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Abstract
The manufacturing systems’ success directly relates to their accurate, reliable and flexible schedules, including how

production is planned and scheduled and which constraints are considered in generating the schedules. The study’s

objective arises from the need to generate an optimal production scheduling system in a connecting plates manufacturing

company that works on a Make-To-Stock basis. This research investigates the impact of demand and operational con-

straints on production schedules, including the facility capacity, operators and machines availability, raw materials

availability, inventory level and warehouse capacity. A multi-agent-based optimisation model is developed to face the

complexity of considering demand and operational constraints and reflects their impact on generating a reliable production

schedule. This model involves a proposed heuristic algorithm that considers demand and operations constraints in such a

manufacturing environment and optimises the production schedule based on these restrictions/requirements. A real-life

case study based on a connecting plates manufacturer company is used as a test bench of the proposed agent-based heuristic

optimisation model. The proposed algorithm is compared with other related approaches to check its superiority based on

key criteria, including inventory levels, missed/unsatisfied orders and total production time. Results show that the proposed

heuristics algorithm reduced the number of missed orders by 34% compared with similar approaches.

Keywords Multi agent-based model � Heuristics optimisation � Production scheduling � Make-to-Stock environment �
Demand and operational constraints

1 Introduction

Twenty-first-century manufacturers faced accelerated

knotty requirements on-demand from their customers with

customer expectations for prompt product delivery under

changeable markets (Bennett and Lemoine 2014). To

respond efficiently to customer demand, especially when

demand is uncertain and machines are prone to failure,

considering market fluctuations, production planners are

compelled to be resilient to changes and to guarantee

production targets with periodic revisions and adjustments

to their production plans (Kriett et al. 2017). This

requirement has steered manufacturers to meet customer

demand and seek methods to reduce production lead times

(Kriett et al. 2017). Therefore, manufacturers establish

their production strategies based on the nature of the

demand and its occurrence.

These production strategies include make-to-order, in

which the shop floor produces orders and sells them to the

customer if orders are required by customers immediately.

The make-to-stock strategy stores finished products in a

warehouse as inventory buffers before selling them (Lu and

Chen 2018). A hybrid of both strategies is considered by

shop-floors when it produces semi-finished products,

among other variations of products (Kim and Min 2021).

These production strategies involve operational and

demand constraints, such as shop-floor capacity, warehouse

requirement, and customer behaviour, limiting production

schedulers from generating reliable production schedules
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(Georgiadis et al. 2019). This is attributed to the challenges

these operational and demand constraints impose, which

prevent forming a flexible and viable production schedule

plan.

In the make-to-stock strategy, the production schedulers

generate their schedules based on the shop-floor capacity

(Costa et al. 2020), uncertain customer demand (Adediran

and Al-Bazi 2018), warehouse capacity (Stanzani et al.

2018), raw materials availability (Györgyi and Kis 2018),

machine availability (Tamssaouet et al. 2018), workers

availability (Van Den Eeckhout et al. 2019), number of

changeovers between products (Osman 2020), setup time

and number of products (Bouazza et al. 2019), demand

forecast (Biçer and Seifert 2017), and the worker skill and

abilities (Özder et al. 2019). Moreover, to some extent,

these constraints were individually considered while gen-

erating a production schedule.

Therefore, this paper aims to develop an agent-based

heuristic optimisation model that considers combined

operational and demand constraints in a make-to-stock

environment to generate a reliable production schedule.

Including warehouse capacity, customer demand, shop

floor, and the availability of the raw materials will generate

a reliable production plan for best customer demand sat-

isfaction and optimised-replenished stocks. This work will

benefit production schedulers and warehouse managers of

make-to-stock manufacturing systems to satisfy customer

and warehouse requirements efficiently. In addition, it

assists in achieving the best customer demand satisfaction

and stock control practices and increasing the efficiency of

both the operators and machines.

The contribution of this work entails the following:

• An innovative agent-based heuristics optimisation

model for best scheduling practice of make-to-stock

manufacturing systems.

• A new heuristics algorithm encapsulates combined

constraints of the customer demand, the operational

constraints, including materials availability, and the

warehouse storage requirements.

• Achieving the best customer satisfaction, a reliable and

sustainable production schedule, resource utilisation,

inventory control, and raw materials usage.

The paper is organised as follows: Section II reviews the

literature on production scheduling practices in make-to-

stock manufacturing systems. The development of an

agent-based model and a heuristics optimisation algorithm

for best practices of production scheduling and inventory

control of products is discussed in Section III. In Sec-

tion IV, numerical simulations based on a real-life case

study evaluate the impact of combined demand and

operational constraints. Section V presents a comparison

study with the relevant approaches, followed by the main

conclusions and recommendations for the last section.

2 Problem statement

This paper investigates a problem that originated in one of

the UK manufacturers that produces a wide range of con-

nector steel parts used in the construction industry, such as

metal web and nail plates of different sizes. The company

works on a make-to-stock basis, and they face a challenge

in replenishing their stocks and satisfying customer

demand without delay. This is attributed to the erratic

customer demand, a wide range of product varieties and the

shop floor & warehouse limitations.

The company’s production team creates a daily plan

(spreadsheet) for the factory to replenish the stocks to

cover a one-week minimum up to a two-week maximum

worth of products. The warehouse capacity limits the

maximum levels as the company has a small warehouse

that keeps many product varieties. The company works on

a ‘‘make-to-stock’’ basis. The production team only pro-

duces for that customer order or manufactures additional

parts to the minimum stock level to keep at the warehouse.

At the same time, the stock products are manufactured to

replenish the stocks at the warehouse. The inconstant

customer demand for the stock products influences how the

schedule seeks to place certain products to be manufac-

tured first, and it is subject to failure due to uncertainty.

The shop floor is limited in size and only can fit the four

large hydraulic machines and their extended packing areas

that consist of conveyor belts and rollers, a sealing station

and a caged pallet loader. The tacit experience helps the

planner to speculate the demand by having the best runners

(of products) at the beginning of the schedule and after

checking the existing amounts of raw material. Hence the

schedule is pushed to be ready for the factory to adopt. The

warehouse manager will then arrange the logistics with the

customers if stock shortages occur, and the customer is

ready to receive the order or the rest whenever the shop

flow produces it.

However, there is still a need to optimise the company’s

scheduling plan for inventory replenishment, considering

demand, raw materials availability, shop floor capacities

such as machines’ downtimes, packers’ availability, and

the machine setup time requirements. Therefore, an

appropriate inventory strategy that leads all inventory

levels of stock products to be replenished/maintained

enough to face any potential and unexpected customer
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demand needs to be proposed. Figure 1 shows shop floor

and warehouse operational and demand constraints affect-

ing the scheduling plan.

Three key performance indicators reflecting the gener-

ated schedule’s performance will be considered, including

the number of missed/unsatisfied orders, resource utilisa-

tion, and stock levels. All floor shop resources, including

the machines and packers, are fully utilised, indicating a

reliable production schedule. Additionally, the stock levels

at the warehouse do not show any critical levels. If there

are no delayed customer orders for stock products (right

from the warehouse), that is considered a healthy plan.

3 Previous work on scheduling in the make-
to-stock production environment

This section presents a systematic and up-to-date litera-

ture review of production scheduling in the Make-To-

Stock (MTS) environment. The scope of this review is

made explicitly within this sort of manufacturing envi-

ronment in which only a few studies are presented. The

review addresses customer demand and other operational

constraints while generating production schedules. This

review presents the work of several scholars, including but

not limited to Tubilla and Gershwin (2021), who studied

production scheduling in a multi-item, failure-prone

machine with setup times to minimise long-run average

inventory and backlog costs. Adediran and Al-Bazi (2022)

developed an innovative framework that embeds agent-

based simulation, heuristic algorithm, and inventory

replenishment strategy is proposed to tackle these disrup-

tion problems.

Firat et al. (2022) proposed a production planning

approach with a make-to-order (MTO) convention for a job

shop manufacturing company. A Mixed Integer Linear

Programming (MILP) model was proposed to find work-

load-dependent planning horizons by making order

acceptance decisions. The model ensured that the desired

resource capacity levels were achieved regardless of the

product mix in the order set. Chen et al. (2020) developed a

Mixed Integer programming model to select a set of

potential customer orders in an MTO environment manu-

facturing system to maximise the operational profit such

that all the selected orders are fulfilled by their deadline.

Constraints, including the capacity limit on each source for

each resource type, regular time, overtime, and outsourcing

as the sources for each resource type, were considered

while generating the scheduling plan. Rahman et al. (2015)

considered the length of a production cycle, the batch size

of each product, and the order of the products in each cycle

to generate an efficient production schedule with a mini-

mum sum of the setup and holding costs while assuming

that there was no disturbance of any kind. Rinaldi et al.

(2023) developed a simulation model to manage the

inventory level of spare parts, analysing heterogeneous

items and producing a new procedure implemented to

improve the current inventory management. Sanajian et al.

(2010) analysed a production/inventory system modelled as

an M/G/1 make-to-stock queue producing different prod-

ucts requiring different general production times. They

developed scheduling policies where different product

types were completed for sharing the same production

resource to find the optimal inventory control policy and

cost. Yue et al. (2022) proposed a heuristic approach based

on the drum-buffer-rope (DBR) method to overcome the

problem of order releasing and multi-item scheduling in

factories with make-to-order (MTO) production systems.

The production schedule was generated considering the

dynamic demand of customers, constrained resources, and

limited profits. Hutter et al. (2018) considered production

planning and control systems as constraints impacting

production schedules in a make-to-stock environment.

They implemented an order release mechanism based on

workload control to improve production scheduling to meet

order due dates. Youssef et al. (2009) analysed the impact

of the scheduling policy on the overall inventory costs

under customer lead-time service level constraints. The

scheduling plan considered two policies: the classical FIFO

Fig. 1 Problem statement diagram
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policy and a Priority Policy (PR), which prioritises low-

volume products over high-volume ones. Özer et al. (2004)

established optimal policies for a capacitated inventory

system with advanced demand information. Although the

performance of a capacitated system with respect to

advance demand information, capacity, and cost parame-

ters were quantified, other operational constraints, includ-

ing raw materials availability, were not considered in the

developed model. Alnahhal et al. (2021) used a mixed-

integer programming (MIP) model to solve the lot-sizing

problem in order to reduce the ordering and the total

inventory holding costs, focusing on discrete delivery time,

where demand is seasonal. Ben Ali et al. (2014) integrated

sales and operations planning and order promising for a

commodity market characterised by prices and demand

seasonality. They considered different factors, including

differentiated demand segments, different products, and

multiple sourcing locations in a multi-period context.

Albrecht (2021) considered an alternative assumption on

inventory reservation with different prioritisation rules

applied in make-to-stock assembly systems if orders for

multiple finished products are in a backlog or occur in the

same period. The warehouse requirements regarding the

number of required products were considered. Pang et al.

(2014) considered an inventory rationing problem of a

continuous review make-to-stock system with batch pro-

duction and multiple demand and classes. The inventory

rationing control for each demand time-dependent critical

stock level characterises class. Economopoulos et al.

(2011) studied threshold-type admission and inventory

control policies for a single-stage, make-to-stock produc-

tion system with impatient customers. The system employs

a base stock policy to maintain an inventory of finished

items and cope with random demand to determine the base

stock and backlog that maximises the system’s mean profit

rate. Allon and Zeevi (2010) addressed the simultaneous

determination of pricing, production, and capacity invest-

ment decisions in a make-to-stock system by a monopo-

listic firm in a multi-period setting under demand

uncertainty, given the production capacity constrains the

inventory replenishment process, no inventory carry-over

is allowed, and pricing is restricted to markdowns. Hodge

and Glazebrook (2011) considered optimal policies for a

production facility where several products are made to

stock to satisfy exogenous demand for each. The produc-

tion problem was formulated as one involving the dynamic

allocation of a key resource that drives the manufacture of

all products under an assumption that each additional unit

of resource allocated to a product achieves a diminishing

return of increased production rate. Xu et al. (2010)

considered the stock rationing problem of a single-item

make-to-stock production/inventory system with multiple

demand classes. The facility can produce a batch up to a

specific capacity simultaneously. It is assumed that the

batch demand can be partially satisfied. Somarin et al.

(2017) investigated a repairable service parts inventory

system in a Manufacturing Operating System (MOS)

environment with a central repair facility and several

locations storing inventory called bases. A heuristic tech-

nique for the stock allocation problem based on relative

value function and average backorder cost at a single base

was proposed to minimise the expected cost. Lorenz et al.

(2021) proposed a process mining procedure that identifies

capacity constraints, variability, and waste in make-to-s-

tock manufacturing systems. Li and Arreola-Risa (2020)

studied the problem of finding the base-stock level that

minimises total cost conditional value-at-risk or total cost

for short. The impact on optimal base-stock levels of

changes in risk aversion, manufacturing capacity, inven-

tory-holding and back-ordering costs, and planning horizon

length was also identified. Dinh (2021a, b, c, d) suggested

various optimisation algorithms for image fusion, including

MPA and GOA for base layer fusion, EOA for low-fre-

quency component fusion, and MPA for multi-modality

medical image fusion. In 2022, Dinh developed an adaptive

fusion rule using MPA for low-frequency components.

Dinh and Giang (2022) proposed a novel algorithm to

enhance medical image quality. In 2023, Dinh presented a

new approach for image synthesis based on MPA, devel-

oped an MPA-based algorithm to improve the quality of

brain MRIs, and created an efficient fusion rule using CSA

for base layers.

The previous literature addressed a few studies in pro-

duction scheduling of make-to-stock systems that consid-

ered several constraints (individually) that impact on

scheduling practices of such systems. Among these con-

straints, machine failure, setup times, inventory and back-

log costs, batch size and order of products, holding costs,

production times and resources, the order’s due date,

inventory costs under customer lead-time service level

constraints, prices and demand seasonality, warehouse

capacity, differentiated demand segments, different prod-

ucts, and multiple sourcing locations in a multi-period

context, stock levels, production capacity, no inventory

carry-over is allowed restriction, demand uncertainty,

multiple demand classes requirement, facility operational

capacity, process variability, waste, risk aversion, manu-

facturing capacity, inventory-holding and back-ordering

costs, and planning horizon length. However, the combined

impact of the customer demand, including its different
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behaviour types, and other operational constraints, includ-

ing operators, machines and materials availability, and

warehouse capacity for make-to-stock manufacturing sys-

tems, has not been given enough attention. Hence, the

focus of this paper is this paper was established.

4 Research methodology

4.1 Agent-based heuristic optimisation
framework

The proposed agent-based heuristic optimisation frame-

work consists of two main core modules. The first agent-

based module mimics the shop floor operations and ware-

house requirements. The second heuristic optimisation

module generates the best production schedule by mea-

suring the impact of combined constraints such as expected

maximum demand based on a historical sales report, the

current stock level and the difference between it and the

expected demand, the available raw material measured by

weight, number of available machines and operators, the

number of daily shifts along with its length, the warehouse

maximum capacity limit, and the setup time of the product

families. Figure 2 shows the agent-based optimisation

model architecture.

In Fig. 2, there are three inputs for the process to start.

The first group contains the production parameters, an

essential input group. These parameters include the number

of workers with their skills, the number of machines and

their types, process time, and setup times. The second

inventory and material levels input group consist of the

number of coils with their types and weights and the stock

level of each product, including their minimum and max-

imum. The third group is the customer order information.

This group contains the predicted demand, the customer

order quantity, type and due date, and other information.

The core process consists of two modules, the agent-

based module integrated with the heuristic optimisation

module. The heuristics module encapsulates all the demand

Fig. 2 Agent-based

optimisation model architecture
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and operational constraints and reflect their impact on the

production schedule. The agents’ interaction is modelled

using the Python programming language. These agents are

loosely coupled, and each agent could be run in a different

virtual machine and solely communicate with others

through a local wireless network. The binder between the

agents in the message broker is hosted on a different virtual

machine. This distributed system allows agents to be plug-

and-play ready.

There are four different groups of outputs. The first

group includes the best production schedules, which is the

sequence of the orders to be processed by the factory. The

working time group contains the total production time, the

total waiting time, and the worker idle times. The perfor-

mance group involves the total number of produced items

over time, consumed materials, missed orders, the total

replenished stocks and completed orders. The last group

utilises machines, workers, and other resources in the

production facility.

A user GUI is developed to provide management of

multiple functionalities, such as a quick run of the

heuristics algorithm to generate and present the production

schedule after configuring the proper parameters of the

algorithm, such as machines and operators’ schedules,

workings shifts and the available raw materials. The GUI

also gives access to run the agent-based simulation model

on the generated production schedule to animate the floor

shop showing the flow of shop activities. Additional access

to create different reports of the simulation outputs, such as

resource utilisation and incomplete orders.

The GUI of the developed multi agent-based optimisa-

tion model consists of 9 components linked to produce the

production schedule, replenishment plan and shop floor

visualisation. Figure 3 shows the GUI and how the devel-

oped multi agent-based heuristics model works.

Figure 3 presents the overall GUI of the developed

multi-agent-based optimisation model. Once the GUI is

launched, the scheduler needs to be prepared, and the main

input data needs to be initialised by clicking on the Press

Downtimes component if there are any future downtimes

on any of the press machines. The Materials handling

component is used to update/amend the remaining volume

of plates. The Product Catalogue component is used to

update and retrieve the received orders. The Pressing

Machines’ Shifts component adjusts all machines’ shift

start and end times. The component responsible for

Fig. 3 GUI of the developed multi-agent-based optimisation model
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configuring the system, including the number of hours per

shift, shift type (day/night), coil ratio etc., is called Soft-

ware Configuration. The Retrieval Catalogue component

retrieves the relevant information from any integrated ERP

system. The Production Schedule component generates the

production schedule based on the received information.

The Warehouse component includes the proposed heuristic

algorithm used to generate the replenishment plan and

provide the relevant visualisation. The last component is

the Shop floor Visualiser which visualises all the involved

machines and shows the progress of orders across the shop

floor. To have an idea of how the developed multi-agent-

based heuristics model works, a Video is uploaded on

YouTube and can be found at: https://www.youtube.com/

watch?v=nLGggP5jEKo

The following section discusses the core components of

the developed agent-based heuristics model.

4.1.1 Agent-based module

4.1.1.1 Multi-layer agents’ organisation In this section,

all agents in the manufacturing system with their attributes

and actions are defined and explained. A multi-layer

agents’ organisation is developed to depict the arrangement

and communication of all agents in the system. This

organisation contains various independent agents in nature,

goals, and knowledge base.

Eight agents are defined, and their actions are discussed

in detail. The first agent is the Demand Agent, which rep-

resents the demand coming from the customer as external

demand and/or requests from internal inventory demand in

response to the warehouse replenishment requirements.

This agent involves two sub-agents named customer and

inventory. In some cases, the Customer sub-agent is absent

and linked to customers’ requests or demands. The Cus-

tomer Sub-Agent represents an incoming customer request

for goods. This request will usually be logged into the

company’s system for processing and tracking. It has

attributes such as order number, due date, quantity, and

product type. While the Inventory Sub-Agent keeps up-to-

date data about the stock’s levels of final products (pre-

dominantly stock products). This sub-agent provides

information regarding the required quantities of items the

production facility produces for replenishment. Attributes

of this agent include final product type, quantity, size,

weight, and other specifications.

The second Material Agent represents the raw material

needed by the production facility. The agent’s attributes

include the current raw material type and weight. The third

Schedule Agent is the super agent (master agent) that

controls generating the production schedule plan. Its pri-

mary responsibility is to combine demand and operational

constraints by communicating with each demand, material,

machine, worker and packing agent to generate a reliable

and viable production schedule. This schedule includes

orders that need to be processed first, considering multiple

objectives such as minimising the number of changeovers,

reducing the setup time, satisfying the customer orders on

time, and achieving the best replenishment inventory

stocks. Additionally, this agent follows up on the produc-

tion work by receiving update messages from the facility

agents. It also raises alerts in case of running out of raw

materials, low inventory levels, etc.

The fourth Machine Agent represents the inter-machines

that consume the raw materials and produce the required

items. It does multiple functionalities (operations) and

collaborates with other production facilities/shop floor

agents, including Worker and Packing Agents. This agent

receives a production schedule from the Schedule Agent

and then processes it accordingly. It pulls the Materials

Agent’s raw material and pushes it afterwards to the

Packing Agent as produced items. The attributes of this

agent include type, capacity, model, and other technical

specifications. The fifth Worker Agent involves information

about operators working at the production, including name,

job title, capacity, experience, and skills. When available, it

would only accept an allocation request from the Machine

Agent or the Packing Agent and acquire matching skills to

do the job. The last agent is the Packing agent, representing

the Packing area in the production facility. As a labour-

intensive area, this Packing area is part of the production

facility, and it always requires a worker(s) or a robot to do

the sorting and packing. The finished products will be

packed before being transporting to the inventory area.

Fig. 4 Agents organisation in layers
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Figure 4 shows how the agents are organised in a multi-

layer layout.

Figure 4 represents the organisation of the agents in

layers in two layers. The first layer shows the key agents:

Demand, Packing, Schedule, Worker, Machine, and

Materials in a holonic way where agents can communicate

and share neighbouring knowledge. The second layer

shows another holon of sub-agents: Inventory and Cus-

tomer inherited from the Demand Agent. Layers separate

agents based on shared or similar goals and only allow

communication within that environment. For example, the

key agents share the goal of producing products, and on the

other layer, it seek to consume the products. Additionally,

the Customer Agent in layer two does not communicate

with the Machine or Schedule Agent in layer one, but it

inherently updates the Demand Agent with any outputs.

The same applies to the Inventory Agent and the other

agents in layer one.

The agent-based simulation model works on multi-

threading technology; every agent runs on a thread, and the

agents communicate over a message broker. An agent can

be installed in a different virtual machine and a separate

physical machine. This gives the system the ability to be

extended.

4.1.2 The messaging sequence model

Developing this messaging sequence model presents the

system agents with their interactions among themselves,

from consumer to production control to production facility.

See Fig. 5 for the overall messaging sequence.

Figure 5 shows that the messaging sequence starts when

the Customer Agent sends an order request for finished

goods to the Schedule/master Agent. The latter agent will

then verify the currently available quantities with the

Inventory Agent and check for the availability of the raw

Fig. 5 The messaging sequence diagram
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materials. This availability could trigger the production

cycle by sending a message to the Machine Agent about

what is required if the Inventory Agent confirms insuffi-

cient levels of products required to satisfy the Customer

Agent’s request.

The Schedule Agent deals with the incoming orders and

executes the heuristics optimisation to generate reliable

production schedules, considering shop floor capacity,

inventory level and raw materials statuses. The Machine

Agent would most likely request worker(s) to do machine

setup of materials and startup. This is presented with X

time as a change over time in the system, a predefined

value linked to the material type. If the Machine Agent’s

steel type is already mounted, there would be no change-

over for the reel. That can be considered a time-saving

choice for production.

The Machine Agent interacts with the Worker Agents by

dispatching a message publicly. All Worker Agents (pre-

sumably n available on the production floor) receive the

message from the machine. Whichever is available and can

do the requested job (for example, mounting new material)

will reply with the agent’s name and capacity. The

Machine Agent will wait until the needed number of

workers are ready to take on the job. If an extra Worker

Agent replied to the machine on the same job, the Agent

would reply to the Worker Agent with a release message.

This message would go privately.

Once the Machine Agent starts production, it will send a

private message to the Assembly Agent. The Assembly

Agent is likely to receive such a request from the Machine

Agents, which means requests will pile up for the

Assembly Agent. The message queue works on a FIFO

basis. The agent would execute the first incoming message

to it. The Assembly Agent requires Worker Agents to do

the assembly job. Thus, the latter agent sends a message

publicly to distribute the message to all Worker Agents. As

explained, the Worker Agents will reply to the Assembly

Agent who can do the assembly job. The Assembly Agents

take the necessary time for the job calculated by a defined

effort value multiplied by the quantity of that Schedule

Agent.

The Packing Agent’s role is to inform the Schedule

Agent of the finished goods by sending a message. The

latter Agent will update the inventory levels and amend the

raw materials’ remaining volume. At the outset, the

Schedule Agent will only be informed of the finished order

if it is the affixed production cycle. Otherwise, it will

update the next cycle day with the stock.

4.1.3 The Operational and Demand Constraints
of Connector Plates Manufacturing Systems

This section discusses the operational and demand con-

straints and their impact when generating the production

schedule.

Operational Constraints.

The shop floor constraints:

[1-O] Number of available machines constraint is the

number of press machines in a single facility.

[2-O] Number of changeover constraint on any press

machine, including coil change, splitter change and pitch-

ing change.

[3-O] Number of available packers’ constraints assigned

to the press machine.

[4-O] Number of available workers constraint to do the

changeover on any press machines.

[5-O] The constraint of the shop floor working hours is

the sum of all work shifts.

[6-O] Packing speed constraint of any packer, including

man and robot assigned to a single packing area.

The Raw Material Constraints:

[1-R] Raw material availability constraint for all types

of products in both facilities in the form of steel coil.

[2-R] Coil L/W ratio constraint measures the expected

length in m2 out of x KG of a steel coil.

The Warehouse Constraints:

[1-W] Space constraint measures the available shelves

in the warehouse dedicated to a specific product.

[2-W] Number of products constraint for the varieties of

product types the manufacturer produces.

The demand constraints:

[1-D] Delivery date is the date of replenishing stock or

an independent order.

[2-D] Order sequence constraints prioritise the manu-

facturing of products based on the sales report.

[3-D] Stock level constraint measures the current level

and yields the number of parts produced.

Only a few constraints have a significant impact on the

rest. The relationship among those constraints is not

mutual, and one constraint can impact more than a single

constraint at once negatively or positively when it changes.

For example, the raw material availability constraint neg-

atively affects the delivery date constraint but not the stock

level constraint when it is increased. In contrast, when the

raw material availability constraint decreases, the delivery

date constraint will go positively (more delay), and stock

levels will be negative (stocks not replenished). Another

example is that the raw material availability constraint

would positively affect the number of changeovers and
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order sequence when it decreases. Still, it has no effects

when it goes positively (increases).

Regarding the order sequence constraint, prioritise the

manufacture of products based on the sales report [2-D]; it

is worth mentioning that the sales forecast pattern is

obtained by looking at the sales from the previous year for

the period that covers the next 30 days. This pattern is then

analysed by focusing on each product sales volume and

sorting it from the highest to the lowest. The historical

sales data is then used in the proposed heuristics algorithm

in Sect. 4.1.4 to indicate the most and least demanded

product, thus being one of the factors that help determine

demand and priority for production.

The proposed heuristics algorithm will be discussed in

detail in the next section.

4.1.4 Heuristics algorithm

This section discusses the proposed step-by-step algorithm

to achieve the best scheduling practice in make-to-stock

environments considering the demand and operational

constraints of both the shop floor and warehouse. Similar

approaches were developed considering only stock

requirements and warehouse capacity with non-instanta-

neous replenishment (Adediran et al. 2019; Al-Bazi and

Adediran 2020), deteriorating items with a quantity dis-

count (Ai et al. 2021), stock-dependent demand (Bardhan

et al. 2019), and joint-pricing replenishment for non-in-

stantaneous deteriorating items (Li et al. 2019). It is worth

mentioning that some of these approaches would not have

direct comparison factors with our problem settings, as

they only considered a few individual shop-floor con-

straints rather than the combined impact of the customer

demand, along with its different behaviour types, opera-

tional constraints, including operators, machines and

materials availability, and warehouse capacity and hence

these approaches and others become impractical in terms of

use and might give a biased and inaccurate judgement.

However, the proposed algorithm encapsulates demand,

shop floor, and warehouse operational constraints while

generating a reliable production schedule.

The heuristics algorithm steps are as follows:

• Obtain demand requirements, input and production

parameters (Step 1).

• Use the sales forecast rules to sort the demand in

sequence (Step 2).

• Obtain the current stock level for all stocks. (Step 3).

• Register the difference between the forecasted demand

and the current stock level (Step 4).

• Generate a list of demands prioritised based on the

outcome of the previous step (Step 5).

• Register the difference between the current and max-

imum stock levels (Step 6).

• Generate a list of demands prioritised based on the

outcome of the previous step (Step 7)

• Use raw material and changeover rules to sort the

demand in lists (Step 8).

• Register the processing time for all orders and shortages

in raw materials (Step 9).

• Distribute the workload on the available production

lines maintaining the shared characteristics of the

stocks (stock families) (Step 10).

• Inject the urgent demand for non-stock into the

available production line according to the order’s due

date (Step 11).

The scalability of this heuristic algorithm is manifested

as it dwells on the varying levels of stock and analysis the

status of the extended inventory while considering a fore-

casted demand and instant demand.

The notations used in the proposed heuristics algorithm

are listed below:

4.1.4.1 Heuristic notations

f = forecasted quantity

d = demand quantity

c = customer order

quantity

dd = delivery date

i = current inventory

level

m = minimum inventory

level

M = maximum

inventory level

a = number of available

packers

p = number of available

machines

g = number of

working hours

v = packing speed

z = material quantity

w:b = weight/box

ratio

S = production

schedule

u = unsatisfied

orders

U = satisfied orders

e = shortages

r = Replenishment

quantity

N = current day

N ? 1 = next day

T = total

production time

O = setup time

t = process time

s = stocks

k = product

family

w = workload

The following steps represent how the heuristic algo-

rithm improves production performance.

The Heuristic Algorithm:
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Step 1: Initialise m, M, a, p, g, v, z, w:b

Step 2: Obtain f, i, n, dd

Step 3: Obtain d for s, where d is f – i; [2-D], [3-D], [2-W] constraints

Step 4: Schedule S when d < 0; [2-D], [3-D] constraints

- If i <= 0, replenish first; [3-D], [1-W] constraint

- If 0 < i <= m, replenish second; [3-D], [1-W] constraint

- If m < i <= ((M – m) / 2 + m), replenish third; [3-D], [1-W] constraints

- If ((M – m) / 2 + m), < i < M, replenish fourth; [3-D], [1-W] constraints

Step 5: Schedule S when d > 0; [2-D], [3-D] constraints

- If i <= 0, replenish first; [3-D], [1-W] constraint

- If 0 < i <= m, replenish second; [3-D], [1-W] constraint

- If m < i <= ((M – m) / 2 + m), replenish third; [3-D], [1-W] constraints

- If ((M – m) / 2 + m), < i < M, replenish fourth; [3-D], [1-W] constraints

Step 6: Schedule S when d is not found; [2-D], [3-D] constraints

- If i <= 0, replenish first; [3-D], [1-W] constraint

- If 0 < i <= m, replenish second; [3-D], [1-W] constraint

- If m < i <= ((M – m) / 2 + m), replenish third; [3-D], [1-W] constraints

- If ((M – m) / 2 + m), < i < M, replenish fourth; [3-D], [1-W] constraints

Step 7: Repeat steps 4 - 6

Step 8: Group S by product family attributes for steps 4, 5, & 6; [2-O] constraints

Step 9: for r in S; [2-D], [3-D] constraints

- If z*w/b >= r*w/b, display r; [1-R], [2-R] constraints

- Else display z*w/b with e; [1-R], [2-R] constraints

Step 10: for p and a; [1-O], [3-O], [4-O] constraints

- If Wpi < Wpi+1; assign Sk to Pi; [6-O] constraint

- Else assign Sk to Pi+1; [6-O] constraint

Step 11: for c and S; [5-O], [6-O] constraints

- If dd = N; assign c to S; [6-O] constraint

Step 12: Repeat step 11 with N + 1

Step 13: display S, u, U, e, O, v, T, w
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The above steps explain the heuristic algorithm and

present which constraints affect which step of the algo-

rithm. In step 1, all major parameters are initialised with

data considered global to the problem, such as the mini-

mum and maximum stock levels. In steps 2 and 3, the

algorithm retrieves and obtains the constantly changeable

data from outside the algorithm and structurally processes

it. In step 4, the algorithm assesses and compares the

demand quantities with respect to [2-D] & [3-D] con-

straints, followed by a cascade of if conditions on the

position of the current stock levels concerning [3-D] &

[1W]. In this step, the d is negative, which indicates the

warehouse is running short on a particular product, and the

later conditions locate the distance between the current

stock level and the maximum level, thus, identifying the

replenishment priority of that product.

Similarly, for step 5, the d is in good status, a positive

value. This value will not create urgency for replenishment

as in the previous step. Nonetheless, the following condi-

tions locate the distance between the current and maximum

level and identify the priority to replenish. Step 6 is exe-

cuted when d is not present from sales. In this case, the

algorithm only executes the multiple if conditions to locate

the distance between current and maximum levels and

prioritise replenishing the product. Step 4 is given the

highest priority of replenishment, followed by steps 5, then

6, and each generates a subset of the production schedule.

In step 8, the algorithm groups the products with the same

production setup because the number of changeover con-

straints bounds it. The grouping happened within the same

subset, so it does not jeopardise losing the replenishment

priority among other subsets if combined. At this point, the

algorithm has the complete set of schedules. Step 9

examines the raw material constraint, quantifies the raw

materials, and checks whether this schedule can be pro-

duced. The schedule would suggest manufacturing with

what available material there is. In Step 10, the schedule is

distributed on the available production lines regarding the

constraints of available resources. The distribution mech-

anism considers the least loaded machine while the prod-

ucts share the same production setup and characteristics. In

step 11, the direct demand of non-stock is injected whilst

considering the demand constraint. This step grants uber

priority over the rest because of its constraint. Finally, step

13 generates the algorithm output, including the production

schedule, production times, and satisfied and unsatisfied

orders.

The proposed heuristics algorithm works iteratively

based on the production demand list. Additionally, it con-

siders only specific constraints, such as only specific

products can be manufactured on the machine. The algo-

rithm forcefully avoids assigning those products to their

non-designated machines. The workers’ skill was also

considered more skilled and faster-packing in products

than others. All these constraints caused to some extent,

logic identification and coding complexity while develop-

ing the proposed heuristics algorithm.

5 Case study

A real-life flow shop is selected as a case study to test the

developed model, including the proposed heuristics algo-

rithm. The selected flow shop is a steel-connectors parts

production facility based in Midlands. This facility pro-

vides connector steel plates to the construction industry.

The first reason for selecting this facility is the many

product variances that the company produces. The parts

have different lengths, widths and thicknesses to the

material, and the company reacts to the market demand by

designing the size and shape of the part. Some products

might be specially designed for a customer, others go

obsolete after a period, while others are big runners or

standards for the building industry. The second reason is

the limited space in the warehouse to store the packed

parts. Although there are 4 level racks, the available stor-

age area is small and limited in dimensions.

The facility works on the make-to-stock. The manu-

facturer works closely with their customers, and they

review their stock plan every year. At the beginning of

each year, they set up an adjusted minimum and maximum

stock level after inventory and after looking at the average

sales for each product from the top 3 months of last year.

This has formed a unique environment to study scheduling

problems and a challenge to model and simulate them.

The agent-based simulation model is developed to

mimic the production lines’ operation. Also, the model

replicates the cycle time, processing time, packing time,

and machine setup time per collected data.

Verification and validation procedures are applied to

ensure the proposed model can be used for further

improvements. The following section discusses how the

verification and validation of the developed model are

carried out.

5.1 Model verification and validation

For verification purpose, the process flow shows the pro-

cess of finding materials, assigning new coils on the pro-

duction line, assigning packers on the packing stations, and

stacking the packaged boxes on the pallet loader before the

forklift operator moves the pallet to the warehouse was

presented to the production team and a key member from

other departments. The company’s production manager and

planner checked and approved this flow diagram.
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For validation purpose, the simulated production time

generated by the model was compared with the actual

production time provided by the production planner in its

Excel sheet format. The trend shows that the throughput

time of 15.6 h for the simulated plan is almost similar to

the actual plan of 15.9 h, confirming the developed mod-

el’s validation status.

5.2 Production demand/levels scenarios

Many scenarios are designed to test how the proposed

algorithm efficiently responds to customer demands and

different inventory and materials availability levels. These

scenarios are developed based on selected production and

warehousing constraints and their expected impact. For

example, customer demand directly impacts the factory

production schedule and inventory availability at any given

time. The inventory status (low, average, or high) also

substantially affects satisfying customer orders. The model

also demonstrates the impact of customer demand and the

available inventory levels on the production, order borrow

and replenishment plans. The raw material availability was

also selected in these scenarios since it depends on

achieving the required production quantities on time. The

experiments considered random combinations of the three

types of levels shown below:

Scenario 1: Low Inventory and High Customer Demand.

Scenario 2: Average Inventory and High Customer

Demand.

Scenario 3: High Inventory and High Customer

Demand.

Scenario 4: Low Materials and High Customer Demand.

Scenario 5: Average Materials and High Customer

Demand.

Scenario 6: High Materials and High Customer Demand.

Although the model was tested for high product demand,

all the stock levels have been considered for analysis and

discussion. The impact of production scheduling on high

product demand is investigated for the three categories of

inventory and material levels. This demonstrates the pro-

posed solution’s impact and illustrates the production

plan’s performance and inventory levels under random

product orders. This study selects the late orders KPI as an

output based on the company’s requirement.

The experimental data were extracted from the collected

production data of a real-life flow shop as a primary data

source, as shown in Table 1.

As presented in Table 1, the experiment parameters are

based on the production schedule for the weekly produc-

tion demand plan. They are represented in days as provided

by the flow-shop facility.

5.3 Results analysis and discussion

The discussion emphasises the key outcomes of interest,

what has been produced by considering production con-

straints, customer demand and the implications of stock

levels. The impact of scheduling, which could be sub-

stantial, is measured by the shop-floor productivity and the

number of missed orders. Table 2 shows the order number,

number of parts, Vs max stock.

Figures 6, 7, 8, 9, 10, 11 demonstrate the implications of

the production scheduling on meeting a sustainable

inventory level against its maximum threshold.

While keeping the demand level fixed at a high level,

Fig. 6 shows a production plan with minimum parts to

produce per stock product. The high inventory levels met

the demand with little support from the production factory

to compensate for the incomplete orders. Figure 7 shows

the production schedule under average inventory and high

demand scenario.

Figure 7 shows the inability of the inventory to meet the

demand. Thus the production exceeded the threshold to

compensate for the shortages by producing more parts

shown in blue for a larger number of products. What

exceeds the threshold goes directly to the customer, not the

warehouse. Other products were given less production

priority for either high direct demand for other products

within a limited time or limitations on available raw

materials. Figure 8 shows the production schedule under

low inventory and high demand scenarios.

In Fig. 8, the demand is high, and the inventory level is

depleted. Therefore, the production schedule shows more

product coverage to manufacture more parts to compensate

for inventory shortages. In this scenario, more parts were

produced for more products. Consequently, this led to an

increase in the production time. Figure 9 shows the

Table 1 Experiment setting parameters

Number of Shifts 2

Shift 1 06:00–14:00

Shift 2 14:00–20:00

Number of weeks/production days 4 weeks/ 20 days

Number of production lines 4

Number of product types 93

Number of materials 9

Inventory levels LI [0-minimum]

AI [minimum-middling]

HI [middling-maximum]

Demand levels 20–100
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production schedule under low-material and high-demand

scenarios.

In Fig. 9, the level of materials is low, but the demand is

high, and the current stock level is high too. The production

plan struggles to produce enough parts due to the shortages

Fig. 6 Scenario 1-high inventory/high demand scenario

Fig. 7 Scenario 2-average inventory/high demand scenario

Fig. 8 Scenario 3-low inventory/high demand scenario
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in the material. The implication of this scenario on the

inventory is high, and the inventory is deemed to fail to

meet the demand because the flow shop is incapable of

manufacturing new parts for almost 50% of the warehouse

Fig. 9 Scenario 4-low material/high demand scenario

Fig. 10 Scenario 5-average inventory /high demand scenario

Fig. 11 Scenario 6-high materials/high demand scenario
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stocks. Figure 10 shows the production schedule under

average materials availability and high demand scenarios.

In Fig. 10, with the availability of the average material

against a high level of inventory and demand, the pro-

duction plan can produce more parts for some of the

products leading to above-average inventory status. On this

occasion, the products might share the same type of raw

material. Therefore, demand for a particular product would

lead to material shortages for another product. Figure 11

shows the production schedule under high materials

availability and high demand scenarios.

However, in Fig. 11, the high availability of the mate-

rials enables the production schedule to produce more parts

for more products. The plan can now meet the upper

threshold of the maximum stock level for the products. The

impact of this is having a better-replenished warehouse.

To test and compare the improvements generated out of

the designed scenarios, the mean squared error was cal-

culated for each of the six scenarios to reflect the differ-

ences between the total number of available parts and the

maximum stock level, as presented in Fig. 12.

Figure 12 shows that the best production and storage

practice is achieved in scenario 4, where the level of

materials is low, but demand is high, and the current stock

level is high too. The worst scenario is 3 when the demand

is high, and the inventory level is low. Both scenarios 2 and

6 have shown similar sustainability in the generated pro-

duction and replenishment plans when there is high

demand for high material availability and average inven-

tory status.

In summary, the developed model, including the pro-

posed algorithm, did not completely meet all the customer

orders, and it showed that some of the orders could not be

satisfied with their due date. This reflects the impact of

some operational constraints in the schedule plan.

Nonetheless, it reduced the missed / unsatisfied orders to

the minimum, even when the inventory was not fully

replenished.

6 Comparison study

In this section, the superiority of the proposed algorithm

against other approaches in the literature is justified. It

would be impractical for any other algorithm/approach

outside this domain/problem setting to satisfy the problem

requirements. These approaches include different storage

strategies and replenishment constraints that are not suit-

able to the currently adopted replenishment strategy.

However, Sequential replenishment is selected among

different replenishment approaches for the inventory for

the nature of the current replenishment. The non-instanta-

neous replenishment approach is considered for this com-

parison proposed by Adediran et al. (2019), which seeks to

replenish products when disruptions occur. The reason for

selecting these approaches is that they are flexible, having

fewer and easier constraints that restrict the replenishment

process; hence, it was easier for the authors to tweak these

approaches’ logic and rules and add the related factors to

this research problem along with the improved codes. The

total number of missed orders for both approaches would

define their corresponding impact, as shown in Table 3 and

presented in Fig. 13.

Figure 13 presents the effectiveness of the proposed

algorithm over the sequential approach. The number of

missed orders is relatively high in the sequential approach.

The sequential approach cuts the missed customer orders

by 67% throughout the production plan, while the proposed

approach achieved better performance, leaving 33% of the

customer orders missing their due dates. This shows an

improvement of 34% from the proposed approach over the

sequential replenishment. On the other hand, the non-

Fig. 12 Mean squared error for all scenarios

An agent-based heuristics optimisation model for production scheduling of make-to-stock connector…

123



instantaneous approach cut customer orders by 78%,

explaining how changeover times impacted the production

timeline and led to delays.

The sequential approach tends to replenish inventory

successively, and this feature resulted in 75 late orders. In

contrast, the non-instantaneous approach, where inventory

is replenished gradually rather than in lots, resulted in 85

late orders by applying such a replenishment theme.

However, the proposed approach replenished inventory

based on the predefined rules in Sect. 4.1.4, ensuring a

sustainable inventory level for all order types compared

with the sequential and non-instantaneous approaches,

significantly reducing the late order to only 37 late orders.

7 Conclusion and future work

This paper aimed to develop an agent-based heuristic

optimisation for best practices of production and inventory

in a make-to-stock connector-plates production system.

The proposed heuristic algorithm solved the production-

scheduling problem of a manufacturer that produces the

Table 3 Missed/Unsatisfied Orders

No Order

code

Sequential

missed orders

Proposed

missed orders

Non-instantaneous

missed orders

No Order

code

Sequential

missed orders

Proposed

missed orders

Non-instantaneous

missed orders

1 0207 3 0 2 35 1220 2 0 3

2 0212 2 0 2 36 1225 3 2 4

3 0307 1 0 1 37 1230 2 1 2

4 0310 0 0 0 38 1412 1 0 1

5 0312 1 0 2 39 1420 0 0 0

6 0315 1 0 2 40 1425 2 1 2

7 0407 2 1 3 41 1430 2 1 1

8 0410 2 1 1 42 1435 2 2 5

9 0412 2 0 0 43 1612 0 0 0

10 0607 2 0 1 44 1615 1 0 1

11 0610 1 1 4 45 1620 1 0 1

12 0612 1 1 2 46 1630 1 1 1

13 0615 1 0 2 47 1635 1 1 1

14 0620 1 0 0 48 1830 0 0 0

15 0625 2 2 1 49 2120 1 0 1

16 0710 1 1 1 50 2125 0 1 1

17 0712 1 0 1 51 2130 0 0 0

18 0715 2 0 4 52 2135 1 1 1

19 0720 1 1 1 53 2140 1 0 1

20 0725 2 3 1 54 FSPX170 1 0 1

21 0810 1 0 0 55 FSPX185 0 0 0

22 0812 1 2 5 56 R0624 1 0 1

23 0815 2 0 0 57 R0724 0 1 1

24 0820 3 2 2 58 R0918 1 1 3

25 0825 1 1 1 59 R1021 1 0 1

26 0830 1 0 1 60 R1030 0 0 0

27 1010 2 1 2 61 R1221 1 1 0

28 1012 1 0 1 62 R1230 0 0 0

29 1015 0 0 0 63 R1330 1 1 1

30 1020 2 2 2 64 R1630 0 0 0

31 1025 1 0 1 65 R1830 1 1 1

32 1030 1 0 2 66 R2130 0 0 0

33 1212 0 1 0 67 R2142 1 0 1

34 1215 0 0 0 68 R2436 1 1 1
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products in a make-to-stock environment. The proposed

algorithm was justified through a real-life case study to

assist one of the manufacturers that operate in a heavy-

traffic regime such that a customer order for some products

initiates a production order, and the production quantity

would exceed the customer order to produce more for

future orders without incurring any setup cost.

The model was successfully developed to mimic the

complex factory components, including machine, operator,

warehouse, raw material and customer order. This model

was integrated with the company’s daily activities pro-

viding the production planner with a better replenishment

plan that reacts to the changeable data. These data were

fetched from the company’s existing systems in an auto-

mated and integrated manner.

Six scenarios were designed to identify the impact of

many constraints on actual schedules, including production

and storage. When the level of materials is low, demand is

high, and the current stock level is high, too, was proven to

be the best scenario with a minimum MSE equal to 29,451.

The worst scenario of MSE equal to 649,844 was identified

as scenario 3 because demand is high, and the inventory

level is depleted. The proposed algorithm minimised the

number of unsatisfied customer orders. It increased the

levels of stocks, keeping them at their maximum levels

with an improvement in reducing the number of missed

orders to equal 34%. This approach also increased the

utilisation of the machines and materials and the factory’s

increased productivity.

The cost of holding inventory and unsatisfied orders is

significant to performance estimation in the flow-shop

setting. The cost function has not been considered in the

developed approach. Still, instead, the inventory was uti-

lised as a strategic means of dealing with satisfying cus-

tomer orders, which is considered the limitation of this

work.

Future work is expected to provide insight into new

problems where more related manufacturing constraints are

considered, such as WIP capacity and machine break-

downs. Other heuristic algorithms could be developed,

encapsulating additional constraints such as automation

capacity and warehouse size to reflect more accurate pro-

duction schedules. In addition, meta-heuristic approaches

such as Genetic Algorithms could be tailored and used to

provide more accurate and realistic schedules under addi-

tional challenging production and inventory control

scenarios.
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Biçer I, Seifert RW (2017) Optimal dynamic order scheduling under

capacity constraints given demand-forecast evolution. Prod Oper

Manag 26:2266–2286

Bouazza W, Hamdadou D, Sallez Y, Trentesaux D (2019) Effective

dynamic selection of smart products scheduling rules in FMS.

Manuf Lett 20:45–48

Chen C-S, Mestry S, Damodaran P, Wang C (2020) The capacity

planning problem in make-to-order enterprises. Math Comput

Model 50(9–10):1461–1473

Costa A, Fernandez-Viagas V, Framinan JM (2020) Solving the

hybrid flow shop scheduling problem with limited human

resource constraint. Comput Ind Eng 146:106545

Dinh P-H (2021a) A novel approach based on Three-scale image

decomposition and Marine predators’ algorithm for multi-modal

medical image fusion. Biomed Signal Process Control

67:102536

Dinh P-H (2021b) A novel approach based on Grasshopper

optimization algorithm for medical image fusion. Expert Syst

Appl 171:114576

Dinh P-H (2021c) Multi-modal medical image fusion based on

equilibrium optimizer algorithm and local energy functions.

Appl Intell 51:8416–8431

Dinh P-H (2021d) Combining Gabor energy with equilibrium

optimizer algorithm for multi-modality medical image fusion.

Biomed Signal Process Control 68:102696

Dinh P-H (2022a) An improved medical image synthesis approach

based on marine predators algorithm and maximum Gabor

energy. Neural Comput Appl 34:4367–4385

Dinh PH (2022b) A novel approach using structure tensor for medical

image fusion. Multidim Syst Sign Process 33:1001–1021

Dinh P-H (2023a) A novel approach based on marine predators

algorithm for medical image enhancement. Sens Imaging.

https://doi.org/10.1007/s11220-023-00411-y

Dinh PH (2023b) A novel approach using the local energy function

and its variations for medical image fusion. Imaging Sci J.

https://doi.org/10.1080/13682199.2023.2190947

Dinh P-H (2023c) Combining spectral total variation with dynamic

threshold neural P systems for medical image fusion. Biomed

Signal Process Control 80(2):104343

Dinh P-H (2023d) Medical image fusion based on enhanced three-

layer image decomposition and Chameleon swarm algorithm.

Biomed Signal Process Control 84:104740

Dinh P-H, Giang NL (2022) A new medical image enhancement

algorithm using adaptive parameters. Int J Imaging Syst Technol

32(6):2198

Economopoulos AA, Kouikoglou VS, Grigoroudis E (2011) The base

stock/base backlog control policy for a make-to-stock system

with impatient customers. IEEE Trans Autom Sci Eng 8(1):243

Firat M, De Meyere J, Martagan T, Genga L (2022) Optimising the

workload of production units of a make-to-order manufacturing

system. Comput Oper Res 138:105530

Georgiadis GP, Pampı́n BM, Cabo DA, Georgiadis MC (2019)

Optimal production scheduling of food process industries.

Comput Chem Eng 134:106682

Györgyi P, Kis T (2018) Minimising the maximum lateness on a

single machine with raw material constraints by branch-and-cut.

Comput Ind Eng 115:220–225

Hodge DJ, Glazebrook KD (2011) Dynamic resource allocation in a

multi-product make-to-stock production system. Queuing Syst

67:333–364

Hutter T, Haeussler S, Missbauer H (2018) Successful implementa-

tion of an order release mechanism based on workload control: a

case study of a make-to-stock manufacturer. Int J Prod Res

56(4):1565–1580

Kim E, Min D (2021) A two-stage hybrid manufacturing model with

controllable make-to-order production rates. J Manuf Syst

60:676–691

Kriett PO, Eirich S, Grunow M (2017) Cycle time-oriented mid-term

production planning for semiconductor wafer fabrication. Int J

Prod Res 55(16):4662–4679

Li B, Arreola-Risa A (2020) On minimising downside risk in make-

to-stock risk-averse firms. Naval Res Logist 68(2):199

Li G, He X, Zhou J, Wu H (2019) Pricing, replenishment and

preservation technology investment decisions for non-instanta-

neous deteriorating items. Omega 84:114–126

Lorenz R, Senoner J, Sihn W, Netland T (2021) Using process mining

to improve productivity in make-to-stock manufacturing. Int J

Prod Res 59(1):4869

Lu Q, Chen X (2018) Capacity expansion investment of supplier

under make-to-order and make-to-stock supply chains. Int J Prod

Econ 198:133–148

Osman MS (2020) A computational optimisation method for

scheduling resource-constraint sequence-dependent changeovers

on multi-machine production lines. Expert Syst Appl

168:114265
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