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A B S T R A C T   

Physical fatigue has been recognized as a serious health and safety risk among construction workers. As a result, 
numerous studies have endeavored to monitor/predict it using physiological measures. While the results are 
promising, their methodologies seem inappropriate. First, many studies utilized inappropriate benchmarking 
methods for physical fatigue monitoring. Importantly, a few of them utilized physical exertion scales as a sur-
rogate for physical fatigue benchmarking. Second, many of them collected data in highly structured tasks in 
controlled environments. To assess these potential flaws, this research monitored fourteen construction workers’ 
fatigue onsite by gathering physiological measures and fatigue data simultaneously. The results show that while 
the physical exertion scale was on average moderately correlated with a valid physical fatigue scale (average 
correlation coefficient 0.65), correlation coefficients varied widely among workers with the lowest of 0.05 and 
the highest of 0.89. This variation could be attributed to numerous factors including nature of the task, pacing 
and breaks during work, and individual factors. This might suggest that the physical exertion scale cannot serve 
as a good surrogate for physical fatigue. Additionally, the results found that workers’ physiological measures 
were weakly correlated to fatigue than previous laboratory studies. Overall, this study contributes to the body of 
knowledge by highlighting the methodological issues in the previous studies related to physical fatigue moni-
toring using physiological measures and the need to re-evaluate the usefulness of the measures, entailing 
appropriate methods. More importantly, the current study has challenged the status quo for monitoring/pre-
dicting fatigue using physiological measures.   

1. Introduction 

1.1. Background and importance 

Due to poor health and safety records, the construction sector is 
suffering all over the world. Out of all the occupational fatalities that 
occurred in the European Union in 2020, more than one in five 
happened in the construction industry (Eurostat 2020). The situation is 
similar in the US, where the construction industry recorded the highest 
number of fatalities among all industries (around 20%), while con-
struction workers constitute only 4.8% of the total workforce (BLS 

2016). There are a number of causal factors that can lead to construction 
accidents. These factors include but are not limited to problematic or 
lack of risk management, lack of personal protection equipment (PPE), 
improper methods and material, site constraints, inadequate training, 
hazards communication, personal factors such as fatigue, poor safety 
climate, production pressures and work related unpredictability (Has-
lam et al. 2005; McKay et al. 2003; Mitropoulos et al. 2005). Among 
these factors, fatigue has been identified as a major contributor to 
construction site accidents as it could increase the chance of making 
errors, impair proprioception, slow reaction time, and negatively impact 
hand and eye coordination (Haslam et al. 2005; Murray and Thimgan 
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2016; Williamson et al. 2011). Fatigue is common among construction 
workers as their work is often characterized by (1) extended work shifts 
without enough rest, (2) harsh weather and working conditions, (3) 
confined workspaces, and (4) physically demanding tasks (Anwer et al. 
2021b; Aryal et al. 2017; Umer et al. 2020). Continuing work under such 
conditions exposes construction workers to the risk of physical fatigue 
development. As such, the wide prevalence of physical fatigue among 
construction workers is extensively reported in the published literature. 
For example, a 2017 survey conducted in the US reported that 65% of 
construction workers suffered from fatigue during work (National Safety 
Council 2018). Similarly, 59% of US construction workers reported 
experiencing fatigue every day or on some days during an early survey 
conducted between 2010 and 2011 (Zhang et al. 2015). Likewise, 75% 
of the construction workers in the UK and Irish construction industries 
are of the opinion that worker fatigue in construction is a serious issue 
that should be mitigated (PBC Today, 2019). 

Akin to the prevalence of fatigue among construction workers, the 
ill-effects of fatigue are also well documented. For example, fatigue is 
known to decrease immunity (Natelson et al. 2002) and may lead to 
chronic fatigue syndrome (Afari and Buchwald 2003). Similarly, fatigue 
is strongly linked to the risk of developing work-related musculoskeletal 
disorders (Umer et al. 2018a). Research has also indicated that fatigue 
can cause poor quality of work and decreased productivity (Abdelhamid 
and Everett 2002). Additionally, fatigue is also known to negatively 
impact standing and dynamic balance, which could lead to fall accidents 
among construction workers (Hsiao and Simeonov 2001; Umer et al. 
2018c; Umer et al. 2018b). In an experimental study, construction 
workers were found to be excessively involved in errors and mistakes 
once fatigued by repeated construction tasks (Fang et al. 2015). 
Recently, a study found that fatigue is associated with 37% of variability 
in the recognition of hazards and 28% of safety risk perception (Namian 
et al. 2021). Accordingly, many of the accident causation models have 
incorporated fatigue as a major accident causing factor (McKay et al. 
2003; Mitropoulos et al. 2005). Moreover, around 33% of occupational 
injuries and illnesses involving absenteeism from work were related to 
fatigue and overexertion in the US construction industry (BLS 2015). 
Similarly, a study in the building construction industry found fatigue to 
be one of the major causes of work-related injuries among workers 
(Adane et al. 2013). For older employees in particular, fatigue is a more 
serious problem since they are more likely to develop fatigue due to 
declines in physical capability (Kenny et al. 2008), muscle mass 
(Thomas 2010), and cardiac output (Fitzgerald et al. 1985). Given the 
widespread prevalence and detrimental effects of fatigue, proactive fa-
tigue monitoring and fatigue management have become “a need of the 
hour” for the construction industry. 

1.2. Problem statement 

Fatigue can be defined as the inability to continue an activity at a 
desired level due to physical or mental exhaustion (Hallowell 2010). 
Based on this definition, fatigue can be physical or mental. Physical 
fatigue is usually attributed to continuing labor intensive and physically 
demanding tasks without insufficient rest periods. Therefore, it can be 
defined as a failure to retain the physical capacity to carry on a task 
optimally (Techera 2017). On the other hand, mental fatigue can be 
defined as mental exhaustion associated with lower motivation, 
inability to continue comprehension and reacting to information, a 
decrease in attentiveness, and a sense of weariness (Boksem and Tops, 
2008). Besides being classified as physical or mental, fatigue can be 
categorized as either acute or chronic, depending on the consequences. 
Fatigue, which lasts temporarily and can be managed by providing 
sufficient rest and time to recover, can be termed as acute fatigue. In 
contrast, fatigue whose conditions and manifestations do not improve 
with rest is known as chronic fatigue (Techera 2017). The current study 
is focused on acute physical fatigue and refers to it while mentioning 
fatigue throughout the manuscript, unless explicitly specified otherwise. 

Given the aforementioned importance of fatigue management 
among construction workers, numerous studies have focused on fatigue 
monitoring and management. Traditionally, questionnaires were the 
primary tool to assess fatigue because they were inexpensive, easy to 
administer and did not require any technological instrument for mea-
surement (Anwer et al. 2021b). While they were helpful in fatigue 
comprehension among various construction trades, questionnaires 
could not be deployed for proactive real-time fatigue management as 
they are invasive (i.e., interrupt the ongoing work) and impractical for 
simultaneous fatigue monitoring of multiple workers (Anwer et al. 
2021b). Accordingly, with advances in sensing technologies, wearable 
physiological sensors have been advocated for real-time fatigue moni-
toring as literature suggests that physiological measures are strongly 
correlated with fatigue development (Aryal et al. 2017; Nicolò et al. 
2017). Thus, numerous studies have endeavored to build statistical and 
machine learning models to automate and predict fatigue with a high 
degree of accuracy (Antwi-Afari et al. 2023; Anwer et al., 2023; Aryal 
et al. 2017; Jebelli et al. 2019; Sadat-Mohammadi et al. 2021; Umer 
et al. 2020). Although these studies have demonstrated high accuracy 
for fatigue prediction among construction workers, they have two major 
methodological flaws, including the use of inappropriate scales to 
benchmark physical fatigue and the use of laboratory experiments. 
These issues are elaborated in detail in the next section. As such, these 
potential flaws make the feasibility of physiological measures to monitor 
construction workers’ fatigue questionable. 

1.3. Study purpose 

While the previous section explained the problem, the purpose of the 
current study is to validate the identified shortcomings via a fatigue 
monitoring study among construction workers on a job site and perform 
in-depth analysis on the data collected. This could then be used to 
compare fatigue induced changes in physiological measures with pre-
vious research and guide the development of better fatigue monitoring 
tools for construction workers. Overall, the current study is expected to 
contribute by informing construction practitioners and researchers 
about methodological issues with previous studies on the topic as well as 
guiding future studies for better fatigue management among construc-
tion workers. 

2. Critical review of previous studies 

Physiological studies on fatigue development among construction 
workers can be broadly classified into two categories: (1) descriptive 
studies and (2) predictive studies. Descriptive studies have focused on 
better understanding changes in physiological measures while workers 
continue their job tasks and fatigue develops. In contrast, predictive 
studies have endeavored to develop models to predict fatigue using 
physiological measures. Since, not all descriptive studies focusing on 
physiological monitoring of construction workers are directly related to 
physical fatigue, only the most relevant studies have been discussed 
below. That is followed by review of all predictive studies focusing on 
fatigue using physiological measures along with their shortcomings. 

2.1. Descriptive studies 

Descriptive studies on physiological monitoring of construction 
workers include studies by Abdelhamid and Everett (2002), Bates and 
Schneider (2008), Chang et al. (2009), Li et al. (2009), Roja et al. (2006), 
and Wong et al. (2014). Abdelhamid and Everett (2002) monitored 
energy expenditure, oxygen uptake, and heart rate (HR) among 100 
construction workers of various trades. The study found that between 20 
and 40% of the workers routinely exceed prescribed limits for physio-
logical thresholds, leaving them vulnerable to fatigue development and 
its ill effects. Similarly, a study on road construction and repairing 
workers found physiological demands and metabolic energy 
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consumption to be higher as compared to other construction tasks (Roja 
et al. 2006). Besides, a study of physiological demands and fatigue under 
thermally stressful environments reported that construction workers can 
cope with such environmental conditions without adverse physiological 
effects if they remain properly hydrated and are allowed to self-pace 
their work (Bates and Schneider 2008). In another study, Chang et al. 
(2009) studied HR and perceived fatigue among various trade workers 
on a multistory building construction project. The study found that 
scaffolders, steel fixers, and form workers experienced a relatively 
higher level of fatigue and HR as compared to others, such as concrete 
workers. Similarly, Wong et al. (2014) found a difference in physio-
logical and perceptual demands of steel-bar benders and fixers. As 
indicated by these previous studies, different trade workers could have 
varying impacts on physiological parameters. Another study reported 
that varying ergonomics factors and working frequency for the same 
trade could also lead to different physiological parameters (Li et al. 
2009). Besides, Chan et al. (2012) studied the recovery of physiological 
measures among rebar workers at the end of their work-shift working in 
a harsh working climate. 

2.2. Predictive studies 

Recently, research related to fatigue management among construc-
tion workers has been more focused on physiological sensing based fa-
tigue monitoring and prediction because such fatigue prediction models 
can be deployed for real-time fatigue monitoring and other fatigue 
management endeavors (Umer et al. 2020). Consequently, many studies 
have undertaken analysis of physiological measures to study their 
relation with fatigue development (Anwer et al. 2020; Anwer et al., 
2021a; Umer 2020) or built machine learning models to predict fatigue 
(Anwer et al., 2023; Aryal et al. 2017). Table 1 has presented the sum-
mary of these studies. One of the limitations of many of these studies is 
that they have relied on Borg-20 scale for benchmarking fatigue. Borg- 
20 scale is a measure of physical exertion intensity and was primarily 
designed for physical exertion monitoring during continuous exercises 
such as bicycle ergometer or treadmill (Borg 1998). For these continuous 

and well-structured exercises, Borg-20 scale and fatigue may correlate 
well (Micklewright et al. 2017). Whereas, on the other hand, construc-
tion tasks are quite different from exercises like cycling, involving self- 
paced work in many instances and entail varying patterns of physical 
effort to accomplish tasks. In such working environments, physical 
exertion and fatigue are not necessarily the same. For example, a worker 
who has just begun his material handling shift might not be fatigued at 
all, but could be perceiving moderate physical exertion due to his work- 
tasks. Similarly, after finishing his work-shift, he might not feel physical 
exertion at all but could feel highly fatigued. Accordingly, it can be 
argued that these studies could have used better benchmarking tools 
such as Ratings of Fatigue (ROF) and Swedish Occupational Fatigue 
Inventory (SOFI) scales, which are valid and reliable tools to measure 
fatigue (Åhsberg et al. 1997; Micklewright et al. 2017). 

The studies that which analyzed physiological measures to study 
their relation with fatigue development entailing Borg-20 scale include 
Umer (2020), Anwer et al. (2020) and Anwer et al. (2021a). Specifically, 
Umer (2020) compared traditional physiological measures (i.e., HR, 
breathing rate, and skin temperature (ST)) against numerous heart rate 
variability (HRV) metrics for fatigue prediction. HRV is analysis of 
variation in time between successive heartbeats. It is a measure of the 
autonomic nervous system of a human body that regulates many phys-
iological processes such as heart rate and blood pressure. Although HRV 
has traditionally been utilized as a diagnostic tool in clinical settings for 
evaluating cardiovascular health, more recent research conducted in 
sports and occupational contexts has revealed the potential of HRV 
related changes to serve as valuable indicators for monitoring training 
and physical workloads. Such monitoring can help to prevent negative 
consequences resulting from excessive training or workloads (Dong 
2016). The study by Umer (2020) found that traditional physiological 
measures and HRV metrics (such as mean of beat-to-beat interval and 
approximate entropy) were significantly correlated with fatigue and 
were able to statistically discriminate among various fatigue levels (i.e., 
low, medium, high, and very high). Although the study was useful, 
several limitations are notable. First, it was conducted in an indoor 
environment, unlike actual construction sites. Second, Umer’s (2020) 

Table 1 
Comparison of fatigue monitoring studies.  

Study Physiological Measures Fatigue 
Measure 

Participants Environment Approach Accuracy Major Limitations 

Umer (2020) HR, breathing rate, skin 
temperature, HRV metrics 

Borg-20 
scale 

Non- 
construction 
workers 

Simulated 
indoor 

Correlation 
analysis 

N/A Conducted exploratory study only 
without delivering a model to 
predict/monitor fatigue; used Borg-20 
RPE scale used as fatigue measure 

Anwer et al. 
(2020) 

HR, breathing rate, skin 
temperature, electrodermal 
activity 

Borg-20 
scale 

Non- 
construction 
workers 

Simulated 
indoor 

Correlation 
analysis 

N/A Same as above 

Anwer et al. 
(2021a) 

HR, breathing rate, skin 
temperature 

Borg-20 
scale 

Apprentice 
construction 
workers 

Construction 
site 

Correlation 
analysis 

N/A Same as above 

Aryal et al. 
(2017) 

HR, skin temperature, 
electrical activity of the brain 

Borg-20 
scale 

Construction 
workers 

Simulated 
indoor 

Machine 
learning 
classification 

82% Used Borg-20 RPE scale used to 
benchmark fatigue 

Anwer et al., 
2023 

HRV metrics Borg-20 
scale 

Construction 
workers 

Construction 
site 

Machine 
learning 
classification 

93.50% Same as above 

Umer et al. 
(2020a) 

HR, breathing rate, skin 
temperature, HRV metrics 

Borg-20 
scale 

Non- 
construction 
workers 

Simulated 
indoor 

Machine 
learning 
classification 

96.70% Focused on measuring physical 
exertion instead of fatigue, Borg-20 
RPE scale for benchmarking 

Umer et al. 
(2022) 

HRV metrics Borg-20 
scale 

Non- 
construction 
workers 

Simulated 
indoor 

Machine 
learning 
classification 

80–97% Same as above 

Jebelli et al. 
(2019) 

photoplethysmogram, 
electrodermal activity, skin 
temperature 

Physical 
demands 

Construction 
workers 

Construction 
site 

Machine 
learning 
classification 

90% Focused on measuring physical 
demands instead of fatigue 

Sadat- 
Mohammadi 
et al. (2021) 

Respiration features Physical 
demands 

Non- 
construction 
workers 

Simulated 
indoor 

Machine 
learning 
classification 

93.40% Same as above 

Note: HR = Heart Rate; HRV = Heart Rate Variability. 
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study was comprised of structured laboratory experiments with the same 
repetitive task. Third, the participants were not construction workers. 
Last but not least, it used Borg-20 scale of ratings of perceived exertion 
(RPE) (Borg 1982), as a fatigue measure. Likewise, Anwer et al. (2020) 
also studied the correlation between fatigue and various physiological 
measures. Their study also indicated the usefulness of physiological 
measures to monitor fatigue. Like other previous studies, Anwer et al. 
(2020) also employed non-construction workers, used the Borg-20 scale 
as a surrogate for fatigue, and conducted simulated indoor construction 
tasks. To counter some of the limitations, Anwer et al. (2021a) re- 
evaluated the use of physiological measures to monitor fatigue by con-
ducting a correlation analysis on a construction site involving apprentice 
workers. Their study validated previous laboratory-based studies. 
However, this study also used Borg-20 RPE scale as a surrogate for fa-
tigue monitoring. 

As aforementioned, taking a step further, several studies have built 
statistical or machine learning models to predict fatigue levels for con-
struction workers. Among them, Aryal et al. (2017) employed several 
physiological measures to predict fatigue among construction workers, 
entailing an experimental setup. The study achieved an accuracy of 82% 
by combining features from physiological measures and using machine 
learning classification algorithms. However, the major limitations of the 
study include the use of a simulated indoor environment and the use of 
Borg-20 scale for fatigue monitoring. Recently, Anwer et al. (2023) 
conducted a study to predict fatigue levels among construction workers 
using HRV metrics only (time-domain, frequency domain, and non- 
linear). The rationale for using HRV was that it requires only a single 
HR sensor, and such an approach can eliminate the need for multiple 
sensors for several physiological measures. Their study achieved an 
accuracy of up to 93.5% for fatigue classification. Despite the contri-
butions, their study suffers from the same methodological flaw as the 
study by Aryal et al. (2017), i.e., using the Borg-20 scale for fatigue 
benchmarking. 

Besides, a couple of studies focused on monitoring and predicting 
physical exertion instead of fatigue, arguing that while physical exertion 
is strongly correlated to fatigue while exercising (Micklewright et al. 
2017), it can be hypothesized that case will be similar for construction 
workers as well. Physical exertion can be defined as the subjective 
perception of the intensity of a physical activity, which describes the 
level of effort and strain perceived by an individual during the activity 
(Borg 1998). Specifically, Umer et al. (2020) utilized multiple features 
from physiological sensors and built machine learning models to predict 
physical exertion (benchmarked using the Borg-20 scale) during manual 
material handling tasks. Building on it, Umer et al. (2022) explored 
using HRV metrics only to predict physical exertion. Although the re-
ported accuracies varied from 80% to 97% depending on numerous 
factors, both studies were conducted in a simulated indoor environment 
and entailed non-construction participants. Also, it is noteworthy that 
while the methodology of these studies was appropriate for physical 
exertion prediction, it is inappropriate to assume similar accuracy for 
construction workers’ fatigue because fatigue is a distinct concept from 
physical exertion as explained above in this section. 

Last but not least, a couple of studies (Jebelli et al. 2019; Sadat- 
Mohammadi et al. 2021) built machine learning models to predict 
construction workers’ physical demands (defined as energy required for 
a person to complete a job task (Jebelli et al. 2019)) instead of fatigue. 
These studies argued that fatigue among construction workers is asso-
ciated mainly with the demands of these tasks. As such, monitoring 
physical demand could help manage the fatigue of construction workers. 
Specifically, Jebelli et al. (2019) used various physiological features to 
predict energy expenditure required for various construction activities. 
Those activities were benchmarked for energy expenditure using Energy 
Expenditure Prediction Program (EEPP) software. Similarly, Sadat- 
Mohammadi et al. (2021) wholly relied on respiration features to predict 
physical demands. While the experiments and analyses validated ap-
proaches for physical demand assessment in both of these studies, the 

wisdom of adopting such an approach for fatigue management is ques-
tionable. Consider an example where a task requires moderate effort to 
be performed. Let’s suppose that the task’s energy expenditure 
requirement is X based on EEPP software. Regardless of the time, every 
time that task is performed, energy expenditure computed using EEPP 
software will be X, hence the intensity of that task will remain medium 
(Fig. 1(a)). In contrast, when that task is repeated for a prolonged 
duration of time, fatigue is expected to develop over time. Initially, the 
worker performing the task will perceive the fatigue to be low/medium, 
but with time, the fatigue level will increase, eventually to a level where 
the worker will no more be able to perform that task anymore (Fig. 1 
(b)). 

Given the limitations of the aforementioned studies, their ecological 
validity is questionable. Accordingly, the current study conducted a 
fatigue monitoring study on a construction site as elaborated below to 
(1) assess the validity of Borg-20 scale for fatigue monitoring among 
construction workers and (2) to compare temporal fatigue induced 
changes in physiological measures with previous studies that were 
conducted in controlled environments, and (3) perform in-depth data 
analysis to better guide future fatigue monitoring/prediction studies. 

3. Methodology 

Fig. 2 illustrates the overview of the methodology adopted for this 
study. Fourteen construction workers (all male) were recruited based on 
convenience sampling belonging to different trades working on the 
repair and maintenance of a utility tunnel at a large public facility. 
Table 2 provides details about the workers. Among them, seven were 
involved in manual material handling, three were jackhammer opera-
tors, two were form workers, one was a mason and another one was a 
concrete worker. The workers had an average age of 37.1 (±9.2) years 
with a maximum of 53 and a minimum of 24 years. The workers’ 
average experience was 13.1 (±7.7) years. The most experienced of 
them had 30 years of experience, whereas the least experienced worker 
had three years of experience. The average body mass index of the 
workers was 25.0 (±5.0) kg/m2 with a maximum of 37.3 and a mini-
mum of 18.1. Prior to data collection, all of the participants were briefed 
about the experimental protocol, its purpose, and methodology, and 
their consent was solicited. Further, all participants were asked to report 
if they have any underlying health conditions such as cardiac, pulmo-
nary, or musculoskeletal disorders, and if they have been diagnosed with 
psychological issues. Before data collection, each worker was asked to 
wear a wristband housing sensors as explained in the following section. 
The average data collection time for each worker was 3.2 h, with a 
maximum of 4.5 h and a minimum of 3 h. 

3.1. Instrumentation 

All workers were asked to wear an Equivital E4 wristband prior to 
data collection. E4 wristband incorporates multiple sensors, including 
electrodermal activity (EDA), skin temperature (ST), and photo-
plethysmography (PPG), which can monitor heart rate (HR) and heart 
rate variability (HRV) of the wearers. Numerous studies have found that 
E4 wristband is a valid tool for physiological monitoring in different 
environments (Choi et al. 2019; McCarthy et al. 2016; Menghini et al. 
2019; Schuurmans et al. 2020). While workers’ physiological data were 
continuously collected using the wristband, workers’ perception of fa-
tigue and exertion were monitored every ten to fifteen minutes using 
ratings of fatigue (ROF) scale and Borg-20 scale, respectively. ROF scale 
is a valid and reliable instrument to monitor perceived fatigue under 
various circumstances (Micklewright et al. 2017). It consists of an 11- 
point scale starting from 0 to 10, where 0 indicates absence or mini-
mal fatigue, whereas 10 represents maximal fatigue and exhaustion. The 
study preferred ROF scale over other substitutes such as SOFI scale 
because SOFI requires the worker to respond to five different sub-scales 
in order to computer overall fatigue score. In comparison, ROF scale is 
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much simpler and more pragmatic to solicit level of perceived fatigue. 
Besides, Borg-20 scale measures ratings of perceived exertion (RPE) on a 
scale ranging from 6 to 20, where 6 indicates no exertion at all and 20 
implies the maximal exertion a person can undergo (Borg 1982). For 
later data labelling purposes, ROF and RPE measurements were time-
stamped during data collection using a button on an E4 watch. 

3.2. Data processing and analysis 

The signals were collected at a frequency of 4 Hz. A low-pass filter 
with a cutoff frequency of 1.5 Hz was used to remove noises associated 
with non-EDA components such as contact artifacts (Jebelli et al. 2019). 
Additionally, to reduce the high-frequency noises brought on by 
workers’ motion and electromagnetic interference, a moving average 
filter with a four-data-point window was further used (Lee et al. 2021). 
Afterwards, EDA signals were decomposed into phasic and tonic 

components. Phasic components refer to transient, short term events 
that take place in the presence of distinct environmental cues, such as 
pre-event cognitive processes including anticipation and decision- 
making. Phasic components often manifest as sharp spikes in EDA sig-
nals, sometimes known as “peaks”. The tonic component, on the other 
hand, refers to the EDA component that varies in the absence of any 
specific discrete environmental event or external stimulation (Schmidt 
and Walach 2000). EDA signals were decomposed into phasic and tonic 
components using an algorithm provided by Greco et al. (2016). The 
other signals, such as HR, HRV, and ST, were screened manually and 
were not filtered further by any algorithm. However, all of the gathered 
data (EDA, phasic component of EDA, tonic component of EDA, HR, 
HRV, and ST) was segmented for further analysis. Specifically, data was 
segmented with a frame size of 120 data points (30sec) with an overlap 
of 50% (60 data points). As a result, 10,434 data sets were obtained 
along with their ROF and RPE labels. For each segment (30 sec) of each 

Fig. 1. Comparison between physical demand based and fatigue based work tasks benchmarking.  

Fig. 2. Overview of methodolody adopted.  

Table 2 
Workers’ Characteristics.  

Worker Age (years) Weight (kg) Height (m) BMI (kg/m2) Experience (years) Trade 

1 50 82  1.70  28.31 22 Labor 
2 35 65  1.63  24.60 10 Mason 
3 50 76  1.73  25.48 30 Labor 
4 42 65  1.63  24.60 8 Labor 
5 24 59  1.80  18.14 3 Labor 
6 28 70  1.78  22.14 12 Formworker 
7 27 62  1.63  23.46 4 Jackhammer operator 
8 40 70  1.68  24.91 14 Concrete worker 
9 33 72  1.68  25.62 8 Labor 
10 26 58  1.73  19.44 6 Labor 
11 53 60  1.65  22.01 25 Labor 
12 43 108  1.70  37.29 15 Jackhammer operator 
13 31 58  1.68  20.64 10 Jackhammer operator 
14 38 102  1.75  33.21 16 Formworker  
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physiological measure (including EDA, phasic component of EDA, tonic 
component of EDA, HR, HRV, and ST), average was computed for 
further statistical analysis. 

To choose appropriate statistical tests, first, the data were evaluated 
for normality. The analysis revealed that the data was non-normal. 
Accordingly, statistical tests for non-normal data were chosen. After-
wards, the correlation between ROF and RPE was evaluated using 
Kendall’s tau-b correlation coefficient to see whether RPE can serve as a 
surrogate for ROF or not. Further, to explore the temporal changes in 
physiological parameters linked to fatigue and to compare them against 
previous laboratory based studies, first, correlation between ROF and 
the physiological measures was studied using Kendall’s tau-b correlation 
coefficient. Secondly, physiological measures showing significant cor-
relation were further explored using Kruskal-Wallis Test against ROF. 
Lastly, physiological measures demonstrating significant differences in 
values for ROF were further analyzed pairwise, using Mann-Whitney U 
tests with Bonferroni correction. For all statistical tests, statistical sig-
nificance was set at p less than 0.05. 

4. Results 

The correlation between ROF and RPE for each worker is shown in 
Table 3 and depicted pictorially in Fig. 3. Minimum correlation coeffi-
cient was found to be 0.05 for worker 4, and the maximum was 0.89 for 
workers 1 and 9, whereas the average correlation coefficient was 0.65. 
Overall, for 12 workers, the correlation coefficient was found to be 
greater than 0.5. Further, as evident from Fig. 3, the workers demon-
strated varied responses to ROF and RPE. For example, the minimum 
ROF at the start of data collection was 0 for workers 8, 9, and 11, and the 
maximum was recorded to be 3 for workers 1, 10, 12, and 14. Further, 
the minimum and maximum ROF at the end of data collection were 
noted to be 5 for workers 7 and 9 for workers 1 and 12, respectively. 
Likewise, the range of ROF also varied across the workers, with a min-
imum of 4 for workers 7 and 10, and a maximum of 8 for workers 11. 
Akin to ROF, RPE also varied across workers. The minimum RPE at the 
start was noted to be 7 for workers 2, 8, 10, 11, and 12, while the 
maximum RPE at the start was found to be 15 for worker 1. RPE at the 
end of data collection ranged from a minimum of 14 for worker number 
4 and a maximum of 19 for worker 1. Worker 7 demonstrated the 
minimum RPE range throughout the data collection of 3, whereas the 
highest was 11, demonstrated by worker 11. 

Results for the correlation between ROF and physiological measures 
can be seen in Table 4. Correlation analysis revealed that all physio-
logical measures were significantly correlated with ROF. Among all 
physiological measures, two were negatively correlated (HR and HRV), 
whereas the remaining were positively correlated. The absolute largest 
correlation coefficient was found between ROF and EDA (0.33), and the 
minimum was − 0.02 between ROF and HR. Fig. 4 depicts mean values 
for each physiological against each rating of fatigue across workers, 
which can assist in further understanding changes in physiological 
changes with respect to change in ROF. As evident from the figure, not 
all of the workers experienced the whole range of ROF. For instance, 
only four workers experienced 0 ROF. Similarly, only two workers 
responded with 9 ROF. Consequently, average physiological responses 
for these ROF were noted for a limited number of workers. Additionally, 
while Table 4 indicates a significant correlation between all physiolog-
ical measures and ROF, the trend varied across physiological measures 
and participants. For example, it is difficult to observe a trend between 
HR and ROF (Fig. 4(d)), whereas it is more evident in the case of HRV 
(Fig. 4(e)) and ST (Fig. 4(f)). Similarly, for a physiological measure, 

individual responses varied. For instance, although Table 4 indicates a 
positive correlation between EDA and ROF, EDA data for worker 7 
depicted an inverse relation with ROF, whereas the same for worker 5 
was linear and zigzag for worker 1. 

Since all physiological measures depicted significant correlation, 
they were further explored using Kruskal-Wallis tests, for which results 
are depicted in Table 5. The results found that all of the physiological 
measures were able to differentiate discrete ratings of fatigue. Accord-
ingly, the results for each physiological measure were further explored 
for each pair of ROF using Mann-Whitney U tests with Bonferroni 
correction. These results are presented in Table 6. To make the results 
easier to comprehend, the table only shows the ROF combinations for 
each physiological measure that could not be distinguished statistically 
by the respective physiological measures. For instance, “H” in the second 
column of Table 6 indicates that ROF 0 could not be distinguished from 
ROF 6, 8, and 9 based on heart rate values. Overall, results from the table 
show that EDA was the best physiological measure as it was not able to 
distinguish only 4 combinations of ROF, followed by ST, tonic compo-
nent of EDA, phasic component of EDA, HRV, and HR, with a number of 
indistinguishable ROF combinations of 7, 9, 11, 13, and 21, respectively. 
Notably, ROF 9 could not be distinguished from ROF 8 based on the 
values of any physiological measure. To aid better understanding of 
results for pairwise comparisons, box plots for all physiological mea-
sures against distinct ROF are depicted in Fig. 5. The figure shows that 
the indistinguishable ROF combinations for various physiological mea-
sures could be attributed to a non-distinct distribution of physiological 
measure values for the respective ROF combinations. 

5. Discussion 

The current study aimed to validate the assumptions in the previous 
studies by conducting a study on fatigue evaluation on a construction 
site and comparing the physiological data with previous studies that 
conducted indoor experiments with structured tasks. The results indi-
cate that although several studies have used Borg-20 RPE scale as a 
measure of fatigue (Anwer et al. 2020, 2021a, 2023; Aryal et al. 2017) or 
have associated fatigue primarily with physical exertion measured using 
Borg-20 scale (Umer 2020; Umer et al. 2020, 2022), Borg-20 scale might 
not be a suitable surrogate for a valid fatigue monitoring scale. Despite 
showing a moderate average correlation of 0.65 (Table 3), it varied 
widely among the workers. For example, the correlation coefficient was 
as small as 0.05 for worker 4 and as large as 0.89 for worker 1 and 9. 
Besides, Fig. 3 also reveals some interesting observations. For example, 
generally, it can be observed that variation in ROF followed corre-
sponding changes in RPE. However, exceptions can be noted. Specif-
ically, for worker 3, ROF remained at level 6 for observation numbers 9 
to 12, whereas during the same time period, RPE increased from level 15 
to level 17. In contrast, for worker 7, RPE remained around level 14 from 
observation numbers 6 to 14, whereas the corresponding ROF increased 
from level 2 to level 5. This variability between RPE and ROF can be 
explained by the fact that each of them are monitoring or measuring 
separate phenomena. While RPE gauges how hard a physical job feels, 
ROF measures decreasing capacity to deal with physical stressors and 
stimuli. Accordingly, in certain situations, such as steady exercise on 
cycle ergometer, RPE and ROF can be well correlated, but not after 
exercise during resting recovery phase (Micklewright et al. 2017). In 
contrast to ergometer cycling, construction tasks are not that well- 
structured and may involve a variety of work patterns during a work- 
shift. At some instances, workers may have to continuously exert mod-
erate effort throughout the shift, which might lead to good correlation 

Table 3 
Correlation between ratings of fatigue (ROF) and ratings of perceived exertion (RPE) for each worker.  

Worker # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Average 

Kendall’s tau-b  0.89  0.59  0.7  0.05  0.52  0.87  0.4  0.75  0.89  0.77  0.78  0.62  0.66  0.55  0.65  
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between RPE and ROF. Whereas, in some cases, the work could be 
involving intermittent bouts of exertion, short breaks while waiting for 
materials to arrive, which could lead to instant change in RPE without a 
substantial change in ROF, resulting in poor correlation between in RPE 
and ROF. This can be observed in Fig. 3 as well where sharp changes in 
RPE during a time period, were found to be smooth for ROF for the 
corresponding time period. Examples of this phenomenon can be noted 
for worker 2, from observation number 9 to 12, worker 8, from obser-
vation 1 to 3, and worker 12, from observation number 3 to 7. Addi-
tionally, inter-individual differences in perception of exertion and 
fatigue levels, as well as individual fitness levels may also lead to varying 
RPE ROF correlation across participants. Taken together, these results 
suggest that while RPE is moderately correlated with ROF on average, 
Borg-20 is not an appropriate surrogate for fatigue monitoring and 
appropriate fatigue scales should be utilized, such as ROF scale used in 
this study. 

Comparison of statistical results of this study and previous laboratory 
based studies indicates that the correlation between physiological 
measures and fatigue is not as strong for construction workers on actual 
construction sites as compared to laboratory based studies. For example, 
Umer (2020) reported correlation coefficients of 0.89 and 0.61 for ST 
and HR against RPE, respectively. These correlation coefficients are 

comparatively much larger than those reported in this study (Table 4). 
This might be attributed to the design of experiments in laboratory 
based studies where tasks are very well structured and are repeated with 
almost no change in task intensity and other conditions. Accordingly, 
these experiments elicit specific patterns of steady fatigue accumulation 
and change in physiological measures. Such patterns can be observed in 
laboratory based studies (for example, see Fig. 5 in work by Aryal et al. 
(2017) and Figure 7 in work by Umer et al. (2020)). Therefore, in these 
studies, although intuitively, statistical tests could easily differentiate 
among various fatigue levels, and machine learning models could clas-
sify fatigue with high accuracy. In contrast, tasks performed on con-
struction sites are substantially more complex and dynamic than 
laboratory based tasks, resulting in less prominent and definite patterns 
of fatigue accumulation and physiological measures (Fig. 4). Conse-
quently, it could be difficult for statistical tests to differentiate among 
fatigue levels based on physiological measures, and machine learning 
models might not achieve as high accuracy for construction workers 
working on actual job sites as achieved in previous laboratory studies. 

Two possible factors might explain lower absolute values of physi-
ological measures recorded in this study as compared to previous 
studies. First, this study entailed experienced construction workers, 
whereas previous studies involved young non-construction participants 
(Umer 2020; Umer et al. 2020). Experienced construction workers are 
expected to be physically stronger and resistant than non-construction 
counterparts and might have acclimatized their bodies as per the re-
quirements of their daily jobs. Accordingly, the mean HR for each 
worker computed against each ROF level was rarely seen to exceed 105 
beats per minute in the current study (Fig. 4). In comparison, a previous 
study (Umer et al. 2020) entailed young non-construction participants 
for a physical exertion led fatigue study and reported mean HR sub-
stantially higher (up to 140 beats per minute) than the current study 
(Fig. 6 (Umer et al. 2020)). As such, the wide range of HR recorded in 
that study accentuated the ability of physiological measures for fatigue 
monitoring. Second, previously conducted studies involved structured 
tasks providing the participants lesser control over the tasks which they 

Fig. 3. Ratings of fatigue (ROF) and ratings of perceived exertion (RPE) observed for all workers.  

Table 4 
Correlation analysis between ratings of fatigue (ROF) and each physiological 
measure.  

Correlation parameters 
\phsyiological 
measures 

EDA P- 
EDA 

T- 
EDA 

HR HRV T 

Kendall’s tau_b  0.33  0.24  0.22  − 0.02  − 0.17  0.25 
Significance  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01 

Note: EDA = electrodermal activity, P-EDA = phasic component of EDA, T-EDA 
= tonic component of EDA, HR = heart rate, HRV = heart rate variability, T =
skin temperature. 

W. Umer et al.                                                                                                                                                                                                                                   



Safety Science 166 (2023) 106242

8

were performing. However, generally, the construction workers have 
more control over their tasks allowing them to self-pace their work, 
specially in cases, where they believe continuing with the current pace 
will sooner leave them with unsustainable fatigue level to continue 
work. This might have also led to lower physiological measures. 

Besides, another interesting observation in Table 4 is that correla-
tions are statistically significant despite their absolute values being 
small (less than 0.35). Specifically, in the case of HR, it was found to be 
as small as − 0.02 yet significant. This might be related to large datasets 
as used in this study, where a small value of the correlation coefficient 
can be statistically significant. Therefore, the statistical significance of a 
correlation should not be confused with the strength of the correlation. 

Analysis of Kruskal-Wallis (Table 5) and post-hoc Mann-Whitney U 
tests (Table 6) also reveals interesting observations. While all of the 
physiological measures could distinguish between different levels of 
fatigue (Table 5), not all of them were equally good at distinguishing 

between all possible pairs of ROF. Interestingly, HRV was not able to 
detect differences among many ROF pairs shown on the left side of 
Table 6 (represented by V in Table 6), whereas ST, P-EDA, and T-EDA 
were generally unable to discriminate ROF pairs on the right side of 
Table 6 (represented by T, P, and C, respectively). This suggests that 
fatigue monitoring among construction workers based on a single 
physiological measure, as suggested by some recent studies (Anwer et al. 
2023; Umer et al. 2022), might not yield high accuracy and that 
multimodal physiological monitoring is more appropriate for accurate 
fatigue monitoring. Another interesting observation from Table 6 is that 
none of the physiological measures could differentiate between ROF 
levels 8 and 9. This might be attributed to the fact that data collection in 
the current study was not controlled, resulting in limited datasets for 
ROF levels 8 and 9 (Fig. 6). As explained above, generally, construction 
workers tend to have more autonomy over their work tasks, which en-
ables them to regulate their pace and take breaks when necessary. This is 

Fig. 4. Mean value for each physiological measure against each rating of fatigue. Note: a,b,c,d,e, and f represent graphs for electrodermal (EDA) activity, phasic 
component of EDA, tonic component of EDA, heart rate, heart rate variability, and skin temperature, respectively. 

Table 5 
Kruskal-Wallis tests for physiological measures.  

Physiological measures/ Test parameters EDA P-EDA T-EDA HR HRV T 

Test Statistic 2344.67 1735.65 1304.28 154.42 1291.88 1495.1 
Degree of Freedom 9 9 9 9 9 9 
Significance <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  

Table 6 
Rating of fatigue combinations that physiological measures could not differentiate.  

ROF/ROF 0 1 2 3 4 5 6 7 8 

0          
1 V         
2 V HV        
3 V HV EHVCP       
4 V HV HP T      
5  H H  H     
6 HV HV HV E HV EH    
7  H H H   TCP   
8 H      TCP TCP  
9 H  P CP HCP  HTCP TCP EHVTCP 

Note: ROF = Rating of fatigue, V = Heart rate variability, H = Heart Rate, E = Electrodermal activity (EDA), C = Tonic component of EDA, P = Phasic component of 
EDA, T = Skin temperature. 
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particularly important in situations where they feel that continuing at 
their current pace would lead to excessive fatigue and make it difficult 
for them to continue working. As a result of this self-pacing, there might 
be limited instances where workers suffer from high levels of fatigue. 

Proactive fatigue monitoring is imperative for construction workers’ 
fatigue management as it can assist in several ways. For example, it can 
enable automatic fatigue monitoring as a part of fatigue management 
programs as recommended by relevant health and safety bodies such as 
Health and Safety Executive and Occupational Safety and Health 
Administration (HSE (2022), OSHA (2022)). Similarly, fatigue 

monitoring can improve the practice of fatigue risk assessment as it can 
help better comprehend individual responses to varied tasks and 
working conditions. Likewise, it can assist in real-time monitoring of 
construction workers who are more vulnerable to physical fatigue (e.g., 
patients with long-COVID) or working on fatigue critical tasks (e.g., 
prolonged working in harsh environments) to enable intervention before 
workers are found to be consistently working with a high level of fa-
tigue. Last but not least, in the longer run, data gathered through such 
monitoring could enhance evidence based fatigue related policy-making 
for construction workers (Umer et al. 2020). 

Limitations 
Despite many research studies presenting possible technologies/so-

lutions for fatigue monitoring, construction industry is yet to see a 
promising solution. The current study is a step in this direction. By 
critically evaluating the previous studies on the topic and evaluating 
their assumptions via a physiological measures-based fatigue moni-
toring study among construction workers, the current study has high-
lighted the problems with previous studies. Specifically, the current 
study underscored the use of the right benchmarking tool for fatigue 
monitoring. Additionally, the study has revealed that the pattern of fa-
tigue accumulation and associated changes in physiological measures 
are quite different for construction workers working on site as compared 
to controlled laboratory experiments entailing construction workers or 
non-experienced participants. Accordingly, it is paramount to re-access 
accuracy related parameters of physiological measures based machine 
learning models to predict or monitor fatigue among construction 
workers. Although intuitively, relatively weak correlation between 
physiological measures and fatigue benchmark reported in this study as 
compared to previous studies indicates that physiological measures 
based machine learning models for construction workers in uncontrolled 
environments might not prove to be as accurate as reported by previous 
studies. 

In addition to the aforementioned future work, it is also recom-
mended that future studies evaluate more features (i.e., time domain, 

Fig. 5. Box plots for physiological measures against distinct ratings of fatigue Note: a,b,c,d,e, and f represent plots for electrodermal (EDA) activity, phasic 
component of EDA, tonic component of EDA, heart rate, heart rate variability, and skin temperature, respectively. 

Fig. 6. Number of datasets for each rating of fatigue.  
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frequency domain, and other transformations) to find out whether they 
can be better predictors of fatigue or not, given that the current study 
only focused on the mean values of the physiological measures. Addi-
tionally, it will be worthwhile to explore the relationship between fa-
tigue and physiological measures for a prolonged time duration. While 
the current study gathered physiological data for each worker for 
approximately a work shift (three to four hours), future studies should 
endeavor to collect data for entire days, weeks, and, if possible, for 
months. This might help better understand fatigue variation among 
construction workers along with corresponding changes in physiological 
measures. Additionally, this may also substantiate the usefulness of 
physiological measures to monitor fatigue for a prolonged duration of 
time. Last but not the least, the current study gathered data from a 
limited number of construction workers from different trades due to 
limited time and resources. Although, they had varied age, experience 
and BMI, future studies should confirm the results of this study with a 
larger sample of construction workers with further diverse trade, age, 
experience and BMI groups. 

6. Conclusion 

Fatigue monitoring is imperative for managing fatigue among con-
struction workers. Recent studies have demonstrated that physiological 
monitoring based machine learning models can help achieve real-time 
fatigue monitoring. The current study is a step further in that direc-
tion and has made several contributions to the body of knowledge. First, 
the study has identified and elaborated on methodological loopholes in 
previous fatigue monitoring studies, which were not previously high-
lighted. Secondly, by conducting an experimental study on a construc-
tion site with construction workers, the current study found that the 
Borg-20 scale is not an adequate surrogate for acute physical fatigue 
monitoring among construction workers. Accordingly, the accuracy 
parameters of machine learning models reporting the usability of 
physiological measures to predict fatigue need to be reassessed using an 
appropriate methodology. Third, the study has highlighted that the 
correlation between physiological measures and fatigue is weaker 
compared to previous studies that were conducted in controlled envi-
ronments with well-structured construction tasks. Fourth, our in-depth 
data analysis indicates that a single heart rate variability sensor might 
not yield high accuracy for fatigue monitoring among construction 
workers, and multimodal physiological monitoring is more appropriate 
for accurate fatigue monitoring. Overall, the study provides valuable 
insights for researchers and practitioners that could help develop more 
reliable and accurate tools for proactive fatigue monitoring among 
construction workers. 
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