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Abstract—The recurrent neural network (RNN)-based equal-
izers, especially the bidirectional long-short-term memory (biL-
STM) structure, have already been proven to outperform the
feed-forward NNs in nonlinear mitigation in coherent optical
systems. However, the recurrent connections still prevent the
computation from being fully parallelizable. To circumvent the
non-parallelizability of recurrent-based equalizers, we propose,
for the first time, knowledge distillation (KD) to recast the
biLSTM into a parallelizable feed-forward 1D-convolutional NN
structure. In this work, we applied KD to the cross-architecture
regression problem, which is still in its infancy. We highlight
how the KD helps the student’s learning from the teacher in
the regression problem. Additionally, we provide a comparative
study of the performance of the NN-based equalizers for both
the teacher and the students with different NN architectures.
The performance comparison was carried out in terms of the
Q-factor, inference speed, and computational complexity. The
equalization performance was evaluated using both simulated
and experimental data. The 1D-CNN outperformed other NN
types as a student model with respect to the Q-factor. The
proposed 1D-CNN showed a significant reduction in the inference
time compared to the biLSTM while maintaining comparable
performance in the experimental data and experiencing only a
slight degradation in the Q-factor in the simulated data.

Index Terms—Artificial intelligence, machine learning, re-
current neural networks, parallelization, knowledge distillation,
nonlinear equalizer, coherent detection.

I. INTRODUCTION

OPTICAL fiber nonlinearity (e.g., the Kerr effect) poses
a significant challenge as it limits the optimal optical

launch power, thus the information rate in current coherent
transmission systems. The importance of optical nonlinearity
increases as transmission bandwidth continues to expand [1].
To mitigate the impact of nonlinearity, various digital signal
processing (DSP) techniques have been proposed [2]. Machine
learning techniques, especially neural networks (NNs) used
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in digital communication have been considered over the last
two decades [3]. Recently, NNs have emerged as promising
tools for optical channel post-equalization due to their uni-
versal approximation capability. This capability allows them
to effectively approximate the inverse optical channel transfer
function and counteract nonlinear distortions. Nonetheless, the
main challenges of the NN-based equalizers, like the capabil-
ity to perform in high-speed processing, and computational
complexity (CC), still prevent it from real implementation.
Among NN architectures, recurrent-based neural networks
(RNNs) have demonstrated superior equalization performance
compared to feed-forward NNs when dealing with nonlinear
impairments [4]–[6]. However, the RNN structure, character-
ized by feedback loops, see Fig. 1, presents a challenge in
achieving parallelization. Parallelization is essential for low-
complexity hardware implementations and high-speed process-
ing in optical networks [7]. To achieve low latency and high
throughput, modern high-speed optical networks, rely on ef-
fective parallelization techniques, as they increase throughput
and reduce computational time [8].

We introduce a novel approach to address the parallelization
challenge of RNN-based equalizers, in this case, the bidirec-
tional long-short-term memory (biLSTM) network, through
knowledge distillation (KD). Our work focuses on transform-
ing the biLSTM-based equalizer into a feed-forward structure
using KD. Generally, KD involves transferring knowledge
from a larger model (the teacher) to a more compact model
(the student) that requires fewer computations [9]. The pre-
vious research on KD has predominantly concentrated on
classification tasks involving teacher and student networks
with similar topologies. The application of KD to regression
tasks and cross-architecture KD, as proposed in our work,
has only recently gained attention [10]. The KD in our
case aims to be used as a tool to convert the structure of
the NN, rather than to reduce the CC. Our approach not
only achieves a parallelizable structure but also reduces the
inference latency, thereby addressing the challenges associated
with implementing biLSTM in low-complexity hardware for
high-speed processing. Furthermore, our NN-based equalizers
recover multi-symbol output, which helps reduce the CC per
recovered symbol [11]. In this work, we:

• Present, for the first time, a successful workaround for
the parallelization of RNN-based equalizers using KD.
We transfer knowledge from a recurrent teacher model,
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specifically a biLSTM coupled with a 1D-convolutional
NN (1D-CNN), which was proposed as an efficient
equalizer model in [12]. The knowledge is transferred
to the proposed feed-forward student model, a 1D-CNN
architecture, as illustrated in Fig. 2a.

• Compare performance, CC, and latency of the teacher
model and the student model when adopting different
NN architectures. We consider the bidirectional RNN
(biRNN), 1D-CNN, and multilayer perception (MLP).

• Apply KD framework to different transmission scenar-
ios from both simulation and experiments to verify the
effectiveness of the KD.

The subsequent sections of this paper are as follows. Sec.II
explains in detail the definition and advantages of paralleliza-
tion both for the NN architecture and for the output symbols.
In Sec. III, the KD framework and its background were
introduced. After that, Sec. IV describes the numerical and
experimental setup, followed by the training process. Sec. V
provides comparative analyses and performance evaluations of
our approach in various scenarios and various NN structures.
Additionally, we discuss the implications and limitations of the
proposed approach. The final Sec. VI concludes the article.

II. PARALLELIZATION

A. Parallelization of the NN architecture
Parallelization of the NN structure should be considered

when designing the model. Parallelization can more efficiently
leverage hardware usages like multi-core GPUs and CPUs,
resulting in the acceleration of the training or inference of the
NN. Each NN type offers a different degree of parallelism, de-
pending on its unique architecture. For instance, the structure
of NN can have a feed-forward nature like CNNs or a recursive
one like RNNs. Fig. 1 illustrates the recurrent structure at the
top with a feedback loop, preventing parallelization, while the
feed-forward structure at the bottom can process multiple sets
of inputs and provide multiple outputs simultaneously.

In this work, we focus on the 1D-CNNs. 1D-CNNs are feed-
forward-based networks where the input temporal sequential
batches are independently processed, accordingly parallel op-
erations are possible [13], [14]. In signal processing, the con-
volutional layers share some similarities with Finite Impulse
Response (FIR) filters, as they both are implemented based
on convolution operation. The output at the current time step
depends solely on the current and past inputs. The equation
of the 1D-convolutional layer can be formularized as:

yfi = ϕ

 ni∑
n=1

nk∑
j=1

xin
i+j−1,n · kfj,n + bf

 , (1)

where yfi denotes the output, known as a feature map, of
a convolutional layer built by the filter f in the i-th input
element, nk is the kernel size, ni is the size of the input vector,
xin represents the raw input data, kfj denotes the j-th trainable
convolution kernel of the filter f and bf is the bias of the filter
f . For the FIR filter, the equation can be summarized as:

y(n) =

N∑
i=0

bi · x(n− i), (2)
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Fig. 1: Illustration of the parallelizability comparison between
a recurrent cell (top) that is not easily parallelizable due to
the feedback loop and a 1D-CNN (bottom) that can process

output simultaneously.

where y(n) represents the output signal, u(n) is the input
signal, N denotes the filter order. The FIR filter computation
is fully parallelizable as it does not contain any recursive part
[15]–[17].

In the case of RNNs, they are useful in learning sequential
data. RNN’s output of the current stage yt takes into account
the current stage input xt and the output of the previous stage
yt−1. The equation of the RNN for a given time step t is as
follows:

ht = ϕ(Wxt + Uht−1 + b), (3)

where ϕ is the nonlinear activation functions, xt ∈ Rni

is the ni-dimensional input vector at time t, ht ∈ Rnh

is a hidden layer vector of the current state with size nh,
W ∈ Rnh×ni and U ∈ Rnh×nh represent the trainable weight
matrices, and b is the bias vector. Calculating the current stage
output as a function of the previous stage output creates a
recursive evaluation, which is indeed sequential processing
and precludes parallelization. In the signal processing context,
RNNs can be compared to Infinite Impulse Response (IIR)
filters [18], [19]. This can be observed from the equations
Eq. (3) and Eq. (4). The equation of the first-order IIR filter
is:

y(n) = bx(n) + ay(n− 1), (4)

where y(n) denotes the output signal, x(n) is the input signal,
b represents the feed-forward filter coefficient and a is the
feedback filter coefficient. Even though Ref. [20] has unfolded
the pipelining processing of the IIR filter to parallel processing
to some degree of parallelism, there is still a feedback loop, as
shown in Fig. 8 in [20]. Therefore, we can imply that the RNN-
based architecture is not fully parallelizable. This implication
can be applied to other variations of the RNN-based networks,
such as Long Short-Term Memory (LSTM), biLSTM [21], and
Gated Recurrent Unit (GRU) networks.

To be more specific, this paper focuses on the biLSTM
model architecture. biLSTM is the network consisting of two
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Fig. 2: (a) KD framework with biLSTM+1D-CNN as a teacher model and dilated 1D-CNN as a proposed student model; (b)
different student architectures: student model 2 - biRNN model and student model 3 - MLP model; (c) the input of the model
contains M real (I) and imaginary (Q) components of both X and Y polarization the received symbols, to recover I and Q

parts components of X polarization of M − nk + 1 symbols at the output.

separate LSTM layers: for forward and backward directions
[22]. Because of a double recurrent setting, which cannot
be fully parallelized, biLSTM is even more computationally
expensive than LSTM and RNN. LSTM (see Eq. (5)) and
RNN (see Eq. (3)) have essentially identical core properties:
sequential processing and retaining past information through
past hidden states. Due to the sequential processing of the
recurrent setting, the model computation is very expensive due
to limited parallelization [14]. The equations of a forward pass
of an LSTM cell with a time step t are given as:

it = σ(W ixt + U iht−1 + bi),

ft = σ(W fxt + Ufht−1 + bf ),

ot = σ(W oxt + Uoht−1 + bo),

Ct = ft ⊙ Ct−1 + it ⊙ ϕ(W cxt + U cht−1 + bc),

ht = ot ⊙ ϕ(Ct),

(5)

where ft, it, ot are forget gate’s, input gate’s and output gate’s
activation vector, respectively. ϕ is usually the “tanh” acti-
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Fig. 3: Architecture of an LSTM cell.

vation function, σ is usually the sigmoid activation function.
The sizes of each variable are xt ∈ Rni ; ft, it, ot ∈ (0, 1)nh ,
Ct ∈ Rnh ; and ht ∈ (−1, 1)nh . The ⊙ symbol represents the
element-wise (Hadamard) multiplication.

This paper proposed to transform the model architecture
from the biLSTM to 1D-convolutional layers to enable parallel
computation. Parallel computing increases the energy effi-
ciency of the resources and reduces the time-to-solution. More
importantly, parallelization allows the NN-based equalizer to
be closer to the real hardware implementation. Especially in
the optical networks, we work with high-speed data and the
latency can be a crucial factor of the equalizers.

B. Parallelization of recovered symbols

Traditionally, the NN-based equalizers in previous work [4],
[23], [24] were designed to recover one symbol at a time,
which means that the output of the NN model represents only
one recovered symbol at each inference step. However, the
single-symbol output NN-based equalizers can be computa-
tionally inefficient, as the weights and biases trained to recover
one symbol may still be useful for recovering multiple symbols
[25]. When taking into account the pre- and post-cursor ISI
(inter-symbol interference) and chromatic dispersion, the input
window should be wider than the output window [26]. The ini-
tial and final input symbols in the window lack the information
of their neighbors, resulting in a smaller number of recovered
output symbols [12]. Multi-symbol output equalizers draw
attention to the research areas, previously proposed by [12],
[25], [27].

In this work, our NN-based equalizer recovers multi-symbol
output in order to reduce the CC per recovered symbol. The
shape of the input and the output is illustrated in Fig. 2c.
The last layer of our models (except for the MLP) adopts the
1D-convolutional layer as in Ref. [12]. The 1D-convolutional
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layer contains two filters to recover both real (I) and imaginary
(Q) components of the output signal. The size of the output
window or the number of recovered symbols at each inference
step is M−nk+1, where M represents the input window size
that NN processes at a time, and nk is the kernel size in the
1D-convolutional layer. In this work, the padding is set to zero,
while the dilation and stride are set to one. The output size
can be different depending on the padding, dilation, and stride.
Note that the MLP model does not deploy a 1D-convolutional
layer but it uses the neurons to recover multi-symbol output
instead.

III. KNOWLEDGE DISTILLATION

Generally, KD refers to a model compression technique of
transferring knowledge from a complex model, known as a
teacher model, to a more compact one, known as a student
model, which is less computational expensive to evaluate [9],
[28]. KD allows the student model to have a comparable
performance with respect to the teacher while requiring less
CC. The student model exploits the teacher’s predictions to
assist its learning. The predictions from the teacher model
referred to as “teacher labels” or “soft labels”, are used to
train the student model together with the ground truth labels
to aid the student’s learning. Most of the prior work proposed
KD [9], [29]–[31] in a classification task. In classification,
the ground truth labels are usually one-hot labels. The teacher
labels contain useful information about the relative similarity
of the incorrect predictions, while the one-hot labels do not
provide that sort of information [9], [32]–[34]. For example,
the teacher labels, which were the results of the Softmax
function, contain probabilities of each class in a multi-class
problem, whereas the one-hot label only contains one or zero
for each class.

KD in a regression task is still in its infancy, but various pa-
pers, e.g., [10], [32], [35] have shown that KD can demonstrate
promising results in this context. However, it is still ambiguous
in some cases about how the student model can take advantage
of the teacher’s predictions in the regression task [32]. In our
work, we demonstrate in Fig. 2a how the teacher labels contain
the noise information in the constellation diagram compared to
the ground truth labels. KD in regression also performs as an
efficient regularizer to improve generalization. Sec. V shows
the weight distribution of the student model trained with KD
compared to the one without KD.

The loss paradigm is the joint loss function that takes into
account both the loss between the student’s and the teacher’s
predictions and the loss between the student’s predictions
and ground truths, as described in [10]. The loss function,
illustrated in Fig. 2a, can be described as:

LKD = αL(ŷS , ŷT) + (1− α)L(ŷS ,ytrue), (6)

where ytrue is the actual labels, ŷS and ŷT represents the
student’s and the teacher’s predictions, respectively and α is
the hyper-parameter to adjust the contribution for each term to
the final loss. The first term of the equation allows the student
model to learn from the teacher, and the latter enables the
student to learn from the ground truths. Empirically, this α

parameter has a similar impact on the performance like the
regularizer coefficient, as it can impact how overfitting the
model is, depending on how much the student model learns
from the teacher or from the ground truth. In this paper, the
L function is the L2 distance (Euclidean distance). It is worth
noting other functions, such as Mean-Squared Errors (MSE),
can also be adopted, but in our case, the L2 distance provides
better learning.

In addition, KD is commonly employed when the teacher
and student models possess similar network topologies, aim-
ing to reduce CC [34]. However, the investigation of cross-
architecture KD [10] remains limited. In this work, we apply
KD to recast the NN structure in the regression problems,
emphasizing the reduction of inference time rather than the
CC in terms of the number of real multiplications.

IV. DATA GENERATION AND NN TRAINING

A. Data Generation

The numerical simulator created the dataset by assuming the
transmission of a single-channel (SC) 30 GBd, 64-QAM dual-
polarization (DP) channel along 20× 50 km standard single-
mode fiber (SSMF) spans. The signal propagation through
the fiber was represented by a generalized Manakov equation
split-step Fourier method [36]. The SSMF is characterized
by the effective nonlinearity coefficient γ = 1.2 (W· km)−1,
chromatic dispersion coefficient D = 16.8 ps/(nm·km), and
attenuation parameter α = 0.21 dB/km. At the end of each fiber
span, optical fiber losses are compensated for by an Erbium-
Doped Fiber Amplifier (EDFA) with a 4.5 dB noise figure.
Downsampling and CD compensation (CDC) were performed
on the receiver end. The CDC was performed in the frequency
domain with the transfer function of the CD given by [36]:
G(z, ω) = exp

(
− jω2β2z

2

)
where ω is the angular frequency,

β2 is the group delay dispersion parameter of the fiber and
z is the transmission length. Afterward, the received symbols
were normalized and used as inputs of the NN.

In this work, the experimental data were also analyzed to
verify the performance of the proposed KD framework. The
transmission scenario was SC DP-probabilistic shaped (PS)-
64QAM1 in 34.4 GBd along 9×110 km SSMF fiber spans. The
experimental setup in Fig. 4 was detailed in Ref. [12]. At the
transmitter side, a symbol sequence with a modulation scheme
of 64QAM (8bits/4D symbol) with a symbol rate of 34.4 GBd
was mapped out of data bits generated by a Marsenner twister
generator [37]. After that, the symbol sequence was passed
through a digital root-raised cosine (RRC) filter with a 0.1
roll-off factor to limit the channel bandwidth to 37.5 GHz. The
filtered digital samples were resampled and fed into a digital-
to-analog converter (DAC) operating at 96 GSamples/s. The
DAC outputs were then amplified by a four-channel electrical
amplifier which drove a dual-polarization in-phase/quadrature
Mach–Zehnder modulator (MZM). The modulator modulated
a continuous waveform carrier generated by an external cavity
laser at a wavelength of λ = 1.55µm. The resulting optical

1To demonstrate that the NN equalizer is applicable in different transmis-
sion scenarios, we used the experimental data of the PS case.
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signal was transmitted along 9×110 km spans of SSMF with
lumped EDFA amplification with the noise figure ranging from
4.5 to 5 dB. The SSMF had α = 0.21 dB/km, D = 16.8
ps/(nm·km), and γ = 1.14 (W· km)−1.

At the receiver side, the received optical signal was con-
verted to the electrical domain using an integrated coher-
ent receiver. Then, the resulting signal was sampled at 80
GSamples/s using a digital sampling oscilloscope. The sam-
pled signal was processed offline with the DSP algorithms
described in [38]. The CDC was accomplished in two steps.
The first step of processing involved compensating for bulk
accumulated dispersion using a frequency domain equalizer
(FDE) with an FFT size of 12288 samples and an impulse
response length of 3072 samples 2. After that the residual CD
and dynamic impairments of channels were mitigated by the
adaptive approach, multiple-input–multiple-output (MIMO)
equalization with an FFT size of 192 samples and an overlap
size of 48 samples. Next, the carrier frequency offset was
mitigated. A constant-amplitude zero autocorrelation-based
training sequence was located in the received frame, and the
equalizer transfer function was estimated from it. Then, the
two polarizations of the signal were demultiplexed, and clock
frequency and phase offsets were corrected. The carrier phase
estimation was performed using pilot symbols. The resulting
soft symbols were used as input for an NN equalizer. Finally,
the pre-FEC BER was evaluated based on the signal obtained
at the output of the NN equalizer. In our case, the NN focused
on mitigating the nonlinear effects, and was not designed to
replace the regular DSP, instead, the NN was applied as an
extra step to the regular DSP.

2These values allow to compensate for up to an accumulated dispersion of
300 nm/km, which is significantly more than the one needed to compensate
in a link with 9×110 km.

B. KD Training to Solve the Parallelization Problem of Re-
current Connection

The KD framework is deployed to transform the model
architecture from the biLSTM+CNN to simpler ones. Fig. 2a
shows the KD process with the teacher and student model
structure. If we observe the constellation diagram of the
teacher labels and the ground-truth labels in Fig. 2a, training
the student model with the teacher’s predictions that contained
the information on noise and some uncertainty, results in not
overly confident predictions of the student. This helps reduce
overfitting and improve the generalizability of the student
model. We aim to compare different types of student models,
namely, bidirectional RNN (biRNN), 1D-CNN, and MLP.
1D-CNN and MLP have a feed-forward structure, enabling
parallel computation for the previously proposed biLSTM-
based equalizer [12] or the teacher model. In contrast, biRNN
still has a recurrent structure. However, biRNN architecture is
considerably less complex than the biLSTM, thus allowing for
faster computation. In this work, we limit the biRNN to only
one layer in order to maintain the complexity.

The teacher model is pre-trained and used only to create
teacher labels. For both simulation and experiment, the training
datasets were generated with random bitstream of 220 sym-
bols, however, at every epoch, 218 symbols were randomly
chosen from this dataset as input symbols to train the model.
For testing and validation, the dataset contained unseen 217

symbols. All the models in this paper were trained, validated
and tested with this same size of dataset. The training of all
models in both simulation and experiment was carried out for
1000 epochs, and a mini-batch size of 210. The mini-batch
input of the NN is defined in three dimensions [4]: (B, M ,
4). B is the mini-batch size. M is the memory size depending
on the number of neighbor symbols N as M = 2N + 1. The
last dimension has the shape of four referring to the number of
features for each symbol. Both the teacher and student models
accepted four input features resulting from the in-phase and
quadrature components of the complex signal (XI , XQ, YI ,
and YQ) where XI + jXQ and YI + jYQ were the signals
in the X and Y polarizations, respectively. The output is to
recover the real and imaginary parts of multiple symbols in X
polarization simultaneously. The shape of the NN output batch
can be expressed as (B, M −nk +1, 2), where M −nk +1 is
the number of symbols recovered at the output. The weights
of the trained models were saved at the epoch where the BER
of the validated dataset was the lowest, as known as, early
stopping method.

To evaluate the effectiveness of the KD framework, the
training of the 1D-CNN student model with KD is compared
to the traditional training approach without knowledge of
the teacher model, known as the student model trained from
scratch. In addition, to improve the generalizability of the
student model trained from scratch, we also trained the model
with the L2 regularizer. The student model trained from scratch
has the same structure and hyper-parameters as the proposed
student trained with KD.

1) Teacher Network Architecture: The teacher model is
a biLSTM+CNN model, see Fig. 2a, which was trained
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Fig. 5: Visualization of (a) a stack of convolutional layers; (b) a stack of ‘dilated’ convolutional layers.

previously in [12]. The biLSTM layer has 100 hidden units
(nh), and the CNN layer adopts 2 filters (nf ) and nk = 51 with
the linear activation function. The loss function used in this
model is MSE, and the optimizer is Adam with a learning
rate of 10−3. The input window (M ) has the size of 221
input symbols and the model performs a regression task to
predict the real and imaginary parts of the recovered symbols,
or 171 symbols per one inference step. For the teacher model
employed in the experimental setup, the model has 117 hidden
units and the output window is 195 symbols. More details can
be found in Ref. [12].

2) Student Network Architecture: We investigated different
types of the student model (1D-CNN, biRNN and MLP)3

to evaluate the equalization performance, CC and inference
speed. All student models in both simulation and experiment
in this paper were trained with the loss function: Euclidean
distance (L2 distance).

For the proposed 1D-CNN model, the dilated CNN is
applied. The dilated convolution is an approach to inflate the
kernel by inserting holes between its consecutive elements.
Consequently, the network is operated on a coarser scale
than with a normal convolution filter with a dilation rate
equal to zero [39]–[41]. This approach allows the NN to
deal with long-term temporal dependencies, and have larger
receptive fields within only a few layers as shown in Fig. 5.
The dilated CNN preserves the input resolution throughout
the network [42]. The dilated convolutions demonstrated the
longer receptive field in a cheaper way than the LSTM [39]. In
Ref. [10], the KD student model with dilated CNN architecture
shows promising results when the teacher model is the LSTM
architecture and the data is in the form of a time-series in
the regression task. To mimic biLSTM, which learns the input
data in forward and backward directions, the 1D-CNN student
model learns both directions of the training data. The backward
direction input means the input sequence (forward direction)
in reverse time order. The last 1D-CNN layer of both the
teacher and the student has the same parameters. The Bayesian
Optimizer (BO) [4] is used to optimize the hyper-parameter
values of the student model. The estimated optimal values
found by BO are depicted in Fig. 2a. Note that (38, 23,
1) means that the 1D-CNN layer operates with 38 filters, a

3Note that the hyper-paraments of all types of student models for both
simulated and experimental data were optimized with the dataset when the
launch power was 2 dBm which was the optimum launch power of the teacher
model and these values were used for other launch power. The optimization
for each type of student model was undergone with approximately the same
amount of time.

kernel size of 23, and a dilation rate of 1. The alpha value is
0.903. The activation function of the dilated 1D-CNN part is
LeakyRelu [43]. Note that the architectures and parameters of
the student models in the simulation and experimental setup
are the same, apart from the second layer of the 1D-CNN,
instead of 25 filters, it has 33 and 34 filters to maintain the
output dimensions.

The vanilla RNN is the simplest variant of the recurrent-
based models [44]. This RNN student model adopts one
layer of biRNN with 135 hidden units followed by a 1D
convolutional layer with 2 filters and a kernel size of 51
as the teacher model, see Fig. 2b. We avoid stacking the
biRNN layers to maintain the inference speed, therefore, the
performance can be limited. The training was carried out with
the alpha value of 0.611, optimized by BO.

The last student model type is the MLP, shown in Fig. 2b,
consisting of three hidden layers with the hidden units of 401,
510 and 510, respectively, and an output layer of 342 neurons.
The output layer is reshaped to match the aforementioned
output window shape of the data. The neurons in the hidden
layers have the hyperbolic tangent as an activation function,
while the output layer deploys a linear function. The alpha
value is 0.8.

V. RESULTS AND DISCUSSION

A. Equalization Performance

In this paper, we showed the equalization performance in
terms of Q-factor. The Q-factor was calculated directly from
the bit error rate (BER) by:

Q = 20log10
[√

2erfc−1(2BER)
]
. (7)

We compare our proposed student model (1D-CNN) using
the KD framework with the teacher model (biLSTM +CNN),
the student model trained from scratch (without KD) with
exactly the same settings, and the student model trained from
scratch with L2 regularizer [45]. The optimum L2 coefficient
depends on the launch power. At 2 dBm launch power, the
optimum L2 coefficient found by grid search is 10−4 for
simulated data and 5 × 10−6 for experimental data. Fig. 6a
depicts Q-factor vs. launch power for different types of
NN-based equalizers in the simulated data. In all NN-based
equalizers, an improvement of the optimum launch power was
achieved. We can observe that the Q-factor performance of
the feed-forward student model with KD drops by 0.5 dB
compared to the recurrent teacher model at its optimal launch
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Fig. 6: Q-factor as a function of the launch power for the NN-based equalizers obtained via KD, compared to the original
(teacher) model, CDC in three different transmission scenarios.

power (2 dBm). With KD, the performance of the student
model is comparable to that of the teacher model in the linear
transmission regime, but the student’s performance degrades
slightly as the launch power increases. However, when training
the student model from scratch without KD, the model suffers
from overfitting, resulting in a noticeable degradation of the
peak performance by 2.4 dB at its optimal power. Training the
student model with the L2 regularizer, which helps enhance
the generalization capability, improves the performance of the
NN compared to training it from scratch only, but still does not
reach a similar performance level as the one achieved when the
student model is trained with KD. The performance achieved
using digital backpropagation (DBP) 1 step/span (STpS) and
chromatic dispersion compensation (CDC) are also shown for
reference.

With the experimental setup, the performance of the stu-
dent model with KD, shown in Fig. 6b, was comparable
to the teacher model. We observed no performance drop in
the experimental data. However, the student model trained
from scratch did not suffer from severe overfitting as in the
simulated data but it still could not reach the same Q-factor
level as the teacher model or the student model trained with
KD. In the case that the student model was trained from
scratch with an L2 regularizer, the performance was improved
slightly. When the model is not significantly overfitting, the
L2 regularizer parameter needs to be carefully selected. In
this experimental setup, the weaker regularization parameter
was preferred (5 × 10−6), to prevent the regularizer from
excessively penalizing the weights, allowing the model to
still learn meaningful patterns from the data [46]. This result
demonstrated that the proposed student network trained with
KD was highly effective in the experimental data and the KD
also maintained superior performance compared to the student
models trained from scratch. However, it can be observed
that at the higher launch power, the performance gap was
larger. At the launch power of 5 dBm, the model with KD
and the student model with L2 regularize performed worse

than the student model trained from scratch. This can be
because, during the optimization process, we operated with the
dataset with the launch power of 2 dBm, resulting in a sub-
optimal performance at 5 dBm and overly constrained weight
distribution.

To demonstrate the effectiveness of the proposed 1D-CNN
student model, the 1D-CNN is compared against the biRNN
and MLP as student models, shown in Fig. 7a and Fig. 7d for
the simulated and experimental data, respectively. The perfor-
mance of the biRNN and MLP students was not comparable
to the 1D-CNN model. In the simulation, the biRNN model
had around 1.4 dB Q-factor drop from the teacher model but
still outperformed the CDC and showed the improvement of
the optimum launch power. In the experiment, the biRNN
revealed the same behavior as in the simulation. Even the
biRNN has a recurrent structure, but as we implemented only
one layer to limit the inference latency, the model did not
learn well. In addition, we experienced instability during the
training, which can result from vanishing/exploding gradients.
In the case of the MLP as a student model4, the performance
was poorer than that of the CDC in both simulation and
experiment. The MLP was not the most suitable architecture
for nonlinear mitigation when considering the performance
[47], especially for recovering the multi-symbol output as in
our case. This can be explained by considering that the MLP
lacks temporal information handling by design. The MLP does
not take the sequence of data points into account, which limits
their capability to effectively model time series dynamics.

B. Inference Speed Performance

For this analysis, we tested the inference speed with the
simulation data and experimental data. Note that both the
teacher and the student models recover 171 symbols per

4Note that, in the optimization process, we attempted to increase the number
of layers to experience if that will enhance the performance, however, the MLP
reached the point where the greater number of hidden layers did not improve
the performance .
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Fig. 7: (a, d) Comparison of different architectures (biRNN+CNN, 1D-CNN and MLP) of the student model to the teacher
model, CDC and 1 STpS DBP; (b, e) Inference time of teacher/student models; (c, f) Weight distribution of student model

trained with different approaches.

inference step in the simulation, and 195 symbols per inference
step in the experiment. The inference time analysis was carried
out by using CPU (Intel Xeon Processor 2.20 GHz) and GPU
(Tesla T4) on Google Colab [48]5 as the inference engine. In
this analysis, the size of the test set was 800, and the batch size
was 8. As can be seen from Fig. 7b for the simulation and
Fig. 7b for the experiment, the biLSTM-based NNs require
the longest inference time in both CPU and GPU as inference
engines. The biRNN presented lower inference latency than
the biLSTM due to its simpler architecture. The inference time
of the recurrent-based NN in the CPU and the GPU did not
differ significantly. In contrast, the feed-forward NNs (1D-
CNN and MLP) have significantly lower inference latency in
the GPU than that of the CPU, especially the 1D-CNN model.
1D-CNN model when the CPU was used as the inference
engine experienced similar latency as the recurrent-based NN.
However, with the feed-forward nature of the 1D-CNN that
allows parallelization, the GPU can demonstrate remarkably
faster computation. The MLP’s inference time is shorter than
the 1D-CNN as it has a simpler structure and operations. The
recurrent networks (biLSTM and biRNN) experienced longer
inference latency in the GPU compared to the CPU. This can
happen due to the not easily parallelizable recurrent structure
and the complexity of the model. The GPUs are specialized for

5Note that, in this study, we did not consider the GPU-accelerated library of
primitives for deep neural networks cuDNN (NVIDIA CUDA®. Deep Neural
Network library) for the inference in the GPU.

efficiently parallel computing, handling complex models with
multiple layers and parameters. The GPUs are generally faster
when the computation is parallelizable and involves matrix
multiplications while in some other types of computations,
the GPU can be slower. The parallel computing ability of the
GPU can fully exploit the parallelizability of the feed-forward
structures of 1D-CNN and MLP. Overall, the proposed 1D-
CNN student model provided the most reasonable trade-off
between performance and inference speed. The parallelization
of the proposed feed-forward equalizer and its savings in
latency are key to the real-time hardware implementation of
NN-based equalizers.

Table I presents the summary of the performance versus
complexity of different NN architectures. The complexity is
shown in terms of CC and time complexity. The CC was mea-
sured with respect to the number of trainable parameters and
the number of real multiplications, while the time complexity
is the latency or the inference time on CPU and GPU. The
biLSTM model provided the highest Q-factor but only slightly
higher than the 1D-CNN in the simulation, while the perfor-
mance of both biLSTM and 1D-CNN models are comparable
in the experiment. Even though the feed-forward structures
have a larger number of trainable parameters, the inference
latency is still lower, especially when it is processed on the
GPU. This result demonstrates that recurrent connections can
crucially limit parallelization.
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Data/
Output Shape

Model Type Q-factor No. of Trainable Parameters No. of Real Multiplications
CPU Inference Time

per Window
GPU Inference Time

per Window

Simulation
171

Symbols

biLSTM+CNN 10.66 104,402 2.2×107 5.78×10−3 7.65×10−3

biRNN+CNN 9.22 65,342 8.85×106 4.51×10−3 4.38×10−3

1D-CNN 10.19 293,390 6.37×107 5.12×10−3 3.87×10−4

MLP 6.3 995,277 9.93×105 3.83×10−4 1.51×10−4

Experiment
195

Symbols

biLSTM+CNN 8.22 126,830 2.7×107 6.01×10−3 7.02×10−3

biRNN+CNN 8.06 52,382 9.52×106 3.97×10−3 4.39×10−3

1D-CNN 8.22 309,870 6.8×107 5.23×10−3 3.18×10−4

MLP 7.32 1,019,805 1.07×106 3.525×10−4 1.43×10−4

TABLE I: Summary of the performance versus complexity of different types of NN architecture.

C. Roles of Knowledge Distillation

Now, we study the features associated with the KD-trained
model. For this purpose, we also report the weight distribution
of the student model trained with different approaches in
Fig. 7c for the simulation and Fig. 7f for the experiment.
In both figures, compared to the student model trained from
scratch, the student model with KD has a more regularized
weight distribution: the weights are more concentrated around
zero. This characteristic helps reduce the model’s variance and
overfitting. The optimal value of α in the KD loss function is
0.903, which means that the student model learns 90.3% from
the teacher labels and the rest comes from the ground-truth
labels. This fact demonstrates the effectiveness of the teacher
labels in the student’s learning. The teacher constellation/labels
depicted in Fig. 2a show that the teacher also provides helpful
information on the noise, whereas this information cannot be
encoded in the ground-truth labels (which contain only real
values). The weight distribution of the student model with KD
and the improvement in Q-factor, compared to the training of
the 1D-CNN without KD, both support the concept of using
teacher labels as efficient regularizers [9].

KD can work as an efficient regularizer to allow the
model to generalize well with unseen data. In this regard,
the KD framework provides the adequacy of the NN weight
constraints, in contrast, too strict or too weak L2 regularizer
parameters, may not provide significant benefits. However,
the KD framework also shows some limitations. The training
complexity is increased because both the teacher and the
student models need to be trained. For example, when the
transmission scenario changes, we first have to train the
teacher model before the student one with KD can be trained
effectively. This can be time and resource-consuming. During
the training, KD involves learning via the teacher’s predictions,
resulting in a more complex training process. Moreover, the
student model relies heavily on the accuracy of the teacher
model. If we also consider the optimization process, to obtain
the best performance, both the parameters of the teacher
and the student need to be optimized. A teacher with good
performance is necessary for the student’s learning.

VI. CONCLUSION

In this paper, for the first time, the knowledge distillation
technique has been proposed as an efficient tool to achieve
the parallelizability of the recurrent equalizers. In our study,

KD transfers the knowledge from a recurrent-connection-
based biLSTM equalizer to a parallelizable feed-forward 1D-
CNN. This approach enables the parallelization of signal
processing, allowing us to essentially simplify the hardware
implementation of NN models. The effectiveness of the KD
approach was tested with both simulated and experimental
data. The proposed 1D-CNN model was compared against
other NN architectures to verify the performance in terms of
Q-factor and inference time. In addition, the characteristics of
the KD approach on how it assists the student’s learning and
the limitations of the KD are highlighted. We also show that
the proposed feed-forward equalizer obtained with KD, results
in a significantly reduced signal processing latency compared
to the original biLSTM model. In the experimental setup, the
student model can perform at the same level as the teacher
at the optimal launch power, while in the simulated data, the
student slightly reduces the maximum Q-factor by 0.5 dB.
In conclusion, the student model can provide 2.2 dB gain
compared to the CDC with an improvement of the optimum
power by 3 dB in simulated data, while having a 0.7 dB
gain with 1 dB increment in optimum launch power in the
experimental data.
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