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ABSTRACT: Background: Despite advances in
next generation sequencing technologies, the identifi-
cation of variants of uncertain significance (VUS) can
often hinder definitive diagnosis in patients with com-
plex neurodevelopmental disorders.
Objective: The objective of this study was to identify
and characterize the underlying cause of disease in a
family with two children with severe developmental
delay associated with generalized dystonia and episodic
status dystonicus, chorea, epilepsy, and cataracts.
Methods: Candidate genes identified by autozygosity
mapping and whole-exome sequencing were charac-
terized using cellular and vertebrate model systems.

Results: Homozygous variants were found in three
candidate genes: MED27, SLC6A7, and MPPE1.
Although the patients had features of MED27-related
disorder, the SLC6A7 and MPPE1 variants were func-
tionally investigated. SLC6A7 variant in vitro over-
expression caused decreased proline transport as a
result of reduced cell-surface expression, and
zebrafish knockdown of slc6a7 exhibited developmen-
tal delay and fragile motor neuron morphology that
could not be rescued by L-proline transporter–G396S
RNA. Lastly, patient fibroblasts displayed reduced
cell-surface expression of glycophosphatidylinositol-
anchored proteins linked to MPPE1 dysfunction.
Conclusions: We report a family harboring a homozy-
gous MED27 variant with additional loss-of-function
SLC6A7 and MPPE1 gene variants, which potentially
contribute to a blended phenotype caused by multilocus
pathogenic variants. © 2022 The Authors.Movement Dis-
orders published by Wiley Periodicals LLC on behalf of
International Parkinson and Movement Disorder Society

Key Words: MED27; SLC6A7; MPPE1; status
dystonicus; dystonia

Next-generation sequencing technologies have signifi-
cantly improved the identification of new genetic dis-
eases. Among others, the National Institute for Health
and Care Research (NIHR) BioResource, Deciphering
Developmental Disorders, and 100,000 genomes pro-
jects have pioneered seminal research, securing diagno-
ses for more than 6000 patients and driving the
discovery of more than 200 new neurodevelopmental
disorders.1-3 It is estimated that a genetic diagnosis can
be identified for up to 60% of patients with develop-
ment disorders.4

Despite these genetic advances, a significant propor-
tion of children with neurodevelopmental disorders
remain undiagnosed, and diagnosis is achieved in only
20% of patients with dystonia5; this reflects the current
limitations of exome and genome sequencing and the
challenges in determining the pathogenicity of variants
of undetermined significance.5

We sought to investigate a consanguineous family
with a genetically unresolved neurodevelopmental dis-
order characterized by severe global developmental
delay, progressive dystonia and epilepsy. In this family,
we identified homozygous variants in three genes:
MED27, encoding the Mediator Complex Subunit
27 protein; SLC6A7, encoding the brain-specific L-
proline transporter (PROT); and MPPE1, encoding
Metalloproteinase 1 (PGAP5), an intracellular trans-
porter of glycophosphatidylinositol (GPI)-anchored
proteins (GPI-APs).
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Subjects and Methods

See Supplementary Methods for details.

Results
Clinical Characterization Shows a Complex

Neurodevelopmental Phenotype with a Severe
Hyperkinetic Movement Disorder, Epilepsy, and

Cataracts
Two siblings born to consanguineous parents (Fig. 1A)

presented similarly with a complex neurodevelopmental
disorder (see Supplementary Results). Both had infantile
hypotonia with progressive generalized dystonic and
choreiform movements that were refractory to medical
treatment. Both had episodic status dystonicus requiring
intensive care. Both children developed focal epilepsy
by age 4 years, required lensectomy for cataracts in
mid childhood, and had gastrointestinal dysmotility.
Neither achieved the ability to sit unsupported or com-
municate. On clinical examination, both had distinc-
tive facial features, microcephaly, significant axial
hypotonia, generalized dystonia, torticollis, intermit-
tent opisthotonus and distal choreoathetosis (Fig. 1B,
Videos S1 and S2).
Early brain magnetic resonance imaging was sim-

ilar for both, showing minimal underdevelopment
of the white matter and cerebellar hypoplasia with
a small vermis (Fig. 1C). The older sibling (II:1)
had repeat neuroimaging at 10 years that showed
symmetrical bilateral atrophy of the striatum asso-
ciated with signal changes suggestive of gliosis, as
well as frontal-predominant cerebral volume loss
(Fig. 1C).

Molecular Genetic Analysis Identifies
Candidate Gene Variants in MED27, SLC6A7,

and MPPE1
Homozygous variants were identified in three candidate

genes (MED27, SLC6A7, and MPPE1) from exome
sequencing of patient II:2 combined with single-nucleotide
polymorphism (SNP) genotyping (see Supplementary
Results). The MED27 variant NM_004269.3; c.839C>T
(p.Pro280Leu) affects a highly conserved amino acid
(Fig. S1A) and has previously been reported in patients
with similar disease phemonology.6 The SLC6A7 variant
NM_014228.4: c.1186G>A (p.Gly396Ser) affects a
highly conserved amino acid, both throughout species
and among other SLC6 transporters (Fig. S1B). The
variant is known to genomic databases (Table S4) but
has not been previously reported in homozygous
state. The MPPE1 variant NM_023075.5: c.985A>T
(p.Arg329*) is predicted to eliminate 67 amino acid

residues from the C-terminus of PGAP5 (Fig. S1C)
and occurs before the integral transmembrane domain
(TM) that anchors the protein into the endoplasmic
reticulum (ER) and Golgi membrane, and the ER reten-
tion signal (KxKxx) which is required for correct locali-
zation7 (Fig. S2).

Homology Modeling of hPROT-G396S Predicts
Altered Substrate Recognition and Protein

Destabilization
PROT, encoded by SLC6A7, is part of the SLC6 fam-

ily of transporters,8 which are integral to the transport
of neurotransmitters, amino acids, and monoamines
against their concentration gradient, with symport of
Na+ and Cl�. The AlphaFold-based model9 (Fig. 1D)
showed that the highly conserved residue hPROT-G396
is located in TM8, flanked by several residues impor-
tant for both Na+ and substrate binding (Fig. 1E), such
as Y133 in TM3 (Fig. 1F), a highly conserved residue
in the SLC6 family. This tyrosine residue is engaged in
an H-bond with Ser399, another highly conserved resi-
due that interacts with the substrate. The p.Gly396Ser
substitution in PROT introduces a hydroxyl group to
this region that could engage in H-bonding with Y133,
altering the electrostatics of the pocket where the pro-
line substrate binds, thereby affecting its binding affin-
ity (Fig. 1G).

hPROT-G396S Is Associated with Decreased
Cell-Surface Protein Expression, Reduced

Proline Affinity, and Impaired Proline Transport
To determine the impact of p.Gly396Ser on PROT

function, we measured L-proline uptake in LLC-PK1

cells transiently expressing either hPROT-WT or
hPROT-G396S. The time course of [3H]L-proline
uptake indicated near-linear uptake for up to
25 minutes (Fig. 2A). At 10 minutes, hPROT-G396S
displayed greatly reduced transport activity, at a level
�30% of hPROT-WT (Fig. 2A,B) with reduction in
maximal uptake velocity (Vmax) (Fig. 2B). These find-
ings were confirmed in Xenopus oocytes; hPROT-
G396S showed a reduced apparent affinity for proline
(EC50 = 22.05 � 9.21) and reduced maximal currents
(Imax = 1.01 nA � 0.03) compared with wild-type
PROT (EC50 = 4.86 � 0.49, Imax = 3.37 � 0.54 nA)
(Fig. 2C,D). In HEK293T cells, no significant difference
was seen in mRNA or total protein levels of hPROT-
WT and hPROT-G396S (Fig. 2E,F, Fig. S3). However,
biotinylation studies demonstrated that hPROT-G396S
showed significantly reduced cell-surface expression
(Fig. 2G, Fig. S3).
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Morpholino Knockdown of slc6a7 in Zebrafish
Leads to Delayed Development and Fragile

Motor Neuron Morphology

To determine effects in vivo, we used antisense
morpholino oligonucleotides (MOs) against slc6a7 in a

zebrafish model. When compared with control MO-
injected larvae (Fig. 2H,L), slc6a7 morphants showed
delayed motor development (Fig. 2I,M). Coinjection of
slc6a7 MO with human PROT-WT RNA restored nor-
mal development (Fig. 2J,N), whereas coinjection with
PROT-G396S did not show recovery (Fig. 2K,O).

FIG. 1. Legend on next page.
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Developmental stage was delayed in slc6a7 morphants
and slc6a7 morphants injected with PROT-G396S
RNA, but not in slc6a7 morphants injected with
PROT-WT RNA (Fig. S4). Furthermore, motor neurons
of the MO-injected zebrafish larvae displayed fragile
morphology, with a reduced cell body number
(Fig. 2P–S). Coinjection of slc6a7 MO with PROT-WT
RNA led to recovery of this motor neuron phenotype
(Fig. 2R), whereas no rescue was observed in slc6a7
morphants coinjected with PROT-G396S RNA
(Fig. 2S).

Patient Fibroblasts Display Altered Cell-Surface
Expression of GPI-APs

PGAP5, encoded by MPPE1, translocates from the
Golgi to the ER through an ER retrieval signal at its C-
terminus (Fig. S5). A side-chain ethanolamine-
phosphate from the second mannose molecule of the
GPI is removed, allowing GPI-AP to exit from the ER
(Fig. S5). Without this step, GPI-APs are retained in the
ER.10 MPPE1 expression was significantly reduced in
patient fibroblasts (P < 0.01, Student t test) (Fig. 2T).
Flow cytometry was undertaken to assess cell-surface
expression of GPI-APs. Flourescently labelled aerolysin
(FLAER) serves as a marker of total GPI-APs because it
binds directly to the GPI anchor, while CD73 and
CD109 are specific GPI-APs. Cell-surface levels of
FLAER and CD73 were significantly reduced in both
patients (Fig. 2U, Fig. S6). No decrease in the level of
CD109 was observed.

Discussion

We report two siblings born to consanguineous parents
presenting with a severe and progressive neuro-
developmental disorder. Molecular genetic analysis win-
dicated three plausible gene candidates with homozygous

variants in MED27, SLC6A7, and MPPE1. MED27
encodes subunit 27 of the Mediator of RNA polymer-
ase II Transcription (Mediator) complex, which medi-
ates RNA polymerase II transcription.11 Biallelic
MED27 variants have recently been reported in
11 families with a complex neurodevelopmental disor-
der that partially overlaps with our cases6 (Table S8).
MED27 is therefore the most convincing candidate
gene. However, the presence of chorea, severity of
dystonia with recurrent status dystonicus, and striatal
atrophy distinguishes our patients from reported
MED27 cases (Table S8). It is thus plausible that the
additional loss-of-function variants in SLC6A7 and
MPPE1 could contribute to disease.
SLC6A7 encodes a the central nervous system

protein, PROT (Table S9).12 PROT mediates the high-
affinity uptake of L-proline into glutamatergic neurons,
maintaining an intracellular pool of L-proline for gluta-
mate production.13-15 The p.Gly396Ser substitution
perturbs normal PROT function. Notably, diseases
associated with abnormal proline homeostasis and
hyperprolinemia commonly present with neurological fea-
tures.16,17 Defective PROT and proline dyshomeostasis is
also associated with neurodevelopmental defects in animal
models, as evident in our zebrafish MO knockdowns.
Although morpholinos can be associated with non-
specific phenotypes, rescue with wild-type PROT, but
not G396S PROT, RNA provides evidence of speci-
ficity. The PROT knockout mouse model also shows
reduced locomotor activity, decreased approach
motivation, and impaired memory extinction.18

MPPE1 encodes PGAP5, a widely expressed
metalloproteinase19 integral to the GPI biosynthesis
and protein-anchoring pathway, a highly conserved
eukaryotic posttranslational modification.10 The addi-
tion and modification of a GPI anchor is essential for
the trafficking of certain proteins from the ER to the
Golgi and cell surface.20,21 The MPPE1 variant

FIG. 1. Clinical findings in sibship and the effect of the human L-proline transporter (hPROT)-G396S mutation on proline transporter structure and func-
tion. (A) Family pedigree, with affected individuals indicated by black shading. (B) Images of patient II:1 at 7 years old supported in a wheelchair with
dystonic posturing of all limbs and patient II:2 at 4 years old sitting with support with dystonic upper limb posturing. Both have distinctive facial features
with prominent eyebrows, slightly pointed noses, almond-shaped eyes, and unusual-shaped, low-set ears. (C) Brain magnetic resonance imaging stud-
ies. Top row: patient II:1, axial (left) and sagittal T2-weighted sequences (middle) at the age of 7 months, showing cerebellar hypoplasia (blue arrow)
and small vermis (green arrows). The corpus callosum is vertically orientated posteriorly (yellow arrow). Repeat T2-weighted axial sequences at the age
of 10 years (right) show bilateral severe putaminal volume loss and T2 hyperintensity suggestive of gliosis (red arrows). Caudate volume loss is also
seen without signal change. Enlarged frontal horns and subarachnoid spaces suggestive of bilateral frontal lobe atrophy are also seen (white arrow).
Bottom row: patient II:2, age 2 years 4 months: T2 axial (left) and sagittal T1-weighted sequences (middle) showing cerebellar hypoplasia (blue arrows)
and small vermis (green arrow). The corpus callosum is vertically orientated posteriorly (yellow arrow). Relative frontal volume loss with white matter vol-
ume reduction is also appreciable on the axial T2 (right, white arrow). (D–G) Modeling of the hPROT transporter. (D) PROT consists of 12 transmem-
brane helices (highlighted in colors; transmembrane domain [TM] 1–TM12). (E) PROT amino acid sequence. p.Gly396Ser is located in TM8, adjacent to
conserved residues located in the binding pocket. Blue triangles (outlined and filled) represent predicted residues involved in coordinating sodium ion
Na1 and Na2 binding, respectively; red triangles represent residues predicted to be involved in chloride ion binding; black dots represent predicted res-
idues important for proline binding; and black stars (outlined and filled) represent charged pairs at the extracellular and cytoplasmic entrances, respec-
tively. (F) Structure modeling predicts that Gly396 (G396, TM8, cyan) is in close proximity to Tyr133 (Y133, TM3, orange), a highly conserved residue
that is involved in substrate recognition. The star indicates the substrate binding pocket. (G) The introduction of serine with a hydroxyl group at position
396 (TM8, cyan) may alter substrate recognition activity of Y133 by introducing a different group to this region that could engage in H-bonding with
Y133, thereby interfering with its H-bonding with S399 (two probable alternative rotamers for Y133 are shown). [Color figure can be viewed at
wileyonlinelibrary.com]
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p.Arg329* likely leads to translation of a truncated
protein lacking the KxKxx ER retrieval signal, which is
crucial for correct PGAP5 localization.7 We postulate

that this would reduce cell-surface expression of GPI-
APs (FLAER and CD73). Notably, there was no signifi-
cant reduction in CD109. Such variation in affected

FIG. 2. Legend on next page.
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GPI-APs is observed in other GPI biosynthesis disor-
ders, where the specific gene and mutation influence the
pattern of GPI-AP disturbance.22-25

It is highly likely that these SLC6A7 and MPPE1 var-
iants contribute to the observed clinical phenotype.
Both SLC6 transportopathies and inherited disorders of
GPI deficiency are associated with a broad range of
neurological diseases.26,27 Early neuroimaging abnor-
malities in our patients are similar to those described in
MED27-related disease6 and GPI deficiency disorders
with cerebellar defects and white matter changes.27 To
date, the later imaging findings in the older sibling have
not been reported in MED27 disease. Striatal atrophy
and gliosis may be sequelae of status dystonicus with
multiorgan failure, but the influence of mutant MPPE1
and SLC6A7 cannot be excluded. Indeed, this pattern
of damage closely matches the expression pattern of
SLC6A7.28

Multilocus pathogenic variants have been previously
described in consanguineous families29 and are likely
to explain a proportion of unresolved Mendelian dis-
orders.30 Phenotypic features atypical for MED27,
such as the severe movement disorder and striatal
atrophy, may be explained by these additional vari-
ants resulting in a blended phenotype.31,32 Future
identification of patients with monogenic variants in
SLC6A7 or MPPE1 will undoubtedly facilitate better
understanding of the precise gene-specific clinical
phenotypes.
In conclusion, we have identified variants in MED27,

SLC6A7, and MPPE1 in a family with a complex and
severe neurodevelopmental condition associated with a
life-threatening movement disorder. Pathogenic variants
in SLC6A7 and MPPE1 have not previously been
reported in human disease. Our work not only suggests

that variants in these genes may be relevant in human
disease but also indicate a putative role for PROT and
PGAP5 in normal neurodevelopment. Further experi-
mental approaches with animal models or patient
induced pluripotent stem cell (iPSC)-derived neuronal
systems harboring all three genetic variants will allow
the polygenic influence of these three genes to be
investigated.
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FIG. 2. Functional investigations into SLC6A7 and MPPE1 gene variants. (A, B) Time-course experiments of [3H]L-proline uptake show decreased L-
proline accumulation in LLC-PK cells expressing L-proline transporter (hPROT)-G396S in comparison with hPROT-WT (wild type) (A) with decreased
maximal uptake velocity (Vmax) but no differences in Km, n = 4 (B). (C, D) Proline dose responses were measured in Xenopus oocytes expressing WT
(n = 5) or G396S (n = 6) hPROT. (C) hPROT-G396S had reduced apparent affinity for proline (EC50 = 22.05 � 9.21) compared with WT
(EC50 = 4.86 � 0.49). (D) hPROT-G396S also had reduced maximal currents (Imax = 1.01 nA � 0.03) compared with WT (Imax = 3.37 � 0.54 nA). All
values reported are mean � standard error of the mean. (E) PROT mRNA expression in HEK293T cells. No significant differences between WT and
mutant mRNA expression were evident. (F, G) Biotinylation and immunoblotting analysis showed no significant difference in total protein expression
but significantly less expression of hPROT-G396S at the cell surface compared with hPROT-WT in transiently transfected HEK-293T cells (*P < 0.05,
Student t test). (H–O) Knockdown of slc6a7 in zebrafish caused a delay in development. Control morpholino oligonucleotide (MO)-injected larvae were
equivalent to 21.9 � 0.1 hours post fertilisation (hpf) stage (H; n = 40), while slc6a7 morphant development correlated to the 18.6 � 0.2 hpf stage (I;
n = 47). This developmental delay was reversed in zebrafish larvae coinjected with slc6a7 MO and human PROT-WT RNA to 21.8 � 0.1 hpf stage at
22 hpf (J; n = 40). The development of zebrafish coinjected with slc6a7 MO and human PROT-G396S RNA was decelerated to 18.6 � 0.3 hpf stage at
22 hpf (K; n = 45). Similar observations were made at 34 hpf, where the development of control MO-injected larvae is equivalent to 33.6 � 0.3 hpf
stage (L; n = 51), while slc6a7 morphant development correlated to 29.0 � 0.4 hpf stage (M; n = 70). The development of zebrafish larvae coinjected
with slc6a7 MO and human PROT-WT RNA was equivalent to 33.2 � 0.3 hpf stage at 34 hpf (N; n = 51), while zebrafish coinjected with slc6a7 MO
and human PROT-G396S RNA developed to 29.3 � 0.4 hpf stage (O; n = 70). (P–S) MO-mediated knockdown of slc6a7 in transgenic zebrafish
expressing YFP in motor neurons resulted in fragile motor neuron morphology (Q) compared with controls (P). This motor neuron phenotype was
reversed by coinjection of hPROT-WT RNA (R), but not by introduction of hPROT-G396S RNA (S). (T) qPCR of MPPE1 mRNA in patient and healthy
control fibroblasts (n = 3 using one healthy age- and sex-matched control and two patient lines; **P < 0.01, Student t test). (U) Cell-surface expression
of GPI-APs shows that FLAER and CD73 were significantly reduced in patient fibroblasts (n = 6, cells from both patients) compared with control sam-
ples (n = 3); ****P < 0.0001 (unpaired parametric t test). No significant differences were seen for CD109. [Color figure can be viewed at
wileyonlinelibrary.com]
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