the images, used as a simple 

initial image manipulation step to present all images as a right eye had very little effect on 

the results, with the exception of a dramatic improvement of the Tree model learner results. 

However, this is most likely due to the tendency of Tree to overfit, with Random Forest 

considered to be a more reliable model due to its use of multiple trees, which only achieved 

an informedness of 7.1% and an AUC of 0.577.  

 

An alternative approach was tried using the specific clinical features which appear to be 

contribute strongly to the principal components as highlighted via the principle component 

analysis in Chapter nine. The ability of the model learners to find clustering of image 

properties for each feature was then explored. For large drusen as detected by OCT, 

Logistic Regression achieved an informedness of 16.4% (AUC 0.573), for geographic 

atrophy as detected by FAF, Random Forest managed an impressive 90.9% (AUC 0.955) 
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(however with only four data instances this result should be viewed with caution), for 

pigmentary abnormalities detected by CFP, hyperparameter fine-tuned logistic regression 

resulted in 9.7% informedness (AUC 0.534), and for participant age kNN recorded 58.5% 

(AUC 0.827). However, there is a  possibility that the image degrading effect associated with 

the progression of cataract (which is particularly pronounced in FAF images) due to 

advancing age is assisting the model. To this end the participants who were pseudophakic 

(N = 26) were taken as a subgroup and the analysis repeated. In this new analysis, the best 

informedness result achieved by the hyperparameter fine-tuned Logistic Regression model 

learner fell to a lower figure of 35.2% (AUC 0.642), indicating that cataract formation may 

indeed by a confounding factor in the initial analysis.  

 

Therefore collectively, the results from the unsupervised and supervised machine learning 

image analysis strand of this study indicate that all three modalities; CFP, OCT and FAF 

solely or collectively fail to build a reliable model to predict images that would be graded by a 

human observer as demonstrating a normal or abnormal FAF result. This appears to 

disagree with previous studies involving transfer learning in ophthalmology which boast 

impressive results for accuracy. For example, a study based in Chicago, USA, found that 

transfer learning utilising a convoluted neural network (CNN) called VGG16 and OCTA 

images could be applied to the identification of eyes with no diabetic retinopathy/with 

diabetic retinopathy with a sensitivity of 83.76% and a specificity of 90.82%.(200) However, 

it should be noted that all of the images were examined for shadow/motion artefacts, and 

any images considered to be qualitatively unacceptable were excluded from the study. Also, 

in a 2022 study on myopic eye disease from China which generated results at least equal to 

human observers, methods included cropping out the area of interest and normalising the 

image for the same size resolution and background colour.(201) An earlier study, this time 

based in India and utilising transfer learning and the CNN GoogleNet to study OCT images, 

managed an accuracy of 96% with the best performing model. Again, the images were 

heavily pre-processed which included smoothing the RPE, retinal flattening, the image 

repositioned within the frame (so that the RPE lower contour was in a fixed position), the 

image resized and finally filtered through BM3D three times (Block Matching and 3D filtering; 

this acts essentially as an image noise reducing tool).(202) Furthermore, a recent systematic 

review from China examined the evidence regarding artificial intelligence for the detection of 

ARMD from CFP, and looked at 19 studies (totalling 1.2 million images) 12 of which 

employed CNNs.(205) The results are encouraging, stating a collective sensitivity of 88.0% 

and a specificity of 90%. However, the studies included in the analysis varied in their 

definition of ARMD, and so it is difficult to draw conclusions as to how these results could be 
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compared to the analysis of CFP images for the prediction of FAF abnormalities conducted 

in the current study. In other words, advanced ARMD featuring geographic atrophy could 

flatter the performance of CNNs included within the review. Another recent study from 

France based on deep learning for the classification of retinal atrophy using FAF also reports 

encouraging results, however, the study was comparing images from patients with advanced 

ARMD (with geographic atrophy), and images demonstrating late stage retinal atrophic 

diseases (Stargardt and Pseudo-Stargardt Pattern Dystrophy).(206) The authors, who also 

used the ImageNet database for pretraining, reported an accuracy of 92.0% with an AUC of 

0.981. However, as well as pre-processing the data, the training set also included new, 

randomly augmented data, generated to improve the robustness of the artificial intelligence 

models created. This consisted of the following steps; horizontal flip, a fill mode, width shift, 

height shift, rotation and zoom using Keras/ImageDataGenerator API.  

Therefore, it can be concluded that the results from the current study offer lower predictive 

values compared to the results from other ophthalmological studies within the field of 

artificial intelligence based on transfer learning, with poor levels informedness achieved. 

However, in the current study, no selection by virtue of image quality or pre-processing of 

images was conducted, but rather every image that was considered to be suitable at the 

image capture stage was included. Also, no new data was created using image 

augmentation software to enhance the performance of the models. Whilst utilising advanced 

image pre-processing and image augmentation software was beyond the scope of the 

current study, a simple pre-processing step involving horizontal image flip, similar to that 

used in the image augmentation programs was simple to perform, and was therefore 

attempted. The results suggested that presenting only raw data involving right eyes to the 

machine learners makes little difference to the final informedness levels achieved.  

 

7.7 Conclusions 

 

In summary, image analysis results from this study overall offered low levels of 

informedness and AUC, with only the strand involving the identification of geographic 

atrophy via FAF imaging delivering an informedness level of over 60% (achieving 90.9%; 

AUC 0.955), however, the number of data instances for this calculation was low, (only four 

participants had geographic atrophy detected via FAF) and so the data uplift calculation 

(suggested by Chicco(193)) was required to correct the data imbalance problem. Therefore, 

the results of this strand could be considered to be less robust than other calculations 

involving a greater number of data instances. However, geographic atrophy usually 
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generates deep retinal defects differing in colour from the background retina, and domain 

expertise would lead the researcher to suspect that machine learners should perform well 

when identifying this condition in comparison to more subtle retinal lesions that could easily 

be masked by artefacts. With the exciting news, at the time of writing, of intravitreal 

Pegcetacoplan (Apellis’ Syfovre®) being approved by the United States Food and Drug 

Administration for the treatment of retinal geographic atrophy (dry ARMD),(207) AI could 

therefore play a future role in identifying patients with this condition from screenings, 

enabling closer inspection on the selected cohorts to identify those patients with perilesional 

hyperautofluorecence and therefore potentially requiring referral to secondary care to be 

offered vision preserving medical treatment. 

 

In conclusion, image pre-processing and the use of novel randomly augmented additional 

data appear to be a vital step when analysing ophthalmological images by machine learning 

processes when aiming for maximal machine learning performance. This indicates that any 

artificial intelligence utilised in primary care optometry would require instruments to feature 

built in software to enable image enhancement including, for example, cropping the area of 

interest and image normalisation for the same size, resolution and background colour, as 

well as potentially using image augmentation software to create new training images to 

improve the performance of machine learners, especially for the detection of relatively rare 

conditions. However, there may be a role for artificial intelligence transfer learning utilising 

raw data from primary care optometry, for conditions causing frank retinal changes such as 

the geographic atrophy. These may enable screening algorithms to be developed to identify 

patients who could benefit from more in-depth optometric/ophthalmological examinations 

and treatment.  
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Chapter 8 Clinical features and their relation to the specific FAF patterns 
 
 
8.1 Introduction 

A classification system enabling the identification of specific FAF phenotypes in ARMD is 

important as it enables clinicians to potentially highlight high-risk features and facilitates 

research involving the monitoring and treatment of macular degeneration. Such systems 

may also assist primary care clinicians in decision making processes regarding recall 

timings, patient advice and referrals to secondary care. In the previous chapters in this 

study, FAF classifications have been dichotomous to assist k-cross fold validation via ODM 

software, however, the aim of this chapter is to once again analyse the individual FAF 

classification categories to look for associations between specific patterns and the clinical 

features observed.  

 

8.2 Methods 

 

8.2.1 Classification systems for the grading of FAF images 

 

Exploration of the literature has highlighted three proposed grading systems, the first aimed 

to grade/label FAF images from eyes with early ARMD, excluding more advanced features 

such as choroidal neovascularisation, geographic atrophy and pigment epithelial 

detachments. The second system involved the grading of the areas immediately surrounding 

patches of geographic atrophy in an attempt to risk stratify the likelihood of expansion of the 

atrophic areas. The third system was proposed from research into peripheral FAF 

abnormalities detected via ultra-widefield FAF in patients the majority of whom had ARMD.  
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8.2.2 The first FAF classification system considered 
 

In 2005, a classification system was proposed by Bindewald et al to place FAF results from 

patients with early ARMD into one of eight distinct categories. This will from now on be 

referred to as the “Bindewald study”. These were; normal, minimal change, focal increased, 

patchy, linear, lacelike, reticular and speckled.(165) To recap, a precise description of each 

phenotypic pattern in given below:  

 

Normal: A homogenous background FAF with a gradual decrease in the inner macula 

toward the foveola due to the masking effect of the yellow macular pigment.  

 

Minimal change: Very limited irregular increase and decrease of background FAF without a 

clear pattern. 

 

Focal increased: Defined as having at least one area (< 200m in diameter) of significantly 

increased FAF which is much brighter than the surrounding background’s FAF signal. The 

borders are well defined, and the difference in FAF between the brighter area and its 

surrounding is not gradual. The brighter area may or may not demonstrate a darker halo 

surround.  

 

Patchy: Characterised by presence of one large area (> 200m in diameter) of markedly 

increased FAF. The borders tend to be less well defined than the Focal increased pattern.  

 

Linear: This pattern features at least one linear area of markedly increased FAF. The 

borders of these areas are usually well defined and the difference in FAF between the 

brighter area and its surrounding is not gradual. These linear patterns usually map to 

hyperpigmented lines on CFP.  

 

Lacelike: Multiple branching linear structures of increased FAF in a lace-like pattern which 

may map to hyperpigmentation on CFP. The borders may be difficult to define.  

 

Reticular: Multiple small areas (< 200m) of decreased FAF whose borders can be 

indistinct. This pattern tends to occur in the macular region, but also superotemporally in the 

retina. The pattern may or may not map to numerous small soft or hard drusen, or 

pigmentary abnormalities detected on CFP. 
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Speckled: A mixture of hypo and hyper-autofluorescent FAF abnormalities covering a large 

area which may extend beyond the macular area to cover the entire posterior fundus. These 

small areas may be punctate or linear. They may map to hypo and hyperpigmentation and/or 

multiple sub-confluent and confluent drusen.  

 

The intraobserver variability for the two graders in the study that proposed this first 

classification system was 0.80 (95% confidence interval (CI) of 0.71-0.89), and 0.74 (95% CI 

0.64-0.84), and for interobserver variability was 0.77 (95% CI 0.67-0.87), which were taken 

to indicate a relatively high-level agreement between and within the observers’ results.(165)  
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8.2.3 The second FAF classification system considered 
 

Later in 2005, another FAF grading system was proposed by Bindewald et al to classify 

phenotypes that may help to identify patients in whom there is likely to be an increased risk 

of the spread of retinal atrophy and vision loss. This will be referred to as the “Bindewald GA 

study”. The authors graded 149 eyes and identified eight different and distinct patterns 

surrounding areas of GA: normal, focal, banded, patchy and diffuse, with diffuse being 

further sub-divided into reticular, branching, fine granular and fine granular with peripheral 

punctate spots.(208) Further research identified that progression rates were highest in the 

banded and diffuse phenotypes(45) and in particular in a new, ninth pattern named as 

diffuse trickling. The diffuse trickling FAF phenotype has greyish areas of GA rather than a 

markedly decreased, darker FAF signal that tends to be present in other GA subtypes.(45)  

 

8.2.4 The third FAF classification system considered 
 

In 2013, Optos® ultra-wide FAF fundus imaging was used by Tan et al to classify abnormal 

peripheral (defined as outside the central 30 degrees centred on the fovea) FAF patterns 

with regard to location, extent and type. This will be referred to as the “Tan study”. 164 eyes 

were examined and three distinct phenotypes were identified: granular, mottled and 

nummular. The granular pattern was found to be highly correlated with peripheral drusen 

and was defined as small discrete areas of hyper-autofluorescence. Mottled was closely 

associated with RPE depigmentation and featured a decreased FAF signal distributed in an 

irregular pattern. Finally, nummular was defined as small to medium areas of discrete and 

uniform hypo-autofluorescence.(114)  

 

8.2.5 Decision to adopt the “Bindewald study” method of classification 
 

The first “Bindewald study” classification system discussed above was utilised within the 

current study due to the majority of the ARMD encountered in the cohort of 93 being of the 

early type. The second classification system concerned eyes with advanced changes 

involving GA and was therefore not considered to be as useful for comparisons and grading 

in the current study. The third grading system was also unsuitable for the current study due 

to its being based on peripheral FAF imaging results.  
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Prevalence of ARMD clinical features for the study participants  

 

Clinical feature Presence or grade of 

clinical feature 

Percentage of participants 

with this clinical feature 

Pigmentary abnormalities 

(detected by CFP) 

Yes 

No 

15% 

85% 

RPD (detected by OCT) Yes 

No 

11% 

89% 

Simplified severity score 

(detected by CFP) 

Grade 0 

Grade 1 

Grade 2 

Grade 3 

Grade 4 

48% 

11% 

32% 

2% 

7% 

Large drusen (detected by 

OCT) 

Yes 

No 

58% 

42% 

Geographic atrophy 

(detected by FAF) 

Yes 

No 

4% 

96% 

Pigment epithelial 

detachment (detected by 

OCT) 

Yes 

No 

6% 

94% 

Symptoms of ARMD i.e. a 

distortion of the central 

vision, a “kink” in the central 

vision or central scotoma 

Yes 

No 

5% 

95% 

Table 8.1 Prevalence of clinical features for the study participants 

 

8.3 Results  

The similarities and differences from the research which led to the development of the 

“Bindewald study” classification system and the current study are discussed below. These 

comparisons were considered a useful exercise to enable a greater understanding of the 

prevalence of the various FAF pattern phenotypes, as well as an exploration of how clinical 

features seen with other modalities, such as CFP and SD-OCT, are related to specific FAF 

patterns.  
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8.3.1 Similarities to the current study 

 

1. The number of participants involved was similar (100 in the “Bindewald study” versus 93 

in the current study).  

2. All participants were > 50 years of age in both studies.  

3. Patients demonstrating pigmentary abnormalities and/or drusen were both included in 

the “Bindewald study” and the current study.  

 

8.3.2 Differences from the current study 

 

1. A cSLO was used in the “Bindewald study” for FAF imaging rather than a modified 

fundus camera-based system as in the current study. 

2. All patients recruited for the “Bindewald study” had early ARMD (defined has having 

either pigmentary abnormalities, drusen, or both detected via CFP), whereas the 

current study recruited all eligible patients, regardless of ARMD status. 

3. The age inclusion criterion was older in the “Bindewald study”, > 55 years of age, 

rather than > 50 years of age as in the current study.  

4. Patients with choroidal neovascular membranes (CNV), geographic atrophy (GA) 

and pigment epithelial detachments (PEDs) were excluded from the “Bindewald 

study” unlike the current study. This is due to these features being considered as 

“advanced” changes.  

5. The macula was defined as a 6000m (approximately 20°) circle centred on the 

foveola in the “Bindewald study”; in the current study the macula was taken as a 

larger area bounded by the major temporal vascular arcades, in a circle whose 

diameter is defined as the length of the vertical line between the temporal vascular 

arcades. In a previous study this line has been measured, in the healthy control eyes 

of patients with a idiopathic macular hole in the fellow eye, as 9473±1974µm(166). 

This equates to 33°±7°.(167) 
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8.3.3 Prevalence of patterns 

 

In the “Bindewald study” and the current studies the percentages of the patterns 

identified were as follows:  

 

Numerical 
code of 
pattern in 
current study 

Pattern name Bindewald 
study 

Current study Participants 
with early 
ARMD in the 
current 
study 
(subgroup of 
48) as 
defined by 
Bird et al(11) 

1 Normal 19% 24% 6% 

2 Minimal change 25% 47% 56% 

3 Focal increased 23% 6.5% 10.5% 

4 Patchy 15% 14% 13% 

5 Linear 9% 0% 0% 

6 Lacelike 3% 2% 4% 

7 Reticular 2% 5.5% 10.5% 

8 Speckled 26% 1% 0% 

Table 8.2 Showing the prevalence of FAF patterns in the “Bindewald study” and the current 
studies compared 

 

Comparing the percentages, in the current study the most common FAF pattern is 

“minimal change”, making up almost half of all graded images. The figure for “minimal 

change” was much lower in the “Bindewald study” involving patients with early ARMD at 

25%. 24% had a “normal” FAF pattern in the current study compared to 19% in the 

“Bindewald study”. “Focal increase” made up almost a quarter of all patients in the 

“Bindewald study”, representing only 6.5% in the current study. No “linear patterns” were 

detected in any patients in the current study, making up only 9% in the “Bindewald 

study”. “Patchy”, “lacelike” and “reticular patterns” showed fair agreement between the 

two studies, however, “speckled” was much more prevalent in the “Bindewald study”. To 

summarise, there is fair agreement (within at least 9%) between the studies on “normal”, 

“patchy”, “linear”, “lacelike” and “reticular patterns”, with many fewer “minimal changes” 

and many more “focal increased” and “speckled” in the “Bindewald” study compared to 

the current study.  

 

However, as noted previously, the “Bindewald study” excluded those patients with CNV, 

GA and PEDs. The tables below show how the percentages of the various FAF patterns 

change when patients with CNV, GA and PEDs are stripped out of the current study. 
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Table 8.2 below shows the types of FAF patterns recorded from the excluded patients, 

whilst table 8.3 shows how the FAF patterns percentages compare between the two 

studies after the stripping out process is performed. It appears that having GA and PEDs 

may lead to mainly “patchy” patterns, with 6 of the 9 patients who had these clinical 

features demonstrating this pattern. There were only two cases with CNV in the current 

study, so there is not sufficient data to draw conclusions regarding neovascular (wet) 

ARMD and the type of FAF pattern likely to be attributed to this condition.  

 

Case number 
excluded from 
current study  

GA CNV PED pattern 

3 y n y speckled 

24 y n n patchy 

28 n n y minimal 
change 

39 y n y patchy 

40  y n y patchy 

59 n n y patchy 

60 n y n minimal 
change 

69 y n n minimal 
change 

86 n y y patchy 

92 y n n patchy 

Table 8.3 Cases excluded from the “Bindewald study” with clinical feature and FAF pattern 
detected 
 

Numerical 
code of 
pattern in 
current study 

Pattern name “Bindewald 
study” 

Current study 
with 
exclusions  

Current 
study 
without 
exclusions  

1 Normal 19% 26.5% 24% 

2 Minimal change 25% 49.0% 47% 

3 Focal increased 23% 7.0% 6.5% 

4 Patchy 15% 8.0% 14% 

5 Linear 9% 0.0% 0.0% 

6 Lacelike 3% 2.5% 2% 

7 Reticular 2% 6.0% 5.5% 

8 Speckled 26% 0.0% 1% 

Table 8.4 Percentages of FAF patterns from the “Bindewald study” and the current study 
with and without exclusions 
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8.3.4 Prevalence of patterns: Summary 

 

Therefore, it appears that having early ARMD (defined as having pigmentary 

abnormalities and/or drusen detected via CFP), moves the FAF pattern from “minimal 

change” into the categories of “focal increased” and “speckled”, as these were the 

Inclusion criteria for the “Bindewald study”, but were not a required feature to be part of 

the current study, with these two patterns being more prevalent in the “Bindewald study”.  

 

However, in the current study, many of the participants (as defined by having drusen or 

pigmentary abnormalities without more advanced changes) had early ARMD (61.3%) 

and only 1% demonstrated a “speckled” pattern, so it may be concluded from this finding 

that the graders in the “Bindewald study” had a greater tendency to categorise a pattern 

as “speckled” compared to the grader of the current study. Also, the “patchy” and 

“speckled” patterns are arguably the two most similar patterns in the classification 

system and most likely to be confused with one another. The assumption has also been 

made that the different instrumentation employed by the two studies (cSLO versus 

fundus camera-based FAF) had little or no effect on the categorisation of the FAF 

patterns.  

 

Studying the clinical features of participants from the current study that were stripped out 

due to having CNV, GA and PEDs indicates that having GA and/or PEDs may lead to a 

“patchy” pattern. The lack of CNV cases in the current study mean that conclusions 

cannot be drawn regarding the FAF patterns likely to be attributable to this condition. The 

results are summarised in Table 8.4 below.  

 

 

Clinical feature Associated FAF 
pattern(s) 

Pigmentary abnormalities Focal increased/Speckled 

Drusen  Focal increased/Speckled 

Geographic atrophy Patchy 

PED Patchy 

Table 8.5 Showing likely associations between clinical features and FAF patterns from 
examination of the results from the “Bindewald study” and current study results. 
 

The last column in Table 8.2 also compares as subgroup (N=48) of participants within the 

current study who had “Early” ARMD as defined by Bird et al, the classification system 

adopted by the “Bindewald” study, i.e. participants identified as having either RPE 
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pigmentary abnormalities and/or large macular drusen. Note that only one of this subgroup 

had a PED detected by OCT. When comparing this group to the entire study cohort of 93, 

this subgroup has a lower percentage of “normal” patterns, down from 24% to 8%. “Minimal 

change” increases from 47% to 56%, “focal increased” increases from 6.5% to 10.5%, 

“patchy” remains similar at 13% down from 14%, with an increase of “lacelike” from 2% to 

4%, “reticular” increasing from 5.5% to 10.5%. Finally, speckled falls from 1% to zero%. In 

summary, these findings indicate that having early ARMD increases the percentage of 

“minimal change”, “focal increased”, “lacelike” and “reticular”. These findings again back-up 

the findings from Table 8.5 that RPE pigmentary abnormalities and drusen are associated 

with “focal increase” FAF patterns, with an additional association of an increase in the 

percentages of “lacelike” and “reticular” patterns.  
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8.3.5 Using Orange Data Mining to explore the patterns 

 

ODM was also used to investigate which clinical findings in the current study are related 

to which FAF patterns to test the above hypotheses. The Boxplot widget indicates that 

the following 18 clinical findings are the most influential in predicting the outcome of the 

FAF pattern grading, by using the “order by relevance of variable” function. 

 

Clinical 
finding 
number 

Clinical finding ranked via ODM Boxplot 
widget for importance in determining 
FAF pattern 

Rationale for further 
exploration, i.e. if 
considered relevant then 
analysed below via the 
ODM Distribution widget 

1 CFP disc diameters of pigmentary 
abnormalities  

relevant  

2 FAF RPD yes or no  reticular by definition 

3 CFP – SSS (simplified severity scale) relevant  

4 CFP pig abnormalities yes or no relevant, similar to 1 

5 OCT large drusen 0-6  relevant  

6 OCT RPD yes or no relevant 

7 OCT large drusen yes or no relevant, similar to 5 

8 CFP RPD yes or no relevant, similar to 6 

9 FAF GA yes or no relevant  

10 CFP large drusen yes or no relevant, similar to 5 

11 CFP GA yes or no relevant, similar to 9 

12 CFP large drusen 0-6 relevant, similar to 5 

13 OCT PED yes or no  relevant 

14 CFP large drusen other eye yes or no N/A 

15 OCT large drusen other eye yes or no N/A 

16 OCT intermediate drusen 0-6  relevant  

17 Symptoms of ARMD yes or no  relevant  

18 CFP disc diameters of GA  relevant  

Table 8.6 Boxplot widget indicating the 18 most influential clinical findings for predicting the 
outcome of the FAF pattern grading and their relevance for further exploration via Orange 
Data Mining. 
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Colour coding FAF pattern 

Dark blue Focal increase 

Red Lacelike 

Green Minimal change 

Orange Normal 

Yellow Patchy 

Mauve Reticular 

Light blue Speckled 

Table 8.7 Colour coding for FAF patterns in Figures 8.1 to 8.9 below 
 
A selection of the most relevant clinical findings investigated further via the ODM 

Distribution widget are shown in Figures 8.1 to 8.9 below: 

 

 

Figure 8.1 Distribution of CFP disc diameters of pigmentary abnormalities and probability of 
FAF patterns. 
 
Clinical finding #1. ODM Distribution widget output indicating the general trend for an 

increase in the probability of a patchy FAF pattern (shown in the yellow bars) being detected 

with increasing disc diameters of pigmentary abnormalities as detected by CFP. 5 of the 13 

participants with pigmentary abnormalities (38%) had a patchy FAF pattern.  
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Figure 8.2 Distribution of CFP simplified severity score and FAF pattern 
 
Clinical finding #3. ODM Distribution widget output indicating the general trend for an 

increase in the probability of a patchy (yellow bars) and/or focal increased (darker blue bars) 

FAF pattern with increasing simplified severity score. 11 of the 13 participants (85%) with a 

patchy FAF pattern had an SSS > 0, whilst five out of six participants (83%) with a focal 

increased pattern had a SSS > 0.  
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Figure 8.3 Distribution of OCT large drusen and probability of FAF pattern  
 
Clinical finding #5. ODM Distribution widget output indicating the general trend for an 

increase in the probability of patchy (yellow bars) FAF pattern with increasing OCT Large 

Drusen score. All 13 participants (100%) with a OCT large drusen score of > 0 had a patchy 

FAF pattern.  
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Figure 8.4 Distribution presence/absence of OCT RPD and probability of FAF patterns 
 
Clinical finding #6.  

ODM Distribution widget output indicating the general trend for an  

increase in the probability of a reticular FAF pattern (shown in the purple bars) in the 

presence of RPD as detected by OCT. 4 out of the 10 participants (40%) with RPD detected 

by OCT had a reticular” pattern.  
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Figure 8.5 Distribution of FAF GA presence yes or no and FAF pattern. 
 
Clinical finding #9. ODM Distribution widget output indicating the association between FAF 

GA presence yes or no and FAF pattern. The probability of a patchy (yellow bars) FAF 

pattern was approximately 77% when GA was detected by FAF and fell to approximately 

12% when GA was not detected by FAF. 3 of the 4 participants with GA detected by FAF 

(75%) had a patchy FAF pattern.  
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Figure 8.6 Distribution of OCT PED presence/absence and FAF pattern 
 
Clinical finding #13. ODM Distribution widget output indicating the association between OCT 

PED detection and the FAF pattern. The probability of a patchy (yellow bars) FAF pattern 

was 66.7% when a PED was detected. This fell to just over 10% with a PED was not 

detected. 4 out of 6 participants with a PED detected by OCT (67%) had a patchy FAF 

pattern.  

.   
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Figure 8.7 Distribution of OCT intermediate drusen and probability of FAF pattern 
 
Clinical finding #16. ODM Distribution widget output indicating the general trend for an 

increase in the probability of patchy (yellow bars) FAF pattern with increasing OCT 

Intermediate Drusen score. 11 out if 13 participants with intermediate drusen detected by 

OCT (85%) had a patchy FAF pattern.  
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Figure 8.8 Distribution for Symptoms related to ARMD and the probability of FAF pattern  
 
Clinical finding #17. ODM Distribution widget output indicating the association between 

symptoms of ARMD and the FAF pattern. Four out of the five participants with symptoms of 

ARMD (80%) had a patchy (yellow bars) pattern. 
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Figure 8.9 Distribution of CFP disc diameters of GA and probability of FAF pattern  
 
Clinical finding #18. ODM Distribution widget output indicating the trend for an increase in 

the probability of patchy (yellow line) FAF pattern with increasing CFP disc diameters of GA. 

The probability of a patchy pattern appears to increase dramatically once the score reaches 

approximately 1.25 CFP disc diameters of GA and plateaus maximally at approximately 1.5 

CFP disc diameters. 5 out of 7 participants (71%) with GA detected by CFP had a patchy 

FAF pattern.  
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8.3.6 Orange Data Mining exploration of the patterns: Summary  

 

Clinical feature 
number 

Clinical feature Associated FAF 
patterns(s) within 
the current study 

Predictions of 
associated FAF 
patterns(s) from 
examination of the 
“Bindewald study” 
and current study 

1 CFP disc diameters 
of pigmentary 
abnormalities 

Patchy Focal 
increased/speckled 

2 FAF RPD yes or no Reticular (by 
definition) 

N/A 

3 CFP SSS (simplified 
severity score) 

Patchy/Focal 
Increased 

Focal 
increased/speckled 

4 CFP pigmentary 
abnormalities yes or 
no 

Patchy Focal 
increase/speckled 

5 OCT large drusen 0-
6 

Patchy Focal 
increased/speckled 

6 OCT RPD yes or no Reticular  N/A 

7 OCT large drusen 
yes or no 

Patchy Focal 
increased/speckled 

8 CFP RPD yes or no Reticular N/A 

9 FAF GA yes or no Patchy Patchy 

10 CFP large drusen 
yes or no 

Patchy Focal 
increased/speckled 

11 CFP GA yes or no Patchy Patchy 

12 CFP large drusen 0-
6 

Patchy Focal 
increased/speckled 

13 OCT PED yes or no Patchy Patchy 

14 CFP large drusen 
other eye 

N/A N/A 

15 OCT large drusen 
other eye 

N/A N/A 

17 OCT Intermediate 
drusen 0-6 

Patchy Focal 
increased/speckled 

17 Symptoms of ARMD Patchy N/A 

18 CFP disc diameters 
of GA 

Patchy Patchy 

Table 8.8 Showing how clinical features are associated with FAF patterns based on an 
Orange Data Mining exploration of the results in the current study.  
 

The columns in Table 8.8 above show agreement that GA and PEDs may be responsible 

for a patchy FAF pattern. There is also partial agreement on the simplified severity score, 

where both tables indicate that a focal increased FAF pattern may associated with a 

higher score. There appears to be disagreement on large/intermediate drusen and 

pigmentary abnormalities, with the current study column indicating a higher likelihood of 

a patchy pattern, with the prediction column a focal increased/speckled pattern. Reticular 

pseudodrusen are associated with a reticular FAF pattern by definition. 
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Summary of results 

Clinical feature Associated FAF pattern 

from both analyses 

Agreement/disagreement 

between current study 

and prediction columns 

Geographic atrophy Patchy agreement 

Pigment epithelial 

detachment 

Patchy agreement 

Simplified severity score focal increased partial agreement 

Large/Intermediate drusen Patchy/focal 

increased/speckled 

disagreement 

Pigmentary abnormalities Patchy/focal 

increased/speckled 

disagreement 

Reticular pseudodrusen Reticular  N/A 

Table 8.9 Summary of clinical findings and associated FAF patterns from the current study. 
 

8.4 Discussion 

 

By studying the inclusion and exclusion criteria from a 2005 study(165) (referred to as 

the “Bindewald study” in this chapter) and the current study, it was possible to identify 

which clinical features may be responsible for certain FAF patterns, and the results of 

this analysis was compared to an alternative method using the ODM Distribution widget 

with data solely from the current study.  

The results indicate that geographic atrophy and pigment epithelial detachments may be 

responsible for a patchy FAF pattern, with a higher simplified severity score (an 

amalgam of large or intermediate drusen and pigmentary abnormalities) being partially 

associated with a focal increased pattern. There appeared to be a discrepancy between 

the two methods with regards to pigmentary abnormalities, with one method indicating 

an association with a patchy pattern and the other a focal increased/speckled pattern. 

The same discrepancy occurred with large and intermediate sized drusen as detected by 

OCT. An association between RPD as detected via CFP and OCT and a reticular FAF 

pattern was also found, based on the ODM exploration of results from the current study.  
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8.5 Conclusions  

 

In summary, the results of this chapter indicate that geographic atrophy and pigment 

epithelial detachments are associated with patchy FAF patterns. Furthermore, there is a 

weaker association between pigmentary abnormalities and large or intermediate drusen 

and a focal increased FAF pattern by virtue of this pattern’s association with an 

increased simplified severity score, which is calculated as an amalgam of these three 

clinical features. A reticular FAF pattern is associated with the detection of reticular 

pseudodrusen by definition, and was also found to be associated with RPD as detected 

via CFP and OCT in the current study. The findings from this chapter indicate that there 

may be a role in clinical optometry and ophthalmology for the greater use of FAF imaging 

for the identification of clinical features.  
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Chapter 9 Principle Component Analysis to analyse CFP, OCT and FAF data 
collected within this study 

 

9.1 Introduction 

 

Principle component analysis (PCA) is a statistical process that enables the reporting of a 

large number of variables using fewer “components” (from now on referred to as “factors”) 

and may be described as a data reduction technique.(209),(210) Essentially, PCA allows the 

researcher to summarise the relationships between variables, by means of these factors and 

factor loadings. Alternatively, the factors may be thought of as being created as a result of 

the collected variables. PCA analysis was considered a useful statistical technique to 

employ as part of this research project, as the relationships between variables could assist 

in elucidating the physiological processes that may be occurring within the retina, that 

ultimately result in an abnormal FAF pattern.  
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9.2 Methods 

 

For Chapter nine of this study, PCA was calculated by two alternative methods:  by ODM 

software and by IBM’s SPSS Statistics (Version 6) program. Each technique has its own 

strengths and weaknesses, with ODM allowing easier manipulation and visual 

representation of the data, and SPSS facilitating a more complete statistical exploration of 

the results. Using two methods also allows for a comparison of the results, enabling 

assessment of the agreement between the two statistical procedures. During this project 66 

variables were collected, 55 of which were used for the PCA analysis after screening out 9 

variables which were associated with FAF imaging itself, as we are attempting to search for 

relationships between variables that are not directly informative of the FAF imaging 

outcomes. Also screened out were the variables “patient number” and “years of smoking 

cessation”, the former being a randomly generated number (and therefore not relevant to the 

analysis) and the latter replaced by “smoking packet years” to allow a less equivocal 

statistical analysis as discussed earlier.  
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9.3 Results  

 

9.3.1 Subject to variables ratio 

 

Subject-to-variables (or instances-to-variables) ratio is a crucial consideration when 

considering PCA, and several authors have suggested guidelines that should be followed 

when planning an analysis. Suhr et al recommend at least 100 cases,(211) with a subjects-

to-variables ratio of no lower than five to one, however, others have suggested that much 

larger sample sizes are required, e.g. Hutcheson and Sofroniou (they suggest between150-

300 cases)(212), and Norusis (at least 300 cases)(213). However, there appears to be a 

consensus in the literature that ratio criteria alone do not offer an accurate guide for the 

researcher, with Guadagnoli and Velicer(214) suggesting that the size of the sample 

depends on the strength of the factors identified, i.e. for weaker relationships larger samples 

are required. Therefore, it is not possible to predict whether the sample size is adequate until 

the PCA has been conducted and the relationship strength established. For the purposes of 

this study the recommendation of Suhr was applied (a subjects-to-variables ratio of at least 

five to one), i.e. 93 cases collected in this project indicated that a maximum of 18 variables 

(93/5 = 18.6) from the total of 55 were selected. Conveniently, ODM contains a “Rank” 

widget, allowing the most informative 18 variables to be selected. However, even within the 

Rank widget, there are several scoring methods. Therefore, a strategy was devised to select 

the scoring method that would provide at least 80% of the variance in the data with the 

lowest number of factors. The value of 80% was selected after reviewing recommendations 

from literature regarding the percentage of variance that needs to be explained by the 

selected factors.(214, 215) This was found to be the “Information Gain” scorer, which 

achieves 83.2% of variance with five factors. The resulting 18 variables were then fed into 

the “PCA” ODM widget and SPSS software to perform the process of PCA. 
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Figure 9.1 Portion of Orange Data Mining Rank widget showing the 18 most important 
variables ranked according to Information Gain. 
 

9.3.2 Initial assumptions regarding the data prior to PCA  

 

Certain assumptions regarding the data need to be made prior to performing PCA. These 

include the absence of outliers, low level of missing data, continuous data and lack of 

excessive multicollinearity. The data was initially manually checked for outliers and missing 

data. ODM continuises categorical variables, with the SPSS Component Correlation Matrix 

checking for excessive multicollinearity. 

 

9.3.3 Factorability of the data 

 

To initially check whether the data was suitable for PCA, the factorability of the data was 

checked by two methods via SPSS: Firstly, from observation of the correlation coefficients, 

and secondly by carrying out the Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin 

(KMO) Test. The results of these observations are shown below: 

1. From the Correlation coefficients Table, of 306 possible correlations (17 times 18), 

158 are > ±0.30. This indicates that the majority of factors (although perhaps not the 

“vast” majority as suggested by Tabachnick and Fidell(216)) are > ±0.30, suggesting 

that the data is indeed factorable.  
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2. Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin Test of Sampling Adequacy 

(KMO) are used to provide complex measures for assessing relationship strengths 

and indicating variables factorability. Bartlett’s test indicates whether or not linear 

correlations exist, whilst the KMO test is a measure of shared variance. In this project 

Bartlett's test of sphericity shows that factor analysis is suitable as the p value is 

statistically significant (i.e. N = 93, Chi squared = 2223.592, p<0.001). The KMO 

tests gives a value of 0.724, i.e. > 0.6, which also indicates that the data is 

factorable. A KMO value of 0.90 to 1.00 is considered marvellous, 0.80 to 0.89 

meritorious, 0.70 to 0.79 middling, 0.60 to 0.69 mediocre, 0.50 to 0.59 miserable and 

0.00 to 0.49 factoring not recommended. Therefore, the KMO value from this study 

falls into the middling category.  

 

In summary, both of the above criteria (the Correlation coefficients and the Bartlett’s test of 

sphericity/KMO tests) indicate that the data is factorable via PCA. 

 

9.3.4 Considering how many factors to retain 

The first factor determines the greatest amount of variance in the data, with subsequent 

factors explaining continually decreasing amounts of variance.(216) The aim of a PCA 

analysis is to select enough factors to adequately describe the data while ignoring factors 

that are not relevant.(217) Caution must be exercised, however, as research has 

demonstrated that it is less detrimental to retain more factors than required than to reject 

factors that are actually useful, but the researcher must also be careful not to retain too 

many factors which can result in weak factor loadings.(215) A solution which only contains 

one or two factors should arouse suspicion, as these may not accurately represent the 

data’s structure.(218),(215) The following three selection methods may be employed to 

decide how many factors to retain: Kaiser’s Criterion, the Scree plot analysis and finally the 

percentage of variance. The three methods are dealt with in greater depth below: 
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9.3.4.1 Kaiser’s criterion: 

 

Every factor will have an eigenvalue – this is a number which describes the quantity of 

variance in the data that can be explained by that factor.(215) The critical eigenvalue that 

will indicate whether a factor should be retained is most commonly calculated using Kaiser’s 

Criterion. This states that if the eigenvalue is greater than or equal to one, then the factor 

should be retained. (219) Several authors, however, have criticised the Kaiser Criterion 

method, reporting that it can lead to over and under-extraction of factors.(217, 220, 221) In 

this study only four factors were found to have an eigenvalue of >1.0. 
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9.3.4.2 Scree plot: 

 

A Scree plot is a graph where the x axis represents the factors with the eigenvalues 

forming the y axis. The bend or elbow in the graph is used to select only those 

factors that occur to the left of the elbow. This technique is, however, somewhat 

subjective, and can lead to an over-extraction of factors.(220) From the Scree plot, it 

was found that 2, 3, or 4 or factors could be retained, depending on the interpretation 

of where the elbow occurs.  

 

 

Figure 9.2 Scree plot taken from SPSS showing Factor (or Component number) on the x 
axis and the Eigenvalue on the y axis.  
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9.3.4.3 Variance explained by the data: 

The advice regarding this property varies according to the different literature, 

however, a consensus suggests that between 75 and 90% of variance should be 

explained by the retained factors.(215, 222) For this project a figure of 80% was 

selected. From the proportion of variance method, both ODM and SPSS agree that 

five factors are required to explain at least 80% of the variance, with both ODM and 

PCA via SPSS finding that five factors explain 83.2% of the data. The table below 

lists the percentages of variance and eigenvalues as calculated by SPSS and ODM 

for one to five factors. 

 

 Cumulative 
percentage of 
variance 
explained 

Cumulative 
percentage of 
variance 
explained 

Eigenvalues 
from SPSS 

Eigenvalues 
from ODM 

Number of factors SPSS ODM  Eigenvalue/18 
= percentage 
of 
variance/100 

Eigenvalue/18 
= percentage 
of 
variance/100 

1 44.1 44.0 7.9 7.9 

2 61.2 60.0 3.1 2.9 

3 71.2 70.2 1.8 1.8 

4 78.1 77.9 1.2 1.4 

5 83.2 83.2 0.9 1.0 

Table 9.1 Showing cumulative percentage of variance explained by SPSS and Orange Data 
Mining per factor retained (rounded to one decimal place) and the corresponding 
eigenvalues for both methods. 
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Figure 9.3 PCA widget output from Orange Data Mining 
 
Graph from ODM’s PCA widget output where the upper line in green shows the cumulative 

variance explained by the selected number of factors, whilst the lower red line is the 

variance explained per factor retained. 

 

9.3.5 Factor retention methods summary 

It has been recommended that several methods of factor selection should be compared, 

before deciding on the number of factors to retain.(219, 221) Following this 

recommendation, Kaiser’s Criterion based on eigenvalues from SPSS suggests four factors 

are retained, the Scree plot, again based on eigenvalues from SPSS, suggests two, three, or 

four factors, and the percentage of variance method suggests five factors from calculations 

by both SPSS and ODM. All the methods employed are therefore in agreement that five or 

fewer factors should be retained. Therefore, for the purposes of this project’s PCA 

calculations, five factors were retained, following the recommendation that it is more 

advantageous to retain an excess of factors than to eliminate too many.(215) However, it 
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has been recommended that the final decision on the factor retention should also be made 

in view of the overall context of the research.(211) 

9.3.6 Factor rotation 

As mentioned in the introduction to this section, PCA looks at the relationships between 

variables, expressed as factors and factor loadings. These are linear relationships, and do 

not have a single solution,(217) but rather an infinite number of alternative solutions or 

“rotations”.(216, 223) Rotation helps to improve interpretation of the results by reducing 

ambiguities that may exist.(224) There are two main types of factor rotation method, 

orthogonal and oblique. If the factors are unrelated, then orthogonal rotation is appropriate, 

however, if relationships exist between the factors, oblique rotation is the option of choice. It 

has been suggested that if the relationships between factors are unknown, then oblique 

rotation should be employed initially. If correlations between factors transpire to be low, then 

a switch to the use of an orthogonal rotation should be made.(217) However, when deciding 

on factor retention, the researcher should again bear in mind the overall context of the 

research when considering the type of rotation technique to use. In this study the SPSS 

Component Correlation Matrix indicated that there is a significant relationship (> ±0.32) 

between factors one and five (-0.477), and therefore it is acceptable to initially use an 

oblique rotation method. To achieve this, the Direct Oblimin method was selected within the 

SPSS program. 
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9.3.7 Interpreting factor rotation results 

 

9.3.7.1 A simple solution 

 

PCA is really a process whereby information is gathered by each step performed, and the 

results must be interpreted by way of both statistical analysis and domain expertise, with the 

latter being more relevant.(225) A “simple” solution is achieved when each factor is 

summarised by a number of variables (ideally three to five(214)) that load strongly onto that 

factor only.(215, 216) 

 

9.3.7.2 Factor rotations 

 

From Table 10.6 in Appendix 3, the first factor in this study is summarised by six variables, 

of which all six strongly load onto factor one (i.e. > 0.70), without any of these six variables 

loading significantly onto any other factor by > 0.40. This satisfies the loading cut-offs as 

suggested by Guadagnoli and Velicer,(214) Tabachnick & Fidell (216) and Garson (222) for 

a “simple” solution. However, if we apply the alternative, lower cut-offs recommended by and 

Tabachnick and Fidell (> 0.32 for cross loading), one variable cross-loads by a significant 

level onto factor four. As the aim of factor rotation is to explain the data in its simplest form, 

the former cut-off levels suggested (i.e. > 0.40) were applied to the other factors, and 

therefore three variables load strongly onto factor two, two variables load strongly onto 

factors three and four and only one variable onto factor five, in all cases with no significant 

cross-loadings. However, three variables, whilst not strongly loaded to any factor, did cross 

load relatively strongly (> 0.40) to more than one factor, these being “CFP simplified severity 

score”, “OCT large drusen other eye” and “CFP drusen large other eye”. It has been 

recommended that if a variable does not have a strong loading to any factor (< 0.30), and is 

not considered an important/essential item conceptually, then it should be removed. 

Furthermore, if the variable appears to be relatively strongly cross-loaded to more than one 

factor by > 0.40 it should also be removed.(221) Once these eliminations have been 

performed, the abridged data should be factored again to fine-tune the solution.(215) It has 

been also been recommended that each factor is adequately loaded to a sufficient number 

of variables (ideally three to five) to be considered a reliable and robust factor. However, the 

researcher must ensure that the variables and the subsequent factors identified can be 

explained in context of the research and prior knowledge of the subject.(211, 225) The 
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following steps were followed by an iterative process, repeating steps two and three until no 

more variable eliminations were required: 

 

1. Eliminate variables with < 0.30 loadings. 

2. Eliminate variables with cross-loadings > 0.40. 

3. Refactor and return to step one until all variable eliminations are exhausted before 

moving on to step four.  

4. Eliminate factors not considered robust (a factor is robust when a sufficient number 

of variables are loaded to it – ideally three to five). 

5. Check results within the context of the research. 

 

By this method, “CFP simplified severity score”, “OCT large drusen other eye” and “CFP 

large drusen in the other eye” were eliminated in the first factor rotation, followed on the 

second factor rotation by “CFP large drusen (0-6)” and “OCT large drusen (0-6)”. These 

variables were all eliminated by virtue of having significant loadings to more than one factor 

(> 0.40). This left, on the third factor rotation, 13 variables, with 12 loading strongly (> 0.70) 

onto a single factor, with four variables loading strongly to factor one, three variables loading 

strongly to factor two, two variables loading strongly onto factors three and four, and only 

one variable loading strongly to factor five. In each factoring, the Component Correlation 

Matrix’s shown in Appendix three indicate that Oblimin rotation is suitable as significant 

relationships (> 0.32) exist between factors one and five in each factoring. 
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9.4 PCA results 

 

PCA results from SPSS revealed the presence of four factors with eigenvalues exceeding 

one (Kaiser’s Criterion). These explained 44.1%, 17.1%, 10.0% and 6.9% of the variance 

respectively, with a cumulative total of 78.1%. For ODM the equivalent figures were similar 

at 44.0%, 16.0%, 10.2% and 7.7% with a cumulative total of 77.9%. However, inspection of 

the scree plot from SPSS revealed a clear break after the first three, four or five factors, 

suggesting the retention of two, three or four factors (with the identification of the elbow in 

the graph being subjective). The percentage of variance method from both SPSS and ODM 

suggested five factors should be retained when 80% was selected as the target variance 

explained by the chosen factors (five factors offer 83.2% of variance according to both SPSS 

and Orange). Therefore, five factors were retained as it is considered less detrimental to 

retain poor factors than to reject useful ones.  

 

Summary below of strong loadings (> 0.70) to each of the first five factors after three factor 

rotations, offering a “simple solution”.  

 

Factor 1 CFP intermediate drusen (0-6), OCT small drusen (0-6), OCT intermediate 

drusen (0-6), OCT RPD yes or no (with the final addition of OCT large drusen (0-6) and OCT 

large drusen (0-6) from a contextual perspective as discussed below). 

Factor 2  CFP disc diameters of GA, OCT disc diameters of GA and CFP GA yes or no.  

Factor 3 CFP disc diameters of pigmentary abnormalities and CFP pigmentary 

abnormalities yes or no. 

Factor 4 OCT large drusen yes or no and CFP large drusen yes or no. 

Factor 5 Patient age. 

 

Of the factors, only one and two are considered “robust” as these have between three and 

five variables strongly loaded to them.(219) 

 

PCA was once again repeated after the three factor rotations with the final 12 variables. The 

percentages of variance for each factor are shown in the table below. Note that only four 

factors are now required to explain > 80% of the variance in the data.  
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 Cumulative % of 
variance 
explained 

Cumulative % 
of variance 
explained 

Eigenvalues 
from SPSS 

Eigenvalues 
from ODM 

Number of factors SPSS ODM Eigenvalue/12 
= percentage 
of 
variance/100 

Eigenvalue/12 
= percentage 
of 
variance/100 

1 38.1 39.0 4.6 4.7 

2 61.0 60.5 2.8 2.6 

3 74.1 73.6 1.6 1.6 

4 82.5 83.4 1.0 1.2 

5 88.9 88.1 0.8 0.6 

Table 9.2 Cumulative percentage of variance explained by SPSS and ODM per factor 
retained (rounded to one decimal place) and the corresponding eigenvalues after three 
factor rotations and eliminations. 
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Figure 9.4 PCA widget output from Orange Data Mining after three factor rotations and 
eliminations 
 
Graph from ODM where the upper line in green shows the cumulative variance explained by 

the final 12 selected of factors, after three factor rotations, whilst the lower red line is the 

variance explained per factor retained. 
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Therefore, the conclusions that can be drawn from PCA, carried out by both SPSS and 

ODM, are that the following variables are responsible for the majority of the variance in the 

data from the current study in descending order: 

 

1. The number of small and intermediate drusen as detected by OCT, the number of 

intermediate drusen as detected by CFP and RPD as detected by OCT. (With the 

final addition of OCT large drusen (0-6) and OCT large drusen (0-6) from a 

contextual perspective as discussed below). This can be considered a robust factor 

and accounts for between 38.1 and 39.0% of variance in the data.  

2. Disc diameters of geographic atrophy as detected by either CFP or OCT or both, and 

the binary finding of the presence or otherwise of geographic atrophy as found by 

CFP. This can be considered a robust factor and accounts for between 21.5 and 

22.9% of variance in the data. 

3. CFP detection of pigmentary abnormalities and CFP disc diameters of pigmentary 

abnormalities. This can be considered a non-robust factor and accounts for between 

13.0 and 13.1% of variance in the data. 

4. The binary finding of the presence or otherwise of large drusen detected by either 

CFP or OCT. This can be considered a non-robust factor and accounts for between 

8.4 and 9.9% of the variance in the data. 

5. Patient age. This can be considered a non-robust factor and accounts for between 

4.7 and 6.4% of variance in the data.  
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Factor and clinical 
feature 
represented 

SPSS % of 
variance explained 

ODM % of variance 
explained 

Average % of 
variance explained 

1. Drusenoid 
changes 

38.1 39.0 38.6 

2. Geographic 
atrophy 

22.9 21.5 22.2 

3. Pigmentary 
abnormalities 

13.1 13.0 13.1 

4. Presence or 
absence of 
large drusen  

8.4 9.9 9.2 

5. Participant 
age 

6.4 4.7 5.6 

Table 9.3 Final percentages of variance for the final five retained principal factors with the 
clinical features they represent. 
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However, in the context of the research we should potentially retain CFP large drusen (0-6) 

and OCT large drusen (0-6) within the “drusenoid” factor one, as these two important 

variables were eliminated in factor rotations by virtue of strong cross-loadings to factor four, 

which, by the use of domain expertise, is to be expected as factor four is associated with the 

binary presence of large drusen detected via either CFP or OCT. These two variables are 

also considered important by virtue of their league table position in the ODM Rank widget 

output which placed them at numbers six and one respectively. This gives a final list of the 

variables responsible for the majority of the variance in the data as: 

 

1. The number of small and intermediate drusen as detected by OCT, the number of 

intermediate drusen as detected by CFP and RPD as detected by OCT, with the final 

addition of CFP large drusen (0-6), and OCT large drusen (0-6) retained contextually. 

Considered a robust factor and accounts for between 38.1 and 39.0% of variance in 

the data.  

2. Disc diameters of geographic atrophy as detected by either CFP or OCT or both, and 

the binary finding of the presence or otherwise of geographic atrophy as found by 

CFP.  Considered a robust factor and accounts for between 21.5 and 22.9% of 

variance in the data. 

3. CFP detection of pigmentary abnormalities and CFP disc diameters of pigmentary 

abnormalities. Considered a non-robust factor and accounts for between 13.0 and 

13.1% of variance in the data. 

4. The binary finding of the presence or otherwise of large drusen detected by either 

CFP or OCT. Considered a non-robust factor and accounts for between 8.4 and 

9.9% of the variance in the data. 

5. Patient age. Considered a non-robust factor and accounts for between 4.7 and 6.4% 

of variance in the data.  

 

9.5 Discussion 

 

Therefore, there are four factors cumulatively explaining > 80% of the variability in the data 

(the fifth being age), with only factors one and two considered robust. However, as 

discussed earlier, we should view the results with caution, as a solution with only one or two 

factors may not accurately represent the data’s structure.(210, 215, 218) With only factors 
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one and two passing the threshold for a robust factor (i.e. three to five variables strongly 

loaded onto these factors)(209, 219), one could conclude that factors three, four and five 

should be ignored, however this depends on the context of the analysis. In this case these 

less robust factors were retained as they may assist, at least in observational terms, in our 

understanding of how the variables interact with one another.  

 

Returning to the initial question of whether the sample size of 93 instances, and the strength 

of the relationships between the variables was adequate for PCA to be carried out, 

Guadagnoli and Velicer(214) state that if four or more variables load strongly (> 0.60) onto 

the factors, as in factor one and factor two from this study, then the results can be 

interpreted regardless of the sample size. Therefore, the results indicate that only those 

variables relating to drusen, and geographic atrophy can, with certainty, be taken as 

important in explaining the variance within the data for this study. Note that using the > 0.60 

(Guadagnoli and Velicer)(210, 214) stipulation, rather than > 0.70,(225) brings the 

“symptoms of ARMD” into a strong loading with factor two, indicating that symptoms are 

associated with geographic atrophy, which would appear plausible with the application of 

domain expertise, as patients with atrophic macular lesions would be very likely to be aware 

of defects within their central visual field.  

 

9.6 Conclusions 

 

The following results are an average of the percentages obtained from analyses via SPSS 

and ODM. It can be concluded that drusenoid changes of all sizes (including reticular 

pseudodrusen) are responsible for the greatest percentage of variance within the data 

(38.6%), followed by geographic atrophy (22.2%), then pigmentary abnormalities (13.1%), 

the presence or absence of large drusen (9.2%) and finally participant age (5.6%). 
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Chapter 10  
 

Chapter three of this study has shown that pharmacologically induced pupillary dilation 

appears to make a significant improvement to the quality of FAF images captured via a 

modified fundus camera, the RS-330 Nidek Retinascan Duo. This finding indicates that in 

most cases, for FAF imaging to be as clinically useful as possible, it should be carried out 

post pupillary dilation. This has implications for both the practitioner and the patient, as extra 

time will be required for the eye examination, and additional tests will be required e.g. Van 

Herrick angle assessment and post dilation IOP measurements, or in some cases another 

visit to the practice. The patient may also be unable to drive for a period of time following the 

eye examination. For busy practitioners, the requirement for pupillary dilation may be barrier 

to effective clinic management, increasing costs and threatening the commercial viability of 

the practice.  

 

Chapter four explored the quality of FAF images captured during the study, relating the 

findings to the measured level of cataract observed by slit-lamp examination. During the 

data analysis process, the images were graded as “good”, acceptable” and “not acceptable”. 

To facilitate the statistical analysis via ODM and SPSS, the three grading boundaries were 

arranged into only two categories: “good” and “not acceptable”. For the first analysis, only 

“good” images were labelled as “good” (the assumption being that these were of high 

quality), with both “acceptable” and “not acceptable” images labelled as “not acceptable”. 

For the second analysis, only “not acceptable” images were labelled as “not acceptable” (the 

assumption being that these were not clinically useful), with both “good” and “acceptable” 

images labelled as “good”.  

 

Therefore, the first analysis was concerned with the level of cataract that would still allow a 

high FAF image quality whilst the second analysis was concerned with what level of cataract 

would degrade the image to such a degree as to be not clinically useful.  

 

From the first analysis it was found that no FAF image was graded as “good” once the 

nuclear sclerotic (NUC) cataract reached a WHO grading of > 1.5 (on a scale of 0.0-3.0 with 

3.0 indicating a dense cataract). For posterior subcapsular (PSC) cataract this figure was > 

1.2 and for cortical (COR) cataract there was no clear cut-off point.  

 

For the second analysis it was found that at a NUC cataract level of approximately 1.9 there 

was a 50% probability of the image being “not acceptable” (i.e. not be clinically useful as 

defined by a novel grading system designed specifically for this study), however, there was 
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no level over which all images collected were “not acceptable”. For COR and PSC cataract 

the levels found were approximately 1.2 and 1.1 respectively for a 50% probability of the 

image being “not acceptable”, with again no clear upper level of cataract over which all 

images collected would be graded as “not acceptable”.  

 

The most common cataract detected in the study was NUC cataract, being present in 71.0% 

of the participants’ study eye. For COR and PSC cataracts the figures were 15.1% and 7.5% 

respectively. The number of participants with COR and PSC cataract in this study was 

relatively small, and so any conclusions drawn with regard to these types of cataract should 

be viewed with caution. The analysis in this Chapter four therefore indicates, with 

reasonable certainty, that: 

 

1. If a patient has a NUC cataract of > 1.5 on the WHO grading scale, then some 

degradation of the FAF image is to be expected (i.e. there is approximately an 85% 

probability that the FAF image will not be of high quality).  

2. There is a 50% probability of the FAF image not being clinically useful once the NUC 

cataract reaches a grading level of 1.9.  

 

The rules of thumb above could help to guide primary care practitioners to decide when FAF 

imaging is likely to be a worthwhile exercise in patients with NUC cataract, and therefore 

likely to add clinically useful information to the examination results.  

 

Chapter five was concerned with the visual comfort levels experienced by participants within 

the study who were exposed to the relatively bright flash of light associated with FAF 

imaging. Of the variables explored, only age was found to be negatively associated with the 

comfort score, with participants registering a comfort score of  3 out of 5 (0 = very 

uncomfortable, 5 = very comfortable) having a mean age of 77.56 years±10.3 years) and 

those with a comfort score of > 3 having a mean age of 70.35 years±9.7 years). This finding 

could lead practitioners to modify the way in which they would manage older patients before 

and after FAF imaging is performed, e.g. explaining the importance of the test and allowing 

more time for patient recovery following the procedure in a safe and comfortable 

environment. Other findings from Chapter five were that a larger pupil size post dilation does 

not have a negative effect on comfort during the FAF acquisition process, and also that 

being a migraine sufferer does not indicate that FAF imaging will be any more uncomfortable 

for the participant than for a non-migraine sufferer. However, it is important to note that 

patients who reported that their migraines were triggered specifically by bright lights (i.e. 
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photosensitive migraines) were excluded from the study. Overall, the FAF acquisition 

process appears to have been well tolerated during the study with no adverse events 

observed, with the mean comfort score for participants < 77 years of age being 4.46±0.80), 

and for those > 77 years of age 3.96±0.90).  

 

Chapter six examined, with the help of artificial intelligence, the variables collected from 

patients during this study. The data was uploaded via a Microsoft Excel spreadsheet into an 

ODM software workflow, with an initial statistical analysis carried out via the Boxplot and 

Distribution widgets. For these analyses, the eight FAF patterns were converted into a 

dichotomous grading system to facilitate statistical calculations. Patterns labelled as normal 

and minimal change were redefined as “normal”, with the remaining patterns of focal 

increased, patchy, linear, lacelike, reticular, and speckled redefined as “abnormal”. The 

widgets indicated a number of trends within the data, showing that an abnormal FAF result 

was positively associated with increased age, the number of packet years of smoking, the 

number of drusen of all sizes but especially large drusen, the simplified severity score, 

pigmentary abnormalities, and the presence of reticular pseudodrusen. An abnormal FAF 

result was not significantly associated with refractive status of the eye (measured via the 

RS-330’s OCT Gullstrand function), nor with having a first degree relative with ARMD. There 

was also no significant association between the pupil size post dilation and the abnormality 

or otherwise of the FAF image result. Many of these findings would be expected, given the 

known associations between age, smoking, drusen number/size and pigmentary 

abnormalities with ARMD, with the only unexpected finding being the lack of evidence for an 

association of an abnormal FAF result for participants having a first degree relative with 

ARMD. The explanation for this could be that patients were poor historians regarding family 

history, or that the sample size was not large enough for the effect size involved.  

 

The following rules of thumb for primary care practitioners, based on these findings, could be 

suggested: 

 

Any of the following six factors indicate a probability of an abnormal FAF result of over 90%: 

 

1. > 50 small drusen in the study eye 

2. > 40 intermediate drusen in the study eye 

3. > 20 large drusen in the study eye 

4. > 92 years of age 

5. > 30 packet years of smoking 
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6. the presence of any pigmentary abnormalities in the study eye 

 

For the presence of RPD the probability figure for an abnormal FAF result is approximately 

80%. 

 

For the next section of Chapter six, machine learners were employed to rank the collected 

variables in order of their importance in predicting an abnormal FAF result. Note that clinical 

variables based on patient history were also included in all the following analyses. Initially 

the Naïve Bayes and Logistic Regression models were selected for this process (as both 

learners are the only ones in the ODM software that link to the useful Nomogram widget), 

with the former being a relatively simple machine learner and the latter more complex. The 

process was carried out using data from CFP alone, and then for data from CFP and OCT 

combined, with the results compared. It was found that the best performance for 

informedness came from hyperparameter fine-tuned Logistic Regression for CFP alone 

(62.1%), with the same machine learner using data from both CFP and OCT combined 

providing the best AUC (0.903). The former result may appear surprising, however, when 

the ranking of variables is studied, this becomes explainable by virtue of the high position in 

the rankings of variables associated with CFP alone, i.e. the Simplified Severity Score 

(calculated only from CFP findings), pigmentary abnormalities and disc diameters of 

geographic atrophy as detected via CFP. When other machine learners were also 

introduced, the extra information extracted via CFP and OCT combined appeared to be 

exploited by the SVM learner, which achieved a sensitivity of 0.882 and a specificity of 0.820 

and the highest overall informedness level of 70.2%. On average, using the seven model 

learners, CFP alone achieved an informedness of 56.3% and an AUC of 0.837. For CFP and 

OCT combined this rose to an informedness of 61.9% and an AUC of 0.854. Therefore, in 

summary, CFP alone achieves, on average across seven model learners, an informedness 

5.6% lower than CFP and OCT combined and an AUC 0.017 lower. This indicates that CFP 

alone may be the only test required to satisfy the practitioner who wishes to gather 

information from patients regarding their likelihood of having an abnormal FAF result, by 

virtue of the similar AUC results compared to CFP and OCT combined, although the 

informedness is somewhat lower.  

Using the Nomogram widget available within ODM software, it was possible to show that 

clinical support tools could be developed that would practitioners to predict the probability of 

an abnormal FAF image result, by using data from CFP and OCT, without having to carry 

out FAF imaging itself using Naïve Bayes and hyperparameter fine-tuned Logistic 

Regression model learners.  
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Another final question was addressed in Chapter six. Could FAF imaging change the 

recommendation of dietary supplementation based on CFP and OCT results? To test this 

theory, an assumption was made that dietary supplementation would be advised if the FAF 

results did not fall into the normal or minimal change categories as outlined by Bindewald in 

2005, but rather into one of the six more extreme patterns. These decisions were then 

compared via ODM to test whether advice based on the presence of large drusen might be 

potentially be changed by performing FAF imaging in this study. It was found that, so long as 

OCT was used to detect large drusen, then no decisions were overturned by FAF imaging, 

however, when CFP was relied upon to detect large drusen, in three cases FAF findings 

would lead a practitioner to recommend supplements when CFP findings would not. This 

may be due to the underestimation of drusen size via CFP compared to OCT; a finding that 

has been found in previous research, most likely due to the superficial enface nature of CFP 

imaging compared to cross-sectional OCT.  

 

Chapter seven analysed the use of unsupervised and supervised transfer machine learning 

to examine image data collected within this study. In this context transfer learning uses 

machine learners already pretrained on images taken from objects not related to the field of 

ophthalmology and then retrains them with data from the study. For unsupervised machine 

learning no human image tagging is used with the machine learners simply detecting 

patterns within the data. For supervised machine learning, the algorithms utilise human 

tagging to learn how to place images into specific categories. Overall the results indicate 

poor levels obtained for informedness and AUC. This may be due to the data within this 

study being “too raw”. Previous ophthalmological studies that achieved greater success with 

transfer learning used heavily pre-processed images, leading to the conclusion that for 

transfer learning to be of practical use within primary care, image pre-processing is a vital 

step and should be integrated into equipment utilised by optometrists.  

 

Chapter eight explored how clinical findings from CFP and OCT are associated with the 

eight different FAF image patterns identified in early ARMD as utilised in this study. Two 

methods were used to elucidate these associations, one based on the percentages of the 

various patterns found in the current and a previous study involving FAF patterns and the 

inclusion and exclusion criteria for each paper. The results from this exploration were 

compared with results from an ODM analysis based solely on data from the current study. 

These analyses indicate that geographic atrophy and pigment epithelial detachments may 

be linked to a patchy FAF pattern, whilst an increased simplified severity score (formed from 

an amalgam of large/intermediate drusen and pigmentary abnormalities) is associated with a 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

350 

focal increased pattern. However, the latter finding is somewhat equivocal as the two 

methods appear to disagree when pigmentary abnormalities and large/intermediate drusen 

are examined separately, with one method (from the current study data alone) linking these 

clinical findings to a patchy pattern and the other (from comparing data from both studies) to 

a focal increased/speckled pattern.  

Conclusions can therefore be drawn that geographic atrophy and pigment epithelial 

detachments appear to be linked to a patchy FAF pattern, with the association of pigmentary 

abnormalities and large/intermediate drusen and specific FAF patterns being less clear cut. 

A higher simplified severity score appears to be linked, partially at least, to a focal increased 

FAF pattern.  

 

Chapter nine on principle component analysis (PCA) subjected 18 variables to analysis via 

two methods, ODM software and IBM’s SPSS statistical program, in order the elucidate the 

principle components (factors) affecting the variability of the data collected in this study. 

Using two methods meant that the benefits of two very different statistical programs could be 

accessed as well as enabling corroboration of the results. SPSS facilitates initial exploration 

of the data to check for factorability via three different methods: inspection of the correlation 

matrix, Bartlett’s test of sphericity and finally the Kaiser-Meyer-Olkin (KMO) test. All three 

methods indicated that the data was factorable, and so PCA was carried out. Five factors 

were retained to ensure that at least 80% of the variance in the data was explained by the 

chosen factors.  

 

Three factors rotations of the initial 18 variables were carried out to leave 12 variables once 

exclusions had been made based on cross loadings between factors and weak loadings to 

factors. The five factors were: 

 

1. Drusenoid changes explaining (on average between ODM and SPSS) 38.6% of the 

variance in the data  

2. Geographic atrophy/Symptoms of ARMD explaining 22.2% of variance 

3. Pigmentary abnormalities explaining 13.1% of variance 

4. Presence or absence of large drusen explaining 9.2% of variance 

5. Participant age explaining 5.6% of variance.  

 

It should be noted that only factors one and two are considered “robust” given the stipulation 

advised by Costello and Osbourne in 2005,(219) i.e. that between three and five variables 

should load strongly onto each factor. Also, it should be borne in mind that solutions with 
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only one or two factors may not adequately explain the data’s structure.(210, 215, 218) 

Domain expertise could, however, lead to an interpretation of the results which includes all 

five of the final factors, given the agreement between the two model learners and the high 

importance ranking of the selected variables for predicting the outcome of the FAF result 

shown in Chapter six. Therefore, in conclusion, drusen of all sizes (including reticular 

pseudodrusen), can be taken to be responsible for the greatest percentage of variability in 

the data (approximately 38.6%), followed by geographic atrophy (22.2%), pigmentary 

abnormalities (13.1%), the presence or absence of large drusen (9.2%) and finally 

participant age (5.6%).  

 

10.2 Final conclusions, clinical implications and impact of this study 

As a result of the work carried out in this study, the following is a list of the clinical 

implications and the impact on the work of clinicians: 

 

1. It is advisable to carry out pharmacologically induced pupillary dilation prior to fundus 

autofluorescence (FAF) imaging via a modified fundus camera-based system. 

2. This study indicates that if the nuclear sclerotic cataract score on the WHO grading 

scale is > 1.5, then there is a high probability (approximately 85%) that the FAF 

image will not be of high quality. If the nuclear sclerotic score is > 1.9, then there is 

approximately a 50% probability that the FAF image will not be clinically useful.  

3. This study indicates that FAF imaging is acceptable in terms of visual/ocular comfort 

to patients, however, comfort levels progressively fall with increasing age.  

4. This study indicates that FAF imaging results can be predicted with an informedness 

of up to 70.2% and an area under the curve of up to 0.903 by using data from patient 

history and colour fundus photography (CFP) combined with data from optical 

coherence tomography (OCT). Also, carrying out FAF imaging is unlikely to alter 

dietary supplementation recommendations from the current method based on the 

detection of large drusen, provided the large drusen size is measured via OCT B-

scan rather than by CFP imaging. There is over a 90% probability of an abnormal 

FAF result in an eye with any of the following: > 50 small, > 40 intermediate, > 20 

large drusen, > 92 years of age, > 30 packet years of smoking, any pigmentary 

abnormalities. If reticular pseudodrusen (RPD) are present then there is 

approximately an 80% probability of an abnormal FAF result.  

5. This study indicates that for transfer learning to be useful in clinical optometric 

practice, pre-processing of images is likely to be required.  
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6. This study indicates that geographic atrophy (GA) and pigment epithelial 

detachments are related to a patchy FAF pattern, whilst the simplified severity score 

is partially associated with a focal increased FAF pattern. RPD are associated with a 

reticular FAF pattern.  

7. This study has indicated that small, intermediate and large drusenoid changes 

(including RPD) appear to be related, and cumulatively explain 38.6% of the variance 

in the clinical data collected in this study. GA and symptoms of age-related macular 

degeneration also appear to be related, explaining 22.2% of the data variance. 

Pigmentary abnormalities explain 13.1% of the variance, presence or absence of 

large drusen explain 9.2% and age explains 5.6%.  

 

10.3 Limitations 

All patients were recruited from a single high-street optometric practice in a relatively 

wealthy area of the UK with poor ethnical diversity. The data from this study was collected 

by RS, an optometrist with primary and secondary care experience, however, the clinical 

grading decisions were not validated by another optometrist or ophthalmologist, except for 

the first 50 images in Chapter three. In particular, the grading of FAF images was a self-

taught skill, using previously published research as a guide. To make the project more 

relevant to primary care clinicians, anatomical markers were utilized rather than 

computerised image analysis tools, however, this introduces the problem of subjective 

interpretation and individual anatomical variation between patients. Where possible, the 

order of images was randomized, and images from the same patient imaged via different 

modalities were graded on different days to avoid decision making bias, although this 

potential for bias cannot be entirely eliminated.  

The comfort analysis was based on a single question involving the visual comfort of the flash 

associated with FAF imaging, however, other reasons for poor comfort, e.g. physical 

positioning could also have been investigated to help to investigate confounding factors.  

In the cataract analyses, the data on cortical and posterior subcapsular cataract suffered 

from a lack of instances and larger sample sizes would have been beneficial.  
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10.3 Future work 

Future work in the field of FAF could benefit from the collection of additional variables not 

recorded within this study including complete and incomplete retinal pigment epithelial and 

outer retinal atrophy (cRORA and iRORA respectively) and hyperreflective foci (HRF). HRF 

are related to hyperpigmentation and the double layer sign, and pigmentary abnormalities 

are strongly related to an abnormal FAF pattern, so recording these subtle features could 

have led to further interesting analyses.  

This study has also indicated that further research may be advantageous in the following 

areas: the toxicity and risks of exposing the human eye to short wavelength blue light during 

retinal imaging, the uses of quantitative FAF for the phenotyping of retinal disease, 

peripheral FAF and its use in the risk profiling of patients and for the detection and 

monitoring of ARMD, FAF image analysis training for clinicians, the role of FAF in the 

monitoring of retinal health with regards to dietary supplementation, the role of FAF in the 

monitoring of retinal sensitivity, the impact of local lipid recycling in the formation of RPD, the 

role of cholesterol lowering medications in ARMD, computer analysis of FAF images and 

retinal image preprocessing. 

 

10.4 A final note on pegcetacoplan 

 

There has been great interest over recent years in medical treatments for slowing the growth 

of geographic atrophy. In the USA, intravitreal (IV) pegcetacoplan (Apellis Pharmaceutical’s 

Syfovre ®) has only recently (17th of February 2023) been approved by the US Food and 

Drug Administration (FDA) for this purpose, and, at the time of writing, applications are 

pending for its deployment within the UK. With this intervention only just having been 

approved, and therefore a new development within the field of FAF, this thesis was not 

planned with the knowledge of pegcetacoplan in mind, and may well have focussed on 

different aspects of FAF if the study was being designed today. For example, the project 

may have centred more on perilesional FAF. The OAKS and DERBY studies,(226) which 

are concerned with the efficacy and safety of IV pegcetacoplan in the treatment of GA, listed 

their inclusion criteria as:  60 years of age, BCVA  24 letters (ETDRS), GA lesion size of  

2.5 and  17.5mm² (may be either foveal or extrafoveal), if the GA is multifocal then at least 

one lesion must be  1.25mm², and finally the presence of perilesional hyper-

autofluorescence. Those subjects who did not demonstrate perilesional hyper-

autofluorescence were excluded from the studies. These criteria highlight the clinical value 

of FAF, and indicate that this imaging modality may become significantly important in 
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primary care optometry over the coming years with the potential availability of IV drugs to 

slow the progression of GA, and FAF findings could therefore become a crucial finding to 

trigger referrals to the hospital eye service. Indeed, one can envisage a time, not in the 

distant future, where medicolegal action could potentially be taken against optometrists who 

do not carry out FAF on a patient who subsequently loses vision as a consequence GA 

expansion.  

 

Appendix 1 
 

Statistical analysis of the comparison of the two graders HB and RS for assessing FAF 

image quality using intraclass Kappa and positive and negative agreement. (This is superior 

to a simple percentage of agreement calculation, as Kappa takes into consideration the 

possibility of an agreement occurring by chance).  

Intraclass Kappa, and positive and negative agreement was used to test the agreement 

between to the two graders. (N=50). 

 

 RS   Total 

HB Good Acceptable Not- 
acceptable 

 

Good 27 (a) 0 (b) 0 (c) 27 (a+b+c) 

Acceptable 4 (d) 4 (e) 1 (f) 9 (d+e+f) 

Not-
acceptable 

1 (g) 6 (h) 7 (i) 14 (g+h+i) 

Total 32 (a+d+g) 10 (b+e+h) 8 (c+f+i) 50 (N) 

Table 10.1 The grading of image quality selected by the two graders HB and RS 

 

N = 50 

 

The observed agreement (Po) 

 = (a+e+i)/N 

= (27+4+7)/50 = 38/50 = 0.76 

 

Standard error of Po (SE(Po)) 

= √ (Po * (1-Po)/N)  

= √(0.76*(1-0.76)/50)  

= √(0.003648)  

= 0.0640 

 



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

355 

95% confidence limits for Po: 

 

Lower limit  

= Po – 1.96*SE(Po)  

= 0.76 – 1.96*(0.0640) 

= 0.76 – 0.1254 

= 0.6346 

 

Upper limit  

= Po + 1.96*SE(Po) 

= 0.76 + 1.96*(0.0640) 

= 0.76 + 0.1254 

= 0.8854 

 

However, how does the agreement improve upon what might be expected by chance alone? 

To answer this, Pe was calculated (the calculation of agreement by chance).  
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Pe  

= (((a+d+g)*(a+b+c)/N + (b+e+h)*(d+e+f)/N + (c+f+i)*(g+h+i))/N))/N 

= ((32*27)/50 + (10*9)/50 + (8*14)/50)/50 

= 17.28 + 1.80 + 2.24 

= 21.32/50 

= 0.4264 

 

Validity is best assessed using intraclass Kappa for dichotomous data. 

 

Calculation of the intraclass Kappa (K) 

 

K 

= (Po-Pe)/(1-Pe) 

= (0.76-0.4264)/(1- 0.4264) 

= 0.5816 
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The same analysis was also carried out via SPSS as shown below. 

 

 

Figure 10.1 SPSS Crosstabulation output 
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The manual calculations from above agree with the Kappa value obtained with IBM’s SPSS 

= 0.582 (i.e. moderate agreement) as shown below in the Symmetric Measures Table below. 

 

Figure 10.2 SPSS Chi-squared Test results and Symmetric Measures output 
Confidence limits for intraclass Kappa: 

 

Standard error (SE) for intraclass Kappa  

= SE(K) 

= √((Po*(1-Po))/(N*(1-Pe)²)) 

= √((0.76*0.24))/(50*(0.5736)²)) 

= √(0.1824/16.4508) 

= √(0.01109) 

= 0.1053 

 

95% confidence limits for Kappa: 

 

Lower limit  

= K – 1.96* SE(K) 

= 0.5816 – 1.96*0.1053 

= 0.5816 – 0.2064 

= 0.3752  

(minimal agreement) 
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Upper limit 

= K + 1.96*0.1053 

= 0.5816 + 1.96*0.1053 

= 0.5816 + 0.2064 

= 0.7880 

(moderate agreement) 
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Interpreting Kappa values:  

 

Kappa Value Level of agreement 

0.0 – 0.20 None 

0.21 – 0.39 Minimal 

0.40 – 0.59 Weak  

0.60 – 0.79  Moderate 

0.80 – 0.90 Strong 

Over 0.90 Almost perfect 

Table 10.2 Table of Cohen’s kappa and level of agreement (227) 

 
Summary of Kappa test findings:  

 
For comparison of the two graders, intraclass Kappa has a 95% confidence range 

from 0.3752 to 0.7880. These values have a range from minimal to moderate 

agreement between the two graders for FAF image quality.  

 

A known problem with intraclass Kappa is that the same test might yield different values 

depending on the proportions of positive and negative cases in the sample. It has been 

suggested that this problem can be overcome if positive agreement (PA) (analogous to 

sensitivity) and negative agreement (NA) (analogous to specificity) are calculated instead of 

Kappa. However, for calculation of PA and NA, a 2 by 2 grid is required.  

 

To enable calculation of PA and NA, figures from Table 10.1 were amalgamated to produce 

a 2 by 2 grid. If agreement was not absolute, e.g. one grader selected “good”, whilst the 

other selected “acceptable”, this was considered to be a partial positive agreement of 50%, 

whilst if one grader selected “acceptable” and the other “not acceptable”, this was 

considered to be 50% negative agreement. If both graders chose “acceptable”, this was 

considered to be both 50% positive and negative agreement. Table 10.3 shows how these 

amalgamated figures were calculated. 
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 RS acceptable RS not-acceptable 

HB acceptable 31 (A) = (a + b/2 + d/2 + e/2) 

= 31 

0.5 (B) = (c + b/2 + f/2) = 0.5 

HB not-acceptable 6 (C) = (g + d/2 + h/2) = 6 12.5 (D) = (i + f/2 + h/2 + 

e/2) = 12.5 

Table 10.3 Amalgam of decision for graders HB and RS creating a 2 by 2 grid to enable 
calculation of PA and NA.  

 

N = 50  

 

The positive agreement (PA) and its 95% confidence limits are calculated: 

 

PA 

= (2*A)/((2*A) + B + C) 

= (2*31)/((2*31) + 0.5 + 6) 

= 62/68.5 

= 0.9051 

 

SE(PA)  

= (√((4*A)*(C + B)*(A + B + C)))/((2*A) + B + C)² 

= (√((4*31)*(6 + 0.5)*(31 + 0.5 + 6)))/((2*31) + 0.5 + 6)² 

= (√((124*6.5)*(36.5)))/(68.5)² 

= (√((806)*36.5)/4692.25 

= √(29419)/4692.25 

= 171.5197/4692.25 

= 0.03655 

 

Lower limit of PA  

= PA – 1.96*SE(PA) 

= 0.9051 – 1.96*0.03655 

= 0.9051 – 0.071638 

= 0.8335 

 

Upper limit of PA 

= PA + 1.96*SE(PA) 
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= 0.9051 + 1.96*0.03655 

= 0.9051 + 0.071638 

= 0.9767 
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The negative agreement (NA) and its 95% confidence limits are calculated: 

 

NA  

= (2*D)/((2*D) + B + C) 

= (2*12.5)/((2*12.5) + 0.5 + 6) 

= 25/31.5 

= 0.7937 

 

SE(NA) 

= (√((4*D)*(C + B)*(D + C + B)))/((2*D) + B + C)² 

= (√((4*12.5)*(6 + 0.5)*(12.5 + 6 + 0.5))))/(2*12.5) + 0.5 + 6)² 

= (√((50)(6.5)*(19)))/(31.5)² 

= √((6175)/992.25 

= (78.5812)/992.25 

= 0.07919 

 

Lower limit of NA 

= NA – 1.96*SE(NA) 

= 0.7937 – 1.96*0.07919 

= 0.7937 – 0.1552 

= 0.6385 

 

Upper limit of NA 

= NA + 1.96*SE(NA) 

= 0.7937 + 1.96*0.0719 

= 0.7937 + 0.1409 

= 0.9346 

 

Summary of PA and NA findings by the method described above from Table 10.3: 

 

For the comparison of the two graders, PA has a 95% confidence range from 0.8335 to 

0.9767, whilst NA has a 95% confidence range from 0.6385 to 0.9346. Therefore, PA 

ranges from a strong to almost perfect agreement whilst NA ranges from a moderate 

to strong agreement.  
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An alternative approach is to only allow for absolute agreement between graders, i.e. to 

define positive agreement as both graders grading the image as “good”, and negative 

agreement as both graders grading the image as “not acceptable”. This would also lead to 

the 2 by 2 grid shown below in Table 10.4 below which shows only absolute agreement, 

from Table 10.1, between graders HB and RS, creating a 2 by 2 grid, which enables 

calculation of PA and NA by an alternative method from that set out above in Table 10.3. 

 

 RS acceptable RS not-acceptable 

HB acceptable 27 (a) 0 (c) 

HB not-acceptable 1 (g) 7 (i) 

Table 10.4 Absolute agreement between HB and RS. 

 

N = 35 

  

The positive agreement (PA) and its 95% confidence limits are calculated: 

 

PA 

= (2*a)/((2*a) + c + g) 

= (2*27)/((2*27) + 0 + 1) 

= 54/55 

= 0.9818 

 

SE(PA) 

= √((4*a)*(g + c)(a + c + g))/((2*a) + c + g)² 

= √((4*27)*(1)*(28))/((2*27) + 0 + 1)² 

= √(108)*(28)/(54 + 1)² 

= √(3024)/(3025) 

= 54.9909/3025 

= 0.01818 

 

Lower limit of PA 

= PA – 1.96*SE(PA) 

= 0.9818 – 1.96*0.01818 

= 0.9818 – 0.03563 

= 0.9462 
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Upper limit of PA 

= PA + 1.96*SE(PA) 

= 0.9818 + 1.96*0.01818 

= 0.9818 + 0.03563 

= 1.0174  

= recorded as 1.  

 

The negative agreement (NA) and its 95% confidence limits are calculated thus: 

 

NA 

= (2*i)/((2*i) + c + g) 

= (2*7)/((2*7) + 0 + 1) 

= (14)/14 + 0 + 1) 

= 14/15 

= 0.9333 

 

SE(NA) 

= (√((4*i)*(c + g)*(c + g + i)))/((2*i) + c + g)² 

= (√((4*7)*(0 + 1)*(0 + 1 + 7)))/((2*7) + 0 + 1)² 

= (√((14)*(1)*(8)))/((14 +0 + 1)² 

= (√112)/(15)² 

= 10.5830/225 

= 0.04704 

 

Lower limit of NA 

= NA – 1.96*SE(NA) 

= 0.9333 – 1.96*(0.04704) 

= 0.9333 – 0.09220 

= 0.8411 

 

Upper limit of NA 

= NA + 1.96*SE(NA) 

= 0.9333 + 1.96*(0.04704) 

= 0.9333 + 0.09220 

= 1.0255 
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= recorded as 1. 

 

Summary of PA and NA findings by the alternative method shown above in Table 

10.4: 

 

For the comparison of the two graders, PA has a 95% confidence range from 0.9642 to 

1, whilst NA has a 95% confidence range from 0.8411 to 1. Therefore, both PA and NA 

range from a strong to an almost perfect agreement. 

 

Therefore, in final summary, for comparison of the two graders HB and RS, the Kappa 

value indicates minimal to moderate agreement, however, to take account of the 

number of positive and negative cases within the sample, PA and NA were also 

calculated by two alternative methods. The first method indicated a PA of strong to 

almost perfect agreement, whilst NA gave moderate to strong agreement. The second 

method indicated strong to almost perfect agreement for both PA and NA.  
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Appendix 2 

 

Statistical analysis for the comparison of the quality of FAF images taken from 25 eyes pre 

and post dilation according to each grader using the McNemar test for repeat 

measurements.  

 

Grader HB before dilation after dilation 

good 9 18 

acceptable 6 3 

not-acceptable 10 4 

Total 25 25 

Table 10.5 Quality of FAF images from the first 25 participants graded by HB 

 

Grader RS before dilation after dilation 

good 11 21 

acceptable 7 3 

not-acceptable 7 1 

Total 25 25 

 
Table 10.6 Quality of FAF images from the first 25 participants before and after dilation for 
grader RS 
 

Manual calculation of the McNemar test: 

 

Again, as with positive and negative agreement, the McNemar test relies on a 2 by 2 grid, so 

a strategy was devised to reduce the 3 by 3 grid to a 2 by 2 grid as shown in Table 10.7 

below. This was done by recording both “good” and “acceptable” images as “acceptable”, 

and “not acceptable” images as “not acceptable”, thereby creating a dichotomous system of 

grading.  
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Grader HB  Before dilation Before dilation 

  acceptable not-acceptable 

After dilation acceptable 15 (a) 6 (b) 

After dilation Not acceptable 0 (c) 4 (d) 

Table 10.7 Showing dichotomous grading of the FAF images from the first 25 participants 
before and after dilation for grader HB 

 

X (McNemar test statistic) 

= (b-c)²/(b + c) 

= (6-0)²/(6+0) 

= 36/6 

= 6 

p = 0.03125 (exact p-value binomial test), therefore the result is statistically significant at the 

5% level and so it appears likely that FAF images are significantly improved after dilation. 

Therefore, for grader HB, it is possible to conclude that pupil dilation does make a significant 

difference to the quality of FAF images obtained. 
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Figure 10.3 SPSS screenshot of calculation of McNemar test statistic for comparison of pre 
and post dilation FAF images for grader HB which corroborates the manual calculation. 
 

Grader RS  Before dilation Before dilation 

  acceptable not-acceptable 

After dilation acceptable 18 (a) 6 (b) 

After dilation not-acceptable 0 (c) 1 (d) 

Table 10.8 Showing dichotomous grading of FAF images from the first 25 participants before 
and after dilation for grader RS. 
 
Χ (NcNemar test statistic) 

= (b-c)²/(b + c) 

= (6-0)²/(6 + 0) 

= 36/6 

= 6 
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p = 0.03125 (exact p-value binomial test), therefore the result is statistically significant at the 

5% level and it appears likely that FAF images are likely significantly improved after dilation. 

Therefore, for grader RS, it is possible to conclude that pupil dilation does make a significant 

difference to the quality of FAF images obtained. 
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Figure 10.4 SPSS screenshot of calculation of McNemar test statistic for comparison of pre 
and post dilation FAF images for grader RS which corroborates the manual calculation. 
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Appendix 3 

 

Details of the principle component analysis factor rotation process from SPSS. 
 

First factor rotation: 

 

 

Figure 10.5 Component correlation Matrix from SPSS for the first factor rotation 
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Figure 10.6 Pattern Matrix from SPSS for the first factor rotation 
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Second factor rotation: 

 

 

Figure 10.7 Component correlation Matrix from SPSS for the second factor rotation 
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Figure 10.8 Pattern Matrix from SPSS for the second factor rotation. 
  



R J Smyth, DOptom Thesis, Aston University, 2023 
 
 

376 

 

Third (and final) factor rotation: 

 

 

Figure 10.9 Component correlation Matrix from SPSS for the third (and final) factor rotation. 
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Figure 10.10 Pattern Matrix from SPSS for the third (and final) factor rotation 
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Appendix 4 

 

18 top ranking variables for explaining the variance within the data for FAF imaging 

normality/abnormality. 

 

Grading of drusen number throughout this study (0-6) indicates: 0 = no drusen, 1 ≤ 10, 2 ≤ 

20, 3 ≤ 30, 4 ≤ 40, 5 ≤ 50, 6 > 50.  

 

OCT large drusen (0-6) 

CFP simplified severity score  

OCT large drusen present yes or no 

CFP disc diameters of pigmentary abnormalities 

CFP pigmentary abnormalities yes or no 

CFP large drusen (0-6) 

CFP large drusen yes or no 

OCT intermediate drusen (0-6) 

OCT large drusen presence other (fellow) eye yes or no 

Patient age 

CFP large drusen presence other (fellow) eye yes or no 

CFP disc diameters of GA 

OCT small drusen (0-6) 

Symptoms of ARMD 

OCT reticular pseudodrusen presence yes or no 

CFP intermediate drusen (0-6) 

OCT disc diameters of GA 

CFP GA yes or no 
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