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Abstract: As computer networks become increasingly important in various domains, the need for
secure and reliable networks becomes more pressing, particularly in the context of blockchain-enabled
supply chain networks. One way to ensure network security is by using intrusion detection systems
(IDSs), which are specialised devices that detect anomalies and attacks in the network. However,
these systems are vulnerable to data poisoning attacks, such as label and distance-based flipping,
which can undermine their effectiveness within blockchain-enabled supply chain networks. In this
research paper, we investigate the effect of these attacks on a network intrusion detection system
using several machine learning models, including logistic regression, random forest, SVC, and XGB
Classifier, and evaluate each model via their F1 Score, confusion matrix, and accuracy. We run each
model three times: once without any attack, once with random label flipping with a randomness of
20%, and once with distance-based label flipping attacks with a distance threshold of 0.5. Additionally,
this research tests an eight-layer neural network using accuracy metrics and a classification report
library. The primary goal of this research is to provide insights into the effect of data poisoning
attacks on machine learning models within the context of blockchain-enabled supply chain networks.
By doing so, we aim to contribute to developing more robust intrusion detection systems tailored to
the specific challenges of securing blockchain-based supply chain networks.

Keywords: blockchain; supply chain; machine learning; flipping; poisoning attacks

1. Introduction

In recent years, network intrusion detection systems (NIDSs) have become essential
tools for securing computer networks, especially in blockchain-enabled supply chain net-
works. These systems often rely on machine learning models to enhance their effectiveness.
However, these models are vulnerable to data poisoning attacks, compromising their accu-
racy and posing significant security risks. This research aims to conduct an experimental
assessment of the impact of data poisoning attacks on the machine learning models used
within NIDSs.

The ever-expanding realm of computer networks, coupled with the proliferation of
applications across them, underscores the burgeoning significance of network security.
Intrusion detection systems (IDSs) have evolved into specialised instruments proficient in
meticulously identifying network anomalies and potential attacks, a trend that has recently
garnered prominence. The intrusion detection domain has traditionally centred on two fun-
damental techniques: anomaly-based and misuse-based. While misuse-based detection is
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preferred in commercial applications due to its predictability and heightened accuracy, aca-
demic research frequently champions anomaly-based detection for its theoretical potential
in countering novel and unprecedented attacks.

Data poisoning attacks represent a form of adversarial assault on machine learning
models, where malicious actors manipulate training data to compromise the model’s ac-
curacy or induce misclassifications. In the specific context of network intrusion detection
systems within blockchain-enabled supply chain networks, poisoning attacks assume a crit-
ical role by potentially enabling attackers to circumvent the system’s detection mechanisms.
These poisoning attacks come in various forms, including label flipping and distance-based
flipping attacks, all of which have demonstrated their efficacy in undermining the integrity
of machine learning models.

Our research’s main goals, objectives, and contributions are as follows:

• A range of machine learning models, including logistic regression, random forest, SVC,
and XGB Classifier, were systematically evaluated for network intrusion detection in
blockchain-enhanced supply chain networks

• Rigorous evaluation of each model incorporated metrics such as their F1 Score, confu-
sion matrix analysis, and accuracy assessments.

• The robustness of each model against data poisoning attacks was tested by subject-
ing them to various scenarios, such as no attack, random label flipping with 20%
randomness, and distance-based label flipping with a 0.5 distance threshold.

• An eight-layer neural network was also experimented with, and its performance was
assessed using accuracy and a classification report library.

• Comprehensive insights were provided into the effects of data poisoning attacks on
machine learning models and their implications for network security.

• This research contributed to developing more robust and secure network intrusion
detection systems for blockchain-enabled supply chain networks.

The emphasis on the intersection of data poisoning attacks and supply chain networks
underscores the importance of securing these pivotal components within contemporary
information systems. In the context of blockchain-enabled supply chain networks, var-
ious machine learning models, including logistic regression, random forest, SVC, and
XGBClassifier, have been harnessed to identify network anomalies and potential attacks.
The assessment of these models has encompassed performance metrics such as F1 Score,
confusion matrix, and accuracy. Additionally, a neural network model was meticulously
trained using the KDDCUP’99 dataset, followed by a comprehensive evaluation using
accuracy and F1 Score metrics. To gauge the resilience of these models in the face of data
poisoning attacks, they were subjected to two specific scenarios: random label flipping
with a randomness factor of 20% and distance-based flipping attacks characterised by a
distance threshold set at 0.5. This multifaceted analysis endeavours to provide insights
into these models’ predictive capacity and susceptibility to adversarial data manipulation
within blockchain-enhanced supply chain networks.

Blockchain-enabled supply chain networks represent intricate systems encompassing
multiple stakeholders, including suppliers, manufacturers, distributors, retailers, and cus-
tomers, as shown in Figure 1. These entities engage in diverse processes, such as production,
transportation, inventory management, and demand forecasting, all collectively facilitating
the efficient and timely delivery of goods and services to customers. However, these sup-
ply chain networks face many challenges and risks, including disruptions, uncertainties,
cyberattacks, and environmental concerns. One vital challenge pertains to safeguarding
the network’s security against malicious intruders who may seek to compromise, sabotage,
or pilfer sensitive information or resources from within the network.

These attacks are especially challenging to detect and prevent in blockchain-enabled
supply chain networks, where the network data are distributed and decentralised across
multiple nodes [1]. Data poisoning attacks can have serious implications for network security
and business profitability, as they can compromise the detection capabilities of NIDSs, allow
malicious intrusions to go unnoticed, and disrupt the normal operations of the supply chain
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network [1]. Therefore, developing effective countermeasures to mitigate the impact of data
poisoning attacks on NIDSs in blockchain-enhanced supply chain networks is essential.
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Several methods can be investigated to defend against these attacks, such as data
sanitisation, robust aggregation, and anomaly detection. However, these methods are
beyond the scope of this paper and have been left for future work. Future work could also
explore other types of data poisoning attacks, such as adding malicious samples, injecting
noise, or other methods mentioned in this research, and evaluate their effects on different
machine learning models and datasets. Moreover, future work could investigate the impact
of data poisoning attacks on the security and efficiency of blockchain-enabled supply chain
networks in greater detail and develop more robust and secure network intrusion detection
systems for this domain.

This research endeavours to investigate the susceptibility of machine learning models,
including logistic regression, random forest, SVC, XGB Classifier, and an eight-layer neural
network, to data poisoning attacks within network intrusion detection systems (NIDSs)
deployed in blockchain-enhanced supply chain networks. By systematically evaluating
these models in various attack scenarios and assessing their performance using metrics like
F1 Score and accuracy, we aim to provide nuanced insights into the impact of data poisoning
on the robustness and security of NIDSs. Our findings contribute to developing more
resilient intrusion detection systems tailored to the challenges presented by blockchain-
enabled supply chain networks. The supply chain model adopted in this research is a
generic network model and applies to all application domains.

The paper is organised as follows: Section 2 delves into related work and research
implications, encompassing an extensive literature review of the recent and pertinent
contributions in the field. Section 3 offers an in-depth exploration of the selected dataset
and the rationale behind its selection. Section 4 presents the experimental design, outcomes,
and an evaluation of the impact of data poisoning attacks on the machine learning models.
Lastly, Section 5 concludes the paper, opening a discussion on potential future endeavours
to enhance and expand upon the findings and results obtained in this study.

2. Related Work

Data poisoning attacks on machine learning models have been studied in various do-
mains, such as computer vision, natural language processing, and recommender systems [2,3].
For instance, the paper by [4] proposes a low-cost data poisoning attack algorithm named
AttackRegion-UCB (AR-UCB) within the Attack against Federated Learning-based Au-
tonomous Vehicle (ATT_FLAV) framework. This label flipping attack algorithm offers a
unique dynamic black-box target attack for nonlinear regression models updated through
federated learning. AR-UCB is designed to maximise attack rewards in rounds of continuous
updates, with limited data and model output information available in each round. The
research validates the effectiveness of the proposed attack, which demonstrates sequential
improvements in attack rewards and can defend against classical aggregation schemes.
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Additionally, an innovative framework for conducting online data poisoning attacks
against smart-grid cyber-physical systems, based on the online regression task model, was
introduced by [5]. The primary goal of this framework is to manipulate the model by
gradually contaminating the incoming data stream. Furthermore, it offers a method for
choosing data points depending on the sample loss within this framework. Experiments
were carried out on an edge device utilising a simulated data stream created from offline
open datasets relevant to the smart grid to evaluate the effectiveness of the proposed
algorithms. The experimental findings show that this approach can increase the average
attack efficacy by more than 1.23 times while reducing time overhead by more than 50%.
These results highlight how crucial it is to protect against poisoning attacks in the context
of smart grid security. The paper focused on popular online prediction models appropriate
for edge intelligence applications and real-time, resource-constrained settings.

However, the application of machine learning in cyber security, especially in network
intrusion detection systems (NIDSs), poses unique challenges and opportunities for both
attackers and defenders [6]. NIDSs monitor network traffic and detect malicious activities,
such as denial-of-service attacks, port scanning, malware infection, etc. NIDSs can be
classified as signature-based or anomaly-based [7]. Signature-based NIDSs rely on prede-
fined rules or patterns to identify known attacks, while anomaly-based NIDSs use machine
learning models to learn the normal behaviour of network traffic and flag any deviations as
anomalies [6]. Machine learning models can improve the accuracy and efficiency of NIDSs
by automatically adapting to changing network conditions and discovering new attack
patterns. However, machine learning models are also vulnerable to data poisoning attacks,
which involve tampering with the training data to degrade the performance or compromise
the integrity of the models [2,6].

The blockchain operates more seamlessly, providing increased security for all par-
ticipants through transparency. As a new block is added, each node has a copy of the
updated chain, which could improve transparency in many fields. The study in [8] presents
a three-layer supply chain model that incorporates both RFID and blockchain technologies.
The model focuses on the reverse flow of materials and demonstrates that employing
blockchain-based RFID technology was profitable for the system in all scenarios. Dis-
crepancies and holding costs particularly influenced the extent of profit increase, as these
two parameters were most affected by the combination of the RFID and blockchain. The
study highlights the benefits of adopting RFID and blockchain technology in supply chain
operations. However, they emphasise the importance of addressing high misplacement
rates within the system. It is shown that using RFID and blockchain technology can lead to
a significant profit increase of up to 61% in the supply chain, even in high discrepancies.
Consequently, RFID and blockchain technology offer the potential to enhance profitability
without being significantly impacted by increased discrepancies in the supply chain.

Data poisoning attacks can have various goals, such as reducing the overall detection
accuracy, causing targeted misclassification or bad behaviour, and inserting backdoors or
neural trojans [2,3]. Data poisoning attacks can be classified into two types: indiscriminate
and targeted. Indiscriminate attacks aim to degrade the model’s overall performance by
randomly changing the labels or features of some training examples. Targeted attacks aim
to manipulate the model’s behaviour on specific inputs or outputs by carefully crafting
poisoned examples close to the decision boundary or greatly influencing the model [2,3].
Data poisoning attacks on machine learning models have been studied in various domains,
such as computer vision, natural language processing, recommender systems, etc. However,
the application of machine learning in cyber security, especially in network intrusion
detection systems (NIDSs), poses unique challenges and opportunities for both attackers
and defenders.

Previous research by [9] researched poisoning attacks and defences in machine learning
by reviewing over 100 articles published in the previous years. By designing a framework
that categorises threat models, attacks, and organising existing defences, they also main-
tained that their systematisation applies to attacks and defences in other data modalities
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even though their primary focus was on computer vision applications. In addition to
reviewing the historical development of machine learning models and highlighting present
and future obstacles, the study outlined realistic scenarios for launching attacks on them.
The research also offered guidance for understanding and defending against these attacks
and insights into developing reliable machine-learning models resistant to malicious users.

Researchers in [10] used two AML attack types: poisoning and evasion. Poisoning
attacks modify the training data to introduce errors or biases in the model. Evasion attacks
craft adversarial examples that can fool the model at the time of inference. The article
evaluates the impact of these attacks on four popular machine learning models: logistic
regression, support vector machine, random forest, and a neural network. It uses two
benchmark datasets: NSL-KDD and CICIDS2017. It measures the performance of the
models using four metrics: accuracy, precision, recall, and F1 Score. Researchers in [11]
evaluated the robustness of federated learning-based network intrusion detection systems
under data poisoning attacks by malicious clients. They proposed a new attack method
called PT-GAN and a new defence method based on poisoned sample detection.

Several mitigations and defences against data poisoning attacks were proposed in [12];
the researchers proposed a defence mechanism independent of the specific type of poison-
ing attack, called De-Pois. It leverages a mimic model that approximates the behaviour
of the target model when trained on clean samples. It employs Generative Adversarial
Networks (GANs) to augment the training data and train the mimic model. It detects
poisoned samples by measuring the prediction discrepancy between the mimic and tar-
get models. Other researchers [6] propose a model-level defensive mechanism based on
poisoned model detection and a data-level defensive mechanism based on poisoned data
detection. The proposed model-level defence boosts its detection accuracy by up to 48%
under the poisoning attacks on UNSW-NB15 dataset and 36% on CICIDS2018 dataset, and
the proposed data-level defence further improves its detection accuracy by up to 13% on
CICIDS2018 dataset.

Another study [13] discusses a novel approach to protect against data poisoning
attacks that can be used in NIDSs. The discussed approach, DPA-FL, is based on federated
learning, allowing multiple participants to collaboratively train a global model without
sharing their local data. DPA-FL employs a two-phase strategy to identify and eliminate
the attackers who inject poisoned data into the federated learning process. Using DPA-FL,
NIDSs can achieve high detection accuracy and robustness against poisoning attacks.

Our research is related to recent studies on data poisoning attacks and their defences
for NIDSs. Whereas previous studies by [14,15] proposed novel defence methods based
on poisoned sample detection and training data sanitisation, respectively, for federated
learning-based NIDSs and machine learning models in NIDSs. However, our research
differs from theirs in several aspects. First, this research focuses on distance-based label
flipping attacks, which are more realistic and challenging than random label flipping
attacks, as they target the most influential samples for the classifier. Second, this research
use several machine learning models, including logistic regression, random forest, SVC,
and XGB Classifier, to evaluate the effect of these attacks on different types of classifiers.
Third, it uses the KDDCUP’99 dataset, a widely used benchmark for NIDSs, to compare
our results with previous studies that have also used this dataset.

Targeted label flipping, random label flipping, and random input data poisoning are
the three types of data poisoning attacks that are compared practically in a study by [16],
emphasising how they affect federated learning environments. A novel data poisoning
technique was proposed by inverting the loss function of a benign model. This inverted loss
function produces malicious gradients almost in contradiction to the minima throughout
each Stochastic Gradient Descent (SGD) phase. Once created, these malicious gradients
inject poisoned labels into the dataset. Utilising three distinct datasets—MNIST, Fashion-
MNIST, and CIFAR10—the attack was evaluated and contrasted with other known data
poisoning techniques. The findings indicated that this novel attack could be 1.6 times more
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successful than targeted attacks and 3.2 times more effective than random poisoning attacks
in some situations, especially when used with federated machine learning.

Two more papers that are related to distance-based label flipping [17,18] propose a
white-box, realisable poisoning attack that reduces the original model accuracy from 95%
to less than 50% by generating mislabelled samples in the vicinity of a selected subset of
training points, which is similar to the idea of distance-based label flipping. It proposes a
novel community detection algorithm that uses distance-based label propagation, which can
be applied to identify the nodes most vulnerable to label flipping attacks in social networks.
Another relevant paper for our research is [18], which proposes a network intrusion detection
model based on a two-layer convolution neural network for handling imbalanced datasets,
a common challenge in NIDSs. These papers can provide some insights into the design and
analysis of data poisoning attacks and their defences for NIDSs.

This paper has several research implications for network anomaly detection and data
poisoning attacks. First, it provides empirical evidence of the impact of label flipping attacks
on network anomaly detection models, a novel and realistic type of data poisoning attack
that has not been extensively studied before [19]. Second, it compares the performance and
robustness of two neural network models with the same architecture on a non-poisoned
and a poisoned dataset, which can serve as a baseline for future studies on this topic; it
highlights the resilience of some machine learning models, to some extent, to label flipping,
as they can still achieve moderate performance despite the noise in the training data, which
could motivate further research on understanding and enhancing the robustness of neural
network models to data poisoning attacks. Table 1 below shows the limitations and research
gaps of the existing literature on data poisoning attack frameworks.

Table 1. Limitations and research gaps of related works.

Reference Year Limitations and Research Gaps

[20] 2023

Depending on the loss function (f) the attacker would have to control a larger number of clients
with an increasing number of participating devices to uphold the value of f.
The research does not directly tackle this aspect, as it does not alter the loss function but rather
assesses the impact of data poisoning attacks on existing machine learning models.

[17] 2022

The research does not include FT-GCN optimisation or the development of an upgraded traffic
graph with weighted edges denoting the degree of correlation among traffic flows. Moreover, the
research does not explore the multi-classification of harmful internet traffic flows at this point;
while the research does not engage with these specific aspects, it concentrates on evaluating the
models’ robustness against data poisoning attacks in the existing intrusion detection context.

[18] 2023

The study focuses on improving the CSK-CNN model’s overall classification performance in the
context of intrusion detection datasets. However, it does not detail how well certain anomalous
categories like Dos, Web Attack Brute Force, and others, are classified. As such, there may not have
been a comprehensive assessment or optimisation of the model’s performance regarding these
particular attack categories. Although this research does not offer an optimisation or detailed
assessment of the CSK-CNN model’s performance for these specific categories, it focuses on the
broader impact of data poisoning attacks on various machine learning models.

[9] 2023

It does not delve into advanced online models like deep learning and neural networks. As a result,
the findings and methods proposed in the study may not be readily applicable to these models.
These more complex models might pose distinct challenges and necessitate unique attack and
defence strategies. The research in this paper uses several machine learning models such as logistic
regression, random forest, support vector classifier, XGBoost, and a deep neural network with eight
layers. Also, it focuses on the impact of data poisoning attacks on these models.

While this research provides valuable contributions to understanding the effects of
data poisoning attacks on intrusion detection models, it does not directly overcome the
specific limitations and research gaps mentioned in the references [9,17,18,20], as its focus
lies in a different domain of investigation; the main focus of this research is on two types of
attacks: label flipping and the distance-based flipping. Label flipping involves randomly
changing the labels of some training examples from benign to malicious or vice versa.
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Distance-based flipping involves changing the labels of some training examples based on
their distance to the decision boundary of a classifier.

3. Dataset

Its prominence and extensive utilisation underpins the selection of the KDDCUP’99
dataset for our research in the domain of intrusion detection. This dataset’s vast repository
of instances and encompassing feature set, coupled with its coverage of diverse attack types
and scenarios, renders it a pivotal resource for this field. It is a fundamental benchmark,
facilitating the rigorous evaluation and comparative analysis of various intrusion detec-
tion methodologies and systems. It is imperative to acknowledge that the KDDCUP’99
dataset does not lack limitations and challenges, as this research will discuss later. These
encompass the antiquity of the underlying network environment, an inherent skew in class
distribution, the presence of superfluous and non-informative features, and the prevalence
of mislabelled instances.

It is also important to note that contemporary datasets, such as MAWILab, Malware
Training Sets, ADFA Intrusion Detection Datasets, CTU-13, Aposemat IoT-23, and EMBER,
are available for intrusion detection research. These datasets encapsulate real-time network
traffic and contemporary attack patterns, which may introduce novel complexities and
research opportunities. Nevertheless, these datasets, distinguished by unique formats,
structures, and characteristics, may necessitate distinct methodologies and techniques
for processing and analysis. Moreover, certain datasets are not readily accessible to the
public, potentially limiting their utility and reproducibility. Given these considerations, the
KDDCUP’99 dataset is a classic and universally recognised resource for intrusion detection
research. It is our belief that this research offers substantive insights and contributions
to the realm of intrusion detection and the application of machine learning in fortifying
network security.

This dataset contains information about different types of connections to a computer
network, such as normal connections and malicious attacks. The dataset has the following
characteristics:

• It has 41 features, such as duration, protocol type, service, source bytes, destination
bytes, etc., that describe each connection.

• It has 4.9 million records, of which 10% are available as a subset for training and
testing purposes.

• It has 23 types of attacks, such as denial of service, probing, user to root, remote to
local, etc., representing different network intrusions.

• It is based on a simulated military network environment that mimics real-world scenarios.

The KDDCUP’99 dataset was chosen for this research because it offers a large and
diverse set of data that covers various aspects of network activity and security. It also has a
well-defined task and evaluation criteria that can be used to compare different methods
and models. However, this dataset also has some limitations and challenges, such as:

• It is outdated and does not reflect the current state of network traffic and attacks that
are more complex and sophisticated.

• It has some redundant and irrelevant records that may affect the quality and accuracy
of the models.

• It has imbalanced classes that may cause some models to be biased or overfitting.

The main objective of this research is to study the effects of data poisoning attacks on
several machine learning models commonly used for NIDSs. Data poisoning attacks are
adversarial attacks that corrupt the training data of machine learning models, resulting in
inaccurate or malicious predictions. The KDDCUP’99 dataset contains a large and diverse
set of network connections with different types of intrusions.

The dataset was created by processing the tcpdump portions of the 1998 DARPA Intru-
sion Detection System (IDS) Evaluation dataset, which was prepared and managed by MIT
Lincoln Lab. The original raw data consisted of about four gigabytes of compressed binary
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tcpdump data from seven weeks of network traffic. These data were processed into about
five million connection records, each corresponding to a single connection. The features
include the basic features of individual TCP connections (such as the duration, protocol
type, service type, number of bytes transferred), content features within a connection (such
as the number of failed login attempts, number of file creations, number of root accesses),
and traffic features computed using a two-second time window (such as the number of
connections to the same host, the number of connections to the same service).

The label indicates whether the connection is normal or an attack, and if it is an attack,
what type of attack it is. The dataset provides a taxonomy of 22 attack types that fall into
four main categories: denial of service (DoS), probing, user to root (U2R) and remote to
local (R2L). DoS attacks make some computing or memory resources too busy or too full to
handle legitimate requests. Probing attacks are those that scan a network of computers to
gather information or find known vulnerabilities. U2R attacks allow a local user to gain root
or super-user privileges. R2L attacks allow an attacker to gain access to a machine remotely.

The catplot in Figure 2a shows the distribution of the attack traffic in the network
anomaly dataset. The x-axis represents the type of traffic, which can be either normal or an
attack. The y-axis represents the count of instances of each type. The figure shows that there
are approximately 67,000 instances of “Normal” and around 58,000 instances of “Attack”,
which means that most of the packets in the normal traffic are not anomalous, while most
of the packets in the attack traffic are anomalous. This is expected since the normal traffic
represents the baseline behaviour of the network, while the attack traffic represents any
deviation from that behaviour due to malicious activities,

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 22 
 

flag has the third most instances, meaning that some packets in the dataset explicitly reject 
the destination host. This may imply that some security measures or policies block or filter 
some connections. 

  
(a) (b) 

Figure 2. (a) Dataset Labels catplot; (b) distribution of the flag columns in the dataset. 

The other flags have much fewer instances, meaning they are rare or uncommon in 
the dataset. This may reflect that they represent specific or unusual situations or behav-
iours in the network. 

The heatmap in Figure 3 shows the distribution of the flag feature in the network 
anomaly dataset. The flag feature indicates the connection status, which can be one of 11 
categories: SF, S0, REJ, RSTR, SH, RSTO, S1, RSTOS0, S3, S2, or OTH. The x-axis represents 
the flag type, and the y-axis represents the count of instances of each type. The plot reveals 
that the SF flag has the most instances, which means that most of the packets in the dataset 
have a normal connection termination. This may suggest that the network functions 
properly and that most connections are completed successfully. 

 
Figure 3. Dataset correlation matrix heatmap. 

Figure 2. (a) Dataset Labels catplot; (b) distribution of the flag columns in the dataset.

Figure 2b shows the distribution of the flag in the network anomaly dataset. The
x-axis represents the type of flag, which can be one of 11 categories: SF, S0, REJ, RSTR, SH,
RSTO, S1, RSTOS0, S3, S2, or OTH. The y-axis represents the count of instances of each
type, it can be seen that the SF flag has the most instances, which means that most of the
packets in the dataset have a normal connection termination. This may suggest that the
network is functioning properly and most of the connections are completed successfully,
meanwhile the S0 flag has the second most instances, which means that some of the packets
in the dataset have no response from the destination host. This may indicate some network
problems or attacks that prevent the connections from being established. The REJ flag has
the third most instances, meaning that some packets in the dataset explicitly reject the
destination host. This may imply that some security measures or policies block or filter
some connections.

The other flags have much fewer instances, meaning they are rare or uncommon in the
dataset. This may reflect that they represent specific or unusual situations or behaviours in
the network.

The heatmap in Figure 3 shows the distribution of the flag feature in the network
anomaly dataset. The flag feature indicates the connection status, which can be one of
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11 categories: SF, S0, REJ, RSTR, SH, RSTO, S1, RSTOS0, S3, S2, or OTH. The x-axis
represents the flag type, and the y-axis represents the count of instances of each type. The
plot reveals that the SF flag has the most instances, which means that most of the packets
in the dataset have a normal connection termination. This may suggest that the network
functions properly and that most connections are completed successfully.
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On the other hand, the S0 flag has the second most instances, which means that some
of the packets in the dataset have no response from the destination host. This may indicate
some network problems or attacks that prevent the establishing of connections. The REJ
flag has the third most instances, which means that some of the packets in the dataset have
an explicit rejection from the destination host. This may imply that some security measures
or policies block or filter some connections. The other flags have fewer instances, meaning
they are rare or uncommon in the dataset. This may reflect that they represent specific or
unusual situations or behaviours in the network.

The bulk of the entries in the collection appear to be of the flag type SF, which has a
count of over 70,000. The second most common flag type is S0, with around 35,000 records,
followed by REJ, with approximately 10,000 entries. The remaining flag kinds have fewer
than 10,000 records.

The graph in Figure 4 shows the correlation matrix of the numerical features in the
network traffic dataset. The correlation matrix is a table that shows the pairwise correlation
coefficients between each pair of features, ranging from −1 to 1. A correlation coefficient close
to 1 means a strong positive correlation, a correlation coefficient close to −1 means a strong
negative correlation, and a correlation coefficient close to 0 means no correlation. The plot re-
veals that some features are highly correlated with each other, such as src_bytes and dst_bytes,
srv_count and count, and same_srv_rate and dst_host_same_srv_rate. These features may
contain redundant information and may not be useful for network anomaly detection. On the
other hand, some features are weakly correlated or uncorrelated, such as duration and flag,
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wrong_fragment and logged_in, and num_compromised and num_root. These features may
contain unique or diverse information useful for network anomaly detection.
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Figure 4 also shows that some features have a high positive correlation with the
attack label, meaning that they are more likely to indicate an attack when they have
higher values. These features include logged_in, count, serror_rate, srv_serror_rate,
same_srv_rate, dst_host_srv_count, dst_host_same_srv_rate, dst_host_serror_rate, and
dst_host_srv_serror_rate. Some features have a low or negligible correlation with the
attack label, meaning they are not very useful for distinguishing between normal and
attack activities.

4. Experiment

This research will use the KDDCUP’99 network anomaly detection dataset, widely
used as one of the few publicly available datasets for network-based anomaly detection
systems [21,22]. The enormous growth of computer network usage and the huge increase
in the number of applications running on top of it make network security increasingly
important. All computer systems suffer from security vulnerabilities, which are both
technically difficult and economically costly to be solved by the manufacturers. Therefore,
the role of intrusion detection systems (IDSs) as special-purpose devices to detect anomalies
and attacks in the network is becoming more important.

4.1. Experiment Design

The aim of this experiment is to evaluate the resistance of each model to the attacks
and suggest some mitigation strategies by applying various machine learning models to
the dataset, such as logistic regression, random forest, support vector classifier, XGBoost
and an artificial neural network with eight layers. These models are trained and tested with
and without data poisoning attacks, which are random label flipping and distance-based
label flipping, as shown in Figure 5.
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One of these models will use logistic regression, which was selected as a baseline linear
classifier widely used for binary classification problems [23]. The support vector classifier
is also used as an example of nonlinear classifiers that can capture complex patterns in the
data [24]. Furthermore, random forest and XGBoost were also employed. By comparing
these models, the main aim is to investigate how different learning algorithms react to data
poisoning attacks.

Random label flipping is a simple and naive way of poisoning the training data by
randomly selecting some instances and changing their labels to any other class [5]. This can
introduce noise and confusion to the machine learning algorithm, especially if the noise
level is high or the classes are imbalanced [25]

Distance-based label flipping is a more sophisticated and targeted way of poisoning
the training data by selecting some instances that are close to the decision boundary of
the machine learning algorithm and changing their labels to the opposite class. This can
create more damage and misclassification than random label flipping, as it exploits the
vulnerability of the machine learning algorithm to instances that are hard to classify [26].

4.2. The Experiment’s Models’ Training and Evaluation

In this section, a data poisoning attack on the machine learning model was conducted
and compared with the non-poisoned models; data poisoning is a type of adversarial attack
that aims to manipulate the training data of a machine learning algorithm to degrade its
performance or accuracy [27,28].

The experiment was conducted using several machine learning models, and each
model was evaluated using its F1 Score, confusion matrix, and accuracy. The algorithms
include logistic regression, random forest, support vector machine and XGBoost, an
eight-layer neural network model was also tested, which was trained using the Adam
optimiser and binary cross-entropy loss function. A random label flipping with 20% ran-
domness was introduced, and the dataset was split into training and test sets using an
80–20 split. The training set contains 125,973 records, and the test set contains 25,194 records.

Figure 6 shows the decision boundaries of different machine learning models for the
network anomaly detection task. The function scaled the data using a StandardScaler
from sklearn and applied PCA to reduce X to two components. The output showed that
different models had different complexity and accuracy in their decision boundaries. Some
models, such as random forest, SVC and XGB had curved and complex decision boundaries
that could capture more nonlinear patterns and variations. Other models like the logistic
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regression had simpler decision boundaries that could capture only the basic trends and
differences. The output also showed that different models had different prediction errors
and uncertainty. Some models, such as the random forest and SVC, had fewer misclassified
data points in the wrong colour region.
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The results show the performance metrics of seven different machine learning models
when trained on a dataset without poisoned samples. The models used are logistic regres-
sion, Figure 7a; random forest, Figure 7b; support vector classifier (SVC), Figure 7c; and
XGBoost, Figure 7d.

All models have reasonable accuracy, as shown in Table 2, with the lowest being
random forest at 0.825 and the highest being 0.858 with the logistic regression model. The
models show F1 scores ranging from 0.822 with SVC to 0.868 with logistic regression. In
terms of precision, all models have values higher than 0.9. This indicates that the models
have low false positive rates, and their recall values range from 0.72 with XGB to 0.82 with
the logistic regression.

Table 2. Model evaluation metrics without data poisoning.

LR Random Forest SVC XGB

Acc 0.85,81884315117104 0.82,52306600425834 0.84,6829607723754 0.82,94889992902768
F1 0.86,82464454976303 0.82,2841726618705 0.84,6829607723754 0.82,78857347541864

Prec 0.92,14485654303709 0.97,26799192090996 0.95,81734081291211 0.97,30554678454899
Recall 0.82,08524896750565 0.71,30055326112367 0.75,86690563391257 0.72,04083222940856
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4.2.1. Evaluation of Machine Learning with a Random Label Flipping Attack

Comparing these results with the previous analysis, it can be observed that the perfor-
mance metrics of all models have decreased significantly when trained on the poisoned
dataset generated using the label flipping attack, as shown in Table 3. This indicates that the
attack successfully reduces the models’ performance on the original dataset. Specifically, all
models’ F1 Scores, precision, recall, and accuracy have decreased compared to their original
values. The extent of the decrease varies depending on the model, with some models being
more resilient to the attack than others, as shown in Figure 8a–d and Table 3; for example,
the logistic regression model appears to be the most resilient, with the smallest decrease in
performance, as shown in Figure 8a and Table 4.

Table 3. Model evaluation metrics with random label flipping attack.

LR Random Forest SVC XGB

Acc 0.8698988644428672 0.8089513839602555 0.8475869410929737 0.8622693399574166
F1 0.8806219219341447 0.8075771791091453 0.8513583664993943 0.8655203776690199

Prec 0.9217791411042945 0.9463874345549739 0.9569191870076826 0.9742589703588144
Recall 0.8429829346216785 0.7042780331956674 0.7667731629392971 0.7786176264318554
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Figure 8. (a) Logistic regression output with random label flipping attack; (b) random forest output
with random label flipping attack; (c) support vector machine output with random label flipping
attack; and (d) XGB output with random label flipping attack.

Table 4. Model evaluation metrics with distance-based label flipping attack.

LR Random Forest SVC XGB

Acc 0.5491039744499645 0.8286905606813343 0.5692423704755145 0.839513839602555
F1 0.7066293399520911 0.8264893521430497 0.7254996183961331 0.839613440907882

Prec 0.5611477814448111 0.9759151193633953 0.5692423704755145 0.9737789203084833
Recall 0.9539468557624874 0.7167458895036235 1 0.7379412452271488

4.2.2. Evaluation of Machine Learning with a Distance-Based Flipping Attack with a
Threshold of 0.5

With a distance threshold of 0.5, the distance-based flipping attack had a lower success
rate than the previous attack. This is evident from the lower recall values. When comparing
this attack to the other attacks, as shown in Table 4, some models perform worse, however,
some models performs better than under the label flipping data poisoning attack, like
Random Forest, Figure 9b. Some models were also highly affected, such as the SVC and
the logistic regression models which could either no longer identify True Labels or barely
identify them, as shown in Figure 9a–c.

It can be concluded that the distance-based flipping attack with a threshold of 0.5 has
a moderate success rate compared to the other attacks, but it may not be as effective as the
other attacks for some classifiers.
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Figure 9. (a) Logistic regression output with distance-based flipping attack with threshold of 0.5;
(b) random forest output with distance-based flipping attack with threshold of 0.5; (c) support vector
machine output with distance-based flipping attack with a threshold of 0.5; and (d) XGB output with
distance-based flipping attack with a threshold of 0.5.

4.3. Artificial Neural Network Data Poisoning Attack

In this section, the Artificial Neural Network will be trained without data poisoning
attacks, and will be evaluated, afterwards a data poisoned version of this model will be
evaluated and compared to the non-poisoned neural network model.

4.3.1. Evaluation of the Artificial Neural Network before a Random Label Flipping Attack

The neural network model used in this experiment is a feedforward artificial neural
network with eight layers and an output layer. The activation function used is ReLU, and
the output layer uses the sigmoid activation function. The model is trained using the
binary cross-entropy loss function and optimised using the Adam optimiser. The Early
Stopping callback is used to avoid overfitting by monitoring the training loss and stopping
the training if it does not improve for five consecutive epochs; the results of the model
show that it achieves high accuracy on both the training and validation sets, with a training
accuracy of 0.994, a validation accuracy of 0.9936, and a test accuracy of 0.866, as shown in
Figure 10b. The model was trained for 50 epochs, which was stopped early as the loss did
not improve for five consecutive epochs. These results indicate that the model can learn the
patterns in the input data accurately and generalise well to unseen data. Figure 10a shows
the loss versus validation loss graph.
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The classification report shows the performance metrics of the model for each class
and its overall accuracy. Precision is the ratio of true positives to predicted positives, recall
is the ratio of true positives to actual positives, and F1 Score is the harmonic mean of
precision and recall. Support is the number of instances of each class, 0.0 denotes normal
traffic, and 1.0 denotes attack traffic.

The report shows that the model has a high accuracy of 0.87, meaning it correctly
classified 87% of instances. It also has a high F1 Score of 0.86, achieving a balanced
performance across both classes, as shown in Figure 10c. And with a higher precision for
normal labels than attack labels it made fewer false positive errors for normal labels than
class attack labels. However, the model has a higher recall for attack labels than normal
labels, and the classification report indicates that the model is effective for network anomaly
detection on a non-poisoned dataset.

4.3.2. Evaluation of the Artificial Neural Network with a Random Label Flipping Attack

The results also show that both models have similar precision and recall scores for
each class, meaning that they make similar errors in terms of false positives and negatives.
However, the model trained on the non-poisoned dataset has a slightly higher F1 Score
for both classes than the model trained on the poisoned dataset (0.86 vs. 0.84 for normal
and 0.87 vs. 0.85 for attack), as shown in Figure 11c. This means that label flipping has a
negative impact on the model’s performance, as it reduces the trade-off between precision
and recall. It can also be seen that the training accuracy and validation accuracy were
affected, in Figure 11b, while Figure 11a shows the loss versus validation loss graph.
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4.4. Experiment Analysis

Data poisoning attacks are a type of attack that targets the vulnerability of machine
learning models’ training data. By injecting malicious samples into the training data,
the attackers can manipulate the model’s behaviour and compromise its integrity. Data
poisoning attacks can devastate a real-world supply chain network, especially if the network
relies on machine learning models for its operations.

One example of such a scenario is the ordering system network within a company
that operates a distribution centre. The ordering system network uses a machine learning
model based on intrusion detection and prevention systems (IDPSs) to monitor network
traffic and detect or prevent malicious activities. However, suppose an attacker can poison
the IDPS model and gain access to the backend server. In that case, they can modify the
ordering system and overload the distribution centre with excessive or fraudulent orders.
This can cause serious losses for the company in terms of money, time, and reputation.

Moreover, the attack can cascade effects throughout the overall supply chain network,
disrupting the flow of goods and services from the suppliers to the customers. The attack
can create bottlenecks, delays, shortages, or surpluses in the network, depending on the
nature and magnitude of the order modifications. For example, suppose the attacker
increases the orders for some products and decreases the orders for others. In that case, this
can affect the company’s and its suppliers’ inventory levels and demand forecasts. This can
lead to the overstocking or understocking of some products, resulting in waste or lost sales.
Alternatively, if the attacker cancels or duplicates some orders, this can affect the delivery
schedules and customer satisfaction of both the company and its customers. This can lead
to missed deadlines or over-deliveries, resulting in penalties or refunds.

The attack can also affect the trust and collaboration among the supply chain partners,
as they may be unable to verify or communicate with each other about the order changes.
This can increase the risk and uncertainty in the network, as they may not be able to
coordinate their actions or respond to contingencies effectively. These effects can have
long-term consequences for the competitiveness and sustainability of the network, as they
may erode its reputation, efficiency, and resilience [29,30].
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To evaluate the impact of data poisoning attacks on machine learning models based on
IDPSs, we conducted experiments using five different models: logistic regression, random
forest, support vector machine, XGBoost, and an artificial neural network. We trained and
tested these models on two datasets: a non-poisoned dataset that does not contain any
label changes and a poisoned dataset that is generated using two different attacks—random
label flipping and distance-based label flipping. The random label flipping attack randomly
changes the labels of some instances in the training data, with a probability of 0.1, to mislead
the model. The distance-based label flipping attack changes the labels of some instances close
to the model’s decision boundary, with a distance threshold of 0.5, to confuse the model.

The results of our experiments are shown in Tables 2–4 and Figures 7–11. Table 2
shows the performance metrics of all models on the non-poisoned dataset. The results
show that all models have a reasonable accuracy and F1 Score on this dataset, with the
logistic regression, Figure 7a, having the highest values (0.858 and 0.868, respectively) and
the random forest, Figure 7b, having the lowest values (0.83 and 0.82, respectively). Table 3
shows the performance metrics of all models on the poisoned dataset generated using the
random label flipping attack. The results show that all models have a lower accuracy and
F1 Score on this dataset than their original values, indicating that this attack successfully
degrades their performance. The logistic regression, Figure 8a, model is still the most
resilient to this attack, as it has the smallest decrease in performance (0.868 to 0.88 for its
F1 Score). Table 4 shows the performance metrics of all models on the poisoned dataset
generated using the distance-based label flipping attack. The results show that this attack
has a lower success rate than the random label flipping attack, as it affects fewer instances
in the training data. The logistic regression model in distance-based label flipping attack,
Figure 9a is again the most resilient to this attack, as it has the highest accuracy and F1 Score
on this dataset (0.549 and 0.706, respectively). Figures 10 and 11 show the loss and accuracy
curves of the ANN model on the non-poisoned and poisoned datasets, respectively. The
figures show that the ANN model has high accuracy on both datasets but lower precision
and recall than other models.

The results indicate that data poisoning attacks are a serious threat to machine learning
models based on IDPSs and the supply chain networks that depend on them. To defend
against data poisoning attacks, several methods have been proposed in the literature, such
as data sanitisation, robust aggregation, and anomaly detection. Future work can explore
these methods and evaluate their effectiveness in preventing or mitigating data poisoning
attacks on supply chain networks.

The KDDCUP’99 dataset offers valuable insights into network intrusion detection, but
it does have limitations, including outdated data and imbalanced classes. These limitations
may render intrusion detection models less effective. Therefore, data poisoning attacks could
exacerbate these issues by further compromising the quality and reliability of models, thus
increasing the risk of false positives and false negatives in identifying network intrusions.

It can also be noted that some features in the dataset are highly correlated with the
attack labels, meaning that they are more likely to indicate an attack when they have higher
values. These features are crucial for the effectiveness of intrusion detection models. How-
ever, if attackers manipulate the training data through data poisoning, these correlations
may be disrupted, causing the models to become less reliable.

Furthermore, as discussed in the third section, the distribution of attack and normal
traffic in the network anomaly dataset emphasises that normal traffic is more consistent
and stable, making it easier to detect anomalies. However, data poisoning attacks can
skew this balance by injecting misleading data, potentially making it more challenging to
differentiate between normal and attack traffic.

In addition, the effects of data poisoning attacks on supply chain networks can be
related to the potential disruption of the overall network’s flow of goods and services.
Data poisoning attacks can exacerbate these challenges by introducing misleading data,
thus impeding the normal flow of network traffic and potentially causing disruptions,
bottlenecks, and delays. These attacks pose a significant threat to the machine learning
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models used in network intrusion detection systems and the supply chain networks that
rely on these models. It is important to underscore the importance of defending against
data poisoning attacks and the need for robust security measures to protect both network
integrity and the broader supply chain network. These security measures should also
consider the dataset limitations and analysis highlighted in our third section to ensure that
intrusion detection systems remain effective in an ever-evolving threat landscape.

It was also demonstrated that data poisoning attacks can seriously jeopardise the
security and effectiveness of supply chain networks by drastically reducing the precision
and dependability of machine learning models built for network intrusion detection sys-
tems. The random forest model proved to be the most susceptible to both kinds of attacks,
whereas the logistic regression model had the highest level of resilience. Additionally, as it
affected fewer occurrences in the training data, we discovered that the distance-based label
flipping approach had a lower success rate than the random label flipping attack.

This research contributes to the body of knowledge on supply chain networks and
network intrusion detection systems by examining the impact of data poisoning attacks on
machine learning models in this field. Additionally, the design and development of more
resilient and secure network intrusion detection systems that can handle the difficulties
and dangers of data poisoning assaults would benefit from our research.

However, our study has a few drawbacks that may be resolved in future studies. A
limitation of this study is the examination of only two categories of data poisoning attacks,
which may not encompass the entire range of potential attacks that could be directed
towards network intrusion detection systems. Different attacks that cause data poisoning,
such as introducing malicious samples, changing features, or adding noise, could affect the
models differently and demand distinct countermeasures. Another drawback is that the
tests we conducted only employed one dataset, which might not accurately represent the
complexity and diversity of network traffic and attacks in the real world. More realistic
and varied datasets that can represent the features and dynamics of supply chain networks
afforded by blockchain technology could be used in future studies.

Further studies may also examine improved efficient techniques for identifying and
minimising data poisoning assaults on network intrusion detection systems. Data saniti-
sation, robust aggregation, and anomaly detection are some of these potential techniques.
Before feeding the training data to the model, data sanitisation tries to eliminate or fix any
malicious or noisy samples. The goal of robust aggregation is to decrease the influence
of poisoned models or poisoned learners by combining the outputs of several models
or learners. Finding instances where data or a model deviate from expected or normal
behaviour is the goal of this anomaly detection technique.

Other data poisoning attacks such as gradient-based poisoning attacks, which use
the gradient information of the target model to generate poisoned samples that can alter
the model’s parameters or decision boundary [31–33], or meta-learning poisoning attacks,
which use meta-learning techniques to generate poisoned samples, could also be inves-
tigated in future research. These attacks can be applied to models such as linear models,
neural networks, or kernel methods.

To summarise our findings, the following can be said about our research results.

• The logistic regression model is the most resilient to both attacks because it is a linear
model with a simple and stable decision boundary less affected by the label changes.
The label changes only affect the instances close to the decision boundary, which are
fewer in number and have less influence on the model’s parameters. The logistic
regression model also has a regularisation term that prevents overfitting and reduces
its sensitivity to noise or outliers.

• The random forest model is the most vulnerable to both types of attacks because it is
an ensemble model that combines the outputs of multiple decision trees trained on
random data subsets. The label changes affect most instances in each subset, leading
to high variance and inconsistency among the decision trees. The random forest model
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also has high complexity and flexibility which make it prone to overfitting and increase
its susceptibility to noise or outliers.

• The support vector machine model is moderately resilient to both attacks because it is
a kernel-based model that uses a nonlinear transformation to map the data to a higher
dimensional space where it can find a linear decision boundary that separates the
classes. The label changes affect the instances close to the decision boundary, which
are the support vectors that determine the model’s parameters. The support vector
machine model also has a regularisation term that prevents overfitting and reduces its
sensitivity to noise or outliers.

• The XGBoost model is moderately vulnerable to both types of attacks because it is
a gradient-boosting model that iteratively adds new decision trees trained on the
residuals of the previous trees. The label changes affect the model’s residuals and
gradients, leading to a high bias and error accumulation among the decision trees.
The XGBoost model also has high complexity and flexibility which make it prone to
overfitting and increase its susceptibility to noise or outliers.

• The artificial neural network model is highly accurate on both datasets. However, it
has lower precision and recall than other models because it is a deep learning model
that uses multiple layers of nonlinear transformations to learn complex and abstract
features from the data. The label changes affect the model’s features and weights,
leading to high confusion and misclassification among the classes. The artificial
neural network model also has high complexity and flexibility that make it prone to
overfitting and increase its susceptibility to noise or outliers.

5. Conclusions and Discussion

This research demonstrated the effects of two types of data poisoning attacks, namely
label flipping and distance-based attacks, against several machine learning models. The
experiment shows that data poisoning attacks can compromise the accuracy and reliability
of the machine learning models used in network intrusion detection systems. It was
observed that distance-based attacks have the highest probability of causing damage to
the models’ accuracy. Malicious actors can carry out these attacks to exploit vulnerabilities
in the system and cause security breaches, which in turn can pose a serious threat to the
security and efficiency of supply chain networks. Therefore, it is essential to develop robust
countermeasures to detect and mitigate the effects of these attacks. Further research is
needed to develop more effective defences against poisoning attacks and to enhance the
security of network intrusion detection systems.

The effect of label flipping attacks on network anomaly detection models based on
neural networks was much investigated in this research, within the scope of a supply chain
network. It was shown that these attacks can significantly degrade the performance and
robustness of the models, especially when the attack intensity is high, which could lead to
the disruption of the supply chain network. However, our study has some limitations that
can be addressed in future research, such as that this research has only considered two types
of data poisoning attacks, which may not capture the full spectrum of the possible attacks
that can be launched against network anomaly detection systems. Other types of data
poisoning attacks, such as adding malicious samples, modifying features, or injecting noise,
may affect the models differently and require different defences.

Additionally, our reliance on a single dataset could limit representativeness, requiring
future studies to incorporate more diverse datasets reflecting the complexities of supply chain
networks. The main finding in this research is the vulnerability of machine learning models
in network intrusion detection systems, especially random forest, to data poisoning attacks,
which significantly reduce their precision and reliability. Conversely, the logistic regression
model displayed notable resilience. This research significantly contributes to understanding
the intricacies of data poisoning attacks, paving the way for more robust intrusion detection
systems. The findings of this research also inform senior managers of the risks associated
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with the integrity of technical controls in the changing cyber security landscape and of how
to ensure business continuity using robust measures to mitigate such vulnerabilities.
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