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We investigate nonequilibrium transport properties of a quantum dot in the Coulomb blockade regime
under the condition of negligible inelastic scattering during the dwelling time of the electrons in the dot.
Using the quantum kinetic equation we show that the absence of thermalization leads to a double step in
the distribution function of electrons on the dot, provided that it is symmetrically coupled to the leads.
This drastically changes nonlinear transport through the dot resulting in an additional (compared to the
thermalized case) jump in the conductance at voltages close to the charging energy, which could serve as an
experimental manifestation of the absence of thermalization.
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Many-body localization (MBL), predicted for disordered
many-electron systems which are not thermalized with the
environment [1,2], has attracted a lot of theoretical and
experimental attention (for a review, see [3]) and has been
observed in systems of ultracold atoms [4]. One of the
defining properties of MBL is the absence of thermal-
ization [5,6].
Prior to the MBL papers [1,2], a similar regime of

localization in Fock space was predicted for quantum dots
[7] where electrons fail to mutually equilibrate as their
dwelling time on the dot, τdw, is much shorter than the
equilibration time τeq. Alternatively, this condition can be
formulated as

γ ≪ Γ; ð1Þ

where γ ∼ 1=τeq is the equilibration rate and Γ ∼ 1=τdw is
the tunneling rate. For a zero-dimensional diffusive dot, the
electron-electron equilibration rate [7–9],

γ ≈ Δ
�

ε

gΔ

�
2

; ð2Þ

can be sufficiently small provided that
ffiffiffi
g

p Δ < ε < gΔ,
where ε is the quasiparticle energy, Δ is the mean level
spacing on the dot, and gΔ is the Thouless energy of the dot
with dimensionless conductance g ≫ 1.
In this Letter, we show that such an absence of thermal-

ization leads to striking changes in nonlinear transport in

the Coulomb blockade regime, where electrons are loaded
one by one into a quantum dot due to the charging energy,
Ec ¼ e2=C, of a dot of capacitance C, preventing a
continuous flow. We assume the separation of scales typical
for the classical Coulomb blockade at a temperature T
(see [10–12] for reviews):

Γ ≪ Δ ≪ T ≪ Ec: ð3Þ

Typically, the study of quantum dots in the Coulomb
blockade regime has been focused on the regime where
complete thermalization is assumed. This regime is char-
acterized by peaks in the conductance as a function of gate
voltage [13,14] that can be attributed to interesting features
in the tunneling density of states [15], and—in case of
strong asymmetry in the coupling to the leads—by a
staircase in the current as a function of the bias voltage
V [16–19]. When the coupling is approximately symmetric,
ΓL ∼ ΓR, the Coulomb staircase practically vanishes in the
thermalized case. But it is precisely in this case when the
absence of thermalization reveals itself by an additional
jump in the nonlinear differential conductance, as we show
in this Letter by solving the quantum kinetic equation. The
absence of thermalization on a dot, therefore, can be
detected by this jump which occurs within the first step
of the Coulomb staircase.
The jump arises due to the change in the distribution

function of the dot; going from a Fermi function in the fully
thermalized case to a double-step form. A similar structure
(although for practically noninteracting electrons) has pre-
viously been observed in one-dimensional wires where the
distribution function was a linear combination of the two
Fermi functions of the leads due to insufficient time for
equilibration [20]. A double-step distribution has also been
predicted for open quantum dots, where electrons are practi-
cally noninteracting [21], and for auxiliary noninteracting
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electrons in the slave-boson approach to the Kondo effect in
quantum dots [22]. Here, in the Coulomb-blockade regime
in region (3), a double-step form of the electron distribution
function is substantially modified by the interaction.
The standardHamiltonian of aCoulomb-blockaded quan-

tum dot coupled to two leads is H ¼ Hdot þHl þHtun,
where

Hdot ¼
X
n

εnd
†
ndn þ

1

2
EcðN̂ − NgÞ2; ð4aÞ

Hl ¼
X
k;α

ðεk − μαÞc†k;αck;α; ð4bÞ

Htun ¼
X
k;n;α

ðtαc†k;αdn þ H:c:Þ: ð4cÞ

Here, α ¼ L, R labels the leads, d†nðdnÞ, c†k;αðck;αÞ are the
creation (annihilation) operators for electrons with energies

εn and εk in the dot and leads, respectively, N̂ ¼ P
n d

†
ndn is

the number operator for the dot, and Ng is the preferred
number of electrons on the dot set by the gate voltage. The
leads have chemical potentials μL ¼ μþ eV and μR ¼ μ.
The k- and n-independent tunneling amplitudes between the
dot and leads, tα, define, along with the density of states of
the leads να (taken to be constant), the tunneling rates Γα ¼
2πναjtαj2 with the total Γ ¼ ΓL þ ΓR.
In addition to inequalities (3), we assume that the Fermi

energy of the dot is much larger than the charging energy,
εF ≫ Ec, to ensure that only electrons in a relatively narrow
energy strip around εF contribute the transport properties of
the system. This assumption is also utilized in the orthodox
theory of the Coulomb blockade [14,16–19] and is achiev-
able in experiments [10,23]. By starting with the standard
expression for tunneling current [24] and assuming current
conservation, we express the current across a quantum dot
in the Coulomb blockade regime in the region (3) as

I ¼ e
ΓLΓR

Γ

X
N;n

pN

�
FNðεnÞ½fLðεn þΩN−1Þ − fRðεn þ ΩN−1Þ� þ ½1 − FNðεnÞ�½fLðεn þ ΩNÞ − fRðεn þΩNÞ�

�
; ð5Þ

with details of the derivation in Supplemental Material
[25]. Here, pN is the probability of N electrons being on the
dot, FNðεnÞ is their distribution function, and fL;RðεnÞ are
Fermi functions in the leads with chemical potentials μL ¼
μþ eV and μR ¼ μ ¼ εF respectively. The presence of the
charging energy is encapsulated by

ΩN ¼ ENþ1 − EN ¼ Ec

�
N þ 1

2
− Ng

�
; ð6Þ

where EN ¼ 1
2
EcðN − NgÞ2.

The current through a thermalized quantum dot is usually
considered with the help of a master equation [13,14,16–19]
involving electrons of all energies. In the nonthermalized
regime (1), the electrons with different energies are not
mixed. Hence, the probabilities and distribution functions
can be found from the energy-conserving quantum kinetic
equation (QKE), which is formulated using the Keldysh
formalism (see, e.g., [24,26,27]) in terms of the “greater,”
g>ðtÞ, and “lesser,” g<ðtÞ, Green’s function of the dot. In the
regime (3), where themean level spacing ismuch larger than
the level broadening due to tunneling, they are split into a
sum over the energy levels, with Green’s function for the
nth level given by g>n ðtÞ¼−ihdnðtÞd†nð0Þi and g<n ðtÞ ¼
ihd†nð0ÞdnðtÞi, where dnðtÞ ¼ eiHtdne−iHt. Then, to linear
order in tunneling, the QKE is reduced to [24,26,27],

g>n ðεÞΣ<ðεÞ ¼ g<n ðεÞΣ>ðεÞ: ð7Þ

Here, the conservation of particle number for an isolated dot
allows one to represent the single-level Green’s functions as
(see Supplemental Material [25])

g>n ðεÞ ¼ −2πi
X
N

δðε − εn −ΩNÞpN ½1 − FNðεnÞ�;

g<n ðεÞ ¼ 2πi
X
N

δðε − εn −ΩN−1ÞpNFNðεnÞ; ð8Þ

with the normalization
P

N pN ¼ 1. The self-energy func-
tions of the leads in Eq. (7) are assumed to be n independent
and are given by

Σ>ðεÞ ¼ i
X
α¼L;R

Γα½fαðεÞ − 1�; Σ<ðεÞ ¼ i
X
α¼L;R

ΓαfαðεÞ:

ð9Þ

Substituting Eqs. (8) and (9) into Eq. (7) leads to the QKE
reflecting the detailed balance equations, coinciding with
those derived in [14] for Δ ≫ T,

pNþ1FNþ1ðεnÞ½1 − f̃ðεn þΩNÞ�
¼ pN ½1 − FNðεnÞ�f̃ðεn þ ΩNÞ;

f̃ðεÞ ¼ ðΓL=ΓÞfLðεÞ þ ðΓR=ΓÞfRðεÞ: ð10Þ

It is this equation along with the normalization conditions,P
N pN ¼ 1 and

P
n FNðεnÞ ¼ N, that can be used to obtain

the probabilities and distribution functions required in
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Eq. (5) to calculate the current. The results for full thermal-
ization are recovered by summing Eq. (10) over n using the
fact that in this case we can substitute the equilibrium
distribution function, FNðεnÞ ¼ fðεn − εFÞ.
The absence of thermalization, however, drastically

changes the distribution function. In this case, QKE (10)
has an exact solution providing there are only two relevant
states (N and N þ 1) for a given voltage (see Supplemental
Material [25]). In the case of approximately equal coupling,
this condition can be satisfied only for a finite bias window,
i.e., within the first step of the Coulomb staircase. For
higher bias, one needs to account for more states with
different numbers of particles that are not being exponen-
tially suppressed (in contrast to the asymmetric case when
ΓL=ΓR ≫ 1 [28]).
Assuming that the chemical potential in the dot is of

order of the unbiased chemical potential in the (right) lead,
we show that the current and, hence, the differential
conductance has an additional peak in the window 0 ≤
eV ≲ ΩNþ1 as compared to the thermalized case [16–19].
In this window, where only two levels are relevant, the
kinetic equation (10) has the solutionFNðεnÞ ≈ FNþ1ðεnÞ ≈
FðεnÞ in the limit N ≫ 1, leading to

FðεnÞ ¼
f̃ðεn þ ΩNÞ

½1 − f̃ðεn þ ΩNÞ�AN þ f̃ðεn þΩNÞ
; ð11Þ

where AN ¼ pNþ1=pN . This ratio of probabilities is found
from normalization, N ¼ P

n FðεnÞ ¼ ð1=ΔÞ R∞
0 FðεÞdε,

while pN þ pNþ1 ¼ 1 as shown in Supplemental

Material [25]. As seen in Fig. 1, depicted for the middle
of the Coulomb blockade valley where ΩN ¼ Ec=2, both
pN and pNþ1 are practically indistinguishable from the
thermalized case. It remains the case as long asΩN , Eq. (6),
remains far from the peaks of the Coulomb blockade. Note
that this and all subsequent results depend only on ratios of
energetic parameters and are fully applicable in experi-
mental regimes where T ∼ 10–100 mK and Ec ∼ 1 meV.
On the contrary, the distribution function, found by

substituting the ratio AN ≡ pNþ1=pN into Eq. (11),
acquires an additional step

FðεnÞ≈

8>><
>>:

1; εn < μR−ΩN�
1þ ΓR

ΓL
AN

�
−1
; μR−ΩN < εn < μL−ΩN

0: μL−ΩN < εn

ð12Þ

as depicted for the middle of the valley in Fig. 2. Such a
double step is similar to that observed in short quasi-one-
dimensional wires [20]. However, in the wire the double
step was simply a linear combination of the two Fermi
functions of the leads, while in the present case it is
substantially affected by the Coulomb interaction. Still, in
both cases the double step reflects the lack of thermal-
ization between electrons coming from the left and right
leads. In the steady-state limit, electrons from both leads
enter the dot at two different chemical potentials and
thermalize with the opposite lead only after exiting the
dot. Note that the double step is effectively washed out
in the one-lead limit of the Coulomb blockade when
ΓR=ΓL ≪ 1.

FIG. 1. The occupation probabilities pN (the upper line) and
pNþ1 (the lower line) as functions of bias voltage, V, for ΓL ¼ ΓR,
and N ¼ Ng. Here, they depend only on the ratio Ec=T in the
temperature region 10–100 mK, albeit this dependence is rather
weak (Ec=T ¼ 100 was used for this figure). The solid lines
represent our results for the nonthermalized case, the dashed lines
for the full-thermalization case [16–19]. In this temperature range
they are practically indistinguishable.

FIG. 2. The electron distribution function in the dot for
ΓL ¼ ΓR, N ¼ Ng, and eV ¼ 0.8Ec where AN ≈ 0.6 (as found
numerically). The double-step structure is robust as long as
eV > ΩN—in the opposite case AN ≡ pNþ1=pN → 0, as seen
from Fig. 1, and the middle step disappears. FðεÞ has only a
weak dependence on Ec=T so that the three curves above
practically merge.
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The double-step distribution in the dot drastically
changes the differential conductance, G ¼ dI=dV, in com-
parison with the thermalized case [16–19]. Substituting pN
and FðεnÞ into Eq. (5) with FNðεnÞ ≈ FðεnÞ, we find G as
shown in Fig. 3. For small voltages, eV < Ec, the absence
of thermalization has little impact in the low-T limit.
However, at eV ¼ Ec, there appears a secondary jump in
the nonthermalized case. It is robust as long as the
tunneling is symmetric, ΓL ≈ ΓR, when there are three
distinct regions for the distribution, Eq. (12). Rewriting
Eq. (5) for the current in the low-T limit and for eV ≲ ΩNþ1

will make this clearer:

I ¼ e
Δ
ΓLΓR

Γ

�
pN

Z
μ−ΩN−1þeV

μ−ΩN−1

FðεÞdε

þ
Z

μ−ΩNþeV

μ−ΩN

fpN ½1 − FðεÞ� þ pNþ1FðεÞgdε

þ pNþ1

Z
μ−ΩNþ1þeV

μ−ΩNþ1

½1 − FðεÞ�dε
�
: ð13Þ

The second integration over the middle step starts to
contribute at eV⩾Ec=2 when pN and pNþ1 start to change,
see Fig. 1, signaling that the oncoming particle is suffi-
ciently energetic to overcome the charging energy. This
results in the usual blockade jump which is the same for
both the thermalized and nonthermalized cases. As long
as eV < Ec, the first and third integrals in Eq. (13) are
negligible as the each integration is over a region where
the integrands are exponentially small at T ≪ Ec. For
eV⩾Ec, this is no longer the case and the appropriate
nonzero contribution results in a sudden change in the

current revealed as a jump in the differential conductance
at eV ¼ Ec.
The position of this jump is insensitive to gate voltage as

it only depends on the difference ΩNþ1 − ΩN ¼ Ec. In the
region around the jump, the ratio of probabilities is given
for T ≪ Ec (see Supplemental Material [25]) by

AN ≡ pNþ1

pN
≈
ΓL

ΓR

�
eV − ΩN

ΩN

�
: ð14Þ

Then, calculating the current from Eq. (13) on both sides of
the jump we find that the jump in the differential conduct-
ance, neglecting corrections in T=Ec, has the height

δG ¼ e2

2Δ
ΓLΓR

Γ
; ð15Þ

in the middle of the Coulomb blockade valley, ΩN ¼ 1
2
Ec.

(The general expression for δG is given in Supplemental
Material [25]). This jump is rather robust: it occurs at
eV ¼ Ec independently of ΩN and has only a weak
temperature dependence. As the temperature is increased,
while still obeying inequalities (3), the jump is only slightly
smeared across a wider range of voltages as shown in the
inset in Fig. 3. This jump should be experimentally
observable and give a clear indication of the absence of
thermalization within a quantum dot.
In conclusion, we note that the existence of additional

fine structure of the Coulomb blockade peaks has been
established numerically and experimentally [29] for small
dots, where Δ ≫ T. Here, we have considered the opposite
case of large quantum dots (3), where we have shown that
the absence of thermalization manifests itself as an addi-
tional jump in the differential conductance at eV ¼ Ec,
which follows the usual jump at eV ¼ ΩN . This is a direct
consequence of the lack of equilibration between electrons
coming from the left and right leads so that the distribution
function on the dot has a double-step form. We anticipate
this jump to be experimentally accessible at the appropriate
voltages and therefore could be used as a method of
identifying the absence of thermalization in the dot.
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